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ABSTRACT 

Controlling the surrounding world and predicting future 

events has always seemed like a dream, but that could become 

a reality using a Brain Computer/Machine Interface 

(BCI/BMI). Epilepsy is a group of neurological diseases 

characterized by epileptic seizures. It affects millions of 

people worldwide, with 80% of cases occurring in developing 

countries. This can result in accidents and sudden, unexpected 

death. Seizures can happen undetectably in newborns, 

comatose, or motor impaired patients, especially due to the 

fact that many medical personnel are not qualified for EEG 

signal analysis. Therefore, a portable automated detection and 

monitoring solution is in high demand. Thus, in this study a 

system of a wireless wearable adaptive for early prediction of 

epilepsy seizures is proposed, works via minimally invasive 

wireless technology paired with an external control device 

(e.g., a doctors’ smartphone), with a higher than standard 

accuracy (71%) and prediction time (14.56 sec). This novel 

architecture has not only opened new opportunities for daily 

usable BCI implementations, but they can also save a life by 

helping to prevent a seizure’s fatal consequences.   

General Terms 

Brain Machine Interface, Artificial Immune, Signal 

Processing. 

Keywords 
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1. INTRODUCTION 
Epilepsy is a group of neurological diseases characterized by 

epileptic seizures that affects more that 10% of the human 

population worldwide; nearly 80% of cases occur in the 

developing world, and resulted in 116,000 Sudden 

Unexpected Death in Epilepsy (SUDEP) in the last two years 

[1]. Epilepsy becomes more common as people age. In 

developed countries, infants account for most of the seizures. 

About 5-10% of people over 80 years old have had a seizure. 

Sufferers have an increased chance of experiencing a second 

seizure, and usually epilepsy cannot be cured by [2]. Epilepsy 

can be a primary cause of sudden death or cause different 

accidents, especially motor-vehicle accidents [3]. Seizures can 

also happen to newborns, comatose, or significant motor 

impaired patients, especially in Intensive Care Units (ICU). 

The situation can be even more severe when medical 

personnel are not qualified for EEG signal analysis, which is a 

very common case. Using online unsupervised BCI, detection 

and monitoring the solution can at least help in detecting the 

seizure symptoms early to avoid fatal consequences [4].  

Despite the advances in pharmacological treatments, 

approximately 1 in 3 patients continues to experience frequent 

seizures. Usually epilepsy cannot be cured; however, 

medication can control seizures effectively, although in more 

than 30% is not effective in generalized seizure and 50% of 

people with partial seizures. In the developing world, 75% of 

people are not appropriately treated, especially in Africa, 

where 90% of the patients do not get treatment at all [5]; the 

global distribution of seizure cases is shown in Figure 1. 

 

 

 

 

 

 

 

 

Fig 1: The global epilepsy rate research, University of 

Oxford in Lancet 

The current seizure detection solutions are based on manual 

inspection, and the demand for automated detection is very 

high, not to mention the need for prediction. The current state-

of-the-art architectures either require a perfect environment to 

operate, as they are prone to noise, have limitations with 

predictions due to the static techniques used, or require a 

powerful computational machines as well as a lot of wiring 

between the patient and the monitoring station, and in most of 

the cases, they do not provide a closed loop prediction and 

detection systems nor easy doctor and ICU personal access to 

decisions making mechanisms, which in many cases can cost 

the patient’s life. 

The study in [6] shows that in most cases the ICU personnel 

are not qualified for EEG analysis and the majority of patients 

in the ICU are comatose or have significant motor 

impairment. The main problem with the current detection 

systems is that they are only for measuring continuous EEG 

monitoring devices that are being reviewed by neuroscientists 

once or twice a day. These devices usually require a lot of 

wiring, and they do not provide an early prediction or 

detection feature. Instead they depend solely on the visual 

inspection of the printed EEG waveform activities. However, 

the limitations of the detection time are the major challenge. 

Wireless scalp EEG based early prediction, warning and 

detection of epilepsy seizure systems were proposed and 

mentioned by [7] [8]. According to and WHO 2016 [9], a 

detection system should be: 

 Tolerant to noise BCI artifacts and equipment surrounding 

noise for the ICU room device and the adjacent EMF cross 

talk and coupling. 

 Easy to be used; deployed on different patients from 

different age groups, and different injury of sickness level, 
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as well as connected to warning and alerting device, 

whether it is a doctor’s smart device machine, ICU 

monitoring device, or a cloud based analysis unit. 

 Provides adequate accuracy (more than 60%) with respect 

to the agreed seizure detection standard [10]. 

 Capable of predicting even earlier in the stages of epilepsy 

seizures, than the current state-of-art (6.4 sec). 

 Minimizing the false-positive alarms (VLSI architecture) 

to be implemented on a chip and a part of the wearable 

device. 

Many proposed seizure detection systems require an “idea 

signal acquisition,” which makes them perform poorly under 

the presence of additional noises and BCI artifacts [11]. In 

[12] defined Artificial Immune Systems (AIS) as adaptive 

problem solving systems, inspired by theoretical biology and 

immunology functions, Artificial Immune Systems (AIS) are 

an adaptive clustering and classifier system that is used to 

detect the abnormality within problem sample space, based on 

an ideal data set, and the working space of regenerates and 

mutated samples to compare. These give the AIS a 

promisingly accurate prediction of behavior, especially for 

rouge types of input patterns. Therefore, this study proposes 

an early predictor of epileptic seizures that is based on 

disposable wearable non-invasive sensors placed on a 

headband that communicates with a smartphone or any ICU 

monitoring device via a Bluetooth connection technology. 

The proposed system uses a minimally invasive wearable 

EEG band, with a signal processing chip attached to it, which 

is placed behind the patient’s ear and connects via a Bluetooth 

technology to an external monitoring device, or to an ICU 

personnel or doctor’s smart handheld device. The results, 

which include sensitivity and duration parameters 

configuration are also given to the doctors to set for custom 

configuration via the prediction smartphone software. It 

allows the uploading of the raw data and the seizure ictal 

events recording to the cloud for further research, evidence 

recording, or tuning the initial population of signature for the 

detection algorithm. The proposed system is capable of early 

prediction by an average of 14.56 sec, especially for the long-

lasting seizures (called: status epilepticus by [7]), with 

accuracy more than 71% higher than the agreed standards 

(>60%), giving enough time (>10sec) for warning and 

treatment [13] [14]. This means that the proposed systems can 

bring back mobility of a limb (artificial of biological) to a 

handicapped patient, or can save lives through early 

prediction of a seizure. 

The rest of this work is organized as follows: section 2 will 

get more familiar with a brief presentation on epileptic 

seizure; detection and automation technology will also be 

given. Section 3 is the related work, followed by a brief 

introduction to the concept fundamentals. In Section 4, the 

description of the proposed system. Next, the simulation 

results are given, numerical analysis and discussion. Finally, 

the authors conclude and discuss future work. 

2. BACKGROUND 

2.1 Epilepsy seizure types 
According to [15], all the seizures could be divided into two 

main categories: Partial Seizure and Global Seizure, where it 

can be subdivided into interlaced subcategories based on the 

location of the seizure, the patient’s visual symptoms, and the 

awareness state [16]. 

The authors in [12] proposed regarding seizure detection and 

for seizure prediction. Additionally, the study in [17] divided 

seizures into several states: 

 Ictal: a physiologic state during a seizure recording. Latin 

ictus, meaning a blow or a stroke. 

 Pre-ictal: the state immediately before the actual seizure or 

sometimes the beginnings of the ictal state. 

 Post-ictal: the state shortly after the seizure. 

 Inter-ictal: the period between seizures, or convulsions, 

that is characteristic of an epilepsy disorder. For most 

people with epilepsy, it inter-ictal occupies more than 

99% of their life time. 

Epileptic seizure is defined as a brief episode of signs or 

symptoms due to abnormal excessive or synchronous 

neuronal activity in the brain that can result in uncontrolled 

movement of the limbs and almost any muscle of the body, 

and it usually is accompanied by a loss or impair of 

awareness. It is a disease of the brain characterized by an 

enduring predisposition to generate epileptic seizures, which 

are collectively called epilepsy. The study in [18] showed that 

all epileptic seizures can be classified into six main types: 

 Tonic-clonic seizures: characterized by a noticeable 

contraction of the limbs followed by their extension, along 

with arching of the back for 10–30 second. 

 Tonic seizures: results in a constant contraction of the 

muscles. The person may even turn blue. 

 Clonic seizures: a form of shaking of the limbs; ranges 

from simple to severe shaking. 

 Myoclonic seizures: usually cause spasms of muscles in 

either a few areas or are generalized through the body. 

 Absence seizures: results in only a slight turn of the head 

or eye blinking where the person often does not fall over, 

but its post-ictal can last for hours after the seizure ends. 

 Atonic seizures: loss of muscle activity for greater than 

one second; this typically occurs on both body sides. 

2.2 Seizure and EEG 
The authors in [19] defined a seizure as changes in behavior 

that occur after an episode of abnormal electrical activity in 

the brain. It could be also defined as convulsions that occur 

when a person's body shakes rapidly and uncontrollably. 

During convulsions, the person's muscles contract and relax 

repeatedly. There are many different types of seizures, even 

those that have symptoms without shaking. The authors in 

[20] provided example of different types of seizures and the 

way that they appear on the EEG recordings, which is 

basically analyzed via a visual inspection by neuroscientists 

(all these snapshots of the EEG monitoring of a medical test 

done at the Department of Neurology, University of Florida 

and the Atlas for EEG). 

3. RELATED WORK 

3.1 Statistical Detection 
Unlike in [21], the Amplitude Integrated EEG (aEEG) is 

widely used to detect neonatal seizures, despite the fact that 

the accuracy of seizure recognition can be moderate, 

especially in brief, low amplitude, focally oriented seizures 

[22]. Neonatologists analyze the aEEG signals at the patient’s 

bedside. In the authors’ opinion, clinical neurophysiologists 

should at least be involved in this interpretation, as they are 

specially trained in EEG reviewing. Where they compared a 

four-channel EEG monitoring device with 16 channel EEG 
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recordings and found a sensitivity of 68% and specificity of 

98% with visual interpretation of the signals; the statistical 

based algorithm is shown in Figure 2. 

 

Fig 2: The synchronization likelihood test flow chart 

In [23] has experience with another quantitative analysis 

approach for EEG, namely the synchronization likelihood 

(SL), where a nonlinear measure of statistical 

interdependencies between time series, which has shown to be 

a promising measure for detecting seizures in neonatal EEGs 

and frontal lobe epilepsy. They used a SL based technique to 

design an online automatic detection method for real-life EEG 

seizure monitoring. The experiment used the EEG data from 

50 patients over a 15-month period, measuring how five were 

suffering from seizures. Using the 16 channel EEG, the 

architecture was able to detect most of the seizure with 68% 

sensitivity and specificity of 98%. 

Despite of the accurate results and faster performance, this 

architecture suffers from several drawbacks that limit its 

implementation as a wearable device. The first disadvantage 

is that it requires a near ideal operation scenario as this design 

is prone to noise and BCI artifacts. The second disadvantage, 

which is mentioned by the authors, is that the frame structure 

scanned could produce a high rate of false positives especially 

in the case of a scalp EEG input electrode.  

3.2 SVM Seizure Detection Techniques 
There are several works that focus on Epileptic Seizure 

detection. The authors in [15] addresses the computational 

and implementation challenges associated with detecting 

seizure onset with an implantable device. The study 

specifically shows how a Two-Class Support Vector Machine 

(SVM) can be used to synthesize patient-specific detectors 

that outperform a patient non-specific detector. The study also 

discusses other methods that enable efficient implementation 

of the discriminator functions produced by the SVM 

algorithm. 

The researchers claim that: “the detector extracts, from each 

channel, features that can be used to infer the presence of 

seizure activity. Since spectral energy has been shown to be 

useful in the context of intracranial seizure detection, the 

chosen features where the energy within the frequency bands 

0-16Hz and 15-37Hz”. Regardless of the low power 

achievements this design has several drawbacks, including 

that the usage of only static patient related thresholds for 

seizure detection, requires an invasive implants, which are 

very sensitive to noise and almost fits the lower bound of the 

acceptable false alarms. 

3.3 Pattern Recognition Based Detection 
The authors in [23] present a novel event-based seizure 

detection algorithm along with a low-power digital circuit. 

Using an invasive depth-electrode, recordings from rats are 

used to validate the algorithm and hardware performance. The 

main detection algorithm is shown in Figure 3. 

 

Fig 3: Flow chart of the operation stage of the algorithm 

The research also discusses the main problems and cost in 

translating mathematical models into hardware 

implementations. It also claims they could reach an average 

TPR of 95.3% and FPR of 88.9%. They implemented their 

system on a CMOS circuit drawing ~350nW of power source 

with 250mV. 

3.4 Adaptive Prediction Algorithm 
The experiments in [8] discuss from a signal processing point 

of view, that a data analysis and prediction scheme can be 

considered to be a four-step process of signal enhancement, 

including adaptive autoregressive modeling and prediction, 

envelope detection and a binomial decision rule. Their 

proposed architecture is based on scalp EEG electrode for 

data acquisition. A block diagram of the real-time adaptive 

seizure prediction algorithm that is based on Wiener algorithm 

is implemented in real-time Figure 4. 

 

Fig 4: Block diagram of the real-time prediction 

After the amplification stage, the band-pass infinite impulse-

response filter (10–500Hz) attenuates the low frequency noise 

and the higher frequency artifacts that could lead to false 

positive detection of seizures [5].  

As a summery, most of the previous works are based on a 

computational intense algorithm or not suitable for VLSI 

implementation due to the area and power limitations [17], 

and most of them are proposed for seizure detection but do 

not focused on the early prediction of the pre-ictal stage. 

Additionally, they do not solve threshold update problem, the 

artifact noise attenuation, the detection bounded minima 

problem, the static pattern storage, not the framing bounders 

problem, respectively.  
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4. PROPOSED SYSTEM 

4.1 Proposed Method Concepts 
The proposed system uses a non-invasive wearable EEG 

band, with a signal processing chip attached to it, which 

connects via Bluetooth technology to an external monitoring 

device, ICU personnel or doctor’s smart handheld device. The 

sensitivity and duration parameters configuration are also 

given to the doctors to set for custom configuration via the 

smartphone software. 

4.1.1 Cauchy-based filter 
Many proposed seizure detection systems require ideal signal 

acquisition, which makes them perform poorly under the 

presence of additional noises and BCI artifacts. The study in 

[24] shows that more than 90% of the affecting noises of the 

scalp EEG recording comes from the EOG and EMG artifacts, 

where the rest comes from non-acceptable electrode 

conductivity, loose electrode connections, the surrounding 

electrical resonance, adjacent electric and magnetic fields 

EMF and wire crosstalk.  

Wang et al. [24] studied different noise reduction and 

elimination techniques to avoid the Gaussian assumption of 

the stationary noise, and found the best results of false 

detection rate (FDR) are 0.15/h and 0.08/h for the overall and 

best case of the experimental scenario, where they had life 

EEG data from ten human patients. That was achieved via 

using a Cauchy-based observation together with the 

autoregressive (AR) model to represent the state transitions. 

Thus as soon as noise and artifacts invade the EEG signal, 

especially closer to the tail, the probability value of the 

detection will be close to zero, as a property of the Gaussian 

distribution. This is because the Cauchy distribution (1) has a 

higher probability density function (PDF) than the Gaussian 

case. 

                
 

       
    

 
 
 
 
                  (1) 

Where x0 is the location parameter, it is specifying the 

location of the peak of the distribution, and γ is the scale 

parameter (i.e. called the probable error). Obviously, the 

maximum value or amplitude of the Cauchy PDF is 1⁄πγ 

which is located at the peak. Thus, relying on the Cauchy 

distribution instead of the Gaussian helps to clearly 

distinguish between misleading the merged signals. Either it is 

a seizure event or a system of most known artifacts. The 

authors also aware that this filtering could be compromised in 

the case of overlapping several simultaneous artifacts and/or 

seizure occurrences; however, from literature these scenarios 

happen are very rarely in the usual practice. 

4.1.2 Artificial Immune System 
The study in [25] discussed the history of AIS and showed 

that at late 1970’s there was a considerable interest in biology 

as a source of inspiration for solving computational problems. 

Models of the central nervous system have driven artificial 

neural networks. The Darwin Theory spawned evolutionary 

simulations in natural selection. According to Dasgupta [26], 

the definition of the biological immune system (IS) is “an 

accurate and elaborate defense system that consists of multi-

layers of protection where each layer provides different types 

of defense mechanisms for find, detect, recognize and 

response for foreign organisms and pathogens” . 

4.1.3 Negative Selection Mechanism 
In [27] the Negative selection is defended as a process of 

selection that takes place in the thymus gland. Its main 

purpose is to provide tolerance for self-cells. It deals with the 

immune system's capability to detect unknown antigens while 

not reacting to self-cells. The maturation of the T-cells is very 

simple. T-cells are exposed to self-proteins in a binding 

process. If this binding activates the T-cell, then the T-cell is 

killed, otherwise it is allowed into the lymphatic system [28]. 

4.1.4 AIS Definition 
Artificial Immune System (AIS) is concerned with 

computational methods inspired by the process and 

mechanisms of the biological immune system. The scope of 

artificial immune systems could be thought to be restricted to 

pattern recognition tasks. The basic negative selection 

algorithm approach proposed by [29] as shown in Figure 5. 

 

Fig 5: Flow chart of the real-time AIS algorithm 

4.2 Proposed Architecture 
The system solution diagram is shown in Figure 6. The gray 

arrow path represents the input data manipulation path, the 

blue arrow represents the control lines, the orange arrows 

represent the parameter configuration lines, and the green 

dotted line represents the wireless line to the outside control 

device.  

 

Fig 6: The proposed solution logical block diagram 
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The proposed architecture can logically be divided into three 

main stages, the Signal Conditioning, the Adaptive Signal 

Analysis, and the Decision Making stages. The Signal 

Condition consists of four units: The Analog Front-End 

(AFE), the Digital Wavelet Transform (DWT), the Signature 

Generation Unit (SGU), and the Artifact Removal Unit 

(ARU). Those are followed by the Adaptive Signal Analysis 

that is consistent of the Seizure Detection Unit (SDU) and the 

Seizure Prediction Unit (SPU). Finally, it will be followed by 

the Decision Making stage that consists of the Decision 

Controller and the RF Module, which is the gateway between 

the system on the chip and the control interface on the 

doctor’s smart handheld device.  

4.2.1 Signal Conditioning Stage 
This stage is the first part of the online system where the input 

is the raw EEG from four input channels which is amplified 

100 times, then processed via a band pass filter through a 30-

100 Hz band to cutoff the high frequency. It is sampled over 

250/500Hz inside the AFE unit with resolution of 16 bit 

analog to digital converter (ADC) then it is fed to the Cauchy 

based ARU.  

This paper used the unit described in [24] as the main artifacts 

removal block in the adaptive early prediction unit. Then, the 

signal is sent to the DWT unit to smooth the signal and reduce 

the sample space dimensions. After W cycles (where W 

represents the width of signature window) the record width is 

selected empirically to optimize the chip area and the 

signature detection of the signal’s amplitude envelope, it is set 

to 8 Signature Units (Sig.) after the analysis of the simulation 

results and an adequate value for the window length is shown, 

such as in Figure 7. Thus, regarding the dominant spiking 

channel, a behavior signature is generated in the local channel 

data and the affected adjacent channel simultaneously as 

described in the previous work [30].  

 

 

 

 

 

 

Fig 7: The empirical simulations between record width W, 

accuracy and estimate area 

4.2.2 Adaptive Signal Analysis Stage 
In this stage the signatures and the input signals are parallel 

fed in into two main units: the Seizure Detection and the 

Seizure Early Prediction units. The seizure detection unit uses 

an enhanced version (tolerant of artifact noise) of the 

technique described in [23]. The system detects the diversity 

for the standard deviation with combining the resulted value 

matrix of size NxN, where N is the number of channels, then 

calculates the max of the signal likelihood values. Then the 

likelihood value is compared to the adaptive threshold and 

duration (number of clock cycles of occurrence) to detect a 

seizure.  The Detection Unit can also be done via the AIS 

algorithm which could enhance the detection accuracy by 

17%; however, this will cause an increase in the chip area by 

57% and its role as a backup plan strategy will not be used 

with respect to the Early Predicting Unit. The Prediction Unit 

principal engine of the parameterized AIS algorithm is shown 

in Figure 8.  

The main detection engine algorithm is based on the negative 

selection algorithm idea where it tries to find the abnormality 

in the system for every rogue input (antigen). The starting 

point of this algorithm is to produce a set of self-waves, S, that 

define the normal state of the system. The task then is to 

generate a set of detectors, D, that only bind/recognize the 

complement of S. 

 

 

 

 

 

 

 

 

 

 

Fig 8: The proposed analysis algorithm flowchart 

The algorithm’s clonal selection theory has been used as 

inspiration for the development of AIS that perform 

computational optimization and pattern recognition tasks. In 

particular, inspiration has been taken from the antigen driven 

affinity maturation process of B-cells, with their associated 

mutation mechanism. These AIS also often use the idea of 

memory cells to retain good solutions to the problem being 

solved. The pseudo code for the clonal selection is shown in 

Figure 9. 

 

Fig 9: The pseudo code for the Clonal selection algorithm 

The affinity d measurement is determined using the Euclidean 

distance of the antigen with the detectors is defined by: 

            
           

                    (2) 

Using the adaptive behavior of the architecture with the 

mutation shuffling dramatically reduces the local minima 

scenario and increases the true negative detection (e.g. 

specificity) from the usual pattern recognition scenario by 

more than 12%. 

4.2.3 Decision Making Stage 
This is responsible for sending the warning signal of the 

predicted seizure. It is wanted for existing seizures or 

transferring the EEG data to the external monitoring device or 

warning appliance. It compares the output of the seizure 

detection unit and the seizure prediction unit with respect to 

the time and the current sliding window, and it choose to 

either warn for the upcoming possible pre-ictal, or alarm for 

the existing seizure-ictal. Also, this unit reads the threshold, 

which is the signal sensitivity parameter from that external 
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device. Starting with the EEG input registers and the AFE 

units. Then, as soon as a seizure prediction hits the threshold, 

a warning signal is generated and sent to the output unit 

stating the time and the window of the EEG that caused the 

firing to the external device. On the other hand, if a seizure 

onset is detected, an alarm is sent to the external device and 

an update to the population manager is sent to either add the 

previous signature if it does not exist, or increase the priority 

weight of the existing signature. 

4.3 Simulation Results 
Initially the algorithm was experiencing a training phase. This 

simulation used Matlab, Simulink, EEGLAB and WaveClus 

for the initial simulation of the algorithm and decided on the 

initial values of the threshold window width and the 

parameters wire data width to select the width and the 

constant parameters of the thresholds to compare them to the 

FPR. After 5 min of simulation and by studying the different 

threshold values of the accuracy of the system, then the initial 

value was selected of the combined likelihood value between 

0.20 and 0.25 with a mean of 0.23. This is slightly higher than 

the previous work by 33.3% due to deployment of the AR 

unit; the value was selected to optimize the FPR, as shown in 

Figure 10, where that the relatively stable lower FPR and the 

highest TPR in the approximate range can be found, as 

described in [13] [23], where the initial threshold was selected 

to be. 

 

Fig 10: The correlation between FPR and TPR 

We are aware it is not the optimal mathematical solution for 

the minimization of the FPR and the maximization of the TPR 

to be optimized, but this approximate solution provides a 

decent initial value for the threshold, where the rest is up to 

the doctor for fine tuning of the system regarding each 

individual patient or special situation. The next step was to 

generate the initial population of signatures of the AIS. The 

data were used from CHB-MIT lab [31], where an experiment 

was done on 24 patients at a Boston Hospital in December 

2010 for an average of two hours.  Then a randomly selected 

8 patients’ data to act as training data. Next, the rest of the 

data were used for the testing and verification phase 

containing seizure and seizure free recordings. The data 

consist of scalp EEG recordings of pediatric group subjects 

with intractable seizures. Subjects were monitored for up to 

several days following the withdrawal of anti-seizure 

medication in order to characterize their seizures and assess 

their candidacy for surgical intervention; the patient’s 

statistics are shown Figure 11, and are according to the 

expert’s visual inspection of the EEG recordings. These 

parameters were used to determine the initial value for the 

configuration parameters that define the number of the initial 

antibody set, the number of the generated clones of each 

antibody, the gene count (i.e., matching samples), the 

mutation cycle length, the value of the threshold to the antigen 

and the signature selection, shown in Table 1. 

These parameters were used to determine the initial value for 

the configuration parameters that define the number of the 

initial antibody set, the number of the generated clones of 

each antibody, the gene count (i.e., matching samples), the 

mutation cycle length, the value of the threshold to the antigen 

and the signature selection, shown in Table 1. 

 

Fig 11: Selected patients characteristics 

These parameters were used to determine the initial value for 

the configuration parameters that define the number of the 

initial antibody set, the number of the generated clones of 

each antibody, the gene count (i.e., matching samples), the 

mutation cycle length, the value of the threshold to the antigen 

and the signature selection, shown in Table 1. 

Table 1. AIS initial learning parameters 

 

 

 

 

 

 

 

 

The learning curve of the initial likelihood threshold of the 

detection algorithm with respect to the FPR and the TPR was 

set using two hundred input segments, each of 5 sec duration 

that included a seizure onset event for not less than 3 sec each.  

 

(a) 
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(b) 

Fig 12: (a) The learning curve of initial (td) of FPR and 

TPR; (b) The initial prediction threshold 

This was done to ensure a variable location of the ictal event 

within the sample space for the detection mechanism input. 

The results are shown in Figure 12 (a). 

For the prediction unit, the threshold (tp) of the detector’s 

likelihood of prediction was set empirically with a twenty test 

segment, which was taken from the previous data sample for 

20 sec right before the seizure ictal event. The event was 

marked via the visual inspection of the neuroscientist (given 

with the data). The initial threshold was set via the imperial 

test, which was similar to the method used to determine the 

initial value of td in regards to the correlation between the 

FPR and the TPR, as shown in Figure 12 (b).  

The values of the td and tp are initially set to 0.23, and 0.09 

respectively. These values were chosen via the imperial test 

and serves as a guideline for the system to function initially. 

However, the endpoint management application will give the 

ability for the doctors of the ICU to tune these parameters to 

the sensitivity of the warning and the alarm thresholds which 

suits their need for every different case, situation or patients’ 

needs. After the training phase was completed, several 

patients’ EEG data were used, excluding the previously 

selected eight patients who were used for training. The 

simulation ran for a period of 5 min each, where the 

prediction time threshold was initially set from 10-15 sec, and 

the system was able to predict and detect seizures for most of 

the selected patients with a sensitivity of 71% and an accuracy 

of 91%. The results of the experiments are shown in Table 2. 

Table 2. Selected patients for testing phase characteristics 

 

 

 

 

 

 

 

 

After the simulation step, a verification procedure took place. 

And comparing the proposed early prediction algorithm to a 

simple random guess from a normal distribution. The test that 

was proposed and used to verify the prediction step was 

performed on logical decisions bases, not a random guess. 

After that the proposed System II was compared to the 

previously proposed architecture Arch1, and Arch2, proposed 

in [8] and [23], respectively.  

4.4 Results Analysis 
First, all of the previous work and the proposed work exceed 

the performance of the random guess which makes them all a 

selective candidate for future implementation, although, Arch. 

1 and Arch. 2 provided an acceptable average result 

(following the prediction standards stated by [14]). It was 

noticed that Arch.1 has the lowest average performance 

compared to Arch.2 and the proposed method. After analysing 

the situation, it turns out that Arch.1 would have performed 

better if the authors would have proposed a filter as it is in the 

case in the other two systems, which makes the results biased. 

However, the comparison took place to the proposed system 

with the stated systems exactly as is. On the other hand, the 

authors in [32] claimed to describe that a dog may warn of 

impending psychogenic non-epileptic seizures (PNES), saying 

that such a dog’s companionship may cut down on seizure 

frequency. Also they mentioned that the ability for a dog to 

obtain help during or after a seizure could prove lifesaving. 

Further, they showed in their study that a patient was “alerted 

by his dog 7 minutes prior to having psychogenic seizures.” 

However, the experiment was carried with a success rate of 

four out of six parliaments. Additionally, a strong criticism by 

[33] for that study. Thus, a brief, comprehensive summary of 

the state-of-the-art systems, existing claimed methods, and the 

nerve stimulation implant are listed, in addition to the 

proposed system on Table 3. 

Table 3. Comprehensive prediction summary 

 

 

 

 

 

 

 

 

 

As a summary, the authors have shown, illustrated and 

verified that this novel proposed system is capable of early 

prediction of several types of epileptic seizure, with a 

prediction period average of 14.57 sec, twice that of the state-

of-the-art devices [34], with an average accuracy of 72% and 

a lower FPR than the current system by 75%. However, there 

are several disadvantages or undeveloped situations which the 

proposed system at this stage cannot handle. The first issue is 

the abnormal artifacts that usually exit with several infants 

who suffer from seizure. Infant Spasm Syndrome, and Febrile 

Seizure, which usually occur in children aged 3 months to 5 

years, are examples. They usually occur with a high fever. 

However, such cases are considered to be rare (i.e. 2% to 5% 

of all the children). The second issue is that there is a 

relatively short prediction time compared to the claimed dogs’ 

ability to predict seizures (if this clam could be proven). 

However, the authors believe that the advances in 

neurosciences can bring us more clues and more input data 

signal markers that can be extracted to predict a better pattern 

of information for a more accurate prediction within the EEG 

data. 
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5. CONCLUSIONS AND FUTURE 

WORKS 
We propose an early prediction and detection system for 

epileptic seizures. Regarding the problem statement for the 

epilepsy detection issue the proposed system was able to solve 

almost all of the pending issues with the detection technology. 

It proposed a novel – not only a seizure detection system – but 

early epilepsy prediction feature that uses a parameterized 

AIS based adaptive prediction system that was verified and 

outstood the state-of-the-art architectures through prediction 

accuracy by 114%, the false positive rate by (75%) and the 

average prediction time by more than twice the current 

prediction time.  

The main detection problem and issue are the surgical 

procedures, the noise proof design, and the high false alarm 

rate issues, were solved via the proposed wearable and 

disposable wireless band with minimally invasive dry EEG 

sensors for signal acquisition; the system is EOC and EMG 

artifacts-proof due to the support of the Cauchy based artifact 

filter; the accurate parameterized AIS prediction mechanize, 

respectively. Making the proposed system not only a 

promising early prediction system architecture but a novel 

BCI based solution for many brain disorders’ early prediction 

and detection systems. 

For future work, the promising results of the medical markers 

of the stress affected person’s EEG recording gives a new 

opportunity for designing a Stress Detection Warning 

Application that could be used for office and business fields to 

detect stressed personnel early enough before the loss of use 

and performance. Thus, a BCI approach for early stress 

detection, early reduced alert/sleep detection and early 

Alzheimer diagnosis would be the next steps in this work for a 

better tomorrow for the whole of humanity. 
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