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 2 

ABSTRACT 44 
 45 

Gut microbiome sequencing has shown promise as a predictive biomarker for a wide range of diseases, 46 
including classification of liver disease and severity grading. However, the potential of gut microbiota 47 
for prospective risk prediction of liver disease has not been assessed. Here, we utilise shallow gut 48 
metagenomic sequencing data of a large population-based cohort (N=>7,115) and ~15 years of 49 
electronic health register follow-up together with machine-learning to investigate the predictive 50 
capacity of gut microbial predictors, individually and in conjunction with conventional risk factors, for 51 
incident liver disease and alcoholic liver disease. Separately, conventional and microbiome risk factors 52 
showed comparable predictive capacity for incident liver disease. However, microbiome augmentation 53 
of conventional risk factor models using gradient boosted classifiers significantly improved 54 
performance, with average AUROCs of 0.834 for incident liver disease and 0.956 for alcoholic liver 55 
disease (AUPRCs of 0.185 and 0.304, respectively). Disease-free survival analysis showed significantly 56 
improved stratification using microbiome-augmented risk models as compared to conventional risk 57 
factors alone. Investigation of predictive microbial signatures revealed a wide range of bacterial taxa, 58 
including those previously associated with hepatic function and disease. This study supports the 59 
potential clinical validity of gut metagenomic sequencing to complement conventional risk factors for 60 
risk prediction of liver diseases.  61 
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INTRODUCTION  63 

Liver disease causes ~2 million deaths per year worldwide, approximately 3.5% of all deaths, and is 64 
increasingly common in aging populations[1, 2]. The aetiology of liver disease is complex and includes 65 
several inter-related risk factors, such as obesity, age and excess alcohol consumption[3]. Alcohol 66 
consumption, in particular, is a major contributor to liver disease, accounting for >50% of cirrhosis 67 
deaths[2]. The consequences of liver disease can be acute or chronic with highly variable progression 68 
rates; however, most patients are not diagnosed until an advanced stage when liver function is 69 
overwhelmed (e.g. decompensated cirrhosis)[4, 5]. Currently, liver biopsy remains the gold standard for 70 
diagnosis and classification of disease stage, but biopsy is invasive and thus restricted. Although non-71 
invasive tests for detecting liver disease are available, such as ultrasound, computed tomography, 72 
magnetic resonance imaging and spectroscopy, they are primarily applicable to the detection of 73 
advanced severity[6-8]. Hence, there is an unmet need for high fidelity early detection and risk prediction 74 
approaches for liver disease.  75 

The role of the human gut microbiome—the collection of microorganisms residing in the 76 
gastrointestinal tract—has been increasingly recognized in various aspects of liver disease[9, 10]. Interest 77 
in the gut microbiome has rapidly grown as sequencing technologies have progressed from 16S rRNA 78 
amplicon sequencing to shotgun metagenomics. Recent studies have revealed evidence linking gut 79 
microbial composition and the pathogenesis of liver disease[11-13], as well as potential therapeutic 80 
approaches targeting gut microbial communities[14, 15]. Importantly, the gut microbiome has shown 81 
potential for the differentiating cirrhosis and non-cirrhosis controls. Qin et al. showed gene and function 82 
level biomarkers derived from metagenomics could classify liver cirrhosis patients and healthy 83 
controls[16]. Loomba et al. successfully distinguished advanced fibrosis from mild and moderate 84 
NAFLD using gut microbiome characterized by whole-genome shotgun sequencing with random forest 85 
classifiers[17]. Later, Caussy et al. used random forest classifiers to distinguish NAFLD-cirrhosis from 86 
non-NAFLD healthy controls based on gut microbial compositions from 16S sequencing[18]. However, 87 
previous studies have been limited by cross-sectional study design and there are limited data regarding 88 
the longitudinal association between baseline microbiota and incident liver disease. This would be an 89 
important step in investigating whether the gut-microbiome is causally linked to liver disease or can be 90 
used as a stratification tool to identify those at high risk, who may benefit from targeted interventions. 91 

Therefore, we designed a longitudinal study to examine the association and predictive capacity of the 92 
gut microbiome and incident liver diseases, using shallow metagenomic sequencing and supervised 93 
machine learning in a large population-based cohort of >7000 individuals with over 15 years of 94 
electronic health records (EHR) follow-up. Traditional statistical and machine learning approaches are 95 
compared on gut metagenomes, and their predictive capacity is evaluated individually and in 96 
combination with conventional risk factors, including age, sex, body mass index, waist-hip ratio, 97 
alcohol consumption, smoking status, triglycerides, high-density lipoprotein cholesterol, low-density 98 
lipoprotein cholesterol, and gamma-glutamyl transferase levels. The best performing models are further 99 
assessed using survival analysis for time to disease onset. Taken together, our study assesses the 100 
potential clinical validity for adding the gut metagenome to conventional risk factors for prediction of 101 
incident liver disease. We make our predictive models freely available (see Data Availability).  102 

 103 

RESULTS  104 

CHARACTERISTICS OF STUDY POPULATION 105 

This study included 7115 participants with a median follow-up of 14.8 years from the population-based 106 
FINRISK 2002 cohort whose participants are representative of Finnish population aged 25-74 years at 107 
baseline (Methods)[19]. The detailed baseline characteristics of the study population are provided in 108 
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Table 1. To investigate the predictive capacity of baseline gut microbiome and conventional risk factors 109 
for incident liver diseases, we matched phenotype metadata with gut microbial profiles derived from 110 
stool samples, and linked the baseline data to follow-up diagnoses of any liver diseases (LD) or 111 
alcoholic liver disease (ALD) defined by ICD-10 codes (Methods). After stringent quality control and 112 
filtering (Methods), 41 cases of incident ALD and 103 cases of incident LD were considered for 113 
prediction analyses. 114 

BASELINE GUT MICROBIAL COMPOSITION 115 

Stool samples were sequenced by shallow shotgun metagenomics to a mean depth of approximately 116 
1.056 million reads per sample. After human sequences, low quality and adapter reads were removed, 117 
a total of 7.63 billion reads were classified using a GTDB release 89 index database for taxonomic 118 
classification, resulting in 967,000 post-QC and classified reads per sample on average. In total, GTDB 119 
classification uniquely identified 151 phyla, 338 classes, 925 orders, 2,254 families, 7,906 genera and 120 
24,705 species from gut metagenomes. We focused on common bacterial taxa to reduce alignment 121 
artefacts and noise; taxa were filtered by relative abundance (>0.01%  in at least 1% of samples), which 122 
resulted in 46 phyla, 71 classes, 124 orders, 232 families, 617 genera and 1,224 species for further 123 
analysis. Overall, the most abundant taxa were members of phyla Firmicutes, Firmicutes_A 124 
(corresponding to Firmicutes in NCBI), Firmicutes_C (Firmicutes), Bacteroidota (Bacteroidetes), 125 
Actinobacteriota (Actinobacteria), and Proteobacteria (Supplementary Figure 1). 126 

DEVELOPING MACHINE LEARNING MODELS 127 

The workflow for machine learning to predict incident liver disease is shown in Figure 1. For both 128 
ALD and LD, samples were randomly partitioned based on the prediction target into a training set for 129 
discovery (70% of samples) and a validation set for evaluation (remaining 30%), and the partitioning 130 
itself was randomly performed 10 times to assess sampling variation. Within the training set, we 131 
developed and tested prediction models through cross-validation, and the optimal models were assessed 132 
for final performance in the withheld validation set (Methods). Prediction models were derived from 133 
different taxonomic levels separately, since taxa at higher ranks are inclusive of their members at lower 134 
ranks and introducing redundant features can lead to impaired prediction performance. The average 135 
results of the 10 sample partitions are reported. 136 

To define a subset of informative taxa, we performed pre-selection of microbial features associated with 137 
incident liver disease from the union of three approaches in the training sets (Methods). After pre-138 
selection, there were 10, 16, 42, 123, 355, 508 microbial taxa on average at phylum, class, order, family, 139 
genus and species levels for incident ALD, and 9, 12, 25, 62, 194, 303 for incident LD, respectively. 140 
To incorporate microbial diversity measures, Chao1, Pielou’s and Shannon’s indices were included as 141 
additional features. These microbial features were then used to build prediction models in the 142 
corresponding training sets.  143 

Gradient boosting classifiers were applied to pre-selected microbial features to develop and optimize 144 
prediction models with cross-validation in the training datasets. To assess prediction performance, we 145 
also included two robust and common statistical approaches, logistic regression and ridge regression. 146 

PREDICTION OF INCIDENT LIVER DISEASE 147 
The gradient boosting classifier generally outperformed both multivariable logistic regression and ridge 148 
regression, particularly at lower taxonomic levels (Fig. 2). With the gradient boosting classifier, higher 149 
prediction performance was observed at lower taxonomic levels for both incident ALD and LD, 150 
suggesting that the strength of association for higher resolution of gut microbial features outweighs 151 
their lower abundances at these levels. For LD, we obtained the highest prediction performance at 152 
species level with average AUROC of 0.733 (95% CI 0.713 - 0.752; Fig. 2a). At other taxonomic levels, 153 
the mean AUROC for LD ranged from 0.622 to 0.725 at phylum and genus level, respectively. When 154 
predicting ALD, we obtained average AUROC > 0.75 at phylum and class levels, and average AUROC > 155 
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0.85 for other taxonomic levels with the highest value of 0.895 (95% CI 0.881 - 0.909) at species level 156 
(Fig. 2b).  157 

Ridge regression tended to perform better than logistic regression (Fig. 2). For LD, ridge regression 158 
achieved average AUROC > 0.65 at order, family, genus and species levels, with the highest AUROC 159 
of 0.675 (95% CI 0.645 - 0.706) at species level; for ALD, AUROC > 0.80 was obtained at family, 160 
genus and species levels, with the highest AUROC of 0.838 (95% CI 0.813 - 0.862) at species level. 161 
The logistic regression yielded highest AUROC of 0.651(95% CI 0.609 - 0.694) at family level and 162 
AUROC < 0.60 at other taxonomic levels for predicting LD (Fig. 2a); for ALD, the best performance 163 
was obtained at order level with average AUROC of 0.694 (95% CI 0.637 - 0.751; Fig. 2b). Although 164 
logistic regression is highly efficient and interpretable, it did not perform well in this case where a large 165 
number of features are correlated. The L2 regularization of ridge regression better handled inter-166 
correlated microbial features than logistic regression. However, both methods underperformed 167 
compared to the gradient boosted decision tree classifier, which is known to better capture nonlinear 168 
relationships and is robust to correlated features. The gradient boosted decision tree classifier was used 169 
in subsequent analyses. 170 

BENCHMARKING REFERENCE MODELS USING CONVENTIONAL APPROACHES  171 
Conventional risk factors are commonly used for predicting liver disease risk[20, 21]. We built reference 172 
models using a comprehensive set of conventional risk factors, including sex, age, alcohol consumption, 173 
smoking status, body mass index (BMI), waist-hip ratio (WHR), triglycerides, high-density lipoprotein 174 
(HDL), low-density lipoprotein (LDL) and gamma-glutamyl transferase (GGT), to compare with the 175 
prediction capacity of microbiome-based models (Methods). The conventional prediction model 176 
achieved an average AUROC score of 0.768 (95% CI 0.746 - 0.789) for incident LD, slightly higher 177 
than the highest AUROC score of microbiome-only models achieved at species level (AUROC 0.733) 178 
(Fig. 2a). For ALD, the average AUROC reached 0.875 (95% CI 0.855 - 0.896), slightly lower than the 179 
AUROC of gradient boosting model achieved using species-level microbial features alone (AUROC 180 
0.895) (Fig. 2b). Both conventional models and microbiome-based models had substantial predictive 181 
power individually; the next section evaluates the combination of conventional risk factors and 182 
microbial compositions for LD and ALD prediction. 183 

INTEGRATING GUT MICROBIOME AND CONVENTIONAL RISK FACTORS  184 
To investigate the potential of a microbiome-augmented prediction model for liver disease, we utilised 185 
the gradient boosting classifier of microbiome features together with all conventional risk factors related 186 
to the disease, and followed the same partitioning for training and testing (Methods). To evaluate the 187 
performance comprehensively, the optimal models were assessed for both AUROC and AUPRC. Since 188 
greater taxonomic resolution offered better predictive performance, we compare the species-level 189 
augmented and the conventional risk factors only models. 190 

Overall, the prediction performance of the microbiome-augmented models achieved greater AUROC 191 
and AUPRC compared with conventional prediction models. Prediction of LD (Fig. 3a) using the 192 
species-level augmented model yielded an average AUROC of 0.834 (95% CI 0.812 - 0.857), an 193 
AUROC increase of +0.066 over conventional prediction model (as above, average AUROC 0.768). 194 
For ALD, the species-level augmented model yielded an average AUROC of 0.956 (95% CI 0.947 - 195 
0.965), an AUROC increase of +0.081 over conventional model (as above, average AUROC 0.875) 196 
(Fig. 3b).  197 

With a baseline AUPRC value of 0.015 for LD, the species-level augmented model achieved an average 198 
AUPRC of 0.185 (95% CI 0.161 - 0.21), which was higher than the average AUPRC of 0.158 (95% CI 199 
0.132- 0.185) yielded by the conventional prediction model (Fig. 3c). For ALD with a baseline AUPRC 200 
of 0.006, the species-level augmented model and conventional model achieved average AUPRC of 201 
0.304 (95% CI 0.261 - 0.348) and 0.199 (95% CI 0.138-0.260; Fig. 3d), respectively. 202 
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SURVIVAL ANALYSIS USING CONVENTIONAL AND MICROBIOME-AUGMENTED 203 

RISK MODELS 204 

We next performed survival analysis using time-on-study Cox regression in the validation sets to assess 205 
potential clinical validity of microbiome-augmented (species level) risk models as compared to 206 
conventional risk factors only (Methods). The Cox model of conventional risk factors achieved average 207 
C-statistic of 0.813 (95% CI 0.792- 0.835) for LD and 0.922 (95% CI 0.903- 0.940) for ALD, 208 
respectively. The microbiome-augmented risk models yielded higher average c-statistic of 0.838 (95% 209 
CI 0.814- 0.862) for LD and 0.959 (95% CI 0.950 - 0.968) for ALD. Consistent with this finding, the 210 
microbiome-augmented model fits significantly better (LRT p<0.01) than that using conventional risk 211 
factors only. Disease-free survival of those in the highest 5% of microbiome-augmented risk was worse 212 
than those for conventional risk factors alone (Figure 4).  213 

COMPOSITION OF GUT MICROBIOME SIGNATURES  214 
To better understand which bacterial taxa contribute to ALD and LD prediction, we considered those 215 
that contributed to the optimal gradient boosting classifiers at each taxonomic level, in terms of their 216 
frequency of selection and importance rank (Supplementary Table 1).  217 

Notably, Pielou’s evenness, Chao1 and Shannon’s diversity, which were found to be negatively 218 
associated with both ALD and LD, were all selected as predictive contributors at phylum, class, order 219 
and family levels. This was consistent with previous findings that the richness and diversity of gut 220 
microbiome communities are positively correlated with human health[22, 23]. 221 

The microbial signatures mainly comprised taxa from phylum Actinobacteriota (Actinobacteria in 222 
NCBI taxonomy), Bacteroidota (Bacteroidetes), Firmicutes and Firmicutes_A (Firmicutes), and 223 
Proteobacteria (Proteobacteria; Fig. 5; Supplementary Figure 2). Overall, most of the selected 224 
microbial taxa were significantly (FDR<0.05) and positively associated with liver disease. Many 225 
bacterial taxa have been previously reported to be related to liver disease and its progression. The 226 
families Chitinophagaceae (mainly contributed by Chitinophaga)[24], Streptococcaceae (mainly 227 
Streptococcus spp.)[24-26], Enterobacteriaceae (mainly Klebsiella and Klebsiella_A)[25], genera 228 
Actinomyces (mainly A. graevenitzii)[27, 28], Rikenella[29], Blautia[25, 30], Dorea[30, 31], Neisseria[27, 32] etc., 229 
have been frequently reported to be enriched in patients with alcoholism and ALD; the families 230 
Streptococcaceae (mainly Streptococcus spp.), Erysipelotrichaceae, Enterobacteriaceae (mainly 231 
Escherichia), genera Actinomyces[18], Lactobacillus_C and Lactobacillus_H as former Lactobacillus[33-232 
35], Veillonella[32, 34], Prevotella spp.[13, 32, 35-37] etc., have been found to be positively associated with a 233 
broad range of liver diseases, including acute-on-chronic liver failure, non-alcoholic fatty liver disease 234 
and cirrhosis. Several members of Actinomyces spp.[38, 39], Escherichia spp.[40-42], Klebsiella spp.[43, 44], 235 
Desulfovibrio spp.[45], etc. have been identified as pathogens for liver abscess and sepsis. Consistent 236 
with previous studies, UBA11524 (former Faecalibacterium)[13, 18, 25, 30, 46], Coprococcus[25] and 237 
Akkermansia[25, 47-49] were negatively associated (FDR<0.05) with liver disease. Notably, genus 238 
Akkermansia, of which A. muciniphila was previously suggested as having potential protective effect 239 
on liver function and gut microbiota ecology[48-51], uniquely contributed to every higher rank within 240 
phylum Verrucomicrobia for prediction.  241 

Among the prediction signatures, many bacterial taxa have been found in association with development 242 
of liver damage. Intestinal barrier dysfunction, marked by increased intestinal permeability, plays a key 243 
role in the pathogenesis of liver disease and is directly associated with cirrhosis[52]. At genus level, 244 
Ruminococcus, Dorea, Faecalibacterium and Blautia were found to be responsible for increased 245 
intestinal permeability[53], which can induce translocation of microbes and microbial metabolites and 246 
subsequently worsen hepatic inflammation[52]. Conversely, Bifidobacterium was found to be negatively 247 
correlated with intestinal permeability[53]. Gut microbial lipopolysaccharide (LPS) is one of the most 248 
potent LPSs that triggers a cascade of proinflammatory response and promotes the progression of fatty 249 
liver[52]. Besides, LPS-producing bacteria are linked to obesity[54], a major risk factor for NAFLD[3]. 250 
Although members of phylum Bacteroidota (Bacteroidetes) are largest group of LPS producers, such 251 
as Bacteroides and Prevotella spp., family Enterobacteriaceae of phylum Proteobacteria and family 252 
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Desulfovibrionaceae of phylum Desulfobacterota_A (Proteobacteria) exhibit an immense amount of 253 
endotoxin activity[54]. A recent study has shown that endotoxin-producers that overgrow in patients with 254 
fatty liver, including strain members of Escherichia and Klebsiella, can induce NAFLD in mice models 255 
and suggest a potential causative role in NAFLD[55]. The altered gut microbiota composition in cirrhosis 256 
is partially attributed to reduced primary bile acids and increased secondary bile acids in the gut lumen 257 
that are resulted from liver insufficiency[52]. The reduction of total bile acids in the gut contributes to an 258 
overgrowth of pathobiont microbes, including members of Enterobacteriaceae and 259 
Enterobacteriaceae[52]. The elevation of secondary bile acids is largely associated with an abundance 260 
of bacterial producers of secondary bile acid, such as members of Clostridium and Eubacterium[52, 56]. 261 
Bile salt hydrolase activity is associated with resistance of hepatocytes to bile toxicity and is broadly 262 
present in gut microbes including Bacteroides, Bifidobacterium, Clostridium and Lactobacillus[56].  263 

DISCUSSION  264 

In this study, we investigated the potential analytic and clinical validity of the gut microbiome to 265 
improve prediction of future liver disease. From baseline gut metagenomic sequencing and 15-years of 266 
EHR follow up, we developed a framework to predict incident LD and ALD using machine learning 267 
approaches, demonstrating that the gut microbiome and conventional risk factor models exhibited 268 
similar prediction performances separately, but importantly that microbiome-augmented conventional 269 
risk factor models markedly improved prediction. These results indicate that the combination of 270 
conventional risk factors with gut microbiota may have potential clinical utility in early risk 271 
stratification for liver disease.  272 

Few studies so far have investigated the prediction of incident liver disease events using gut microbiota. 273 
Currently, clinical risk prediction models for liver disease events are commonly derived from 274 
demographic, lifestyle and biochemical factors resulted from routine blood tests. While these prediction 275 
rules have reasonable accuracy in clinical practice, they tend to be influenced by extrahepatic conditions 276 
and have reduced accuracy for early stage disease[57, 58]. Furthermore, there is a lack of guidance for 277 
primary care and necessity of referral based on the test results, as a large number of patients with 278 
abnormal test results are asymptomatic during liver disease progression [59-61]. Thus, there is an urgent 279 
need for new tools which improve early detection of high risk individuals.  280 

Our findings are consistent with previous studies of the relationship of bacterial taxa with hepatic 281 
function, disease and progression, and identified several with potential probiotic effects. However, the 282 
precise role of gut microbiota is poorly understood and our results support the need for species level or 283 
indeed greater levels of resolution offered by even deeper metagenomic sequencing. For example, the 284 
abundance of the Bifidobacterium genus has been reported to be associated with alcoholism and liver 285 
injury in various ways[30, 62]: at species level, B. dentium has been found to be enriched in advanced liver 286 
disease[25], conversely B. pseudocatenulatum and B. bifidum have been recognized as potential 287 
probiotics that may attenuate liver damage[33, 63, 64]. This indicates the importance of lower-level taxa 288 
resolution in interpreting how bacteria contribute to the disease pathology.  289 

Our study has several limitations. Due to the necessity of a prospective early detection study to consider 290 
a large number of apparently healthy individuals, we were limited in the number of incident disease 291 
cases, and therefore we are not well-powered to investigate subtypes and stages of liver disease which 292 
might lead to greater clinical significance. The need for shallow metagenomic sequencing for a large 293 
prospective cohort also meant that we were not able to evaluate the added information of deep 294 
sequencing to risk prediction. The prevention measures available to individuals at high risk of liver 295 
disease are also somewhat limited. These include weight reduction, alcohol and smoking cessation, and 296 
may extend to caution with pharmaceutical prescriptions. Finally, our cohort is of European ancestry 297 
and therefore likely suffers from the well-known ancestry bias of analyses performed in European 298 
cohorts; thus, these prediction models are likely to have attenuated performance in non-European 299 
ancestries. 300 
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Notwithstanding the challenging necessity for validation of novel biomarkers as well as development 301 
of standards for interpretation as prerequisites for clinical implementation, our study provides an 302 
evidence base and corresponding risk prediction models for the translation of metagenomic sequencing 303 
in risk prediction of liver disease.  304 

 305 

METHODS  306 

STUDY POPULATION 307 
The FINRISK population surveys have been performed every 5 years since 1972 to monitor trends in 308 
cardiovascular disease risk factors in the Finnish population[19, 65]. The FINRISK 2002 study was based 309 
on a stratified random sample of the population aged 25–74 years from six specific geographical areas 310 
of Finland[66]. The sampling was stratified by sex, region and 10-year age group so that each stratum 311 
had 250 participants. The overall participation rate was 65.5% (n = 8798). The participants filled out a 312 
questionnaire at home, then participated in a clinical examination carried out by specifically trained 313 
nurses and gave a blood sample. They also received a sampling kit and instructions to donate a stool 314 
sample at home and mail it to the Finnish Institute for Health and Welfare in an overnight mail. The 315 
follow up of the cohort took place by record linkage of the study data with the Finnish national 316 
electronic health registers (Hospital Discharge Register and Causes of Death Register), which provide 317 
in practice 100% coverage of relevant health events in Finnish residents. For the present analyses the 318 
follow-up extended until Dec 31st, 2016. The study protocol of FINRISK 2002 was approved by the 319 
Coordinating Ethical Committee of the Helsinki and Uusimaa Hospital District (Ref. 558/E3/2001). All 320 
participants signed an informed consent. The study was conducted according to the World Medical 321 
Association’s Declaration of Helsinki on ethical principles. 322 

PHENOTYPE METADATA  323 
The phenotype data in this study comprised of demographic characteristics, life habits, disease history 324 
and medications, laboratory test results and follow-up EHRs. Baseline phenotype variables used as 325 
conventional risk factors included age, sex, body mass index (BMI), waist-hip ratio (WHR), smoking 326 
status, alcoholic consumption, triglyceride (TRIG), gamma-glutamyl transferase (GGT), high-density 327 
lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol measurements. BMI was computed 328 
as the weight in kilograms divided by the square of height in meters measure with light clothing[19]. 329 
Smoking status described whether a participant was a current daily smoker at the time of the survey. 330 
Alcohol consumption, based on self-reported questionnaire, was measured as the average weekly pure 331 
alcohol use in grams during the past 12 months. TRIG, GGT, HDL and LDL- cholesterol were measured 332 
from blood samples collected from participants advised to fast for at least 4 hours prior to collection 333 
and avoid heavy meals earlier during the day[19, 67, 68]. EHR follow-up of incident disease was until 334 
December 31st, 2016. The median follow-up was 14.84 years and the end point was the date of death or 335 
last follow-up. Incident disease was coded as a binary variable indicating disease case (1) or non-case 336 
(0) with matched time from baseline to event or end of follow-up also utilised for analyses.  337 

CHARACTERIZATION OF THE GUT MICROBIOME 338 
Stool samples were collected by participants and mailed overnight to Finnish Institute for Health and 339 
Welfare for storing at -20°C; the samples were sequenced at the University of California San Diego in 340 
2017. The gut microbiome was characterized by shallow shotgun metagenomics sequencing with 341 
Illumina HiSeq 4000 Systems. We successfully performed stool shotgun sequencing in n = 7231 342 
individuals. The detailed procedures for DNA extraction, library preparation and sequence processing 343 
have been previously described[66]. Adapter and host sequences were removed. To preserve the quality 344 
of data while retaining most of the disease cases, samples with sequencing depth less than 400,000 were 345 
excluded from our analysis. The metagenomes were classified using default parameters in Centrifuge 346 
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1.0.4[69], and using an index database based on taxonomic definitions from the Genome Taxonomy 347 
Database (GTDB) release 89[70] [71]. 348 

The gut microbial composition was represented as relative abundance of taxa. For each metagenome at 349 
phylum, class, order, family, genus and species levels, the relative abundance of a taxon was computed 350 
as the proportion of reads assigned to the clade rooted at this taxon among total classified reads of this 351 
metagenome. The relative abundance of a bacteria that had no reads assigned in a metagenome was 352 
considered as zero in the corresponding profile. We focused on common and relatively abundant taxa 353 
of a within-sample relative abundance greater than 0.01% in more than 1% of samples. The centered 354 
log-ratio (CLR) transformation was carried out on abundance data by taking the log of taxa abundance 355 
divided by geometric mean of abundance in each metagenome profile. Abundance of zero was replaced 356 
with a value representing 1/10 of the minimum abundance in a metagenome before transformation. In 357 
this study, all analyses except for microbial diversity calculation were based on CLR transformed data.  358 

DISEASE CASE DEFINITIONS  359 
The liver disease investigated in this study consists of two groups, alcoholic liver disease (ALD) and a 360 
broader range of any liver disease (LD) according to the ICD-10 codes (Finnish modification). A sample 361 
was considered as an incident case of any liver disease if the follow-up register-based diagnostic 362 
classification was under the ICD-10 codes K70 - K77; the alcoholic liver disease was defined by the 363 
ICD-10 code K70. In the present study, the disease diagnosis was last followed up by the end of 2016.  364 

INCLUSION AND EXCLUSION CRITERIA  365 
The inclusion criteria of FINRISK 2002 cohort have been previously described[19]. Samples with gut 366 
microbiome profiles, phenotype metadata and follow-up all available were included in our analysis 367 
(n=7115). The exclusion criteria of our analysis were: (1) samples with gut metagenomic sequencing 368 
yielding <400K reads; (2) presence of baseline prevalent diagnosis of target disease for prediction; (3) 369 
baseline pregnancy during the survey year. Altogether, 7005 and 6965 samples were included for 370 
modelling analyses of ALD and LD, respectively.  371 

PREDICTION MODELING OF INCIDENT LIVER DISEASES 372 
General framework. Prediction models were developed for any liver disease and alcoholic liver disease 373 
at phylum, class, order, family, genus and species levels separately. For each incident disease to be 374 
predicted, samples were randomly shuffled and partitioned into a training cohort for discovery and a 375 
validation cohort for evaluation at a 7:3 ratio according to the target disease variable such that the 376 
distribution of disease cases and healthy controls in training and testing datasets were consistent. Within 377 
the training set, we first performed pre-selection of features (detailed in next section) and then 378 
developed models using pre-selected features through 5-fold cross validation stratified according to the 379 
prediction target, which further created random splits of internal training and testing sets at a 8:2 ratios 380 
five times with testing sets being mutually exclusive. The models were optimized based on cross-381 
validated results. The optimal models were then trained on the full training set and finally assessed on 382 
the withheld validation set that was excluded from the training and optimization process to avoid data 383 
leakage from the training set. Considering the variation of attribute distributions that can occur during 384 
random data partitioning, we repeated the whole process described above 10 times and reported the 385 
average results. The detailed procedures were elucidated in the rest of this section.  386 

Pre- selection of microbial taxa. To select a set of informative microbial taxa that were individually 387 
associated with incident liver disease, we analyzed the relationship between microbial abundance and 388 
incident disease using (1) logistic regression adjusted for age and gender, (2) Cox regression for time 389 
to disease occurrence adjusted for age and gender, and (3) Spearman correlation. This feature selection 390 
step was performed only within the training datasets accounting for 70% of samples. A microbial taxon 391 
was included in further analyses if statistical significance (P<0.05) was found by any of the above three 392 
methods. After adjusting for age and gender, on average 8 phyla, 14 classes, 35 orders, 103 families, 393 
299 genus and 406 species were associated with incident ALD at statistical significance using logistic 394 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.24.20138933doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.24.20138933
http://creativecommons.org/licenses/by/4.0/


 10 

regression; 8 phyla, 14 classes, 36 orders, 106 families, 306 genera and 416 species were found 395 
significant using cox regression. The Spearman correlation found 7 phyla, 12 classes, 36 orders, 112 396 
families, 314 genera and 428 species, on average, significantly correlated with alcoholic liver disease. 397 
For LD, the average numbers of significantly associated taxa at each taxonomic level were 7 phyla, 10 398 
classes, 19 orders, 49 families, 157 genera and 245 species with logistic regression; 7 phyla, 10 classes, 399 
20 orders, 52 families, 164 genera and 255 species with cox regression; 5 phyla, 8 classes, 19 orders, 400 
51 families, 148 genera and 218 species with Spearman correlation. As the selected taxa were not 401 
always agreed by all three approaches, taxa selected by any approach in the training cohort were 402 
included for developing prediction models with the corresponding data partition. Of the 10 differently 403 
sampled training sets, the average numbers of microbial features at phylum, class, order, family, genus 404 
and species levels were 10, 16, 42, 123, 355, 508 for predicting incident ALD, and 9, 12, 25, 62, 194, 405 
303 for predicting LD, respectively.  406 

Microbial and conventional features. Conventional risk factors include baseline age, gender, BMI 407 
(kg/m2), WHR, alcohol consumption (g), smoking status, TRIG (mmol/l), GGT (U/L), HDL and LDL 408 
cholesterol (mmol/l). Microbial features comprised taxa abundance along with microbial diversity 409 
metrics at phylum, class, order, family, genus and species levels.  To characterize microbial diversity 410 
in samples, Chao1 index, Pielou’s evenness index and Shannon diversity index were calculated using 411 
raw abundance data without filtering. Chao1 index estimates the total species richness for a given 412 
community considering the presence of rare species. Pielou’s evenness index measures how evenly the 413 
species are distributed in a given sample. Shannon’s index takes into account both species richness and 414 
evenness.  415 

Model development. The machine learning approach extreme gradient boosting was applied to predict 416 
the incidence of liver disease from baseline phenotype and microbial data using Xgboost library in R. 417 
Xgboost is a distributed and optimized implementation of gradient boosting decision trees, an ensemble 418 
method of sequential and additive training of trees with regularizations[72]. The prediction procedure 419 
was a twofold process which involved developing models using microbial features alone and in 420 
combination with conventional risk factors. In the first step the gradient boosting classifiers were trained 421 
on microbial features consisting of taxa abundance and diversity metrics at different taxonomic levels 422 
separately. In the second step, microbial features selected by the embedded feature selection of gradient 423 
boosting classifiers in the first step, together with conventional risk factors, were deployed to predict 424 
incident disease. The models were trained with Bayesian optimization (mlrMBO in R) through 5-fold 425 
cross validation in the training dataset. The optimal models selected based on cross-validated results 426 
were evaluated in the withheld evaluation dataset as the final performance for predicting incident 427 
disease.  The highly ranked and frequently selected (by more than half of the models) microbial features 428 
were considered as predictive signatures for further interpretation. Since logistic regression was one of 429 
the most widely used statistical tools for building clinical prediction models, we compared its prediction 430 
performance with gradient boosting classifiers using the same training and evaluation sets. In addition, 431 
we performed Ridge regression, which was more suited to correlated microbiome features by adding 432 
an L2 penalty term to the loss function, following consistent data partitioning strategies. The Ridge 433 
regression was optimized by a fine grid search of parameters with cross-validation of the same divisions 434 
of folds as the gradient boosting classifier.  435 

Benchmarking reference models with conventional methods. Currently, prediction models for liver 436 
disease are commonly built by regression methods of conventional risk factors. Therefore, reference 437 
models were built using logistic regression of commonly used liver disease predictors including age, 438 
gender, BMI (kg/m2), WHR, alcoholic consumption (g), smoking status, TRIG (mmol/l), GGT (U/L), 439 
HDL and LDL cholesterol (mmol/l), as a benchmark procedure.  440 

Model evaluation. The prediction performance of all models was evaluated in the corresponding 441 
withheld validation dataset (30% of samples) that were not used for discovery. The area under the 442 
receiver operating characteristic curve (AUROC) was used to compare the performance across models 443 
of different methods and features. The AUROC is a widely applied metric that considers the trade-offs 444 
between sensitivity and specificity at all possible thresholds for comparing the performance across 445 
various classifiers with a baseline value of 0.5 for a random classifier. Area under the precision-recall 446 
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curve (AUPRC) was provided as a complementary assessment, particularly when constructing risk 447 
models combining microbiome and conventional risk factors. AUPRC considers the trade-offs between 448 
precision (or positive predictive value) and recall (or sensitivity) with a baseline that equals the 449 
proportion of positive disease cases in all samples. Since AUPRC is more sensitive to higher ranks of 450 
the positive class, it is preferred for highly imbalanced datasets where, for example, case numbers are 451 
small relative to controls. As the entire model development process was repeated 10 times, following 452 
the 10 randomly sampled partitions of training and validation datasets, each data partitioning led to a 453 
set of optimal models developed in the corresponding training dataset. The final performance of optimal 454 
models developed from discovery data was evaluated in the corresponding validation data that were set 455 
apart in the beginning. The average results of data partitions were reported. To further assess the final 456 
prediction result, we considered the species-level microbiome models using gradient boosting 457 
classifiers, which outperformed microbiome-only models based on other taxonomic levels for both LD 458 
and ALD. In the withheld validation datasets of various partitions, Cox regression models of 459 
conventional predictors and in combination with predicted scores of microbiome-only models were 460 
built using the time difference between baseline and follow-up disease occurrence or the end of follow-461 
up. The Cox models were evaluated by the concordance statistic (c-statistic). The fit of the model was 462 
assessed by likelihood ratio test.  463 

Data Availability. The data for the present study are available with a written application to the THL 464 
Biobank as instructed in the website of the Biobank: https://thl.fi/en/web/thl-biobank/for-researchers. 465 
Predictive models are available at https://doi.org/10.26188/12554573.v1. 466 
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TABLES 670 
 671 

Table 1. Baseline characteristics of study population  672 

 673 

  674 

N=7115 
Female  Male  

n=55%  n=45%  

Demographics     

Age 49.69 [38.05, 58.78]  51.92 [40.54, 60.70]  

Physical parameters     

Body mass index (kg/m2) 25.90 [23.09, 29.47]  26.9 [24.55, 29.58]  

Waist-hip ratio 0.84 [0.80, 0.88]  0.97 [0.92, 1.01]  

Lifestyles     

Smoking  19%  28%  

Pure alcohol consumption (g/week) 18.9 [2.7, 55.8]  75.9 [20.7, 168.3]  

Laboratory results     

HDL cholesterol (mmol/l) 1.59 [1.35, 1.89]  1.30 [1.10, 1.53]  

LDL cholesterol (mmol/l) 3.19 [2.65, 3.76]  3.46 [2.89, 4.09]  

Triglycerides (mmol/l) 1.07 [0.80, 1.45]  1.36 [0.97, 1.97]  

Gamma-glutamyl transferase (U/L) 19 [15, 27]  30 [21, 46]  

Median [IQR] for continuous variables; n% for categorical variables  
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FIGURES 675 
 676 

Figure 1. Machine learning framework for predicting incident liver disease 677 

 678 

 679 
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Figure 2. Comparison of approaches for prediction of incident liver disease using gut microbial 681 
features. (a) For prediction of any liver disease, the gradient boosting classifier outperformed logistic 682 
regression and ridge regression across different taxonomic levels. (b) For prediction of alcoholic liver 683 
disease, similar trends were observed. For comparison, a conventional prediction model is shown in red. 684 
Error bars represent mean and standard deviation. Horizontal dashed lines mark the mean performance 685 
of conventional models. 686 
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Figure 3. Models of conventional risk factors and gut microbiome data improved prediction of 689 
incident liver disease over conventional prediction models. Area under the ROC curve (AUROC) 690 
for gradient boosting models using species-level gut microbiome data together with conventional risk 691 
factors (blue), or a conventional risk factor model (red), with predicting (a) incident any liver disease 692 
or (b) alcoholic liver disease. Area under the precision-recall curve (AUPRC) for (c) any liver disease 693 
and (d) alcoholic liver disease. Error bars represent mean and standard deviation. Horizontal dashed 694 
lines mark the mean performance of conventional model as a reference. The bolded ROC and precision-695 
recall curves correspond to models with AUROC and AUPRC that are closest to mean performance 696 
reference. 697 
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Figure 4. Survival curves of predicted risk groups for incident liver disease. Performance in the 700 
withheld validation set of Cox models of conventional risk factors and in combination with species-701 
level microbiome-only scores for (a) liver disease and (b) alcoholic liver disease. Predicted risk groups 702 
are the top 5% (Risk Group 1) vs. the bottom 95% (Risk Group 2). 703 

 704 
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Figure 5. Microbial taxa predictive of liver disease. A bacterial taxonomy tree (phylum to family-706 
level) whose members at lower ranks showed predictive signal for incident liver disease. For full 707 
taxonomy, see Supplementary Figure 2.  708 

 709 

 710 
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