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Abstract

The performance dflassively Parallel ProcessofMPPs) is attributed to a large

number of machine and program factors. Software development for MPP applications
is often very costly. The high cost is partially caused by lack of early prediction of MPP
performance. The program development cycle may iterate many times before achieving
the desired performance level.

In this paper, we present an early prediction scheme for reducing the cost of application
software development. Using workload analysis and overhead estimation, our scheme
optimizes the design of parallel algorithm before entering the tedious coding,
debugging, and testing cycle of the applications. The scheme is applied at user/
programmer level, not tied to any particular machine platform or to any specific
software environment.

We have tested the effectiveness of this early performance prediction scheme by
running the MIT/STAP benchmark programs on a 400-node IBM SP2 system at the
Maui High-Performance Computing Centre (MHPCC), on a 400-node Intel Paragon
system at the San Diego Supercomputing Centre (SDSC), and on a 128-node Cray T3D
at the Cray Research Eagan Centre in Wisconsin.

Our prediction is shown rather accurate compared with the actual performance
measured on these machines. We use the SP2 data to illustrate the early prediction
scheme. We provide a systematic procedure to estimate the computational workload, to
determine the application attributes, and to reveal the communication overhead in using
MPPs. These results can be applied to develop any MPP applications other than STAP
radar signal processing, from which this prediction scheme was developed.

Keywords: Massively Parallel Processors, STAP Benchmarks, Performance Prediction,
Communication Overhead, Workload Quantification, and Parallel Processing.

1 Introduction

A frequently asked question among MPP users is “why is my application so slow?” It is not
uncommon that an MPP user spends many frustrating hours in designing, coding, and debugging
a parallel application, only to find out that it runs at a speed far below the performance level
expected. The disappointing users may even loose confidence in using MPPs. This sentiment is
evident in a recent European workshop on “Crisis in High Performance Computing” [7]. What
users need is a simple and accurate performance prediction scheme, that can assess the
performance before the coding stage and reveal performance bottlenecks before the run time.
MPP users can apply this scheme to quickly ascertain the achievable performance and to identify
which part of the program that real improvement can be made meaningfully. Three approaches
to performance evaluatiomeasuremenprediction(modelling), andimulation were reviewed

in [4]. The first two approaches are combined and depicted in Fig.1.

1This version is a preprint of a Journal paper to apPaaallel Computingn late 1996.The copy right
belongs to the publisheElsevier Sciencdlorth Holland, Amsterdam, The Netherlands.
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Figure 1: Comparison of prediction and measurement of MPP performance

The measurement approach is widely employed by MPP users, which relies on actually
measuring the parallel program after the code is fully developed and debugged, as depicted by
dashed lines in Fig. 1. The main advantage of the measurement approach is its accuracy. The
predictior approach, shown by solid arcs in Fig.1, has an added step to rule out inefficient
algorithms, before costly coding and debugging begin. This approach is not widely used, for the
lack of good prediction schemes that can generate accurate performance results.

Currently, both measurement and prediction are done by MPP users manually. Although all MPP
systems come up with some performance tools, virtually all of them are runtime support for
performance evaluation [21]. Existing tools for performance prediction are still in the research
stage, not yet available to general MPP users. For instance et a discussed an experimental
system called PAWS (Parallel Assessment Window System) [22]. More recently, Fahringer
described a tool callec3T for performance estimation of Vienna Fortran programs on MPPs [9].
The recent joint issues IEEE Compute [18] andIEEE Parallel and Distributed Technola 3y

[19] are dedicated to parallel performance tools.

In this paper, we address the performance prediction problem from a user’s perspective. Our
benchmark experiments were performed on the IBM SP2[20], Intel Paragon[24], and Cray
T3D[1]. We parallelized the STAISpace-Time Adaptive Proces) benchmark suite originally



written in sequential C language at MIT Lincoln Laboratory [5]. The contributions of this work
is summarized below in three technical aspects:

» Users prefer a prediction scheme that can estimate the performance of a parallel
application before a single line of parallel code is written. Our STAP experience shows
that less than 10% time is spent on parallel algorithm design, and 90% time is spent on
coding, debugging, and testing. As many as eight parallelizing strategies were considered
in order to select the best one. Early prediction avoids the coding/debugging cost of the
unselected Parallelization strategies.

» Most existing prediction schemes lack accuracy. This is mainly due to oversimplification
in characterizing the workload and communication overheads. For instance, existing
schemes usually assume every computational operation takes the same time, and estimate
the overhead of a collective communication as the overhead sum of a sequence of
point-to-point operations. We show quantitatively this does not work in real applications
running on large number of processors.

» Our scheme is based on realistic quantification of workload and overhead, thus it is highly
accurate. The scheme is validated by a sequence of STAP benchmark experiments on
three MPPs. For up to 256 nodes, our method predict the MPP performance rather closely
matching with the measured performance.

In summary, we attempt to answer the following five questions:

1. What performance can be achieved?

2. Is the parallelizing strategy a good one?
3. How many processors should be used?
4. How large a grain-size should be used?
5. Where is the performance bottleneck?

We start with what are required in a performance prediction scheme. We present the early
prediction scheme in Section 3, using the STAP benchmark experiment on IBM SP2 as a running
example. In section 4, we validate the method by comparing the predicted results with the
measured results. In Section 5, we show how the prediction scheme can be used to increase
system utilization. Finally, we comment on potential applications of the early performance
prediction scheme

Performance Prediction Requirements

This section discusses what is required of a parallel perfornpredictol, either a manual

method or an automatic tool, from an MPP user’s perspective. We want to find out what should
be the input to the predictor and what should be the output. We also comment on what is available
to the user and what is lacking. These results are applied to in the next section to develop the
early prediction scheme.

The proposed early prediction scheme is illustrated in Fig. 2. The scheme consists of 5 major
steps. Details of each step will be given in subsequent sections. The scheme relies on an accurate
characterization of the computation workload and of the communication overhead. The

workload is determined from user’s application and the MPP platform (Step 1). The overhead
characterization depends on the MPP platform alone, and only needs to be done once per MPP
platform (Step 2). Once the workload and the overhead are quantified, the scheme iterates from
Steps 3 to 5 to predict the performance of each Parallelization strategy.
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Figure 2: The early performance prediction process to be specified in various sections

2.1 User Applications

Any performance prediction is based on a specific user application and a specific MPP platform.
But what should be the exact inputs from the application? The performance evaluation tool
developed in [22] requires the application be specified as an ADA program or in an intermediate
language. The3T evaluation reported in [9] requires a Vienna Fortran program. Some other
predictors require a task graph, a dataflow graph, or a Petri net. All these schemes assume the
existence of software tools, which are not available on current MPPs.

For most MPP users, either of he following may be initially available, when a parallel application
is to be developed:

» A sequential program written in C or Fortran for a uniprocessor system. We will denote
this sequential code tC.

» A number of parallel algorithms, in “paper-and-pencil” form but not yet implemented as
parallel programs. These algorithms are most likely adopted from published articles which
have not been tested in any computer platform.

A main objective of early performance prediction is to identify the best parallel algorithm.
Some efficient and effective parallel algorithms will emerge after identifying the performance



bottlenecks. These algorithms can be generally structured by the following abstract model
recently developed by the coauthors for programming MPPs or clusters of workstations [29].

2.1.1 The Phase Parallel Model
Consider a sequential progriC. The program structure is divided into a sequenk phase,
C,, , ,Cy asillustrated in Fig. 3. Each phase involves essentially a computational

superstep consisting of coarse or medium grains of operations. Between two adjacent phases, an
interactior (communication and synchronization) step is often needed. This could be collective
communications involving multiple computing nodes.

Semantically, all operations in a phase followed by an interaction step must finish before the
next phase can begin. PhiC; has a computationworkloac of W, million floating-point

operations (Mflop), and takeT:;( )  seconds to execute on one processor.degree of
parallelism of DOP, . In other words, when executingn processorswitll < < DOP, , the

parallel execution tin for phaseC; becomesT () = T,( )/n . Associated with each phase,

the user provides the predictor consisting of computations, workload, DOP, and interaction
functions followed, etc.

PhaseC; Interaction PhaseC; Interaction | phasec,
W, y—> — w — — MW,
T > > Ta() 7 ! " Tk
DOP; | DOP, : N DOP,

Figure 3: The Phase Parallel Model for MPP Application Code Development.

This model is especially efficient to implement SPMD (Single Program and Multiple Data
streams) data-parallel programs. Depending on the interaction overhead encountered, the
granularity of each phase can be adjusted to achieve a balance between computations and
communications. This is crucial to apply the model for early performance prediction. The phase
parallel model can cover several important parallel programming paradigms [6], such as the
synchronous iteratic model discussed in [3], tHoosely-synchronous parallelis [10], and the
Bulk-Synchronous Parall (BSP) model [27]. We have applied this model to develop all the
parallel STAP benchmark programs for the three MPPs being tested for performance evaluation.

This model is rather conservative in predicting the MPP performance, compared with those
models allowing computations to be overlapped with interaction steps for latency hiding
purposes. However, our model is easier to implement on MPPs. The model is also very effective
to implement the pipelining operations required in [6].

2.1.2 Workload Characterization

We need to measure the amount of work performed in an application (referreworkload

W). For scientific computing and signal processing applications where numerical calculation
dominates, a natural metric is the numbefloating point operatior that need to be executed.
This metric of workload has a unit Millions of flops (Mflop) or Billions of flops (Gflop). For



2.2

instance, alN-point FFT has a workload ®%=5NIogN flop. This should be differentiated from
the unit of the computational speed, whicMiflions of flops per secondienoted by Mflop/s.
This notation is from the PARKBENCH benchmark [13], and has become widely used.

When the application progra@is simple and its workload is not input data-dependent, the
workload ofC can be determined by code inspection. When the application code is complex, or
when the workload varies with different input data (e.g., sorting and searching programs), one
can measure the workload by running the sequential application on a specific machine, which
will generates a report of the number of flops actually executed. This approach has be used in the
NAS benchmark[23], where the flop count is determined by an execution run on a Cray Y-MP.
Throughout the rest of this paper, we denotépthe flop workload for computation st€and

W=W;+...+W the total flop workload for the entire progrdin

In theoretical performance analysis, it is often assumed that every flop takes the same amount of
time. Thisuniform spee@dssumption does not hold in real MPPs. For instance, on a single SP2
processor, we measured that the speed varies from 5 Mflop/s to 200 Mflop/s for different
computation routines in the STAP benchmark suite, a difference of 40 times! Thus the sequential
program is executed to generate élxecution timeather the flop couni(i) denotes the

sequential time for executir@. The single processor execution tifeis equal to the sum of
T,(i) for all C;. The sequentiadpeedor each computation sté& and for the entire sequential
programC can then be computed by:

P,(i) = W./T,(i), and P, = W/ T;.

Executing the sequential program on a single node may not be feasible due to two reasons: (1)
The program needs more memory than what a single node can provide. Then the program will
either not run at all, or execute at a very slow speed due to excessive paging. (2) Even when the
program fits in a local memory, it may take a long time (e.g., days) to execute because of
excessive computational complexity involved.

The problem can be solved by scaling down the progranaking the parallelizing dimension
Scaling down along other dimensions may distort the workload information. For
domain-decompositioparallel programs (i.e., where parallelism is exploited by partitioning the
data domain into multiple chunks), the parallelizing dimension is the dimension along which the
data domain is partitioned. There may be more than one parallelizing dimension.

Platform Parameters

The following performance related information is generally provided by MPP vendors:

» Architecture Parameterd’hese include the machine sizé.e., the number of
processors) and the capacity of memory/cache per processor.

» Peak Performance NumbefBhese include the peak speed of a processor (denoted by
Ppean, the smallesiatencyand the peakandwidthfor point-to-point communication.

» Benchmark Performance Numbef$ese include the measured performance of some
public domain benchmarks. For MPPs, the most frequently cited are the NAS benchmark
[23] and the LINPACK benchmark [8]. Some vendors also have performance data for
some sequential kernel routines (e.g., mathematical libraries).

The above information is listed in Table 1 for three MPPs. The machine size, the cache, and the
memory attributes show the ranges of possible configurations. The latency and the bandwidth
are the best numbers provided by the vendors. The NAS FT benchmark performances a 3-D FFT
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based algorithm to solve a partial differential equation. The timing results are based on highly

optimized executions, which a user is unlikely to achieve.

Table 1: Performance Attributes of Three Massively Parallel Processors

Performance Attribute IBM SP2 Cray T3D Intel Paragon
Machine Sizen) 8-512 4-2048 4-4096
Data Cache per Processor 64-256 KB 8 KB 16 KB
Memory per Processor 64 MB-2 GB 32-64 MB 16-128 MB
Peak Processor SpePpq,) 267 Mflop/s 150 Mflop/s 100 Mflop/s
Point-to-Point Communication 39us, 2 us, 30us,
Latency and Bandwidth 35 MB/s 150 MB/s 175 MB/s
NAS FT Benchmark Time 14.52-15.68 20.68 22.76-42.07
(using 128 Processors) Seconds Seconds Seconds

Now this is about all platform information that is available to a user, which is too limited. In
particular, no information is provided for varicoverhead. It is very difficult to answer simple
guestions such as “How long does it take to create a process, to partition a process group, to do
a barrier synchronization, or to sin values fronmn processors? “

There are three types of operations in a parallel procComputatiol operations include
arithmetic/logic, data-transfer, and control flow operations that are found in sequential programs.
Parallelis operations are needed to manage user processes, such as creation and termination,
context-switching, and groupininteractior operations are needed to communicate and to
synchronize among processes. The parallelism and the interaction operations are the sources of
overhea, in that they need extra time to carry out besides the pure computational operations.

On current MPPs, these overheads could be quite large and vary greatly from one system to
another. Users can not just extrapolate their past experience from a “similar” system to guess
what the overhead will be. It is important for the user to know the overhead values so as to avoid
using expensive parallelism and interaction operations.

Overhead Quantification

Numerous benchmarks and metrics for MPPs have been proposed [4, 8, 9, 12, 13, 14, 15, 26].
But few provide estimation of overhead. To our knowledge, the only benchmarks that measure
overhead in MPPs are the COMMS1, COMS2, and SYNCH1 in the PARKBENCH benchmark
[13], which measure point-to-point communication and barrier synchronization for distributed

memory MPPs. The only overhead metrics are the parantefens, ,,, t,, and g, , proposed

by Hockney [12,13] for measuring point-to-point communication. Hockney also proposed two
other metricsf;,, ands,; to identify memory bottleneck and to estimate synchronization cost.

MPP user groups should develop closed-form expressions to quantify the communication
overheads in using communications libraries or standards such as PVM, MPL, or MPI. We have
attempted to do so for the IBM SP2 as reported in [28]. Our prediction scheme (Fig.2) includes
an overhead quantification step. General guidelines for this step are suggested below.



For each interaction (or parallelism) operation to be quantified, the user measures the wall-clock
time for a number of combinations of machine n and message lengm. Our experience

show that for current MPPS, the machine size should vary from 2 to at least 128, and the message
length for a communication operation should vary from 4 bytes to at least 64 KB. Otherwise it

is difficult to derive accurate overhead expressions. Overhead measurements should be done in
a batch mode, because this is the mode adopted by most production runs on MPPs.The measured
timing data is then curve-fitted to obtain the closed-form performance expressions.

(1) The overhead of a point-to-point or a collective communication operation is expressed by
t=1ty( )+ m/r,( ), wheremis the message length i nis the number of processors

involved in the operation. The exact formstg(n) andr,(n) depend on the specific MPP
platform and the communication operation. The fornrtg(n) andr(n) for SP2 are presented
in Section 3.3. As we will see thetg(n) andr(n) correspond to latency and bandwidth,
respectively.

(2) On MPPs such as the Cray T3D, communication can be done either explicitly by message
passing, or implicitly through shared memory. The shared memory communication overhead can
be estimated as the time to load or sm bytes to the memory hierarchy. The same linear

expression of the formt = ty( ) +m/r ( )  canbe used with different coefficients for the
four cases: when ttm-byte data is in the cache, in the local memory (i.e., on the same node), in

a neighbouring memory (on a neighbor node), and in a remote memory.

(3) The overhead for creating a process (task, thread) can be estimated by a linear function
t = cn+d oralog-linear expressict = clog +d . The consd represents a fixed cost
incurred no matter how many (or few) processes are created. The cc represents a

per-process additional cost. The type of processes should also be noted, e.g., heavy-weight or
light-weight, kernel level or user level, local or remote.

The above method requires quantifying each operation individually to achieve accuracy.
However, the overhead expressions need to be measured and derived only once for a given MPP
platform, and used by the entire user community many times. A simpler method for quantifying
communication overheads is to use vendor-supplied latency and bandwidth numbers for
point-to-point operations (i.e., those in Table 1), and treat a collective operation as a sequence of
point-to-point operations. The main problem is that the accuracy could be off significantly.
Performance Metrics

We discuss the performance metrics that are important to MPP users. In section 3, we discuss
how to use them to answer practical performance questions. The following metrics definitions
refer to Fig. 3. The sequential execution tT; and speeP; have already been defined in

Section 2.1. Note that they should be measured by executing the best sequential program, not a
parallel program, on a single processor. n-processor execution tinT;, of a parallel program
is estimated by:

Tn = z E—— Vs .+Tinteract @



whereTyaraliel aNdTinteract denote all parallelism and communication overheads, respectively.
Thespeerusing nprocessors is defined IP,=W/T,,. Thespeedu is defined byS,=T,/T,. The
efficiencyisk, =S,/ n=T,/ (nT,). The ratio of speed to peak speed is callewtilization,

denoted byU, = P,/ (NFyea), WherePpe,, is thepeak spee of one processor. The utilization
indicates how much percentage of the full computing power is utilized in a specific application.

There are several metrics of extreme values which give lower and upper boLT}, Py, and
S, LetT,, be the length of theritical path, which equals the time to execute an application using
an unrestricted number of processors, excluding all overhead. FromT,, isil,

T.()
Te = — )

1< <k VFi

The smallesnto achieveT,, =T, is called themaximal parallelisir denoted b'N,,,,. This is the
maximal number of processors that can be profitably used to reduce the execution time. This
metric can be computed IN, ., = max; . _ ( ) . The spPyis upper bounded by

themaximal spee P, = W/ T_ . The quantityT,/T,, is called Theaverage parallelisi.n

2.2.2 Which Metrics to Use?

Obviously, execution time and speed are important metrics. Some users also care about speedup.
However, speedup and efficiency could give misleading information. In fact, with a bad
sequential program, a poor parallel program can have a speedup greater than the manine size
and an efficiency greater than 100%. In contrast, the utilization is always less than 100%, and a
better program always has better utilization.

The critical path and the average parallelism are easy to compute, as they ignore overhead. They
bound the achievable performance and are useful at the initial parallel algorithm design stage.
Then-processor execution tinTy, is lower bounded bT;/ nand byT,,. That is

T,z2max ) (3)

The average parallelis provides an upper bound on the speedup,Se<T,/T,

The execution time, speed, and utilization are the most important performance metrics. Special
attention should be paid to the utilization metric, which is often overlooked, but more
informative than execution time and speed. A low utilization always indicates a poor program or
compiler. In contrast, a good program could have a long execution time due to a large workload,
or a low speed, due to a slow machine.

A sequentiaapplicatior executing on a single MPP processor has a utilization ranging from 5%
to 40%, typically 8% to 25%. Some individisubroutine can be made faster to reach 75% or
more. However, when such subroutines are incorporated into a real application, they do not



necessarily retain their high utilization parallel applicatior executing on multiple processors
has a utilization ranging from 1% to 35%, typically 4% to 20%.

By processing the NAS parallel benchmark results [23] for SP2, T3D, and Paragon, we found
that the utilization ranges from 1% to 60%, with a harmonic mean of 12%. Note that these results
were generated from the vendors benchmark programs, which are often highly optimized. An
ordinary user application of similar type is unlikely to attain the same performance.

Figure 4 shows the utilization of three MPPs in executing the NAS benchmarks (Class A). In
general, the utilization of MPPs is lower than a traditional parallel vector supercomputer such as
the Cray C90. The C90 achieved a utilization from 28% to 73%, with a harmonic mean of 53%.
For everyday user applications, a C90 has a typical utilization of 21% to 27% [2].
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Figure 5: Measured utilization and Gflop/s speed of the parallel APT and HO-PD benchmark
programs on three MPPs

In Fig. 5, we show the measured utilization and speed of two programs in the STAP benchmark
suite, when executing on three MPPs. The utilization ranges from 5% to 38%.The utilization
rates drop as more nodes are used in a given application. However, this may not be true in using
a small number of nodes. This has happened in using the Paragon with less than 16 nodes. The
main reason is that each Paragon node at the SDSC has only 16 MB of main memory, too small
to fit the large data set we have. The dip and rise of the Paragon utilization curves was caused
mainly by this memory problem.

STAP Benchmark Performance Results

The STAP benchmark suite was originally developed by MIT Lincoln Laboratory for adaptive
radar signal processing. It contains three benchmAdaptive Processing Testt (APT),
High-Order Post-Dopple (HO), andGenera (GEN). In this section, we use the performance
prediction procedure outlined in Fig.2 to predict the performance of the parallel STAP programs
on SP2. The prediction procedure is first summarize. Individual steps are explained in
subsequent sections, using the APT benchmark as a working example.

The Early Prediction Procedure

The five early prediction steps in Fig. 2 are specified below for any MPP system. Applying these
steps on the SP2 is discussed in subsequent subsections. The procedure is applied by the user at
the parallel algorithm design time, without involving the expensive coding and debugging

stages. The only programming effort involved is to time the sequential code on a single
processor. Recall that we assume the user starts with a sequential [C consisting of a

sequence k stepsC,, C,, ..., C, , as shown in Fig.3.
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Step Determine the workloaW; for each componeiC; and the total workload

W = Z W . Time the sequential coC on one processor to determine the
1< <k
sequential timeT,(i) for eaclC;. The corresponding sequential speed and utilization are

computed byP( ) = W,/T,(), and U,( ) =P,()/P

Step = Quantify the overheads.

Step :Derive a parallel algorithm. Then analyze it to reveal the degree of parallelism
DOP; for eachC; and the maximal parallelisN,,, for the entire program, where

Nmax = n1axis < ( ,)'

Step «Derive the following performance metrics:

peek -

T.()
-Parallel time: T,, = Z —mm( )+ e + Tinerac
1< <k :
T.0) T.0)
«Critical path: T, = = S
1< <k M ) <PV

Average parallelisnT,/ T, and maximal speP_] = W/ T,

*SpeedupS, = T;/T, andspeP; = W/ T,
«Efficiency E, = T;/( ) andutilizaton:U, = P, /()

Step L Use these metrics to predict the performance. If the prediction shows promising
performance, continue to coding and debugging. Otherwise, analyze the predicted
performance results to reveal deficiencies in the parallel algorithm. Modify the
algorithm and go to Step 3.

3.2 Workload Quantification

Table 2 shows the workload and sequential performance of three STAP benchmark programs on
a single SP2 processor. The entries of Table 2 are obtained by applying those workload and
performance formulae in Step 1. The workload values are obtained by inspecting the source
STAP programs. The execution time values are from actual measurement of each of the
component algorithms. For example, the APT program is divided into four component
algorithms:Doppler Processin (DP),Householder Transfor (HT), Beamformin (BF), and

Target Detectio (TD). Each component algorithm performs different amount of workload, thus
resulting in different execution time and speed. These differences reveal the whereabouts of the
bottleneck computations in each benchmark program. These information items are useful to
restructure the parallel algorithm in Step 3.

12



Table 2: Performance of Sequential STAP Programs on One SP2 Node

Benchmark Program Workload Execution Time Speed Utilization
Program Component (Mflop) (Seconds) (Mflop/s) (%)
APT DP 84 4.12 20 7.65
HT 2.88 0.04 72 27.07
BF 1,314 9.64 136 51.22
TD 46 0.57 75 28.01
HO-PD DP 220 11.62 19 7.12
BF 12,618 118.82 106 39.92
TD 14 0.17 82 30.96
GEN SORT 1,183 22.80 52 19.51
FFT 1,909 79.14 24 9.06
VEC 604 19.11 32 11.88
LIN 1,630 20.23 82 31.00

3.3

From Table 2, the utilization of FFT computations (DP in APT and HO-PD and FFT in GEN)
are low, while the rest have good utilization. Slow FFT computation does not have much effect
on the HO-PD program (DP takes less than 10% of total execution time), but has significant
impact for the GEN program. The vector multiply (VEC) component also has poor utilization.
Overall, the three sequential benchmarks APT, HO-PD, and GEN achieve a speed of 100 Mflop/
s, 98 Mflop/s, and 38 Mflop/s, respectively. The corresponding utilization are 38%, 37%, and
14%. The utilization can be improved with better codes for FFT and VEC computations.

A simple way to improve performance is to use vendor supplied library routines. But the
improvement may not be as high as expected. For instance, the FFT library routine for SP2 has
a performance as high as 160 Mflop/s. But when used in the STAP benchmark, it only gives
30-45 Mflop/s. This is roughly about the same performance achieved by SP2 for the NAS FT
benchmark, which is dominated by FFT computations.

Overhead Estimation

We briefly discuss below how to derive overhead expressions for SP2. The reader is referred to
[28] for detailed discussions. Most MPP applicationsstatic processe All the processes are

created only once at the program load time. They stay alive until the entire application is
completed. In all of our testing runs, we always assign one process to a processor. The processes
of a program can form differegroups. We always use only one unique group: the group of all
processes. Thus the group size is always equal to the number of processes in a program run,
which in turn equals the number of processors used in that run. The number of processors
(processes) used, denotecn, range from 1 to a maximum of 256. The message length is

denoted bym (bytes), ranging from 4B to 16 MB.
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3.3.1

3.3.2

Parallelism Overhead

In a real signal processing application on MPP, the same parallel program is executed many
times to process a stream of incoming radar sensor data. There is a one-time overhead for
creating all processes and groups, which can be used by subsequent computations. In other
words, the parallelism overhead is amortized. Therefore, in predicting STAP performance on
SP2, we assumed that the parallelism overfiggd)ie| = O.

We must point out, though, creating a process or a group is expensive on MPPs. Our
measurement shows that creating a process on SP2 takes aboyid 606tbre, equivalent to
millions of flop. A group creation takes about 1980 Therefore, a program that needs to
frequently create processes or groups must have very large computation grains.

In what follows, we concentrate on communication overhead. In message passing MPPs, all
interactions are callecommunicatioroperations. In @oint-to-pointcommunication, one

process sends a message to another process. Thus only two processes, one sender and one
receiver, are involved. In@llective computatigra group of processes are involved to
synchronize with one another or to aggregate partial results. The time for such an operation is a
function of the group size, but not of message length, as the message length is usually fixed (i.e.,
t =f(n)). In acollective communicatiqra group of processes send message to one another, and
the time is a function of both the message length and the group size(f(@,,m)).

Point-to-Point Communication

Using theHigh-Performance SwitctHPS), all processors on an SP2 can be considered equal
distance away. The concept of neighboring processors or remote processors does not exist in
SP2. Thus, the time for a point-to-point communication is a function of message length, not of
the number of processors. We measured the blocking send and blocking receive operations of the
IBM MPL, using thepingpongscheme in an-process run: Process 0 executes a blocking send

to send a message mfbytes to process-1, which executes a corresponding blocking receive.
Then processe-1 immediately sends the same message back to process 0. The total time for this
pingpong operation is divided by 2 to get the point-to-point communication time. Some of the
timing results are shown in Table 3, which confirms that there are only small differences for
sending messages to different processors.

Table 3: One Way Point-to-Point Communication Times (us) on SP2

n 2 8 32 128
m
4B 46 47 48 48
1KB 101 120 120 133
64KB 1969 1948 1978 2215
4 MB 1.2M 1.2M 1.2M 1.2M

The overhead as presented in Table 3 is not very convenient for the user. Ideally, the user would
prefer to have a simple, close-form expression which can be used to compute the overhead for
various message lengths. Such an expression has been suggested by Hockney for point-to-point
communications [12]: The overhead is a linear function of the message ieigtbytes):
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3.3.3

t=ty+m/r, 4

wheret, (calledlatency or start-up timein ps) is the time needed to send a 0-byte message, and
r., (calledasymptotic bandwidttin MB/s) is the bandwidth achieved when the message length
mapproaches infinity. Using least-square fitting of the measured timing data, we can express the

point-to-point communication overhead as a linear functior: 46 + 0.035n . In other words,
the latency i$5=46 ps, and the asymptotic bandwidthris=1/0.035=28.57 MB/s.

Collective Communications

In abroadcastoperation, processor 0 sendsnadbyte message to allprocessors. In gather
operation, processor 0 receivesnabyte message from each of thprocessors, so in the end
mnbytes are received by processor 0. ftatteroperation, processor 0 sends a distmndiyte
message to each of therocessors, so in the enthbytes are sent by processor 0. lotal
exchangeperation, everprocessor sends a distimeibyte message to each of tmprocessors,

so in the endnr? bytes are communicated. Irtiacular-shift operation, processosends an

m-byte message to processot, and processaorl sendsn bytes back to processor 0. Note that

in current message-passing systems, a collective communication always requires a process to
send a message to itself. That is wimy bytes are communicated in a total exchange, not
mn(n-1) bytes.

We have extended Hockney's expression (Eq. 4) as follows: The communication ovéshead
still a linear function of the message lengthHowever, the latency and the asymptotic
bandwidth are now simple functions of the number of processtmsother words,

t= tO(n) +m/ r.oo(n) (5)

After fitting the measured timing data to different formggfn) andr ., (n) , we derived the
formulae for the five collective operations as shown in Table 4.

Table 4: Collective Communication Overhead Expressions for SP2

Operation Timing Formula

Broadcast (52log) + (0.029logn)m
Gather/Scatter (17log+15) + (0.025-0.02m
Total Exchange 80logn + (0.0311-29m

Circular Shift (6logn+60) + (0.003l0g+0.04)m

3.3.4 Collective Computations

We measured three representative collective computation operat@orisr, reductionand
parallel prefix(also known ascar). The curve-fitted communication overhead expressions are
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shown in Table 5. Note that over 256 processors, the barrier overheacus, equivalent to

the time to execute as many asx266=202,692 flops. This answers the question: “Should | use

a synchronous algorithm?” The answer is only when the grain size is large. That is, hundreds of
thousands flops are executed before a barrier.

Table 5: Collective Computation Overhead Expressions for SP2

Operation Time Expression
Barrier 94 locn+10
Reduction 20locn + 23
Parallel Prefix 60 locn -25

There is a simpler method to estimate the overhead of a collective communication or
computation, which is widely employed by MPP users, as it does not require any measurement
by the users. This traditional method treats a collective operation as a sequence of point-to-point
operations. The overhead of the collective operation is computed by summing the overheads of
these point-to-point operations, using vendor provided latency and bandwidth values.

Figure 6 compares our method to the traditional method for predicting the overhead of a total
exchange for both short and long messages. In part (a), we show the relative errors of the two
methods whemr2 =16 MB (e.g.m=1024 bytes when=128). The traditional method
underestimates the overhead with large errors, especially for large numbers of processors. In part
(b), we compare the measured overhead with those projected by the two methomr2 =64

KB (e.g.,m=4 bytes whein=128). While our method is close to the measured result, the
traditional method overestimates the overhead significantly for large numbers of processors.

6000 -
40% = —&— Measured
20% 8 5000 + —B— Our Model
. 0% % 2 4000 1 —a&— Traditional Model
S -20% R
L
o “40% S & 3000 -
2 -60% < 38
5] e5
o -80% £ £ 2000
™ _100% E<
120% § 1000
-140% - f f f f f { 0 | | | |
2 4 8 16 32 64 128 2 4 8 16 32 64 128
Number of Nodes Number of Nodes
(a) Relative error for a total exchange  (b) Communication overhead for a total exchange
of 16 MB messages of 64 KB messages

Figure 6: Comparison of two methods for predicting the overhead for total exchange

3.4 Parallel Algorithm Design

How does one design the initial parallel algorithm? The decision is affected by many factors:
How many processors should be used? What should be the grain size? How to partition data and
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computation? and so on. The following heuristics are very useful: Before making any other
decisions, first determine the grain size of each individual step using speed information in Table
2. The grain size is defined to be the number of flop executed before a communication. Referring

to Fig. 3, the grain size for st€fy ~ should be no lesstiharP(i) . Then analyze the data/

control dependence of the sequential code to find out how much degree of parallelism (DOP) can
be exploited for each step, subject to the grain size requirement just obtained.

It is often helpful to perform zero-overhead predictic on the initially designed parallel

algorithir. Table 6 shows the zero-overhead performance prediction of three parallel STAP
benchmarks. This prediction is useful to provide some upper and lower bounds on the projected
MPP performance and to answer the question "Will the parallel algorithm just designed achieve
the desired performance level?" The answer depends on the performance requirement. Three
requirements can be posed by a user:

Table 6: Extreme Value Metrics of the STAP Programs

_ Maximal Average Critical Path
Workload Sequential Performance Parallelism T
w Time T, Py T /T )
Program (Mflop/s) (Seconds) (Gflop/s) 17 Yo (Seconds)
APT 1,446 14.37 18 180 0.08
HO 12,852 130.61 28 281 0.46
GEN 5,326 141.28 8 220 0.64

» Time: For real-time, embedded applications, the user often does not care how much Mflop/
s performance or how much speedup is achievable. All that matters is that the job is
guaranteed to finish within a time limit. For instance, in airborne radar target tracking, the
user may want to detect all targets within half of a second. Note that the critical path
lower-bounds the parallel execution time. From Table 6, the APT and the HO-PD parallel
programs have a chance to satisfy this requirement, as their critical paths are less than 0.5
seconds. However, the GEN program fails, no matter how many processors are used.

» Spee: The STAP programs abenchmark, in that they are not the real production
programs. Rather, they characterize the real codes. What the user really wants is a STAP
system that can deliver a sustained speed, say 10 Gflop/s. From the Maximal Speed
column of Table 6, Both APT and HO-PD may meet the requirement but not the GEN
program.

» Speedu: The user may want to see how much parallelism can be exploited in his
application code to achieve, say 200 speedup minimum. By this standard, the APT
program fails, because its average parallelism is only 180.

This preliminary performance evaluation generated some useful prediction: The parallel APT
algorithm failed to achieve the 200 times speedup requirement, and the parallel GEN algorithm
fails the other two requirements. There is no point to further develop the full-fledged GEN
parallel code. Instead, we need to change the algorithm or the problem size.
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The average parallelism metric provides a heuristic for answering the question: “How many
processors should be used in my program?” A rule of thumb is to use no more than twice the

average parallelism. When the number of procesno=s 2T,/T,, , the efficiency is no more

than 50%. Note that ttutilization of the sequential STAP code is as low as 7.12% (Table 2). A
50% efficiency would drag the parallel utilization down to only 3.56%. On a 256-processor SP2
with a 68 peak Gflop/s speed, only 2.4 Gflop/s can be achieved with such a low utilization.

Even when the preliminary prediction shows promising result (e.g., the HO-PD program passes
all three requirement tests), we should not rush to the coding stage, because we have not
considered overhead yet. We next incorporate all communication overheads and consider
various parallelization strategies. The next section shows how performance prediction is used to
select the best strategy. After several prediction and algorithm redesign steps, we obtain a
parallel program which is likely to perform well.

For instance, the structure of the final parallel APT algorithm is shown in Fig. 7. The DP step is
distributed to up to 256 processors. total exchang step is collectively executed by all
processors., with an aggregated message length of 17 MB. The HT step is sequentially executed
on a single processor (DOP=1). Tbroadcasioperation must send a 80KB message to all
processors. The BF step performs beamforming operations using up to 256 processors. The TD
step needs to track the targets on up to 256 processors locally. Then all the local target reports
are merged through the final collectireductior operation.

op < e e ) DOP = 256
# # # Workload=84 Mflop, 4.12 seconds

Total Exchange (Index)

Total Message Length=17 MB

' DOP =1
HT ; Workload=2.88 Mflop, 0.04 seconds
Broadcast | .- Message Length=80KB
______ DOP = 256
BF Workload = 1,314 Mflop, 9.64 seconds
Y
DOP = 256
™ . e

| i Workload = 46 Mflop, 0.57 seconds

Y Vv . Y

Reduction to Merge Target Reportg 100 flop numbers per report

Figure 7:  Structure of A Coarse Grain Parallel APT Algorithm
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3.5 Performance Prediction

Table 7 shows the parallel execution tirTy for the three STAP benchmarks, when all

communication overheads are included. The communications components in these parallel time
expressions are obtained by using the overhead formulae given in Section 3.3. From these
expressions, it is straightforward to calculate the other performance metrics using the formulae
in Section 3.1 to perform a full-fledged prediction including all overhead. The entries of Table 8
are obtained from Table 7 for a 256-processor SP2 system. These are early prediction results, yet
to be validated against results obtained from real benchmark runs as discussed in the next section.

Table 7: Predicted Execution Time of Parallel STAP Programs on SP2

Program n-processor Execution Time TH1 seconds
APT 14.33
0.04+ +0.51n "+ 0.0040gn
HO-PD 13061
+1.5n %" +0.00440gn + 0.0314
GEN 121.05 o1 20.23
n 0.00188o0gn + 6n + max 1 32) +0.0016

Let us look at the parallel APT program more closely. From Table 7, the execution time has four
terms. The first term is a constant, due to sequential execution of the HT step. The second term
is due to parallel execution of the DP, BF, and TD steps. The third term is due to the total
exchange communication. The fourth term is equally due to the broadcast and the reduction
communication steps. For large numbers of processors, the HT step becomes a bottleneck. To
further improve the APT performance, an obvious choice is to parallelize the HT step. But this
does not work on SP2, as shown below.

We show how the prediction model can help select a parallelizing strategy by considering the
Householder transform routine. This routine is important because it has been used heavily in all
five STAP benchmarks. So we must answer the question: “Should the Householder transform be
parallelized?” As it turned out, the answer is no for SP2 and Paragon, but yes for T3D. We will
focus on the householder transform used in the HT step of the APT benchmark.

The Householder transform in the STAP benchmark suite is unusual in that (1) the matrices to
be transformed are small (the largest one x320); and (2) the matrix is not even square, thus
not symmetric. Many existing parallel Householder algorithms assume symmetry. The time
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Table 8: Predicted Performance of Parallel STAP Programs on 256 SP2 Node, Including All

Overheads
Program Parallel Time T,gg Speed Pogg Speedup Sysg Utilization Usgg
APT 0.137 Seconds 10.5 Gflop/s 104 15%
HO 0.606 Seconds 21.2 Gflop/s 215 31%
GEN 1.400 Seconds 3.8 Gflop/s 101 6%
consuming component in the Householder transform is to triangularize a cqorplgx matrix.

The sequential time needed for such a triangulization is approximately:
_ 2
Tl - 8><p ><qurop (6)

whereTﬂop is the time (ips) needed to perform one floating point operation. A natural way to
parallelize the triangulation algorithm is to partition the matrix n chunks along thq

dimension. In other words, each of n processors will procesy” N columns. The parallel
execution time will be approximately:

16 x p2 X QX Tflop

T, = . +p° x R(n) )

where the second term is the communication overhead. More specifiR@ity, is the time (in
ps) needed to perform a reduction operation n processors. The speedup of using the parallel
algorithm is:

L I N 8
Sn_Tn_ernR(n) (8)
8qTﬂop

If we ignore the communication overhead, the speedup wown/2. Now let us apply the
speedup formula to APT and the SP2 specifically. The HT step of the APT benchmark in Table

2 has a sustained speed of 72 Mflop/s, which translate'ﬁf;gpa: 1/72 = 0.014ps. From

Table 5, we hav&R(n) = 20logn + 23 . The parameq is equal to 320 in the APT. Using
these parameter values, we obtain the speedup equation:
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For the speedup to be greater than 1, the following inequality must hold:

n>2+ +0.64n 0 n>1.5€nlog + 5.56 (10)

This inequality clearly cannot be satisfied. Thus the parallel algorithm is always slower than the
sequential one for any machine sn. We also know the reason why it is slow: the reduction

overhead is too high. In fact, even with the optimistic assumptioR( ) = = 43 for
anyk processors, the speedup is still always less than 1.

Validation of Early Prediction

Suppose the user changed the performance requirement to 100 times of speedup.Table 8 suggests
that all three benchmarks satisfy this new requirement by using 256 processors, as the predicted
speedup are 104, 215, and 101, respectively. We can then go ahead to code and debug the parallel
programs, with high confidence that the final programs will meet the performance goal.

How accurate is the proposed performance prediction method? To answer this question, we have
tested the actual parallel STAP codes on SP2 over up to 256 processors. The sustained speed
performance is compared with the prediction. The results are shown in Fig. 8. For the majority
of cases, the error is less than 10%, and the maximal error is 22%. We also see that sometimes
the predictions underestimate the performance, i.e., the measured perforrbettei than the
predicted. This is especially true for the GEN program. This is due to the fact that more cache
and memory are available as the machine size increases.
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= 20000 + —O— APT Measured
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(=]
= —— HO Measured
£ 15000 +
3 GEN Prediction
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c
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®
=}
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Number of Nodes

Figure 8: Comparison of predicted and measured performance of the STAP programs
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We also compared three prediction schemes:uhiferm-speed predictioassumes a uniform
sequential computation rate, i.e., every flop takes the same amount of tinzerdtowerhead

and thefull-overheadpredictions use the real speed values in Table 2. Both the zero-overhead
and the uniform predictions ignore communication overhead. The relative errors of projected
execution times with respect to the measured times are shown in Fig. 9 for the parallel APT
benchmark. Overall the full-overhead prediction is more accurate than the other two prediction
schemes, which exclude the overhead. Look at the case when the APT program is executed on
256 SP2 processors. Fig.9 shows that, when compared with the measured performance, the
uniform-speed prediction has a 90% error. The zero-overhead prediction has a 69% error. But
the full-overhead prediction brings the error down to only 17%.

In Search of higher System Utilization

The parallel APT program was projected to achieve an utilization of only 15%, which is typical

of many real applications. It is difficult to reduce the execution time further. All but the HT step
are fully parallelized, and we saw in Section 3 that parallelizing the HT step will not pay. The
communication overheads seem to be unavoidable. Is there any way to increase the utilization
without reducing the execution time? The answer is yes. We mention three popular techniques
below. The early prediction scheme can help decide which technique to use and how to use them.
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Figure 9: Comparison of three performance prediction schemes with uniform-speed,
zero-overhead, and full-overhead respectively.

Scaling Workload

The first method scales up the problem size, thus the workload. For many programs, this would
amortize the communication overhead and the sequential bottleneck, generating higher
utilization. There are two approaches to scaling workload:

» Fixed-Time The total workload of the parallel program is increased so that the parallel
program will have the same execution time as the original sequential program [11].

» Memory-BoundThe total workload of the parallel program is increased so that the parallel
program will use all available memory in the MPP [26].
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In general, memory-bound scaling should be used. The early prediction scheme can be used to
estimate the potential improvement of these workload scaling approaches. In Fig.10, the
projected utilization curves of these approaches are compared to the unscaled utilization for the
parallel APT program running on the IBM SP2. The utilization of the parallel APT without
workload scaling (the Fixed-Load curve) drops to 15% as the machine size increases. However,
using memory-bound scaling, a parallel APT can maintain an almost constant utilization of 36%.
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Figure 10: Improving utilization by workload scaling: parallel APT programs on the IBM SP2

The other two methods aim at improving theoughput defined as the number of jobs processed

in unit time. If only one job is executed at a time, throughput is just the reciprocal of the execution
time. For instance, according to our prediction (Table 2), the throughput for the parallel APT
program on a 256-node SP2 is one APT per 0.137 seconds, or 1/0.137=7.3 APTs per second.

However, the throughput metric is usually used when multiple jobs are executed. In many cases,
the system throughput can be increased at the expense of longer execution time for each
individual job. Both methods are suitable for parallel signal processing, as a continuous stream
of radar sensor data needs to be processed.

Pipelining

Another way to increase the throughput of a parallel systemp#blining where successive

jobs overlap their executions among several pipeline stages. The throughput becomes the
reciprocal of the execution time at the longest pipeline stage, instead of the execution time of the
entire pipeline.

Table 9 shows the predicted timing of various steps in the parallel APT algorithm of Fig.7. We
can construct a two-stage pipeline for the APT program on a 256-node SP2, by using 128 nodes
per pipeline stage. The first stage consists of the DP, HT, broadcast, and the total exchange steps,
while the second pipeline stage contains the remaining steps. The time to forward data between
stages can be ignored. The total execution time for each APT increases from 0.137 to 0.196
seconds. However, the longer of the two pipeline stages has an execution time of only 0.102
seconds. The throughput increases from 1/0.137 to 1/0.102=9.8 APTs per second, or
equivalently, 14 Gflop/s. The corresponding utilization increases to 20%. Note that we can not
further improve throughput with more stages, because the BF step along would need 0.15
seconds on 64 nodes, more than the original 0.137 seconds.
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Table 9: Time Breakdown in Parallel APT Program Components

No. of Nodes DP HT BF TD Index |Reduce  PBroadcast
64 0.064 | 0.04| 0.150/ 0.009 0.026 0.012 0.012
128 0.032| 0.04] 0.07§ 0.004 0.01p 0.014 0.014
256 0.016 | 0.04] 0.037 0.002 0.01p 0.016 0.016

5.3 Throughput Enhancement

This technique is more powerful than pipelining. The idea is to increase throughput by assigning

a separate sequential job to each node. At the extremenjgbt®are processed simultaneously

on ann-node system. The throughputislivided by the execution time of the longest job. For
example, we can assign a sequence of APTs to each of the 256 nodes. The execution time per
APT increases to 14.37 seconds, but the throughput becomes 256/14.37=17.81 APTs per second,
or 25.6 Gflop/s.

Fourteen seconds may be too long an elapsed time for real-time radar signal processing. In many
production environments, it is common practice to maximize the throughput within an execution
time limit. Suppose we use the parallel APT program to process radar signals on a 256-processor
SP2, with the constraint that each APT should be executed in no more than 2 seconds. How many
processors should we use for one APT? We discuss below how to find the optimal number of
processors to maximize throughput, which also answers the question: “How do | best utilize my
5000 CPU-hours allocation on an MPP?”

Draw on the same chart the utilization and the execution time as a function of machine size. Then
find all machine sizes that have no more than 2 seconds execution time, and from among those,
find the machine size with the best utilization. This is the machine size that will gives the best
throughput. This process is shown in Fig.11a for the parallel APT program. Since the execution
time monotonically decreases, using 8 or more nodes will satisfy the 2-second time requirement.
It happens that the 8-node machine size also has the best utilization. Thus, we should assign 8
nodes to an APT, and 32 APTs are simultaneously processed by the 256 nodes. The throughput
will be 16 APTs per second, or 23 Gflop/s.

A widespread misconception is that single-node, or sequential computation always has the
highest utilization, as parallel computing has extra communication and idling overheads. This is
often but not always true. Figure 11b shows a scenario which happens in many real applications
with a large data set. The sequential program requires more memory than what is available in a
single node. Excessive paging increases the execution time considerably. The parallel program
needs more memory for message buffers. In fact, all parallel STAP programs need three times
as much memory as their sequential counterparts. So when the program is executed on two
nodes, paging becomes even more severe. This, together with added communication and idling
overheads, degrades performance significantly. The situation gets better when more nodes are
used. The utilization tappers off after 32 nodes, due to overhead and sequential bottleneck.

In this example, using 16 or more nodes satisfies the 2-second time requirement, and the 32-node
machine size gives the best utilization, with an execution time of about one second. So 256/32=8
APTs are processed simultaneously, and the throughput is 8 APTs per second, or 11.6 Gflop/s.
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Figure 11: Finding the optimal machine size subject to a 2-second execution time limit

6 Concluding Remarks

We have demonstrated the advantages of using early prediction to avoid unnecessary cost in
repeated software development on MPPs. Our STAP benchmarking experiences on the SP2,
T3D, and Paragon have led to the development of the early performance prediction scheme being
presented. The scheme is easy to apply and provides pretty accurate prediction of MPP
performances by realistically quantifying the workload and communication overhead.

Most user applications running on current MPPs resulted in rather low a system utilization. We
show how to apply the early prediction scheme to assess achievable performance level, before
embarking on costly encoding and debugging efforts. The scheme produces performance
Metrics, often in simple mathematical expressions. Our scheme helped increase the system
utilization and achieve higher throughput in real-time applications reported in several companion
articles [16,17,28,29]. We encourage MPP users to apply the phase parallel model and use the
early scheme to predict performance, especially in coarse-grain, SPMD, data-parallel
applications.
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