
ot
ugging
vel

ent is
hat

 time.
dentify
aches
Early Prediction of MPP Performance: The SP2, T3D, and
Paragon Experiences 1

Zhiwei Xu Chinese Academy of Sciences, Beijing, China
Kai Hwang University of Hong Kong, Pokfulam, Hong Kong

Abstract
The performance of Massively Parallel Processors (MPPs) is attributed to a large
number of machine and program factors. Software development for MPP applications
is often very costly. The high cost is partially caused by lack of early prediction of MPP
performance. The program development cycle may iterate many times before achieving
the desired performance level.

In this paper, we present an early prediction scheme for reducing the cost of application
software development. Using workload analysis and overhead estimation, our scheme
optimizes the design of parallel algorithm before entering the tedious coding,
debugging, and testing cycle of the applications. The scheme is applied at user/
programmer level, not tied to any particular machine platform or to any specific
software environment.

We have tested the effectiveness of this early performance prediction scheme by
running the MIT/STAP benchmark programs on a 400-node IBM SP2 system at the
Maui High-Performance Computing Centre (MHPCC), on a 400-node Intel Paragon
system at the San Diego Supercomputing Centre (SDSC), and on a 128-node Cray T3D
at the Cray Research Eagan Centre in Wisconsin.

Our prediction is shown rather accurate compared with the actual performance
measured on these machines. We use the SP2 data to illustrate the early prediction
scheme. We provide a systematic procedure to estimate the computational workload, to
determine the application attributes, and to reveal the communication overhead in using
MPPs. These results can be applied to develop any MPP applications other than STAP
radar signal processing, from which this prediction scheme was developed.

Keywords: Massively Parallel Processors, STAP Benchmarks, Performance Prediction,
Communication Overhead, Workload Quantification, and Parallel Processing.

1 Introduction

A frequently asked question among MPP users is “why is my application so slow?” It is n
uncommon that an MPP user spends many frustrating hours in designing, coding, and deb
a parallel application, only to find out that it runs at a speed far below the performance le
expected. The disappointing users may even loose confidence in using MPPs. This sentim
evident in a recent European workshop on “Crisis in High Performance Computing” [7]. W
users need is a simple and accurate performance prediction scheme, that can assess the
performance before the coding stage and reveal performance bottlenecks before the run
MPP users can apply this scheme to quickly ascertain the achievable performance and to i
which part of the program that real improvement can be made meaningfully. Three appro
to performance evaluation: measurement, prediction (modelling), and simulation, were reviewed
in [4]. The first two approaches are combined and depicted in Fig.1.

1This version is a preprint of a Journal paper to appear Parallel Computing in late 1996. The copy right
belongs to the publisher, Elsevier Science/North Holland, Amsterdam, The Netherlands.
1

ted by
. The
t
or the

ll MPP
or
arch
l
er
[9].

Our
y
Figure 1: Comparison of prediction and measurement of MPP performance

The measurement approach is widely employed by MPP users, which relies on actually
measuring the parallel program after the code is fully developed and debugged, as depic
dashed lines in Fig. 1. The main advantage of the measurement approach is its accuracy
prediction approach, shown by solid arcs in Fig.1, has an added step to rule out inefficien
algorithms, before costly coding and debugging begin. This approach is not widely used, f
lack of good prediction schemes that can generate accurate performance results.

Currently, both measurement and prediction are done by MPP users manually. Although a
systems come up with some performance tools, virtually all of them are runtime support f
performance evaluation [21]. Existing tools for performance prediction are still in the rese
stage, not yet available to general MPP users. For instance, Pease et al discussed an experimenta
system called PAWS (Parallel Assessment Window System) [22]. More recently, Fahring
described a tool called P3T for performance estimation of Vienna Fortran programs on MPPs
The recent joint issues of IEEE Computer [18] and IEEE Parallel and Distributed Technology
[19] are dedicated to parallel performance tools.

In this paper, we address the performance prediction problem from a user’s perspective.
benchmark experiments were performed on the IBM SP2[20], Intel Paragon[24], and Cra
T3D[1]. We parallelized the STAP (Space-Time Adaptive Processor) benchmark suite originally

Algorithm Design

Coding

Debugging

Performance Testing

Exit

Performance
Prediction

Performance
Unsatisfactory

Performance
Unsatisfactory

Performance
Satisfactory

Performance
Satisfactory

Erroneous
Correct

Performance Measurement

Performance Prediction

Common to Both
2

ork

ws
t on
idered
f the

tion
g
stimate

ions

ighly
s on
losely

ly
nning

e
ase

hould
ailable
p the

ajor
ccurate

ead
r MPP
s from
written in sequential C language at MIT Lincoln Laboratory [5]. The contributions of this w
is summarized below in three technical aspects:

• Users prefer a prediction scheme that can estimate the performance of a parallel
application before a single line of parallel code is written. Our STAP experience sho
that less than 10% time is spent on parallel algorithm design, and 90% time is spen
coding, debugging, and testing. As many as eight parallelizing strategies were cons
in order to select the best one. Early prediction avoids the coding/debugging cost o
unselected Parallelization strategies.

• Most existing prediction schemes lack accuracy. This is mainly due to oversimplifica
in characterizing the workload and communication overheads. For instance, existin
schemes usually assume every computational operation takes the same time, and e
the overhead of a collective communication as the overhead sum of a sequence of
point-to-point operations. We show quantitatively this does not work in real applicat
running on large number of processors.

• Our scheme is based on realistic quantification of workload and overhead, thus it is h
accurate. The scheme is validated by a sequence of STAP benchmark experiment
three MPPs. For up to 256 nodes, our method predict the MPP performance rather c
matching with the measured performance.

In summary, we attempt to answer the following five questions:

1. What performance can be achieved?

2. Is the parallelizing strategy a good one?

3. How many processors should be used?

4. How large a grain-size should be used?

5. Where is the performance bottleneck?

We start with what are required in a performance prediction scheme. We present the ear
prediction scheme in Section 3, using the STAP benchmark experiment on IBM SP2 as a ru
example. In section 4, we validate the method by comparing the predicted results with th
measured results. In Section 5, we show how the prediction scheme can be used to incre
system utilization. Finally, we comment on potential applications of the early performance
prediction scheme

2 Performance Prediction Requirements

This section discusses what is required of a parallel performance predictor, either a manual
method or an automatic tool, from an MPP user’s perspective. We want to find out what s
be the input to the predictor and what should be the output. We also comment on what is av
to the user and what is lacking. These results are applied to in the next section to develo
early prediction scheme.

The proposed early prediction scheme is illustrated in Fig. 2. The scheme consists of 5 m
steps. Details of each step will be given in subsequent sections. The scheme relies on an a
characterization of the computation workload and of the communication overhead. The
workload is determined from user’s application and the MPP platform (Step 1). The overh
characterization depends on the MPP platform alone, and only needs to be done once pe
platform (Step 2). Once the workload and the overhead are quantified, the scheme iterate
Steps 3 to 5 to predict the performance of each Parallelization strategy.
3

tform.
ol
diate

er
e the

ation

ote

 as
hich

m.
nce
Figure 2: The early performance prediction process to be specified in various sections

2.1 User Applications

Any performance prediction is based on a specific user application and a specific MPP pla
But what should be the exact inputs from the application? The performance evaluation to
developed in [22] requires the application be specified as an ADA program or in an interme
language. The P3T evaluation reported in [9] requires a Vienna Fortran program. Some oth
predictors require a task graph, a dataflow graph, or a Petri net. All these schemes assum
existence of software tools, which are not available on current MPPs.

For most MPP users, either of he following may be initially available, when a parallel applic
is to be developed:

• A sequential program written in C or Fortran for a uniprocessor system. We will den
this sequential code by C.

• A number of parallel algorithms, in “paper-and-pencil” form but not yet implemented
parallel programs. These algorithms are most likely adopted from published articles w
have not been tested in any computer platform.

 A main objective of early performance prediction is to identify the best parallel algorith
Some efficient and effective parallel algorithms will emerge after identifying the performa

Derive Performance Metrics

 Step 5:

Coding Stage (Figure 1)

Performance
Unsatisfactory

Performance
Satisfactory

 (Sections 2.3 and 3.5)

User Application

MPP Platform

 Step 2:

 Step 1:
Characterize Workload
(Sections 2.1 and 3.2)

(Sections 2.2 and 3.3)
Estimate Overhead

 (Section 3.5)
Predict Performance

 Step 4:

 Step 3:
Design Parallel Algorithm
 (Sections 3.4 and 3.5)

Data Flow

Control Flow

Information
4

l
9].

ses, an
ctive

 the

e,

n

e
nd
hase

the

uation.

se

fective

ion
.
bottlenecks. These algorithms can be generally structured by the following abstract mode
recently developed by the coauthors for programming MPPs or clusters of workstations [2

2.1.1 The Phase Parallel Model

Consider a sequential program C. The program structure is divided into a sequence of k phases,

 as illustrated in Fig. 3. Each phase involves essentially a computational

superstep consisting of coarse or medium grains of operations. Between two adjacent pha
interaction (communication and synchronization) step is often needed. This could be colle
communications involving multiple computing nodes.

 Semantically, all operations in a phase followed by an interaction step must finish before

next phase can begin. Phase Ci has a computational workload of million floating-point

operations (Mflop), and takes seconds to execute on one processor. It has a degree of

parallelism of . In other words, when executing on n processors with , the

parallel execution time for phase Ci becomes . Associated with each phas

the user provides the predictor consisting of computations, workload, DOP, and interactio
functions followed, etc.

Figure 3: The Phase Parallel Model for MPP Application Code Development.

This model is especially efficient to implement SPMD (Single Program and Multiple Data
streams) data-parallel programs. Depending on the interaction overhead encountered, th
granularity of each phase can be adjusted to achieve a balance between computations a
communications. This is crucial to apply the model for early performance prediction. The p
parallel model can cover several important parallel programming paradigms [6], such as
synchronous iteration model discussed in [3], the loosely-synchronous parallelism [10], and the
Bulk-Synchronous Parallel (BSP) model [27]. We have applied this model to develop all the
parallel STAP benchmark programs for the three MPPs being tested for performance eval

This model is rather conservative in predicting the MPP performance, compared with tho
models allowing computations to be overlapped with interaction steps for latency hiding
purposes. However, our model is easier to implement on MPPs. The model is also very ef
to implement the pipelining operations required in [6].

2.1.2 Workload Characterization

We need to measure the amount of work performed in an application (referred to as workload
W). For scientific computing and signal processing applications where numerical calculat
dominates, a natural metric is the number of floating point operations that need to be executed
This metric of workload has a unit of Millions of flops (Mflop) or Billions of flops (Gflop). For

C1 C2 … Ck, , ,

Wi

T1 i()

DOPi 1 n DOPi≤ ≤

Tn i() T1 i() n⁄=

Phase C1

W1

T1(1)

DOP1

Phase Ck

Wk

T1(k)

DOPk

Phase Ci

Wi

T1(i)

DOPi

Interaction Interaction
5

x, or

, one
hich

d in the
-MP.

ount of
 SP2

ential

ns: (1)
m will
en the

f

the
h the

y

mark
or

nd the
width
-D FFT
instance, an N-point FFT has a workload of W=5NlogN flop. This should be differentiated from
the unit of the computational speed, which is Millions of flops per second, denoted by Mflop/s.
This notation is from the PARKBENCH benchmark [13], and has become widely used.

When the application program C is simple and its workload is not input data-dependent, the
workload of C can be determined by code inspection. When the application code is comple
when the workload varies with different input data (e.g., sorting and searching programs)
can measure the workload by running the sequential application on a specific machine, w
will generates a report of the number of flops actually executed. This approach has be use
NAS benchmark[23], where the flop count is determined by an execution run on a Cray Y
Throughout the rest of this paper, we denote by Wi the flop workload for computation step Ci and
W=W1+...+Wk the total flop workload for the entire program C.

In theoretical performance analysis, it is often assumed that every flop takes the same am
time. This uniform speed assumption does not hold in real MPPs. For instance, on a single
processor, we measured that the speed varies from 5 Mflop/s to 200 Mflop/s for different
computation routines in the STAP benchmark suite, a difference of 40 times! Thus the sequ
program is executed to generate the execution time rather the flop count. T1(i) denotes the
sequential time for executing Ci. The single processor execution time T1 is equal to the sum of
T1(i) for all Ci. The sequential speed for each computation step Ci and for the entire sequential
program C can then be computed by:

.

 Executing the sequential program on a single node may not be feasible due to two reaso
The program needs more memory than what a single node can provide. Then the progra
either not run at all, or execute at a very slow speed due to excessive paging. (2) Even wh
program fits in a local memory, it may take a long time (e.g., days) to execute because o
excessive computational complexity involved.

The problem can be solved by scaling down the program size along the parallelizing dimension.
Scaling down along other dimensions may distort the workload information. For
domain-decomposition parallel programs (i.e., where parallelism is exploited by partitioning
data domain into multiple chunks), the parallelizing dimension is the dimension along whic
data domain is partitioned. There may be more than one parallelizing dimension.

2.2 Platform Parameters

The following performance related information is generally provided by MPP vendors:

• Architecture Parameters: These include the machine size n (i.e., the number of
processors) and the capacity of memory/cache per processor.

• Peak Performance Numbers: These include the peak speed of a processor (denoted b
Ppeak), the smallest latency and the peak bandwidth for point-to-point communication.

• Benchmark Performance Numbers: These include the measured performance of some
public domain benchmarks. For MPPs, the most frequently cited are the NAS bench
[23] and the LINPACK benchmark [8]. Some vendors also have performance data f
some sequential kernel routines (e.g., mathematical libraries).

The above information is listed in Table 1 for three MPPs. The machine size, the cache, a
memory attributes show the ranges of possible configurations. The latency and the band
are the best numbers provided by the vendors. The NAS FT benchmark performances a 3

P1 i() Wi T1 i()⁄ and ,= P1 W T1⁄=
6

ighly

n

p, to do

rams.
ination,

rces of
ons.

 to
uess
 avoid

5, 26].
asure

ark
ted

osed

 two
st.

n
 have
ludes
based algorithm to solve a partial differential equation. The timing results are based on h
optimized executions, which a user is unlikely to achieve.

Now this is about all platform information that is available to a user, which is too limited. I
particular, no information is provided for various overheads. It is very difficult to answer simple
questions such as “How long does it take to create a process, to partition a process grou
a barrier synchronization, or to sum n values from n processors? “

There are three types of operations in a parallel program: Computation operations include
arithmetic/logic, data-transfer, and control flow operations that are found in sequential prog
Parallelism operations are needed to manage user processes, such as creation and term
context-switching, and grouping. Interaction operations are needed to communicate and to
synchronize among processes. The parallelism and the interaction operations are the sou
overhead, in that they need extra time to carry out besides the pure computational operati

On current MPPs, these overheads could be quite large and vary greatly from one system
another. Users can not just extrapolate their past experience from a “similar” system to g
what the overhead will be. It is important for the user to know the overhead values so as to
using expensive parallelism and interaction operations.

2.2.1 Overhead Quantification

Numerous benchmarks and metrics for MPPs have been proposed [4, 8, 9, 12, 13, 14, 1
But few provide estimation of overhead. To our knowledge, the only benchmarks that me
overhead in MPPs are the COMMS1, COMS2, and SYNCH1 in the PARKBENCH benchm
[13], which measure point-to-point communication and barrier synchronization for distribu

memory MPPs. The only overhead metrics are the parameters , prop

by Hockney [12,13] for measuring point-to-point communication. Hockney also proposed
other metrics f1/2 and s1/2 to identify memory bottleneck and to estimate synchronization co

 MPP user groups should develop closed-form expressions to quantify the communicatio
overheads in using communications libraries or standards such as PVM, MPL, or MPI. We
attempted to do so for the IBM SP2 as reported in [28]. Our prediction scheme (Fig.2) inc
an overhead quantification step. General guidelines for this step are suggested below.

Table 1: Performance Attributes of Three Massively Parallel Processors

Performance Attribute IBM SP2 Cray T3D Intel Paragon

Machine Size (n) 8-512 4-2048 4-4096

Data Cache per Processor 64-256 KB 8 KB 16 KB

Memory per Processor 64 MB-2 GB 32-64 MB 16-128 MB

Peak Processor Speed (Ppeak) 267 Mflop/s 150 Mflop/s 100 Mflop/s

Point-to-Point Communication
Latency and Bandwidth

39 µs,
35 MB/s

2 µs,
150 MB/s

30 µs,
175 MB/s

NAS FT Benchmark Time
 (using 128 Processors)

14.52-15.68
Seconds

20.68
Seconds

22.76-42.07
Seconds

r∞ m1 2⁄ t0 and π0, , ,
7

l-clock

essage
ise it
done in
easured

 by

sage
d can

the

), in

on

ght or

en MPP
fying

nce of
.

scuss
tions

, not a
For each interaction (or parallelism) operation to be quantified, the user measures the wal
time for a number of combinations of machine size n and message length m. Our experience
show that for current MPPS, the machine size should vary from 2 to at least 128, and the m
length for a communication operation should vary from 4 bytes to at least 64 KB. Otherw
is difficult to derive accurate overhead expressions. Overhead measurements should be
a batch mode, because this is the mode adopted by most production runs on MPPs.The m
timing data is then curve-fitted to obtain the closed-form performance expressions.

(1) The overhead of a point-to-point or a collective communication operation is expressed

, where m is the message length and n is the number of processors

involved in the operation. The exact forms of t0(n) and r∞(n) depend on the specific MPP
platform and the communication operation. The forms of t0(n) and r∞(n) for SP2 are presented
in Section 3.3. As we will see there, t0(n) and r∞(n) correspond to latency and bandwidth,
respectively.

(2) On MPPs such as the Cray T3D, communication can be done either explicitly by mes
passing, or implicitly through shared memory. The shared memory communication overhea
be estimated as the time to load or store m bytes to the memory hierarchy. The same linear

expression of the form can be used with different coefficients for

four cases: when the m-byte data is in the cache, in the local memory (i.e., on the same node

a neighbouring memory (on a neighbor node), and in a remote memory.

(3) The overhead for creating a process (task, thread) can be estimated by a linear functi

 or a log-linear expression . The constant d represents a fixed cost
incurred no matter how many (or few) processes are created. The constant c represents a
per-process additional cost. The type of processes should also be noted, e.g., heavy-wei
light-weight, kernel level or user level, local or remote.

The above method requires quantifying each operation individually to achieve accuracy.
However, the overhead expressions need to be measured and derived only once for a giv
platform, and used by the entire user community many times. A simpler method for quanti
communication overheads is to use vendor-supplied latency and bandwidth numbers for
point-to-point operations (i.e., those in Table 1), and treat a collective operation as a seque
point-to-point operations. The main problem is that the accuracy could be off significantly
Performance Metrics

We discuss the performance metrics that are important to MPP users. In section 3, we di
how to use them to answer practical performance questions. The following metrics defini
refer to Fig. 3. The sequential execution time T1 and speed P1 have already been defined in
Section 2.1. Note that they should be measured by executing the best sequential program
parallel program, on a single processor. The n-processor execution time Tn of a parallel program
is estimated by:

(1)

t t0 n() m r∞ n()⁄+=

t t0 n() m r∞ n()⁄+=

t cn d+= t c nlog d+=

Tn

T1 i()
min DOPi n,()

1 i k≤ ≤
∑ Tparallel Tinteract+ +=
8

ly.

ation.

ng

This

peedup.

e size
 and a

d. They
tage.

pecial

m or
kload,

 5%
r
ot
where Tparallel and Tinteract denote all parallelism and communication overheads, respective
The speed using n processors is defined by Pn=W/Tn. The speedup is defined by Sn = T1 / Tn. The
efficiency is En = Sn / n = T1 / (nTn). The ratio of speed to peak speed is called the utilization,
denoted by Un = Pn / (nPpeak), where Ppeak is the peak speed of one processor. The utilization
indicates how much percentage of the full computing power is utilized in a specific applic

There are several metrics of extreme values which give lower and upper bounds for Tn, Pn, and
Sn. Let T∞ be the length of the critical path, which equals the time to execute an application usi
an unrestricted number of processors, excluding all overhead. From Eq. 1, T∞ is:

(2)

The smallest n to achieve Tn =T∞ is called the maximal parallelism, denoted by Nmax. This is the
maximal number of processors that can be profitably used to reduce the execution time.

metric can be computed by . The speed Pn is upper bounded by

the maximal speed . The quantity T1/T∞ is called The average parallelism.

2.2.2 Which Metrics to Use?

Obviously, execution time and speed are important metrics. Some users also care about s
However, speedup and efficiency could give misleading information. In fact, with a bad
sequential program, a poor parallel program can have a speedup greater than the machinn
and an efficiency greater than 100%. In contrast, the utilization is always less than 100%,
better program always has better utilization.

The critical path and the average parallelism are easy to compute, as they ignore overhea
bound the achievable performance and are useful at the initial parallel algorithm design s
The n-processor execution time Tn is lower bounded by T1/ n and by T∞. That is

(3)

The average parallelism provides an upper bound on the speedup, i.e., .

The execution time, speed, and utilization are the most important performance metrics. S
attention should be paid to the utilization metric, which is often overlooked, but more
informative than execution time and speed. A low utilization always indicates a poor progra
compiler. In contrast, a good program could have a long execution time due to a large wor
or a low speed, due to a slow machine.

A sequential application executing on a single MPP processor has a utilization ranging from
to 40%, typically 8% to 25%. Some individual subroutines can be made faster to reach 75% o
more. However, when such subroutines are incorporated into a real application, they do n

T∞
T1 i()
DOPi

1 i k≤ ≤
∑=

Nmax max1 i k≤ ≤ DOPi()=

P∞ W T∞⁄=

Tn max T1 n T∞,⁄()≥

Sn T1 T∞⁄≤
9

und
esults
. An

. In
ch as
53%.
necessarily retain their high utilization. A parallel application executing on multiple processors
has a utilization ranging from 1% to 35%, typically 4% to 20%.

By processing the NAS parallel benchmark results [23] for SP2, T3D, and Paragon, we fo
that the utilization ranges from 1% to 60%, with a harmonic mean of 12%. Note that these r
were generated from the vendors benchmark programs, which are often highly optimized
ordinary user application of similar type is unlikely to attain the same performance.

Figure 4 shows the utilization of three MPPs in executing the NAS benchmarks (Class A)
general, the utilization of MPPs is lower than a traditional parallel vector supercomputer su
the Cray C90. The C90 achieved a utilization from 28% to 73%, with a harmonic mean of
For everyday user applications, a C90 has a typical utilization of 21% to 27% [2].

Figure 4: Utilization of three MPPs for NAS Parallel Benchmarks

0%

10%

20%

30%

40%

50%

16 32 64 128 256 512 1024

Number of Processors

U
til

iz
at

io
n

EP

MG

CG

FT

LU

BT

SP

0%

10%

20%

30%

40%

50%

60%

8 16 32 64 128
Number of Nodes

U
til

iz
at

io
n

EP

MG

CG

FT

LU

SP

BT

0%

10%

20%

30%

40%

16 32 64 128 256 512 1024

Number of Nodes

U
til

iz
at

io
n

EP

MG

CG

FT

LU

SP

BT

(a) IBM SP2

(b) Cray T3D

(c) Intel Paragon

Data points not shown
are unavailable
10

hmark
ion
n using
es. The
 small
used

tive

rams

these
e user at

.

Figure 5: Measured utilization and Gflop/s speed of the parallel APT and HO-PD benchmark
programs on three MPPs

In Fig. 5, we show the measured utilization and speed of two programs in the STAP benc
suite, when executing on three MPPs. The utilization ranges from 5% to 38%.The utilizat
rates drop as more nodes are used in a given application. However, this may not be true i
a small number of nodes. This has happened in using the Paragon with less than 16 nod
main reason is that each Paragon node at the SDSC has only 16 MB of main memory, too
to fit the large data set we have. The dip and rise of the Paragon utilization curves was ca
mainly by this memory problem.

3 STAP Benchmark Performance Results

The STAP benchmark suite was originally developed by MIT Lincoln Laboratory for adap
radar signal processing. It contains three benchmarks: Adaptive Processing Testbed (APT),
High-Order Post-Doppler (HO), and General (GEN). In this section, we use the performance
prediction procedure outlined in Fig.2 to predict the performance of the parallel STAP prog
on SP2. The prediction procedure is first summarize. Individual steps are explained in
subsequent sections, using the APT benchmark as a working example.

3.1 The Early Prediction Procedure

The five early prediction steps in Fig. 2 are specified below for any MPP system. Applying
steps on the SP2 is discussed in subsequent subsections. The procedure is applied by th
the parallel algorithm design time, without involving the expensive coding and debugging
stages. The only programming effort involved is to time the sequential code on a single
processor. Recall that we assume the user starts with a sequential program C consisting of a

sequence of k steps , as shown in Fig.3.

0.01

0.10

1.00

10.00

100.00

1 2 4 8 16 32 64 128 256

Number of Nodes

S
pe

ed
 (

G
flo

p/
s)

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 4 16 64 256
Number of Nodes

U
til

iz
at

io
n

APT SP2

APT Paragon

APT T3D

HOPD SP2

HOPD Paragon

HOPD T3D

C1 C2 … Ck, , ,
11

are

ing
d

ms on
and
rce

hus
 of the
l to
Step 1:Determine the workload Wi for each component Ci and the total workload

. Time the sequential code C on one processor to determine the

sequential times T1(i) for each Ci. The corresponding sequential speed and utilization

computed by: .

Step 2:Quantify the overheads.

Step 3:Derive a parallel algorithm. Then analyze it to reveal the degree of parallelism
DOPi for each Ci and the maximal parallelism Nmax for the entire program, where

.

Step 4:Derive the following performance metrics:

•Parallel time:

•Critical path:

•Average parallelism and maximal speed

•Speedup and speed

•Efficiency and utilization:

Step 5:Use these metrics to predict the performance. If the prediction shows promis
performance, continue to coding and debugging. Otherwise, analyze the predicte
performance results to reveal deficiencies in the parallel algorithm. Modify the
algorithm and go to Step 3.

3.2 Workload Quantification

Table 2 shows the workload and sequential performance of three STAP benchmark progra
a single SP2 processor. The entries of Table 2 are obtained by applying those workload
performance formulae in Step 1. The workload values are obtained by inspecting the sou
STAP programs. The execution time values are from actual measurement of each of the
component algorithms. For example, the APT program is divided into four component
algorithms: Doppler Processing (DP), Householder Transform (HT), Beamforming (BF), and
Target Detection (TD). Each component algorithm performs different amount of workload, t
resulting in different execution time and speed. These differences reveal the whereabouts
bottleneck computations in each benchmark program. These information items are usefu
restructure the parallel algorithm in Step 3.

W Wi
1 i k≤ ≤
∑=

P1 i() Wi T1 i()⁄ and ,= U1 i() P1 i() Ppeak⁄=

Nmax max1 i k≤ ≤ DOPi()=

Tn

T1 i()
min DOPi n,()
----------------------------------- Tparallelism Tinteract+ +

1 i k≤ ≤
∑=

T∞
T1 i()

min DOPi ∞,()

1 i k≤ ≤
∑ T1 i()

DOPi

1 i k≤ ≤
∑= =

T1 T∞⁄ P∞ W T∞⁄=

Sn T1 Tn⁄= Pn W Tn⁄=

En T1 nTn()⁄= Un Pn nPpeak()⁄=
12

N)
effect
ant
ion.
 Mflop/
and

2 has
es
 FT

rred to

ocesses
all
 run,
rs
From Table 2, the utilization of FFT computations (DP in APT and HO-PD and FFT in GE
are low, while the rest have good utilization. Slow FFT computation does not have much
on the HO-PD program (DP takes less than 10% of total execution time), but has signific
impact for the GEN program. The vector multiply (VEC) component also has poor utilizat
Overall, the three sequential benchmarks APT, HO-PD, and GEN achieve a speed of 100
s, 98 Mflop/s, and 38 Mflop/s, respectively. The corresponding utilization are 38%, 37%,
14%. The utilization can be improved with better codes for FFT and VEC computations.

A simple way to improve performance is to use vendor supplied library routines. But the
improvement may not be as high as expected. For instance, the FFT library routine for SP
a performance as high as 160 Mflop/s. But when used in the STAP benchmark, it only giv
30-45 Mflop/s. This is roughly about the same performance achieved by SP2 for the NAS
benchmark, which is dominated by FFT computations.

3.3 Overhead Estimation

We briefly discuss below how to derive overhead expressions for SP2. The reader is refe
[28] for detailed discussions. Most MPP applications use static processes: All the processes are
created only once at the program load time. They stay alive until the entire application is
completed. In all of our testing runs, we always assign one process to a processor. The pr
of a program can form different groups. We always use only one unique group: the group of
processes. Thus the group size is always equal to the number of processes in a program
which in turn equals the number of processors used in that run. The number of processo
(processes) used, denoted by n, range from 1 to a maximum of 256. The message length is
denoted by m (bytes), ranging from 4B to 16 MB.

Table 2: Performance of Sequential STAP Programs on One SP2 Node

Benchmark
Program

Program
Component

Workload
(Mflop)

Execution Time
(Seconds)

Speed
(Mflop/s)

Utilization
(%)

APT DP 84 4.12 20 7.65

 HT 2.88 0.04 72 27.07

BF 1,314 9.64 136 51.22

TD 46 0.57 75 28.01

HO-PD DP 220 11.62 19 7.12

BF 12,618 118.82 106 39.92

 TD 14 0.17 82 30.96

GEN SORT 1,183 22.80 52 19.51

FFT 1,909 79.14 24 9.06

VEC 604 19.11 32 11.88

LIN 1,630 20.23 82 31.00
13

any
or
ther
 on

, all

 one

on is a
d (i.e.,

, and

ual
ist in
ot of
s of the
nd
e.
or this
 the
for

 would
ad for
to-point
3.3.1 Parallelism Overhead

In a real signal processing application on MPP, the same parallel program is executed m
times to process a stream of incoming radar sensor data. There is a one-time overhead f
creating all processes and groups, which can be used by subsequent computations. In o
words, the parallelism overhead is amortized. Therefore, in predicting STAP performance
SP2, we assumed that the parallelism overhead Tparallel = 0.

We must point out, though, creating a process or a group is expensive on MPPs. Our
measurement shows that creating a process on SP2 takes about 10000 µs or more, equivalent to
millions of flop. A group creation takes about 1000 µs. Therefore, a program that needs to
frequently create processes or groups must have very large computation grains.

In what follows, we concentrate on communication overhead. In message passing MPPs
interactions are called communication operations. In a point-to-point communication, one
process sends a message to another process. Thus only two processes, one sender and
receiver, are involved. In a collective computation, a group of processes are involved to
synchronize with one another or to aggregate partial results. The time for such an operati
function of the group size, but not of message length, as the message length is usually fixe
t = f(n)). In a collective communication, a group of processes send message to one another
the time is a function of both the message length and the group size (i.e., t = f(n, m)).

3.3.2 Point-to-Point Communication

Using the High-Performance Switch (HPS), all processors on an SP2 can be considered eq
distance away. The concept of neighboring processors or remote processors does not ex
SP2. Thus, the time for a point-to-point communication is a function of message length, n
the number of processors. We measured the blocking send and blocking receive operation
IBM MPL, using the pingpong scheme in an n-process run: Process 0 executes a blocking se
to send a message of m bytes to process n-1, which executes a corresponding blocking receiv
Then process n-1 immediately sends the same message back to process 0. The total time f
pingpong operation is divided by 2 to get the point-to-point communication time. Some of
timing results are shown in Table 3, which confirms that there are only small differences
sending messages to different processors.

The overhead as presented in Table 3 is not very convenient for the user. Ideally, the user
prefer to have a simple, close-form expression which can be used to compute the overhe
various message lengths. Such an expression has been suggested by Hockney for point-
communications [12]: The overhead is a linear function of the message length m (in bytes):

Table 3: One Way Point-to-Point Communication Times (µs) on SP2

 n
 m

2 8 32 128

4B 46 47 48 48

1KB 101 120 120 133

64KB 1969 1948 1978 2215

4 MB 1.2M 1.2M 1.2M 1.2M
14

and
gth
ss the

rds,

t
ess to

d

e

are
(4)

where t0 (called latency, or start-up time, in µs) is the time needed to send a 0-byte message,
r∞ (called asymptotic bandwidth, in MB/s) is the bandwidth achieved when the message len
m approaches infinity. Using least-square fitting of the measured timing data, we can expre

point-to-point communication overhead as a linear function: . In other wo
the latency is t0=46 µs, and the asymptotic bandwidth is r∞=1/0.035=28.57 MB/s.

3.3.3 Collective Communications

In a broadcast operation, processor 0 sends an m-byte message to all n processors. In a gather
operation, processor 0 receives an m-byte message from each of the n processors, so in the end
mn bytes are received by processor 0. In a scatter operation, processor 0 sends a distinct m-byte
message to each of the n processors, so in the end mn bytes are sent by processor 0. In a total
exchange operation, every processor sends a distinct m-byte message to each of the n processors,
so in the end mn2 bytes are communicated. In a circular-shift operation, processor i sends an
m-byte message to processor i+1, and processor n-1 sends m bytes back to processor 0. Note tha
in current message-passing systems, a collective communication always requires a proc
send a message to itself. That is why mn2 bytes are communicated in a total exchange, not
mn(n-1) bytes.

We have extended Hockney's expression (Eq. 4) as follows: The communication overheat is
still a linear function of the message length m. However, the latency and the asymptotic
bandwidth are now simple functions of the number of processors n. In other words,

(5)

After fitting the measured timing data to different forms of , we derived th

formulae for the five collective operations as shown in Table 4.

3.3.4 Collective Computations

We measured three representative collective computation operations: barrier, reduction and
parallel prefix (also known as scan). The curve-fitted communication overhead expressions

Table 4: Collective Communication Overhead Expressions for SP2

Operation Timing Formula

Broadcast (52logn) + (0.029logn)m

Gather/Scatter (17logn +15) + (0.025n-0.02)m

Total Exchange 80logn + (0.03n1.29)m

Circular Shift (6logn+60) + (0.003logn+0.04) m

t t0 m r∞⁄+=

t 46 0.035m+=

t t0 n() m r∞ n()⁄+=

t0 n() and r∞ n()
15

se
eds of

ement
-point
ads of

total
e two

. In part

ors.

ors:
ata and
shown in Table 5. Note that over 256 processors, the barrier overhead is 768 µs, equivalent to
the time to execute as many as 768×266=202,692 flops. This answers the question: “Should I u
a synchronous algorithm?” The answer is only when the grain size is large. That is, hundr
thousands flops are executed before a barrier.

There is a simpler method to estimate the overhead of a collective communication or
computation, which is widely employed by MPP users, as it does not require any measur
by the users. This traditional method treats a collective operation as a sequence of point-to
operations. The overhead of the collective operation is computed by summing the overhe
these point-to-point operations, using vendor provided latency and bandwidth values.

Figure 6 compares our method to the traditional method for predicting the overhead of a
exchange for both short and long messages. In part (a), we show the relative errors of th
methods when mn2 =16 MB (e.g., m=1024 bytes when n=128). The traditional method
underestimates the overhead with large errors, especially for large numbers of processors
(b), we compare the measured overhead with those projected by the two methods, when mn2 =64
KB (e.g., m=4 bytes when n=128). While our method is close to the measured result, the
traditional method overestimates the overhead significantly for large numbers of process

Figure 6: Comparison of two methods for predicting the overhead for total exchange

3.4 Parallel Algorithm Design

How does one design the initial parallel algorithm? The decision is affected by many fact
How many processors should be used? What should be the grain size? How to partition d

Table 5: Collective Computation Overhead Expressions for SP2

Operation Time Expression

Barrier 94 logn+10

Reduction 20logn + 23

Parallel Prefix 60 logn -25

-140%
-120%
-100%
-80%
-60%
-40%
-20%

0%
20%
40%

2 4 8 16 32 64 128
Number of Nodes

R
el

at
iv

e
E

rr
or

0

1000

2000

3000

4000

5000

6000

2 4 8 16 32 64 128
Number of Nodes

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(M

ic
ro

se
co

nd
s)

Measured
Our Model
Traditional Model

(a) Relative error for a total exchange
 of 16 MB messages

(b) Communication overhead for a total exchange
of 64 KB messages
16

er
Table
ferring

ata/

P) can

P
jected
hieve
hree

flop/
s
, the
h
rallel
an 0.5

ed.

 STAP
d
N

PT
rithm

computation? and so on. The following heuristics are very useful: Before making any oth
decisions, first determine the grain size of each individual step using speed information in
2. The grain size is defined to be the number of flop executed before a communication. Re

to Fig. 3, the grain size for step should be no less than . Then analyze the d

control dependence of the sequential code to find out how much degree of parallelism (DO
be exploited for each step, subject to the grain size requirement just obtained.

It is often helpful to perform a zero-overhead prediction on the initially designed parallel
algorithm. Table 6 shows the zero-overhead performance prediction of three parallel STA
benchmarks. This prediction is useful to provide some upper and lower bounds on the pro
MPP performance and to answer the question "Will the parallel algorithm just designed ac
the desired performance level?" The answer depends on the performance requirement. T
requirements can be posed by a user:

• Time: For real-time, embedded applications, the user often does not care how much M
s performance or how much speedup is achievable. All that matters is that the job i
guaranteed to finish within a time limit. For instance, in airborne radar target tracking
user may want to detect all targets within half of a second. Note that the critical pat
lower-bounds the parallel execution time. From Table 6, the APT and the HO-PD pa
programs have a chance to satisfy this requirement, as their critical paths are less th
seconds. However, the GEN program fails, no matter how many processors are us

• Speed: The STAP programs are benchmarks, in that they are not the real production
programs. Rather, they characterize the real codes. What the user really wants is a
system that can deliver a sustained speed, say 10 Gflop/s. From the Maximal Spee
column of Table 6, Both APT and HO-PD may meet the requirement but not the GE
program.

• Speedup: The user may want to see how much parallelism can be exploited in his
application code to achieve, say 200 speedup minimum. By this standard, the APT
program fails, because its average parallelism is only 180.

This preliminary performance evaluation generated some useful prediction: The parallel A
algorithm failed to achieve the 200 times speedup requirement, and the parallel GEN algo
fails the other two requirements. There is no point to further develop the full-fledged GEN
parallel code. Instead, we need to change the algorithm or the problem size.

Table 6: Extreme Value Metrics of the STAP Programs

Program

Workload
W
(Mflop/s)

Sequential
Time T1
(Seconds)

Maximal
Performance
P∞
(Gflop/s)

Average
 Parallelism

 Critical Path

(Seconds)

APT 1,446 14.37 18 180 0.08

HO 12,852 130.61 28 281 0.46

GEN 5,326 141.28 8 220 0.64

Ci t0 P1× i()

T1 T∞⁄
T∞
17

ny
 the

more

. A
 SP2
.

asses
t
r
sed to
 a

tep is

ecuted

he TD
eports
The average parallelism metric provides a heuristic for answering the question: “How ma
processors should be used in my program?” A rule of thumb is to use no more than twice

average parallelism. When the number of processors , the efficiency is no

than 50%. Note that the utilization of the sequential STAP code is as low as 7.12% (Table 2)
50% efficiency would drag the parallel utilization down to only 3.56%. On a 256-processor
with a 68 peak Gflop/s speed, only 2.4 Gflop/s can be achieved with such a low utilization

Even when the preliminary prediction shows promising result (e.g., the HO-PD program p
all three requirement tests), we should not rush to the coding stage, because we have no
considered overhead yet. We next incorporate all communication overheads and conside
various parallelization strategies. The next section shows how performance prediction is u
select the best strategy. After several prediction and algorithm redesign steps, we obtain
parallel program which is likely to perform well.

For instance, the structure of the final parallel APT algorithm is shown in Fig. 7. The DP s
distributed to up to 256 processors. The total exchange step is collectively executed by all
processors., with an aggregated message length of 17 MB. The HT step is sequentially ex
on a single processor (DOP=1). The broadcast operation must send a 80KB message to all
processors. The BF step performs beamforming operations using up to 256 processors. T
step needs to track the targets on up to 256 processors locally. Then all the local target r
are merged through the final collective reduction operation.

Figure 7: Structure of A Coarse Grain Parallel APT Algorithm

n 2T1 T∞⁄=

DP

... ...BF

DOP = 256

Workload=84 Mflop, 4.12 seconds

DOP = 256
Workload = 1,314 Mflop, 9.64 seconds

... ...TD
DOP = 256
Workload = 46 Mflop, 0.57 seconds

HT
DOP = 1
Workload=2.88 Mflop, 0.04 seconds

Total Exchange (Index)

Broadcast

Reduction to Merge Target Reports

Total Message Length=17 MB

Message Length=80KB

100 flop numbers per report
... ...

... ...
18

el time
se
mulae
ble 8
ults, yet
ection.

s four
d term
l
ion
ck. To
t this

 the
y in all
rm be

e will

es to
us
e
3.5 Performance Prediction

Table 7 shows the parallel execution times Tn for the three STAP benchmarks, when all
communication overheads are included. The communications components in these parall
expressions are obtained by using the overhead formulae given in Section 3.3. From the
expressions, it is straightforward to calculate the other performance metrics using the for
in Section 3.1 to perform a full-fledged prediction including all overhead. The entries of Ta
are obtained from Table 7 for a 256-processor SP2 system. These are early prediction res
to be validated against results obtained from real benchmark runs as discussed in the next s

Let us look at the parallel APT program more closely. From Table 7, the execution time ha
terms. The first term is a constant, due to sequential execution of the HT step. The secon
is due to parallel execution of the DP, BF, and TD steps. The third term is due to the tota
exchange communication. The fourth term is equally due to the broadcast and the reduct
communication steps. For large numbers of processors, the HT step becomes a bottlene
further improve the APT performance, an obvious choice is to parallelize the HT step. Bu
does not work on SP2, as shown below.

We show how the prediction model can help select a parallelizing strategy by considering
Householder transform routine. This routine is important because it has been used heavil
five STAP benchmarks. So we must answer the question: “Should the Householder transfo
parallelized?” As it turned out, the answer is no for SP2 and Paragon, but yes for T3D. W
focus on the householder transform used in the HT step of the APT benchmark.

The Householder transform in the STAP benchmark suite is unusual in that (1) the matric
be transformed are small (the largest one is 32×320); and (2) the matrix is not even square, th
not symmetric. Many existing parallel Householder algorithms assume symmetry. The tim

Table 7: Predicted Execution Time of Parallel STAP Programs on SP2

Program n-processor Execution Time in seconds

APT

HO-PD

GEN

Tn

0.04
14.33

n
------------- 0.51n

071–
0.004 nlog+ + +

130.61
n

---------------- 1.5n
071– 0.0044 nlog 0.0314+ + +

121.05
n

---------------- 0.00188 nlog 6n
071– 20.23

max n 32,()
--------------------------- 0.0016+ + + +
19

atrix.

 to

e (in
llel

Table
consuming component in the Householder transform is to triangularize a complex m
The sequential time needed for such a triangulization is approximately:

(6)

where is the time (in µs) needed to perform one floating point operation. A natural way

parallelize the triangulation algorithm is to partition the matrix into n chunks along the q

dimension. In other words, each of the n processors will process columns. The parallel
execution time will be approximately:

(7)

where the second term is the communication overhead. More specifically, is the tim
µs) needed to perform a reduction operation over n processors. The speedup of using the para
algorithm is:

(8)

If we ignore the communication overhead, the speedup would be n/2. Now let us apply the
speedup formula to APT and the SP2 specifically. The HT step of the APT benchmark in

2 has a sustained speed of 72 Mflop/s, which translates to a µs. From

Table 5, we have . The parameter q is equal to 320 in the APT. Using
these parameter values, we obtain the speedup equation:

Table 8: Predicted Performance of Parallel STAP Programs on 256 SP2 Node, Including All
Overheads

Program Parallel Time T256 Speed P256 Speedup S256 Utilization U256

APT 0.137 Seconds 10.5 Gflop/s 104 15%

HO 0.606 Seconds 21.2 Gflop/s 215 31%

GEN 1.400 Seconds 3.8 Gflop/s 101 6%

p q×

T1 8 p
2

q Tflop×××=

Tflop

q n⁄

Tn

16 p
2

q Tflop×××
n

-- p
2

R n()×+=

R n()

Sn

T1

Tn
----- n

2
nR n()
8qTflop
------------------+

---------------------------= =

Tflop 1 72⁄ 0.014= =

R n() 20 nlog 23+=
20

n the

 for

suggests
edicted
 parallel

e have
speed
jority
etimes

ache
(9)

For the speedup to be greater than 1, the following inequality must hold:

(10)

This inequality clearly cannot be satisfied. Thus the parallel algorithm is always slower tha
sequential one for any machine size n. We also know the reason why it is slow: the reduction

overhead is too high. In fact, even with the optimistic assumption that
any k processors, the speedup is still always less than 1.

4 Validation of Early Prediction

Suppose the user changed the performance requirement to 100 times of speedup.Table 8
that all three benchmarks satisfy this new requirement by using 256 processors, as the pr
speedup are 104, 215, and 101, respectively. We can then go ahead to code and debug the
programs, with high confidence that the final programs will meet the performance goal.

How accurate is the proposed performance prediction method? To answer this question, w
tested the actual parallel STAP codes on SP2 over up to 256 processors. The sustained
performance is compared with the prediction. The results are shown in Fig. 8. For the ma
of cases, the error is less than 10%, and the maximal error is 22%. We also see that som
the predictions underestimate the performance, i.e., the measured performance is better than the
predicted. This is especially true for the GEN program. This is due to the fact that more c
and memory are available as the machine size increases.

Figure 8: Comparison of predicted and measured performance of the STAP programs

Sn
n

2
n 20 n 23+log()
8 320 0.014××
--------------------------------------+

--- n
2 0.56n nlog 0.64n+ +
---= =

n 2 0.56n nlog 0.64n+ +> n 1.56n nlog 5.56+>⇒

R k() R 2() 43= =

0

5000

10000

15000

20000

25000

1 2 4 8 16 32 64 128 256

Number of Nodes

S
us

ta
in

ed
 S

pe
ed

 (
M

flo
p/

s)

APT Prediction

APT Measured

HO Prediction

HO Measured

GEN Prediction

GEN Measured
21

ead
ted

PT
iction
ted on
 the
r. But

pical
step
he

zation
iques
e them.

would

llel

allel
We also compared three prediction schemes: The uniform-speed prediction assumes a uniform
sequential computation rate, i.e., every flop takes the same amount of time. The zero-overhead
and the full-overhead predictions use the real speed values in Table 2. Both the zero-overh
and the uniform predictions ignore communication overhead. The relative errors of projec
execution times with respect to the measured times are shown in Fig. 9 for the parallel A
benchmark. Overall the full-overhead prediction is more accurate than the other two pred
schemes, which exclude the overhead. Look at the case when the APT program is execu
256 SP2 processors. Fig.9 shows that, when compared with the measured performance,
uniform-speed prediction has a 90% error. The zero-overhead prediction has a 69% erro
the full-overhead prediction brings the error down to only 17%.

5 In Search of higher System Utilization

The parallel APT program was projected to achieve an utilization of only 15%, which is ty
of many real applications. It is difficult to reduce the execution time further. All but the HT
are fully parallelized, and we saw in Section 3 that parallelizing the HT step will not pay. T
communication overheads seem to be unavoidable. Is there any way to increase the utili
without reducing the execution time? The answer is yes. We mention three popular techn
below. The early prediction scheme can help decide which technique to use and how to us

Figure 9: Comparison of three performance prediction schemes with uniform-speed,
zero-overhead, and full-overhead respectively.

5.1 Scaling Workload

The first method scales up the problem size, thus the workload. For many programs, this
amortize the communication overhead and the sequential bottleneck, generating higher
utilization. There are two approaches to scaling workload:

• Fixed-Time. The total workload of the parallel program is increased so that the para
program will have the same execution time as the original sequential program [11].

• Memory-Bound. The total workload of the parallel program is increased so that the par
program will use all available memory in the MPP [26].

-100%
-90%
-80%
-70%
-60%
-50%
-40%
-30%
-20%
-10%

0%
10%

1 2 4 8 16 32 64 128 256
Number of Nodes

R
el

at
iv

e
E

rr
or

Uniform-Speed

Zero-Overhead

Full-Overhead
22

sed to

for the

wever,
 36%.

d
ution
PT
cond.

cases,

tream

e
 of the

. We
 nodes
e steps,
tween
96

102

n not
5
In general, memory-bound scaling should be used. The early prediction scheme can be u
estimate the potential improvement of these workload scaling approaches. In Fig.10, the
projected utilization curves of these approaches are compared to the unscaled utilization
parallel APT program running on the IBM SP2. The utilization of the parallel APT without
workload scaling (the Fixed-Load curve) drops to 15% as the machine size increases. Ho
using memory-bound scaling, a parallel APT can maintain an almost constant utilization of

Figure 10: Improving utilization by workload scaling: parallel APT programs on the IBM SP2

The other two methods aim at improving the throughput, defined as the number of jobs processe
in unit time. If only one job is executed at a time, throughput is just the reciprocal of the exec
time. For instance, according to our prediction (Table 2), the throughput for the parallel A
program on a 256-node SP2 is one APT per 0.137 seconds, or 1/0.137=7.3 APTs per se

However, the throughput metric is usually used when multiple jobs are executed. In many
the system throughput can be increased at the expense of longer execution time for each
individual job. Both methods are suitable for parallel signal processing, as a continuous s
of radar sensor data needs to be processed.

5.2 Pipelining

Another way to increase the throughput of a parallel system is by pipelining, where successive
jobs overlap their executions among several pipeline stages. The throughput becomes th
reciprocal of the execution time at the longest pipeline stage, instead of the execution time
entire pipeline.

Table 9 shows the predicted timing of various steps in the parallel APT algorithm of Fig.7
can construct a two-stage pipeline for the APT program on a 256-node SP2, by using 128
per pipeline stage. The first stage consists of the DP, HT, broadcast, and the total exchang
while the second pipeline stage contains the remaining steps. The time to forward data be
stages can be ignored. The total execution time for each APT increases from 0.137 to 0.1
seconds. However, the longer of the two pipeline stages has an execution time of only 0.
seconds. The throughput increases from 1/0.137 to 1/0.102=9.8 APTs per second, or
equivalently, 14 Gflop/s. The corresponding utilization increases to 20%. Note that we ca
further improve throughput with more stages, because the BF step along would need 0.1
seconds on 64 nodes, more than the original 0.137 seconds.

10%

15%

20%

25%

30%

35%

40%

1 2 4 8 16 32 64 128 256
Number of Nodes

U
til

iz
at

io
n

Memory-Bound

Fixed-Time

Fixed-Load
23

igning
ly
r
e per

second,

n many
ution
cessor
 many

er of
e my

. Then
 those,
best
cution
ment.
sign 8
ughput

e
his is
ations
le in a
ogram
 times
two
 idling

es are
k.

2-node
/32=8
flop/s.
5.3 Throughput Enhancement

This technique is more powerful than pipelining. The idea is to increase throughput by ass
a separate sequential job to each node. At the extreme, up to n jobs are processed simultaneous
on an n-node system. The throughput is n divided by the execution time of the longest job. Fo
example, we can assign a sequence of APTs to each of the 256 nodes. The execution tim
APT increases to 14.37 seconds, but the throughput becomes 256/14.37=17.81 APTs per
or 25.6 Gflop/s.

Fourteen seconds may be too long an elapsed time for real-time radar signal processing. I
production environments, it is common practice to maximize the throughput within an exec
time limit. Suppose we use the parallel APT program to process radar signals on a 256-pro
SP2, with the constraint that each APT should be executed in no more than 2 seconds. How
processors should we use for one APT? We discuss below how to find the optimal numb
processors to maximize throughput, which also answers the question: “How do I best utiliz
5000 CPU-hours allocation on an MPP?”

Draw on the same chart the utilization and the execution time as a function of machine size
find all machine sizes that have no more than 2 seconds execution time, and from among
find the machine size with the best utilization. This is the machine size that will gives the
throughput. This process is shown in Fig.11a for the parallel APT program. Since the exe
time monotonically decreases, using 8 or more nodes will satisfy the 2-second time require
It happens that the 8-node machine size also has the best utilization. Thus, we should as
nodes to an APT, and 32 APTs are simultaneously processed by the 256 nodes. The thro
will be 16 APTs per second, or 23 Gflop/s.

A widespread misconception is that single-node, or sequential computation always has th
highest utilization, as parallel computing has extra communication and idling overheads. T
often but not always true. Figure 11b shows a scenario which happens in many real applic
with a large data set. The sequential program requires more memory than what is availab
single node. Excessive paging increases the execution time considerably. The parallel pr
needs more memory for message buffers. In fact, all parallel STAP programs need three
as much memory as their sequential counterparts. So when the program is executed on
nodes, paging becomes even more severe. This, together with added communication and
overheads, degrades performance significantly. The situation gets better when more nod
used. The utilization tappers off after 32 nodes, due to overhead and sequential bottlenec

In this example, using 16 or more nodes satisfies the 2-second time requirement, and the 3
machine size gives the best utilization, with an execution time of about one second. So 256
APTs are processed simultaneously, and the throughput is 8 APTs per second, or 11.6 G

Table 9: Time Breakdown in Parallel APT Program Components

No. of Nodes DP HT BF TD Index Reduce Broadcast

64 0.064 0.04 0.150 0.009 0.026 0.012 0.012

128 0.032 0.04 0.075 0.004 0.016 0.014 0.014

256 0.016 0.04 0.037 0.002 0.010 0.016 0.016
24

st in
P2,

e being

. We
before

em
anion
se the

ory

 We
tor
.
Figure 11: Finding the optimal machine size subject to a 2-second execution time limit

6 Concluding Remarks

We have demonstrated the advantages of using early prediction to avoid unnecessary co
repeated software development on MPPs. Our STAP benchmarking experiences on the S
T3D, and Paragon have led to the development of the early performance prediction schem
presented. The scheme is easy to apply and provides pretty accurate prediction of MPP
performances by realistically quantifying the workload and communication overhead.

Most user applications running on current MPPs resulted in rather low a system utilization
show how to apply the early prediction scheme to assess achievable performance level,
embarking on costly encoding and debugging efforts. The scheme produces performance
Metrics, often in simple mathematical expressions. Our scheme helped increase the syst
utilization and achieve higher throughput in real-time applications reported in several comp
articles [16,17,28,29]. We encourage MPP users to apply the phase parallel model and u
early scheme to predict performance, especially in coarse-grain, SPMD, data-parallel
applications.

Acknowledgments

This research was carried out while both authors worked at the University of Southern
California. We would like to thank David Martinez and Robert Bond at MIT Lincoln Laborat
for their support in this work. We are grateful to the User-Support group at Maui
High-Performance Computing Centre for their help. We thank Lionel Ni of Michigan State
University, Howard Ho, Craig Stunkel and Hubertus Franke of IBM for helpful discussions.
want also to thank Cho-Ming Wang of USC, Richard Frost of SDSC, David Scott and Vic
Jackson of Intel SSD, and Richard Foster of Cray Research for their technical assistance

0

1

10

100

1 2 4 8 16 32 64 128 256

Number of Nodes

Utilization

0%

5%

10%

15%

20%

25%

Execution
Time

0

1

10

100

1 2 4 8 16 32 64 128 256

Number of Nodes

Utilization

0%

5%

10%

15%

20%

25%

30%

35%

40%

Execution
Time

(a) Execution time and utilization without (b) Execution time and utilization with
 excessive paging overhead excessive paging overhead
25

8,

rallel",

er

,

entre

ices/

re
References

1 D. Adams, Cray T3D System Architecture Overview Manual, Cray Research, Inc., September
1993. See also http//www.cray.com/PUBLIC/product-info/mpp/CRAY-T3D.html

2 R.J. Bergeron, “The Performance of the NAS HSPs in 1st Half of 1994", Report NAS-95-00
NASA Ames Research Centre, February 1995.

3 D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computing, Prentice-Hall, New
Jersey, 1989

4 L.N. Bhuyan and X. Zhang, Tutorial on Multiprocessor Performance Measurement and
Evaluation, IEEE Computer Society Press, Los Alamitos,Ca., 1995.

5 R. Bond, "Measuring Performance and Scalability Using Extended Versions of the STAP
Processor Benchmarks”, Technical Report, MIT Lincoln Laboratories, December 1994.

6 P. Brinch Hansen, Studies in Computational Science: Parallel Programming Paradigms,
Prentice-Hall, New Jersey, 1995.

7 Crisis in High Performance Computing, University College London, Sept. 1995. http://
www.hensa.ac.uk/parallel/groups/selhpc/crisis

8 J. J. Dongarra, “The Performance Database Server (PDS): Reports: Linpack Benchmark - Pa
http://performance.netlib.org/performance/html/linpack-parallel.data.co10.html

9 T. Fahringer, “Estimating and Optimizing Performance for Parallel Programs”, IEEE Computer,
28(11), pp.47-56, Nov. 1995.

10 G.C. Fox, R.D. Williams, P.C. Messina, Parallel Computing Works!, Morgan Kaufmann
Publishers, Inc., San Francisco, Ca., 1994.

11 J.L. Gustafson, “Re-evaluating Amdahl’s Law”, Comm. ACM, 31(5),pp.532-533, May 1988.

12 R. W. Hockney, “Performance Parameters and Benchmarking of Supercomputers”, Parallel
Computing, 17, pp. 1111-1130, 1991.

13 R. W. Hockney and M. Berry, “Public International Benchmarks for Parallel Computers:
PARKBENCH Committee Report No. 1", Scientific Computing,3(2),pp.101-146, Feb.1994.

14 K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programmability, McGraw
Hill, New York, 1993

15 K. Hwang and Z. Xu, Scalable Parallel Computers: Architecture and Programming,
McGraw-Hill, New York, to appear in 1997.

16 K. Hwang, Z. Xu, M. Arakawa, "STAP Benchmark Performance on the IBM SP2 Massively
Parallel Processor”, IEEE Transactions on Parallel and Distributed Systems, pp. 522-536, May
1996.

17 K. Hwang and Z. Xu, “Scalable Parallel Computers for Real-Time Signal Processing”, IEEE Signal
Processing, July 1996. pp.50-66.

18 IEEE Computer Special Issue on Performance Evaluation Tools, Nov. 1995.

19 IEEE Parallel and Distributed Technology Special Issue on Performance Evaluation Tools, Wint
1995.

20 MHPCC, MHPCC 400-Node SP2 Environment, Maui High-Performance Computing Centre
October 1994.

21 C.M. Pancake, M.L. Simmns, and J.C. Yan, “Performance Evaluation Tools for Parallel and
Distributed Systems”, IEEE Computer, 28(11), pp.16-19, Nov. 1995.

22 D. Pease, et al, “PAWS: A Performance Evaluation Tool for Parallel Computing Systems”, IEEE
Computer, 24(1), pp.18-29, Jan. 1991.

23 S. Saini and D.H. Bailey, “NAS Parallel Benchmark Results 12-95”, NASA Ames Research C
Technical Report NAS-95-021, Dec. 1995.

24 SDSC, SDSC's Intel Paragon, San Diego Supercomputer Centre, http://www.sdsc.edu/Serv
Consult/Paragon/paragon.html

25 C. B. Stunkel, et al, “The SP2 Communication Subsystem”, IBM T.J. Watson Research Cent
Report, August 1994.
26

BM

),
ersity

nic
rnia,
Intel
clude

, on

sitor

, and
26 X.H. Sun, and L. Ni, “Scalable Problems and Memory-Bounded Speedup,” Journal of Parallel and
Distributed Computing, Vol. 19, pp.27-37, Sept. 1993.

27 L.G. Valiant, “A Bridging Model for Parallel Computation”, Comm. ACM, 33(8), pp.103-111,
Aug. 1990.

28 Z. Xu, K. Hwang, “Modelling Communication Overhead: MPI and MPL Performance on the I
SP2 System”, IEEE Parallel and Distributed Technology, pp. 9-23, March 1996. pp.9-23.

29 Z. Xu and K. Hwang, “MPP versus Clusters for Scalable Computing”, International Symposium on
Parallel Architectures, Algorithms and Networks, Beijing, China, June12-14, 1996.

Biographical Sketch

Zhiwei Xu is a Professor at the National Centre for Intelligent Computing Systems (NCIC
Chinese Academy of Sciences, Beijing, China. He received the Ph.D. degree from the Univ
of Southern California in August 1987. He has taught at Rutgers University and Polytech
University in New York. This research was carried out at the University of Southern Califo
while he was working in the STAP Benchmark evaluation of the IBM SP2, Cray T3D, and
Paragon, a project supported by MIT/Lincoln Laboratory. His current research interests in
parallel computer architecture and their programming.

Kai Hwang is a Chair Professor of Computer Engineering at the University of Hong Kong
leave from the University of Southern California. He received the Ph.D. degree from the
University of California at Berkeley. An IEEE Fellow, he has served as a Distinguished Vi
of the Computer Society, the ACM SIGARCH Board of Directors, and is the founding
Editor-in-Chief of the Journal of Parallel and Distributed Computing. He has published over
140 scientific papers and five advanced computer books, most of which are in computer
architecture and parallel processing. His current research interest lies in scalable
multiprocessors, clustered multicomputers; parallel software tools, communication libraries
programming environments for scalable supercomputing and distributed multimedia
applications.
27

	Early Prediction of MPP Performance: The SP2, T3D,...
	Zhiwei Xu
	Kai Hwang

	1 Introduction
	Figure 1: Comparison of prediction and measurement...
	1. What performance can be achieved?
	2. Is the parallelizing strategy a good one?
	3. How many processors should be used?
	4. How large a grain-size should be used?
	5. Where is the performance bottleneck?

	2 Performance Prediction Requirements
	Figure 2: The early performance prediction process...
	2.1 User Applications
	2.1.1 The Phase Parallel Model
	Figure 3: The Phase Parallel Model for MPP Applica...

	2.1.2 Workload Characterization

	2.2 Platform Parameters
	Table 1: Performance Attributes of Three Massively...
	2.2.1 Overhead Quantification
	(1)
	(2)

	2.2.2 Which Metrics to Use?
	(3)
	Figure 4: Utilization of three MPPs for NAS Parall...
	Figure 5: Measured utilization and Gflop/s speed o...

	3 STAP Benchmark Performance Results
	3.1 The Early Prediction Procedure
	3.2 Workload Quantification
	Table 2: Performance of Sequential STAP Programs o...

	APT
	DP
	84
	4.12
	20
	7.65
	HT
	2.88
	0.04
	72
	27.07
	BF
	1,314
	9.64
	136
	51.22
	TD
	46
	0.57
	75
	28.01
	HO-PD
	DP
	220
	11.62
	19
	7.12
	BF
	12,618
	118.82
	106
	39.92
	TD
	14
	0.17
	82
	30.96
	GEN
	SORT
	1,183
	22.80
	52
	19.51
	FFT
	1,909
	79.14
	24
	9.06
	VEC
	604
	19.11
	32
	11.88
	LIN
	1,630
	20.23
	82
	31.00
	3.3 Overhead Estimation
	3.3.1 Parallelism Overhead
	3.3.2 Point-to-Point Communication
	Table 3: One Way Point-to-Point Communication Time...
	(4)

	3.3.3 Collective Communications
	(5)
	Table 4: Collective Communication Overhead Express...

	3.3.4 Collective Computations
	Table 5: Collective Computation Overhead Expressio...
	Figure 6: Comparison of two methods for predicting...

	3.4 Parallel Algorithm Design
	Table 6: Extreme Value Metrics of the STAP Program...

	APT
	1,446
	14.37
	18
	180
	0.08
	HO
	12,852
	130.61
	28
	281
	0.46
	GEN
	5,326
	141.28
	8
	220
	0.64
	Figure 7: Structure of A Coarse Grain Parallel APT...
	3.5 Performance Prediction
	Table 7: Predicted Execution Time of Parallel STAP...

	APT
	HO-PD
	GEN
	Table 8: Predicted Performance of Parallel STAP Pr...

	APT
	0.137 Seconds
	10.5 Gflop/s
	104
	15%
	HO
	0.606 Seconds
	21.2 Gflop/s
	215
	31%
	GEN
	1.400 Seconds
	3.8 Gflop/s
	101
	6%
	(6)
	(7)
	(8)
	(9)
	(10)
	4 Validation of Early Prediction
	Figure 8: Comparison of predicted and measured per...

	5 In Search of higher System Utilization
	Figure 9: Comparison of three performance predicti...
	5.1 Scaling Workload
	Figure 10: Improving utilization by workload scali...

	5.2 Pipelining
	Table 9: Time Breakdown in Parallel APT Program Co...

	64
	0.064
	0.04
	0.150
	0.009
	0.026
	0.012
	0.012
	128
	0.032
	0.04
	0.075
	0.004
	0.016
	0.014
	0.014
	256
	0.016
	0.04
	0.037
	0.002
	0.010
	0.016
	0.016
	5.3 Throughput Enhancement
	Figure 11: Finding the optimal machine size subjec...

	6 Concluding Remarks
	Acknowledgments
	References
	1 D. Adams, Cray T3D System Architecture Overview ...
	2 R.J. Bergeron, “The Performance of the NAS HSPs ...
	3 D. P. Bertsekas and J. N. Tsitsiklis, Parallel a...
	4 L.N. Bhuyan and X. Zhang, Tutorial on Multiproce...
	5 R. Bond, "Measuring Performance and Scalability ...
	6 P. Brinch Hansen, Studies in Computational Scien...
	7 Crisis in High Performance Computing, University...
	8 J. J. Dongarra, “The Performance Database Server...
	9 T. Fahringer, “Estimating and Optimizing Perform...
	10 G.C. Fox, R.D. Williams, P.C. Messina, Parallel...
	11 J.L. Gustafson, “Re-evaluating Amdahl’s Law”, C...
	12 R. W. Hockney, “Performance Parameters and Benc...
	13 R. W. Hockney and M. Berry, “Public Internation...
	14 K. Hwang, Advanced Computer Architecture: Paral...
	15 K. Hwang and Z. Xu, Scalable Parallel Computers...
	16 K. Hwang, Z. Xu, M. Arakawa, "STAP Benchmark Pe...
	17 K. Hwang and Z. Xu, “Scalable Parallel Computer...
	18 IEEE Computer Special Issue on Performance Eval...
	19 IEEE Parallel and Distributed Technology Specia...
	20 MHPCC, MHPCC 400-Node SP2 Environment, Maui Hig...
	21 C.M. Pancake, M.L. Simmns, and J.C. Yan, “Perfo...
	22 D. Pease, et al, “PAWS: A Performance Evaluatio...
	23 S. Saini and D.H. Bailey, “NAS Parallel Benchma...
	24 SDSC, SDSC's Intel Paragon, San Diego Supercomp...
	25 C. B. Stunkel, et al, “The SP2 Communication Su...
	26 X.H. Sun, and L. Ni, “Scalable Problems and Mem...
	27 L.G. Valiant, “A Bridging Model for Parallel Co...
	28 Z. Xu, K. Hwang, “Modelling Communication Overh...
	29 Z. Xu and K. Hwang, “MPP versus Clusters for Sc...

	Biographical Sketch

