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Simple Summary: We proposed a comprehensive early prediction tool based on liquid biopsy for the
label-free phenotypic analysis of cell clusters from clinical samples (n = 31). Our custom algorithm
analysis, combined with a microfluidic-based tumor model, was designed to assess and stratify
cancer patients in a label-free, cost-effective, and user-friendly way. Multiple quantitative phenotypic
parameters (cluster size, thickness, roughness, and thickness per area) were derived from the profiling
of the patient-derived cell clusters. Our platform could distinguish healthy donors from pretreatment
cancer patients with high sensitivity (91.16 ± 1.56%) and specificity (71.01 ± 9.95%). In addition,
the ratio of normalized gray value to cluster size (RGVS) parameter was significantly correlated to
treatment duration and cancer stage. In conclusion, our patient-centric, early prediction tool will
allow the prognosis of patients in a relatively less invasive manner, which can help clinicians identify
diseases or indicate the need for new treatment strategies.

Abstract: Cancer cells undergo phenotypic changes or mutations during treatment, making detecting
protein-based or gene-based biomarkers challenging. Here, we used algorithmic analysis combined
with patient-derived tumor models to derive an early prediction tool using patient-derived cell
clusters from liquid biopsy (LIQBP) for cancer prognosis in a label-free manner. The LIQBP platform
incorporated a customized microfluidic biochip that mimicked the tumor microenvironment to
establish patient clusters, and extracted physical parameters from images of each sample, includ-
ing size, thickness, roughness, and thickness per area (n = 31). Samples from healthy volunteers
(n = 5) and cancer patients (pretreatment; n = 4) could be easily distinguished with high sensitivity
(91.16 ± 1.56%) and specificity (71.01 ± 9.95%). Furthermore, we demonstrated that the multiple
unique quantitative parameters reflected patient responses. Among these, the ratio of normalized
gray value to cluster size (RGVS) was the most significant parameter correlated with cancer stage
and treatment duration. Overall, our work presented a novel and less invasive approach for the label-
free prediction of disease prognosis to identify patients who require adjustments to their treatment
regime. We envisioned that such efforts would promote the management of personalized patient care
conveniently and cost effectively.

Keywords: label free; algorithmic analysis; disease prognosis; personalized patient care;
patient-derived cell clusters

1. Introduction

Cancer is one of the leading causes of mortality globally [1,2]. The conventional
diagnostic method for cancer is solid tumor biopsy, which is invasive and can cause
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discomfort. Besides, the procedure is very cumbersome and time consuming. Liquid
biopsy provides a relatively less invasive method for detecting disease-related biomarkers,
leading to new technologies [3,4]. The advantages of liquid biopsies, such as ease of sample
collection and minimal invasiveness, make it an ideal method for routine evaluation.
Common biomarkers in liquid biopsy can be protein, gene, or cell based. Detecting
proteins or genes involves targeted probe labeling, which requires a priori knowledge of a
comprehensive biomarker profile. However, due to the heterogeneity of tumors, common
protein and gene cancer-associated biomarkers cannot fully recapitulate the characteristics
of tumors [5].

Conventional cancer-related research usually utilizes commercially available cancer
cell lines; however, these are not clinically relevant, and are limited for applications such
as anti-cancer drug screening, preclinical testing, and biomarkers discovery [6]. On the
other hand, patient-derived tumor models can effectively promote translational efforts.
Patient-derived tumor models can be classified into five subtypes, i.e., 3D culture sys-
tems, conditionally reprogrammed cell cultures, organotypic tissue slices, patient-derived
xenograft models, and microchamber cultures [7]. Three-dimensional cultures are generally
preferred, as they can better recapitulate the in vivo environment, and hence demonstrate
higher sensitivity to drug treatment, as well as reflect biomarker profiles more similar to
in vivo environments than 2D cultures [8].

Effective early prediction tools for personalized medicine should consider the follow-
ing factors: (i) strong correlation with the disease, (ii) timely readouts, and (iii) ease of use.
These factors are critical for clinicians to understand the patient’s condition and design
appropriate treatment measures. Current cancer-associated algorithms focus on analyz-
ing non-clinical spheroid characterization [9,10]. Here, we developed a novel, label-free
analysis tool based on patient-derived tumor models from liquid biopsy (LIQBP) for the
early prediction of disease prognosis. The tumor models comprised heterogeneous clusters
containing circulating tumor cells and immune cells unique to each patient, and could
be established within the duration of approximately one treatment cycle (i.e., 14 days),
allowing rapid intervention by clinicians based on LIQBP readouts. Our LIQBP platform
analysis parameters were based on four core aspects: size, thickness, roughness, and thick-
ness per area (TA). We demonstrated that the cluster phenotypes from pretreatment patient
samples (n = 4) were distinct from those established with healthy controls (n = 5). The
LIQBP could also distinguish response subtypes (e.g., treatment time point, tumor type).
Compared with other parameters, cluster TA was the most stable phenotypic parameter. It
was strongly correlated to the cancer stage and treatment duration of patients with gastric
cancer (n = 12) and breast cancer patients (n = 10).

Due to its relatively lower invasiveness and cost, liquid biopsy with the LIQBP plat-
form has multiple advantages over conventional patient response assessments and facili-
tates routine screening. We have also built a fully automated interface for user-friendly and
robust operations in clinics. We envisioned that the LIQBP platform could become a pow-
erful predictor tool for patients, enabling routine monitoring and developing therapeutic
guidelines.

2. Results
2.1. Establishment of a Patient-Derived Tumor Model from Liquid Biopsy (LIQBP) to Evaluate
Clinical Prognosis

To develop a clinically relevant point-of-care system for the routine evaluation of
patient prognosis, we established a patient-derived tumor model from liquid biopsy using
a microfluidic-based biochip. The tumor models could be derived from liquid (blood)
biopsy within 14 days and consisted of two parts: (i) a bottom, ellipsoidal-shaped, tapered
microwell layer, allowing the different components of the co-cultures to interact with one
another for cell cluster establishment, and (ii) a top barrier layer to retain fluids and to
avoid mixing between channels (Figure 1a). The length, width, and depth of each microwell
were 250 µm, 150 µm, and 150 µm, respectively.
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with a top barrier layer and a bottom ellipsoidal microwell layer. Each array had eight channels 
comprising 300 microwells each. (b) Workflow for the establishment of tumor models. Peripheral 
blood was collected from the vein of the patient. The blood sample was lysed to remove red blood 
cells, and the remaining nucleated cell fraction was seeded for culturing over 14 days. Images of 
cultured cells were captured by a phase-contrast microscope and analyzed via LIQBP for sample 

Figure 1. Using a patient-derived tumour model from a liquid biopsy (LIQBP) with multiple pheno-
typing for label-free prediction of disease prognosis. (a) Schematic illustration of the multiplexed
tumor model with four units. The model was established within a microfluidic device with a top
barrier layer and a bottom ellipsoidal microwell layer. Each array had eight channels comprising
300 microwells each. (b) Workflow for the establishment of tumor models. Peripheral blood was
collected from the vein of the patient. The blood sample was lysed to remove red blood cells, and
the remaining nucleated cell fraction was seeded for culturing over 14 days. Images of cultured cells
were captured by a phase-contrast microscope and analyzed via LIQBP for sample stratification, with
a clear distinction between patient and healthy samples. The clusters could be classified as four core
phenotypes, covering the parameters of cluster size, thickness, roughness, and TA. *** Represents
p ≤ 0.001. (c) Representative grayscale images to demonstrate the distinct morphological differences
between clusters established from healthy donors (left) and cancer patients (right). Scale bar, 100 µm.
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Peripheral circulating blood was collected and lysed to remove red blood cells (Figure 1b).
The remaining nucleated cells were suspended and seeded into the chip (see Materials and
Methods). The cultures established from healthy people and patients were distinctly different
in morphology (Figure 1c) and were used in our analysis for automated classification and
prediction. The cultures of healthy samples would generate irregular and loose monolayers of
cellular debris or residual blood cells [11]. In contrast, clusters formed with patient samples
were rough, comprising a heterogeneous mixture of blood cells and cancer cells.

2.2. An Automated Bioinformatic Analysis Tool to Achieve Label-Free Prediction of Disease
Prognosis with Cluster-Based Clinical Phenotyping

Current cancer-related algorithms focus on characterizing tumor models established
from cell lines. We developed a novel, label-free analysis tool that can perform an exten-
sive analysis of patient subtypes and facilitate routine screening based on tumor models
derived from the liquid biopsy of patients to predict early-stage disease and to reflect
disease prognosis.

The integrated LIQBP platform included a user interface and a user-friendly program
based on flat-field correction, auto ellipse detection, edge detection, and a morphology
algorithm. The algorithm consisted of four core steps (Figure 2): (1) Normalizing im-
ages through flat-field background correction to achieve a uniformly illuminated image;
(2) Using the auto-ellipse detection algorithm to identify the regions of interest (ROIs;
microwells). Images were cropped to the tangent rectangles of the resultant ellipses that
corresponded to the microwell locations; (3) Feature extraction to identify the cropped
regions of interest (cROIs; clusters) within the microwells, using an edge detection-based
algorithm for locating, dilating, eroding, and binarizing the cluster region; (4) Parameter
characterization, including cluster size, thickness, roughness, and TA.
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Figure 2. Procedures of LIQBP with multiple phenotypes analysis. User interfaces and the workflow
of LIQBP with label-free phenotyping analysis: the image was normalized by flat-field correction;
regions of interest (ROI) were identified sequentially; cluster size and thickness were displayed and
saved for further analysis.

The cluster thickness was determined according to the normalized gray value (nGV),
representing the amount of light transmitted through the cell cluster. To eliminate fluctua-
tions in the maxima and minima of gray values due to the imaging technique or microscope
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variation, the nGV was obtained relative to the maxima obtained from each microwell. An
nGV approaching 0 would reflect the presence of clusters with thicker cell layers.

The cluster roughness was defined by the standard deviation of the gray value (SDGV).
If the SDGV was large, the surface of the cluster was rough, reflecting the presence of
cell clusters formed from patient samples. A higher normalized SDGV (nSDGV) would
reflect increased heterogeneity within the clusters due to the presence of tumor-associated
immune cells. The cluster TA was determined by the ratio of the nGV to the cluster size
(RGVS). A lower RGVS correlated with the presence of thicker clusters within the area.

To utilize LIQBP and obtain the quantitative attributes of the clusters, the user would
first select the file dictionary of the test image. The parameter outputs would be auto-
matically obtained. Specifically, we first performed flat-field background correction on
the test image(s) (Figure S1a). The Gaussian filter was used to extract the background
signal, and the background signal was then subtracted to normalize the test image. Then,
an auto ellipse detection algorithm was executed to locate the regions of interest (ROI;
e.g., microwell) for cropping and subsequent processing.

To identify cell clusters in the ROI, the LIQBP involved the automatic cropping of im-
ages to display individual microwells (Figure S1b). Since cell clusters were a heterogeneous
mixture of tumor-associated immune cells, the white pixels (space within the clusters) in
the binary image were filled to generate closed polygons. The connected objects on the
image boundary were removed to remove noise pixels, and the image was eroded multiple
times using linear structure elements. The white pixels in the binary image were identified
as the region of interest (ROI; clusters).

The number of white pixels Nw and the total number of pixels Nt were determined
using the processed binary images (Figure S1c). Following which, as the length and width
of each microwell were fixed, the size of the cell cluster could be obtained, as stated in
Equation (1):

S =
Nw
Nt

× Lm × Wm (1)

where S represented the cluster size, Lm and Wm were constants (250 µm and 150 µm) and
represented the length and width of the microwells, respectively.

The final processed binary images were converted to grayscale, and the gray values
were obtained to extract the cell cluster area (Figure S1d). Regions with higher gray values
indicated the presence of more transmitted light (less or no cells).

2.3. Clinical Validation with LIQBP

To validate the clinical utility of the LIQBP, we obtained images of clusters derived from
clinical samples. The expression level of cancer-associated biomarkers was heterogeneous
across the samples, as previously reported [11]. The patient-derived cultures comprised
multilayered cancer cells and tumor-associated immune cell clusters [11]. We first confirmed
the robustness of the LIQBP by processing the images of clusters derived from the same
patient sample and determined the cluster size, nGV, and RGVS (Figure 3a). Patient samples
were of a heterogeneous composition, as reflected by their slight variation in cluster size
and nGV (p > 0.01) (Figure 3b,c). However, the parameter RGVS was relatively constant
across clusters of the same sample (Figure 3d), validating the robustness of the LIQBP for
the evaluation of clinical samples.
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Figure 3. Robustness validation of LIQBP. (a) Representative images before the LIQBP and their
corresponding detected images after the LIQBP. These images are cell clusters cultured from one
patient sample. Blue shades in the detected images represented the detected patient-derived cell
cluster. Scale bar, 100 µm. (b) Boxplot of the size of patient-derived cell clusters. (c) Boxplot of
nGV of patient-derived cell clusters. ** Represents p ≤ 0.01 and * represents p ≤ 0.05. (d) Boxplot
of RGVS of patient-derived cell clusters. RGVS values across clusters of the same patient remained
relatively constant.
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2.4. Distinct Stratification of Healthy and Patient Phenotypes with LIQBP

To evaluate the performance of our proposed method when classifying healthy donors
and cancer patients, we first collected peripheral blood samples (n = 9) from healthy people
(n = 5) (Table 1; no. 1–5) and cancer patients (pretreatment; n = 4) (Table 1; no. 10, 15, 16,
and 27) for culturing and to perform subsequent phenotypic analysis.

Table 1. Clinical demographics of cancer patients. p = pathological, c = clinical, T = size or direct
extent of the primary tumor, N = degree of spread to regional lymph nodes, M = presence of
distant metastasis.

Sample
No.

Cancer
Type

TNM
Stage

Cancer Stage
(0 to IV)

Treatment
Cycle Age Gender

1 Healthy - - - 48 Male
2 Healthy - - - 65 Female
3 Healthy - - - 62 Male
4 Healthy - - - 36 Female
5 Healthy - - - 39 Male
6 Gastric pT4N2M0 IIIA 1 69 Female
7 Gastric pT4N2M0 IIIB 1 69 Male
8 Gastric pT2N0M0 IB 1 53 Female
9 Gastric pT3N3M0 IIIB 1 63 Male

10 Breast pT2N3M0 IIIC Pretreatment 42 Female
11 Breast pT2N0M0 IIA 1 64 Female
12 Breast pT2N1M0 IIB 1 57 Female
13 Breast pT1N0M0 IA 1 50 Female
14 Breast cT2N3M0 IIIC 3 49 Female
15 Colon pT3N0M0 IIA Pretreatment 67 Female
16 Colon pT1N1bM0 IIIA Pretreatment 71 Female
17 Lung pT2N2M1 IVB 4 44 Female
18 Pancreas cT3N0M1 IV 4 51 Male
19 Gastric pT3N1M0 IIIC 6 50 Male
20 Gastric pT4N3M0 IIIC 3 73 Female
21 Gastric pT3N3M1 IV 1 68 Male
22 Gastric pT4N3M1 IV 1 65 Male
23 Gastric pT3N2M0 IIIA 5 59 Male
24 Gastric pT4aN3bM0 IIIC 5 50 Male
25 Gastric pT3N0M0 IIA 8 61 Female
26 Gastric pT4N2M1 IV 7 40 Female
27 Breast - - Pretreatment 78 Female
28 Breast pT1N0M0 IA 3 56 Female
29 Breast pT2N0M0 IIA 5 73 Female
30 Breast pT1N0M0 IA 6 46 Female
31 Breast pT2N3M1 IV 5 51 Female

Based on images obtained from healthy and patient sample cohorts, we determined
nGV, nSDGV, and the ratio of the normalized gray value to the normalized standard
deviation of clusters (RGVSD) (Figure 4a–c, respectively). High nGVs (>0.685) reflected
the presence of thin clusters. We demonstrated that, compared with the healthy cohort,
the clusters from the patient cohort have significantly lower nGVs, higher nSDGV values,
and lower RGVSD values (nGVs−/nSDGV+/RGVSD−), reflecting the presence of thick
and rough clusters. The RGVSD parameter was the most successful at stratifying between
patient and healthy cohorts.
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Figure 4. Patient stratification of healthy and cancer patients with LIQBP. (a–c): Boxplots illustrating
correlation analysis of nGV (0.68 ± 0.07 and 0.62 ± 0.05), nSDGV (0.054 ± 0.013 and 0.085 ± 0.017)
and RGVSD (13.50 ± 4.22 and 7.60 ± 1.57) for healthy and patient cohorts, respectively. *** Represents
p ≤ 0.001. (d–f): Corresponding ROC analysis for (a–c), respectively. The resultant AUC, threshold,
sensitivity, and specificity analyses are as shown in the plots.

Next, we performed receiver operating characteristic (ROC) analysis by obtaining
the area under the curve (AUC) (Figure 4d–f). We determined the AUCs of nGV, nSDGV,
and RGVSD to be 0.752, 0.927, and 0.928, respectively. The RGVSD yielded the highest
AUC, demonstrating that the RGVSD had the best performance for distinguishing between
healthy donors and cancer patient cohorts. The thresholds were determined by Youden’s
index, which maximizes the sum of sensitivity and specificity. We demonstrated that the
LIQBP has a sensitivity and specificity of 92.27% and 57.25% to distinguish healthy and
patient samples based on cluster thickness at the threshold setting of 0.685. The sensitivity
and specificity of LIQBP based on cluster roughness were significantly improved to 88.95%
and 80.43%, respectively, at the threshold of 0.065. The sensitivity and specificity of LIQBP
based on RGVSD were 92.27% and 75.36%, respectively, at the threshold of 9.712.
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Overall, the high AUC (0.869 ± 0.083), sensitivity (91.16 ± 1.56%), and specificity
(71.01 ± 9.95%) of these parameters validated the use of thickness, roughness, and RGVSD
as efficient indexes for distinguishing between the healthy donor and cancer patient cohorts.
Based on the thresholds (nGV: <0.685, nSDGV: >0.065, and RGVSD: <9.712), the patient
cohort was labeled and further analyzed with another three parameters (size, nGV, and
RGVS) to reflect cluster size, thickness, and TA for correlation with clinical parameters
(treatment cycles and cancer staging).

2.5. Correlation of RGVS Parameter with Treatment Cycles

To study the correlation between cluster parameters and patient prognosis, we an-
alyzed clinical samples of liquid (blood) biopsy from cancer patients throughout their
treatment (n = 22) (Table 1; no. 6–22, 27–31). Four samples with non-optimal optical im-
ages were not included in the analysis. Patients underwent four treatment cycles, namely,
pretreatment (n = 4), treatment cycle 1 (n = 9), treatment cycle 3 (n = 3), treatment cycle 4
(n = 2), treatment cycle 5 (n = 2), and treatment cycle 6 (n = 2). Parameters, including the
cluster size, nGV, and RGVS, were determined.

We demonstrated that for samples in the advanced stages of treatment, the cluster
size was progressively and significantly smaller (p < 0.001) than the samples derived
before treatment, with significantly smaller clusters obtained from samples after prolonged
treatment (after three cycles of treatment; Figure S2a). The nGV fluctuated as the treatment
cycles increased (p < 0.001), reflecting the heterogeneity of cluster thickness on patient
treatment responses (Figure S2b). Since cancer is a dynamic and heterogeneous disease,
tumor and tumor-associated cells exhibit distinct molecular signatures, leading to varied
responses under treatment [12–14], which were reflected in the morphological differences
observed among the clusters. On the other hand, RGVS was positively correlated with the
number of treatment cycles (Figure 5a). There was no significant difference for the RGVS of
clusters from samples of pretreatment and treatment cycle 1. However, as the treatment
time increased, the RGVS of the samples from prolonged treatment increased significantly
(after three cycles of treatment; p < 0.001), reflecting the decrease in cluster TA.
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Figure 5. Clinical correlation between patient-derived cell cluster parameters and treatment cycle
number. (a) Boxplot of RGVS against treatment cycle number, based on samples (Table 1; no. 6–22,
27–31; n = 22) obtained at pretreatment (3.45 ± 1.15), treatment cycle 1 (3.63 ± 1.31), treatment cycle 3
(5.29 ± 2.27), treatment cycle 4 (5.08 ± 1.02), treatment cycle 5 (4.02 ± 2.02), and treatment cycle 6
(4.97 ± 1.66). (b) Boxplots of RGVS against treatment cycle number, based on gastric cancer samples
(n = 8) obtained at pretreatment (3.35 ± 1.21), treatment cycle 1 (2.61 ± 0.42), and treatment cycle 3
(4.67 ± 1.60). (c) Boxplots of RGVS against treatment cycle number, based on breast cancer samples
(n = 10) obtained at pretreatment (3.26 ± 1.08), treatment cycle 1 (4.87 ± 1.01), treatment cycle 3
(6.04 ± 2.00), treatment cycle 5 (4.02 ± 2.02), and treatment cycle 6 (5.23 ± 1.68). *** Represents
p ≤ 0.001, ** represents p ≤ 0.01, and * represents p ≤ 0.05.
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To further analyze the correlation between patient-derived cell clusters and treatment
cycles with a specific cancer type, we obtained cluster size, nGV, and RGVS from the gastric
(n = 8) (Table 1; no. 6–9 and 19–22) and breast cancer cohorts (n = 10) (Table 1; no. 10–14
and 27–31). The cluster size of the samples from treatment cycle 6 was significantly smaller
(p < 0.001) than the primary treatment cycles (Figure S3). The RGVS in treatment cycle 6
was significantly higher (p < 0.001) than the values obtained in cycles 1 and 3, which verified
the significant positive correlation of RGVS with treatment cycles (Figure 5b). Similarly, for
the breast cancer cohorts, the cluster size of samples from patients during all the treatment
cycles was significantly smaller (p < 0.001) than those obtained before treatment, and the
nGV values of samples from treatment cycles 3 and 5 were significantly higher (p < 0.001)
than those of the samples from cycle 1 (Figure S4).

However, the correlation of RGVS with the treatment cycle number was highly signifi-
cant (p < 0.001) for the breast cancer cohorts (Figure 5c). Specifically, the RGVS of clusters
increased in all the treatment cycles for treated samples compared to pretreatment samples,
indicating looser clusters due to treatment.

2.6. Correlation of RGVS Parameter with Cancer Staging (TNM Staging)

To analyze the correlation of patient-derived cell clusters with TNM staging, we
obtained the three parameters, i.e., cluster size, nGV, and RGVS, from the clinical samples
(Table 1; no. 6–22 and 28–31), and analyzed their correlation with T staging, N staging, and
cancer staging. A breast cancer sample with unknown TNM and cancer staging was not
included in the analysis (Table 1; no. 27).

T staging describes the size of the primary tumor. We demonstrated that the RGVS
decreased significantly for the T1 to T3 samples obtained from patients before treatment
(p < 0.05), and a similar trend could be observed from T2 to T4 for the patient cohort
under treatment cycle one and treatment cycle 3 (p < 0.001), which indicated that RGVS
was negatively correlated with T staging. The clusters were thicker per area for patients
with more advanced T staging than those under preliminary T staging (Figure 6a). We
further analyzed the correlation of cluster parameters against T staging with specific patient
cohorts (gastric cancer). For patients with gastric cancer under T2 to T4 under all treatment
time points (Table 1; no. 6–9, 19–22), the resultant RGVS significantly decreased (p < 0.001)
(Figure S5). Similar decreasing trends (p < 0.001) were observed with clusters derived from
gastric cancer samples under treatment cycle I (Table 1; no. 6–9, 21–22; n = 6) (Figure 6b).

N staging described the degree of regional lymph nodes metastasis. We demonstrated
that the RGVS correlated significantly (p < 0.005) with specific N staging (e.g., from N0
to N3 in treatment cycles 1, 3, and 5) (Figure 6c). Interestingly, for gastric cancer samples
under all treatment cycles, RGVS was maintained at high values at preliminary N staging
(N0 and N1) and decreased significantly to a low level in advanced N staging (N2 and N3)
(p < 0.001), which verified an inverse correlation of RGVS to N staging, and clusters with
advanced N staging tended to be thicker within each cluster area (Figure S6). However,
for gastric cancer samples obtained from patients under treatment cycle 1, RGVS only
correlated significantly with specific N staging (p < 0.001) (Figure 6d).

We also demonstrated that the RGVS of clusters was decreased significantly at more
advanced overall cancer staging, specifically from stage III to IV in treatment cycle 1, stage
I to III in treatment cycle 3, and stage II to IV in treatment cycle 5 (p < 0.001) (Figure 6e). A
similar significant decreasing trend for RGVS was observed in all the gastric cancer samples
(p < 0.001) (Figure S7) and gastric samples under treatment cycle I (p < 0.001) (Figure 6f). In
short, the results verified that RGVS correlated inversely with cancer staging, including T
staging, N staging, and overall cancer staging, and the capability of RGVS to distinguish
cancer patients in different cancer staging significantly.
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Figure 6. Clinical correlation analysis of patient-derived cell clusters with cancer staging. (a,b) Box-
plot of the RGVS of patient clusters versus T staging from 19 clinical samples (pretreatment (n = 3),
treatment cycle 1 (n = 9), treatment cycle 3 (n = 3), treatment cycle 4 (n = 2), and treatment cycle 6
(n = 2)) and gastric cancer samples in treatment cycle 1 (Table 1; no. 6–9, 21–22; n = 6). (c,d) Boxplot
analysis of patient clusters versus N staging from 21 clincal samples (pretreatment (n = 3), treatment
cycle 1 (n = 9), treatment cycle 3 (n = 3), treatment cycle 4 (n = 2), treatment cycle 5 (n = 2), and treat-
ment cycle 6 (n = 2)) and gastric cancer samples in treatment cycle 1 (n = 6). (e) Boxplots of the RGVS
of patient clusters versus cancer stages (stage I to stage IV) from 19 clincial samples (pretreatment
(n = 3), treatment cycle 1 (n = 9), treatment cycle 3 (n = 3), treatment cycle 5 (n = 2), and treatment
cycle 6 (n = 2)). (f) Boxplots of the RGVS of patient clusters versus cancer stages (stage I and stage
III) from gastric cancer patients (n = 6) in treatment cycle 1, respectively. *** Represents p ≤ 0.001,
** represents p ≤ 0.01, and * represents p ≤ 0.05.
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3. Discussion

In recent years, microfluidic technology has been widely used in the field of particle
detection [15] and biomedicine, such as with point of care testing [16–19], organs-on-a-
chip [20,21], drug discovery [22], and liquid biopsy [23–26]. Cell sorting techniques can be
divided into label-based and label-free technology [27,28]. Label-based methods generally
rely on affinity binding technology or the use of different optical, acoustic, electrical, or
magneto-caloric properties between cancer cells and blood cells to identify biomarkers.
Label-free methods mainly capitalize on the unique physical properties of cancer cells, such
as size, density, stiffness, viscosity, and deformability. Although label-free methods tend
to achieve high-throughput separation and detection, drawbacks, such as biofouling, low
recovery rates, and loss of cell viability, are still prevalent.

Compared with other tumor models (Table S1), our platform demonstrated three key
advantages as a unique screening tool: (i) The analysis was based on the establishment of
patient-derived clusters from liquid (blood) biopsy. The samples were highly heterogeneous
because they were a mixture of circulating tumor cells, white blood cells, and platelets.
Tumor models based on cancer cell lines cannot fully recapitulate the conditions in vivo.
Their homogeneity renders it much easier to interpret with standard algorithms; (ii) It is a
method of utilizing phase-contrast microscopy to obtain morphological features, promoting
ease of capture and low cost for routine screening. Quantitative readouts could also be
obtained; (iii) Cell-based algorithms were usually classified as physics- and data-driven-
based analyses. Physics-driven algorithms focus on specific phenotypes or features of
cell cultures. However, we uniquely derived multiple parameters (e.g., cluster size, nGV,
and RGVS) for a more comprehensive study to derive the correlation between cluster
phenotypes and clinical parameters, including treatment cycles and cancer staging.

On the other hand, data-driven analyses are mainly based on machine learning and
deep learning techniques. They usually need many data sets and prolonged periods
of training. In contrast, our LIQBP could provide a multiparameter analysis, including
morphological features, such as cluster edge detection, making it robust and compatible
for use with a range of microscopy magnification. Our customized user interface also
allowed the real-time display of processed images, simplifying the process of analysis and
interpretation.

Clinical samples were cultured with high viability (92.57 ± 8.85%) in each microwell
(Figure S8), and cohorts could be distinctly stratified with high sensitivity and specificity.
We demonstrated that the cluster size correlated significantly with the number of treatment
cycles and cancer staging, while nGV correlated with treatment durations and cancer
staging. However, compared with cluster size or nGV alone, RGVS was validated as a
robust and comprehensive parameter to stratify between healthy and patient cohorts or
reflect outcomes at a particular treatment stage and for TNM staging.

Due to the multivariate factors affecting tumor progression, it has been challenging
to establish a clinically relevant cancer model in vitro. Multivariate factors include tu-
mor growth, proliferation, migration, invasion, matrix remodeling, dormancy, infiltration,
extravasation, angiogenesis, and drug delivery [29]. In addition, tumors are highly het-
erogeneous structures, including cancer and non-cancerous cells, which is rarely reflected
in vitro models [29]. Here, we described a label-free predictive tool for disease prognosis
using patient-derived tumor models from the liquid biopsy. The LIQBP integrated an
interface and the label-free image analysis program, which could be customized to add or
remove functions, providing ease of operation and flexibility in applications. Test images
could be analyzed in batches within a minute, significantly reducing manpower require-
ments and the speed at which treatment intervention could be realized. The LIQBP could
provide readouts in a label-free and quantitative manner without the need for visualization.
As such, the low cost, minimal training, and no associated toxicity of dyes render LIQBP a
highly beneficial prediction tool for use even in regions with limited resources.

The LIQBP was able to significantly and robustly reflect disease heterogeneity among
cancer types. For example, the fluctuations of nGV were more distinct in breast cancer
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cohorts than the gastric cancer cohorts, which could be due to the highly heterogeneous
nature of breast cancer. Briefly, breast cancer patients can be classified as multiple molecular
subtypes (e.g., luminal A (ER+/PR+ and Ki67-low), luminal B (ER+/PR+ and HER2+
or HER2–, and Ki67-high), HER2-enriched (HER2+), normal breast-like, basal-like, and
claudin-low) [30]. The differences between patients lead to intertumoral heterogeneity,
which would affect patient diagnosis, treatment, and prognosis. Intratumoral heterogeneity
on tumor cell subpopulations within the breast primary tumor and metastases could also
trigger diversity in response [31].

With the development of smartphone-based biosensors, optical systems for visual-
ization could also be further minimized to achieve portable on-site detection [32,33]. The
tumor model has been previously demonstrated to allow the discovery and validation
of new combinatorial drug strategies [34], and efforts are being made to demonstrate
the utility of this technique for drug discovery. Furthermore, we could also integrate
convolutional neural networks to realize the transition from physical-driven analysis to
data-driven analysis and realize high-throughput screening [35–38]. In addition, we are
currently expanding patient cohort size, along with serial sampling to validate the LIQBP
platform for clinical utility. The assay was optimized to reflect patient prognosis based on
the frequency of cluster formation [11]. Specifically, cluster formation was seen progres-
sively less frequently in blood samples from patients who had undergone longer durations
of systemic therapy by at least two fold, as previously reported. The presence of clusters
reflected the presence of viable cancer cells, which could be of interest, as they could be
correlated to the presence of cells with metastatic potential, which provided this assay with
an advantage over genetic analysis.

Overall, the LIQBP platform provided a user-friendly method that was simple and
easy to operate, facilitating clinical use for routine screening and rapid intervention. We
envision that the LIQBP could have vast applications to decentralize healthcare, improve
cancer diagnosis, and promote point-of-care, in-house prognostic support.

4. Materials and Methods
4.1. Fabrication of the Microfluidic-Based Tumor Model

The integrated microfluidic-based tumor model comprises two polydimethylsilox-
ane (PDMS) layers assembled via plasma treatment. The master mold with ellipsoidal
microwells was fabricated according to the diffuser back-side lithography procedure [39].
The mold contains eight arrays, and each array contains 1000 ellipsoidal microwells. The
length, width, and depth of each ellipsoidal microwell are 250 µm, 150 µm, and 150 µm,
respectively. The dimensions of the microwells were optimized to generate cell clusters
under minimal exposure to shear flow under fluid exchange, as previously reported [11,40].

PDMS (Sylgard 184 Silicone Elastomer Kit, Dow Corning, Midlan, MI, USA) was
prepared with the ratio of 10:1 (elastomer versus curing agent). The PDMS was poured
for casting patterns from the mold and then put into an oven for baking for 2.5 h at 70 ◦C.
After that, the PDMS with the ellipsoidal microwells pattern was peeled off. The master
mold of the barrier layer was fabricated using 3D printing. The PDMS was poured into the
PLA mold and baked for 2.5 h at 70 ◦C. Then, the PDMS was peeled off. The microwell and
barrier layers were assembled with plasma treatment for 5 min with 700 mmtor. Finally,
the assembled microfluidic chip was put into an oven to bake for 2 h at 70 °C.

4.2. Clinical Samples Preparation

Blood samples were collected from 31 patients (Table 1). The institutional review
board approved this study with ethical approval (certificate no. XHEC-NSFC-2020-078).
All patients consented to be included in the study. Blood samples were collected at different
treatment timing points from each patient. They were collected in EDTA-coated vacutainer
tubes (Becton Dickinson) and mixed with red blood cell lysis buffer (Life Technologies)
for three to five min at room temperature and then centrifuged at 1000× g for five min to
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remove the supernatant. The lysis reaction was washed with sterile phosphate-buffered
saline (PBS) three times.

4.3. Cell Seeding

Cell suspension from each tested clinical sample was distributed evenly into the
microchannel. The samples were suspended with Dulbecco’s Modified Eagle Medium
(DMEM) (10% Fetal Bovine Serum (FBS), 1% penicillin-streptomycin) at 1.6 mL and mixed
gently [40]. The cell viability of seeding cells was ~100%, and cell morphology and size
were not altered after lysing [41]. Samples equivalent to 200 µL whole blood samples were
seeded into the microchannels and kept at 37 ◦C in 5% CO2 under humidified conditions.
The concentration was adjusted if the nucleated blood cell count went significantly below
average (<1 × 105/mL).

4.4. Maintenance of Cell Culture

After cell seeding, the integrated chip was placed in a 150 mm dish and incubated
under humidified conditions with 5% CO2 and 1% O2 at 37 °C for 14 days [40]. The media
were refreshed every three days, i.e., removing 0.2 mL of old culture medium with a hand
pipette and replacing it with 0.2 mL of fresh medium. A syringe pump could be used to
remove and inject media at 200 uL/min to maintain the consistency of the cell cultures.

4.5. Immunostaining

A cocktail containing Calcein-AM (Invitrogen, #C3100MP, Carlsbad, CA, USA) and
SYTOX Red (Invitrogen, # S34859, Carlsbad, CA, USA) was incubated for 30 min at 37 ◦C to
evaluate the viability of cells in the microchannel. The assay was washed gently by PBS and
imaged by a confocal laser scanning microscope (Leica TCS SP8 MP, Wetzlar, Germany).

4.6. Label-Free Monitoring of Tumor Models

A phase-contrast microscope (Nikon, Eclipse Ci-L, Tokyo, Japan) was used to monitor
the cultured results in the integrated chip on the 1st, 3rd, 7th, and 14th days of culture. The
exposure time, ISO sensitivity, and white balance of the CCD camera on the microscope
were fixed to ensure the same illumination conditions in each experiment.

4.7. Image Processing

The customized LIQBP software contained an interface and a label-free image algo-
rithm designed with the MATLAB App Designer. The detected cluster and the quantitative
parameters of the clusters’ phenotypes would display automatically on the software. Dur-
ing image processing, background correction was performed to pre-process the tested
image. After that, the microwell region was detected, cropped, and saved automatically for
further cluster identification.

The original image was converted to grayscale for image analysis for cluster recog-
nition. The Sobel operator detected the edges in the image and converted them into a
binary format based on the threshold. Next, the binary edge image was expanded by linear
structural elements to enhance the features in the binary image. White pixels within the
middle of the binary image indicated the ROIs.

4.8. Statistical Analysis

Student’s t-tests were used to evaluate the associations between each independent
variable. P values among each group were calculated. The ROC curve was constructed
using the nGV, nSDnGV, and RGVSD as predictors for distinguishing healthy and patient
samples. The cutoff value was obtained using Youden’s index, which maximized the
sensitivity and specificity. The sensitivity was determined as the ratio of true positives and
the number of true positives plus false negatives. The specificity was determined as the
ratio of true negatives and the number of true negatives plus false positives. Triplicates
were carried out for all experiments.
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5. Conclusions

In conclusion, we described a predictive tool that integrated patient-derived tumor
models from liquid biopsy and label-free quantitative analysis for personalized cancer
diagnosis, rapid screening, and predictive treatment. The predictive tool could evaluate
multivariate factors, including cluster size, thickness, roughness, and TA. The cluster TA
was strongly correlated to cancer staging and treatment duration among these parameters.
LIQBP was validated with gastric and breast cancer clinical samples and can be used in
many cancer types due to its label-free requirements. Specific thresholds could be used to es-
tablish patient stratification. Overall, our LIQBP tumor model system has the vast potential
to develop a wide range of clinical applications and promote decentralized healthcare.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers14030818/s1, Figure S1: Detailed procedures of image-based algorithmic analysis,
Figure S2: Correlation analysis of patient-derived cell clusters with treatment cycles, Figure S3: Corre-
lation analysis of patient-derived cell clusters with gastric cancer treatment cycles, Figure S4: Correla-
tion analysis of patient-derived cell clusters with breast cancer treatment cycles, Figure S5: Correlation
analysis of patient-derived cell clusters with T staging using gastric cancer samples under all the
treatment cycles, Figure S6: Correlation analysis of patient-derived cell clusters with N staging using
gastric cancer samples under all the treatment cycles, Figure S7: Correlation analysis of patient-
derived cell clusters with overall cancer staging using gastric cancer samples under all the treatment
cycles. Figure S8: Representative images of live/dead (Calcein-AM; green/SYTOX Red; red) staining
of patient-derived cell clusters after culturing 14 days. Table S1: Comparison of LIQBP with other
existing techniques.
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