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When an infectious disease strikes a population, the number of newly reported cases is often the only

available information during the early stages of the outbreak. An important goal of early outbreak analysis

is to obtain a reliable estimate for the basic reproduction number, R0. Over the past few years, infectious

disease epidemic processes have gained attention from the physics community. Much of the work to date,

however, has focused on the analysis of an epidemic process in which the disease has already spread

widely within a population; conversely, very little attention has been paid, in the physics literature or

elsewhere, to formulating the initial phase of an outbreak. Careful analysis of this phase is especially

important as it could provide policymakers with insight on how to effectively control an epidemic in its

initial stage. We present a novel method, based on the principles of network theory, that enables us to

obtain a reliable real-time estimate of the basic reproduction number at an early stage of an outbreak. Our

method takes into account the possibility that the infectious period has a wide distribution and that the

degree distribution of the underlying contact network is heterogeneous. We validate our analytical

framework with numerical simulations.

DOI: 10.1103/PhysRevX.2.031005 Subject Areas: Complex Systems, Interdisciplinary Physics, Statistical Physics

I. INTRODUCTION

The basic reproduction number, R0, is a fundamental

characteristic of the spread of an infectious disease. It is

generally defined as the expected number of new infections

caused by a typical individual during the entire period of

his or her infection in a totally susceptible population

[1–3]. BecauseR0 is a simple scalar quantity, and perhaps

because in many circumstances it determines the expected

(average) final size of an outbreak [3–7], it has been widely

used to gauge the degree of threat that a specific infectious

agent will pose as an outbreak progresses [8–10]. While it

is clear that knowing the value ofR0 can be very useful for

policymakers in planning a response, it is not as straight-

forward to obtain a reliable estimate of R0, especially in

the early stages of an outbreak, before large-scale, uncon-

trolled transmission has taken place and before the basic

biology and transmission pathways of the pathogen have

been characterized.

Early in an outbreak, the pattern of disease spread is

predominantly influenced by the probabilistic nature of

infection transmission. Consequently, a wide array of out-

comes is possible, ranging from the outbreak fizzling out,

even in the absence of an intervention, to circumstances

where the initial stage expands into a large-scale epidemic.

Once a full-blown epidemic develops, several assumptions

can be made that simplify the estimation of R0, as has

been discussed in detail in the literature [1,3,5,8].

In many cases, it is necessary to assess the impact of

various intervention strategies before a large-scale epi-

demic occurs. In doing so, stochastic manifestations of

disease transmission, as well as the underlying structure

of the contact network, should be taken into account. The

first aspect has been widely studied. For example, the

Reed-Frost model is a chain-binomial stochastic model

where each infected individual can infect susceptible indi-

viduals and they are all assumed to have the same contact

rate [11–14]. Another example is the methodology devel-

oped by Becker [15] and by Ball and Donnelly [16], which

is based on a branching process susceptible-infected-

recovered (SIR) model. Branching processes have received

wide attention because they facilitate the evaluation of the

basic reproduction number as well as the final epidemic

size and epidemic probability [17]. More recently, the 2003

global outbreak of severe acute respiratory syndrome

(SARS) inspired the development of new methodologies

based on the daily number of new cases and the distribution

of the serial interval between successive infections [18–21].

However, none of these methods take into consideration the

influence of the contact network underlying an epidemic
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process. Alternatively, it is assumed that the contact network

is a classic random graph.

Several new methods to estimate the basic reproduction

numberR0 were proposed during or shortly after the 2009

H1N1 influenza pandemic. Notably, Nishiura et al. [22]

employed an age-structured model to derive an estimate for

R0. Katriel et al. [23] used a new discrete-time stochastic

epidemic SIR model that explicitly takes into account the

disease’s specific generation-time distribution and the in-

trinsic demographic stochasticity inherent to the infection

process. Balcan et al. [24] employed a method that is based

on the distribution of the arrival times of the H1N1 influ-

enza virus in 12 different countries seeded by the Mexico

epidemic using 1� 106 computationally simulated epi-

demics. Nishiura et al. [25] also developed a discrete-time

stochastic model that accounts for demographic stochastic-

ity and conditional measurement and applied it to estimate

the R0 value using the weekly incidence of the H1N1

influenza virus in Japan. Although all of these constitute

an important advancement in the literature, none of

them simultaneously addresses analytically the stochastic-

ity due to the underlying contact network and the trans-

mission process.

II. OUTLINE SUMMARY

In the following, we first describe the basic notion of

a contact network model. We then define the infection

hazard or infectivity function, the removal hazard or re-

moval function, the transmissibility of an infectious agent,

and the removal probability. We then derive a stochastic

renewal equation that describes the rate of newly infected

individuals at any given time t as a function of the number

of newly infected individuals up to time t. We then show

that during the exponential-growth phase of an epidemic

(also referred here as the exponential regime), the renewal

TABLE I. Summary of the parameters used in this paper.

Quality Symbol Description

Degree distribution pk Probability that a randomly chosen vertex has degree k.

Average degree z1 Average degree of vertices in a network calculated by z1 ¼ hki.

Excess degree Zx Average degree of a vertex chosen by sampling an edge

(calculated by Zx ¼ hk2 � kihki)

Infection hazard or

infectivity function

�ið�Þ Instantaneous rate of infection. �ið�Þ�� gives the probability of disease

transmission across an edge between infection age � and �þ ��,
given it occurred after age �.

Removal hazard or

removal function

�rð�Þ Instantaneous removal rate. �rð�Þ gives the removal probability of an

infectious individual between its infection age � and �þ ��,

given it occurred after age �.
Transmissibility Tð�Þ Probability of disease transmission by infection age �. It is calculated by

Tð�Þ ¼ 1� exp½�
R
�
0 �rð�

0d�0Þ�.
Removal distribution 1��ð�Þ �ð�Þ gives the probability of not being removed by age of infection �.

�ð�Þ ¼ 1� exp½�
R
�
0 �rð�

0Þd�0�.
Removal-probability density c ð�Þ c ð�Þ ¼ �d�ð�Þ=d�
Expected transmissibility T Probability of disease transmission along one edge, T ¼

R
1
0 c ð�ÞTð�Þd�.

Basic reproduction number R0 Expected number of infections a typical infected individual can cause in a

fully susceptible population, R0 ¼ ZxT.
Rate of new infections ~JðtÞa ~JðtÞ�t gives the number of new infections between times t and tþ �t.

~�ð�; tÞ Fraction of active S-I edges where the disease is actually transmitted

exactly at time t.
Number of infectious individuals ~IðtÞ Total number of infectious individuals at time t, ~I ¼

R
t
0
~Jðt� �Þ�ð�; tÞd�.

Number of removed individuals ~RðtÞ Total number of removed individuals at time t, ~RðtÞ ¼
R
t
0
~Jðt� �Þ½1��ð�; tÞ�d�.

~RrðtÞ Total number of removed individuals at time t whose predecessor is already removed.
~RiðtÞ Total number of removed individuals at time t whose predecessor is still infectious.
~IrðtÞ Total number of excess links of removed individuals, calculated by Eq. (22).
~IiðtÞ Total number of infectious individuals at time t whose predecessor is still infectious.
~Zr
xðtÞ Total number of excess links of removed individuals, calculated by Eq. (22).

Transmissibility of removed

individuals.

TrðtÞ Gives the transmissibility of removed individuals at time t and is

calculated by Eqs. (23) and (25)

�ð�Þ �ð�Þ�� gives the expected number of new infections produced by an

infectious individual between ages of infection � and �þ d�.

Generation-interval distribution. �̂ð�Þ �̂ð�Þ�� gives the conditional probability that given an infection, it

occurred between ages of infection � and �þ d�.
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equation reduces to the well-known Wallinga-Lipsitch

equation forR0 [26]. In this case, we also obtain an equa-

tion that expresses the generation-interval distribution in

terms of the transmissibility and the removal distribution

function. We next define the basic reproduction number for

removed individuals and write two independent equations

for this quantity. Equating these two equations acts as a

constraint that allows us to estimate one unknown model

parameter, either a disease or a network structure parameter.

We then derive an algorithm to estimate one unknown

model parameter based on this constraint and the number

of newly infected individuals up to time t, and show howwe

can estimate R0 with this algorithm. We finally present

numerical examples of the methodology, which show its

accuracy in estimating R0 for different contact networks

and disease parameters.

We summarize a list of the main parameters introduced

in this paper and their definitions in Table I.

III. NETWORK BASIS

This section briefly introduces the idea of contact-

network epidemiology and defines the key concepts of

infection rate, removal rate, transmissibility, and removal-

probability density.Wemap a collection ofN individuals to

a network where each vertex represents an individual and

each edge shows a pathway of possible infection trans-

mission between two individuals. We use k to denote the

degree of a given individual (the number of contacts that

he or she has) represented graphically by the number of

edges emanating from a vertex, and we use pk to denote

the degree distribution [the probability that a randomly

chosen vertex has degree k (k contacts)]. Several impor-

tant quantities can be derived once a network’s degree

distribution is known. The moments of the degree distri-

bution are hkni ¼
P

1
�¼0 k

np�. For n ¼ 1, hki is the aver-

age number of nearest neighbors of a randomly chosen

individual, which we denote z1. The average number of

second nearest neighbors of a randomly selected individ-

ual, z2, can be expressed as hk2i � hki [27]. To estimate

R0, we count the number of edges along which an indi-

vidual can infect others, once that individual has become

infected. This quantity, usually termed excess degree,

represents the number of edges emanating from a vertex

(individual), excluding the edge that was the source of the

infection. One can show that the average excess degree

(Zx) is given by the ratio z2
z1
[28].

We denote the time at which an individual acquires the

infection by ti, and the time since acquiring infection by

� ¼ t� ti (which is also known as the age of infection).

While harboring the infection, the individual is first latent

(infected but not yet infectious) and then infectious (either

symptomatically or asymptomatically). The individual

may also recover, by which we mean only that he or

she can no longer transmit the infection, not that he or

she has necessarily completely cleared the pathogen. For

some diseases, after a temporary recovery, the person

may become infectious again. Knowing that an individual

acquires infection at a given time ti, various states of

infectiousness for this individual can be encapsulated

within the infection hazard or infectivity function, �ið�Þ.
The infectivity function measures the instantaneous risk of

disease transmission across an edge. This implies that for

small ��, the conditional probability that infection occurs

across an edge between times � and �þ ��, given that it

did not occur by time �, can be approximated by �ið�Þ��.
Typically, �ið�Þ is initially zero during the latent period; it

increases to a certain level and then declines during the

infectious period, before finally vanishing and returning to

zero at the time of permanent recovery. Figure 1 shows four

hypothetical infectivity functions, the first of which is the

typical case. In practice, the functional form of �ið�Þ
should be estimated from the actual transmission profile

corresponding to a specific disease. Note that the only

technical restriction on �ið�Þ is that it must be a non-

negative integrable function.

Given the infectivity function, one can evaluate the

probability that an individual transmits the disease to one

of his or her contacts during a specific time period. Let Tð�Þ
denote the probability of disease transmission along one

edge for an individual with infection age �. Then Tð�Þ
satisfies [27,29]

Tð�Þ ¼ 1� exp

�

�
Z �

0
�ið�

0Þd�0
�

: (1)

In general, the time to removal varies from one individ-

ual to another and there is no a priori knowledge of the

exact value of this quantity for each individual. Therefore

we must account for its variability as well. Let �rð�Þ denote
the removal hazard or removal function, i.e., the instanta-

neous rate of removal for an individual with infection age

�. This implies that for small ��, the conditional probabil-
ity that an individual is removed between times � and

�þ ��, given that he or she is not removed by time �,
can be approximated by �rð�Þ��. The removal function

indicates how quickly the infectious individuals are re-

moved from disease dynamics as a function of the duration

of their infection. This can be related to death or various

interventions such as hospitalization or quarantine, reduc-

tion of social activity due to severity of illness, and behav-

ior change. Let �ð�Þ denote the probability that an

individual has a time to removal which is greater than or

equal to �. Then [29]

�ð�Þ ¼ exp

�

�
Z �

0
�rð�

0Þd�0
�

; (2)

subject to the condition �ð1Þ ¼ 0. The removal probabil-

ity density function is given by c ð�Þ ¼ � d�ð�Þ
d�

(or�ð�Þ ¼
R
1
� c ð�0Þd�0).
Using Eq. (1) and c ð�Þ [or �ð�Þ] one can calculate the

expected transmissibility, i.e., the probability of disease

transmission, across a given edge:
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T ¼
Z 1

0
c ð�ÞTð�Þd� ¼

Z 1

0
�ð�Þ

dTð�Þ

d�
d�

¼
Z 1

0
�rð�Þe

�
R

�

0
�rðuÞdu½1� e�

R
�

0
�iðuÞdu�d�: (3)

The basic reproduction number, which represents the

average number of infections caused by a typical infected

individual in a fully susceptible population, can be written

as the product of the expected excess degree and the

expected transmissibility [27]

R 0 ¼ ZxT: (4)

IV. DISEASE DYNAMICS ON NETWORKS

In this section, we present some examples of the spread

of an infectious agent on a contact network. The pattern of

disease spread on a network can be categorized into three

different regimes: stochastic, exponential, and declining.

The process of disease spread is stochastic in nature, given

that the disease transmission along an edge occurs in a

probabilistic manner and that the degree of the next

infected individual cannot be determined a priori. The

stochastic behavior is dominant in the initial stage of

disease spread when the number of infectious individuals

is comparatively small (stochastic regime). The effect

of stochasticity becomes much less pronounced when the

number of newly infected individuals becomes significant,

and stochastic fluctuations are smoothed out (exponential

regime). The progression of disease spread starts to decline

as the cumulative number of infected cases becomes com-

parable to the size of the network, at which point network

finite-size effects become important (declining regime) [28].

From now on, we use the tilde notation to make the

distinction between the realization of a stochastic process

(with tilde) and its mean field value (without tilde). We

define ~jðtÞ as the time series of infection events, which is a

sum of the Dirac � functions located at each infection time.

The case count ~Cðt; �tÞ that gives the number of infections

between times t and tþ �t can be expressed as ~Cðt; �tÞ ¼
R
tþ�t
t

~jðt0Þdt0. We define ~JðtÞ ¼ ~Cðt; �tÞ=�t as the inci-

dence rate of new infections at time t, where �t is the

maximum time resolution. In the exponential regime, the

incidence rate of new infections grows exponentially and

therefore can be expressed as

~JðtÞ ’ J0 expð�tÞ; (5)

for some �> 0. Figure 2 represents the three regimes,
� ln½JðtÞ�

�t
, in terms of time t.

A. Stochastic dynamics of disease

In this section, we outline a general framework to esti-

mate the basic reproduction number assuming that all

FIG. 1. Hypothetical infectivity functions �ið�Þ. They show the general infectivity patterns that can occur, varying by complexity of

the disease. The top left panel shows the infectivity function of a very generic disease, the top right panel shows the infectivity function

of an HIV type disease, the bottom left displays the infectivity function of any recurrent disease such as chicken pox, and finally, the

bottom right panel exhibits the infectivity function for an influenza type disease.
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information about a specific realization of the epidemic

process up to time t is known. We start by first deriving a

renewal equation for the rate of new infections, ~JðtÞ.

1. A renewal equation for ~JðtÞ

Let us consider the first person in the population infected

with the disease and assume that his or her infection

occurred at time 0. From Eq. (3), we can infer that the

expected number of infections that this individual will

cause by time t is given by

Zx

Z t

0
�ð�Þ

dTð�Þ

d�
d� (6)

(assuming that his or her excess degree is equal to the

average excess degree). This leads in the limit t ! 1 to the

usual value of R0 ¼ ZxT. The above expression also

implies that the mean contribution of this individual to

the incidence rate of new infections at his or her infection

age � is given by

Zx�ð�Þ
dTð�Þ

d�
: (7)

The above equations can be readily generalized to

address the random process of infection spread on a contact

network. In particular, one can compute the contribution of

the individuals infected at time t� �, ~Jðt� �Þ�t, to the

number of new infections occurring in the initial stage of

an outbreak at time t, ~JðtÞ�t, namely,

~JðtÞ�t ¼ Zx

Z t

0

~Jðt� �Þ�t�ð�Þ ~�ð�; tÞd�; (8)

where ~�ð�; tÞ denotes the fraction of those edges where

disease is actually transmitted exactly at time t. This is a

random function with the expectation given by dTð�Þ
d�

. Note

that Zx and�ð�Þ are both functions of t in the most general

case. Expression (8) is a generalization of the classical

Lotka renewal equation for population growth [30,31];

here it is applied to epidemic dynamics when taking into

account the structure of the underlying contact network

and the stochasticity inherent to the transmission process.

2. Exponential regime and the

generation-interval distribution

The importance of Eq. (8) is in its applicability to the

early stage of an outbreak. When advancing to the next

stage, i.e., the exponential regime, the evaluation of (8) can

be simplified. Indeed, an estimation ofR0 in the exponen-

tial regime has been well studied, analytically. An excel-

lent account for this analytical framework is presented by

Wallinga and Lipsitch [26]. In this section, we show how,

as a special case, our general framework can reduce to

their finding in the exponential-regime limit. During the

exponential regime we can ignore stochastic fluctuations

and replace all quantities with their expected values. In

particular, if we ignore stochastic effects we can rewrite the

renewal equation (8) as

JðtÞ ¼ Zx

Z t

0
Jðt� �Þ�ð�Þ

dTð�Þ

d�
d�; (9)

where we used ~�ð�; tÞ � dTð�Þ
d�

.

Let �ð�Þ � Zx�ð�Þ dTð�Þ
d�

. Equation (9) then takes the

simpler form

JðtÞ ¼
Z t

0
Jðt� �Þ�ð�Þd�; (10)

which is the well-known Lotka renewal equation [30,31].

From the definitions of�ð�Þ, the expected transmissibility

[Eq. (3)] and the basic reproduction number [Eq. (4)],

we can see that
R
1
0 �ð�Þd� ¼ R0. Substituting JðtÞ �

expð��tÞ in Eq. (10) and taking the limit when t ! 1 we

obtain

t

5 10 15 20 25 30 35 40 45 50

 t
δ

δ
J

])
t(

~
 l
n
[

-2

-1

0

1

2

Stochastic regime

Exponential regime

Declining regime

FIG. 2. Two hypothetical realizations of an epidemic process on a network. The left, middle, and right sections represent stochastic,

exponential, and declining regimes, respectively.
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1 ¼
Z 1

0
expð���Þ�ð�Þd�: (11)

It is worth mentioning that the exact exponential regime can

be reached when t ! 1 for an infinite-size network and that

is why it is valid to take the limit. This means that there

should be a slight deviation from the exponential behavior

for a ‘‘finite-size’’ system at ‘‘finite time’’ once the outbreak

has surpassed the stochastic regime. Dividing both sides of

Eq. (11) by R0 we find that [26]

1

R0

¼
Z 1

0
expð���Þ�̂ð�Þd�; (12)

where �̂ð�Þ ¼ �ð�Þ=R0 is defined as thegeneration-interval

distribution. This equation relates the basic reproduction

number to the Laplace transform of the generation-interval

distribution in the asymptotic case (infinite size, infinite

time). Now, in our formulation the generation-interval distri-

bution can be written as

�̂ð�Þ ¼
�ð�Þ dTð�Þ

d�
R
1
0 �ð�0Þ dTð�

0Þ
d�0

d�0
: (13)

This equation describes how the transmissibility, Tð�Þ, and
the distribution of the time to removal, �ð�Þ, determine

together the generation-interval distribution.

3. The generation-interval distribution

for constant parameters

Equation (11) has a simpler form for constants �r and �i.

This can be obtained by replacing c ð�Þ ¼ �r expð��r�Þ
and Tð�Þ ¼ 1� expð��i�Þ in Eq. (11):

1 ¼ Zx�i

Z 1

0
expð���rÞ expð���Þ expð��i�Þd� (14)

¼ Zx

�i

�i þ �r þ �
; (15)

or

� ¼ ðZx � 1Þ�i � �r: (16)

Therefore, we can express the rate of exponential growth of

an epidemic in terms of the mean excess degree (Zx), the

infectivity (�i), and the removal (�r) rates.

Furthermore, we can also explicitly compute the

generation-interval distribution [Eq. (13)]

�̂ð�Þ ¼ ð�i þ �rÞe
�ð�iþ�rÞ�: (17)

For constant parameters, the generation interval is an ex-

ponential random variable with mean 1=ð�i þ �rÞ. Using
this fact and Eq. (12) we obtain the following expression

for R0:

R 0 ¼
�i þ �r þ �

�i þ �r

¼ 1þ
�

�i þ �r

: (18)

This equation relates the value of R0 to the rate of growth

during the exponential phase of an epidemic (�), the

infection rate (�i), and the removal rate (�r). Notice that,

in contrast to the results obtained from a deterministic SIR

model, where the mean generation interval is equal to the

mean duration of infection [26], here we find that the mean

generation interval also depends on the infection rate.

Figure 3 shows two examples of logarithms (base e) of
the epidemic curves ð ln½~JðtÞ�Þ in the three regimes for

a binomial (left panel) and exponential network (right

panel). The algorithm used to simulate the spread of an

infectious agent on a contact network is described in the

t

0 20 40 60 80

J
])t(

~
ln

[ J
])t(

~
ln

[

0

1

2

3

4

5

y=0.26t+const

t

10 20 30 40 50
0

1

2

3

4

5

y=0.516t+const

FIG. 3. The logarithm (base e) of the rate of new infections ln~JðtÞ for a binomial network with z1 ¼ 5 (left panel) and for an

exponential network with � ¼ 4 (right panel), with �i ¼ 0:127 71 and �r ¼ 0:25. Two independent epidemic realizations are shown in

each panel (green and blue). The solid red line shows the tangent of ln½~JðtÞ� in the exponential regime.
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Appendix. The left panel of Fig. 3 shows two epidemic

events unfolding (two different initial index cases)

on a binomial network pk ¼
�
N
k

�

pkð1� pÞN�k with

N¼100000 nodes, z1 ¼ 5 [or p ¼ z1=ðN � 1Þ], Zx ¼ 5,
and f�i ¼ 0:127 71; �r ¼ 0:25g. Using Eq. (3), the ex-

pected transmissibility can be calculated as T ¼ 0:338.
The two solid lines y1, y2 ¼ �tþ const with � ¼
0:260 84 are the tangent of ln½~JðtÞ� during the exponential

regime [Eq. (16)]. This shows the consistency between

the simulated epidemic curve and its expected

(exponential-growth) behavior. In the right panel, we

show the same results for an exponential networkwithpk ¼

ð1� e�1=�Þe�k=�, � ¼ 4, z1 ¼ 3:52, Zx ¼ 7:0416, and

f�i ¼ 0:127 71; �r ¼ 0:25g. The lines y1, y2 ¼ �tþ const
with � ¼ 0:521 58 are again the tangent of ln½~JðtÞ� during
the exponential regime. Notice that, although herewe know

the ‘‘true’’ value of �, in practice it can be estimated from

real-life time series data if the outbreak progresses beyond

the stochastic regime.

4. The number of infected and removed

individuals at time t

Using the quantities introduced in the previous sections,

we now derive other expressions that will be helpful in

estimating the basic reproduction number, R0. As an out-

break progresses, at any given time there is a population of

infectious individuals, ~IðtÞ, and a population of removed

individuals, ~RðtÞ. The number of affected individuals—the

total number of infected individuals at time t and those who
are recovered or removed by time t—is given by

~IðtÞ þ ~RðtÞ ¼ N � ~SðtÞ ¼
Z t

0

~Jðt� �Þd�; (19)

where ~SðtÞ denotes the number of susceptible individuals at

time t. As illustrated in Fig. 4, the total number of infected

cases can be written as

~IðtÞ ¼
Z t

0

~Jið�; tÞd� ¼
Z t

0

~Jðt� �Þ ~�ð�Þd�; (20)

which, in turn, implies that

~RðtÞ ¼
Z t

0

~Jrð�; tÞd� ¼
Z t

0

~Jðt� �Þ½1��ð�Þ�d�; (21)

where Jið�; tÞ ¼ ~Jðt� �Þ�ð�Þ and Jrð�; tÞ ¼ ~Jðt� �Þ�
½1��ð�Þ�.

Figure 5 shows the number of infectious (left panel) and

removed (right panel) individuals for a disease that spreads

either on a binomial or an exponential network. In both

panels, the curves consisting of red symbols correspond to

the computer simulation of an epidemic on the correspond-

ing network; during the simulation, the new case counts are

recorded to create a synthetic ‘‘time series’’ for ~JðtÞ. The
solid curves correspond to Eqs. (20) or (21) [for ~IðtÞ or
~RðtÞ] for the corresponding network. These figures show a

perfect agreement for both networks between the analytical

formulas and the case counts from the simulation.

B. The transmissibility of removed individuals

Our methodology to estimate R0 is based on a detailed

analysis of the characteristics of removed individuals. This

is because the history of removed individuals contains all

the information about the mechanisms of disease trans-

mission and recovery process. In particular, the period of

infection of these individuals can help us estimate the

distribution of removal times. Furthermore, since removed

individuals have already had the opportunity to transmit

the disease, the fraction of the contacts that they actually

infected contains a lot of information about the transmis-

sibility of disease. In an ideal world, a full characterization

of the infection history of each removed individual would

be enough to estimate R0. However, in reality, it is

extremely difficult to know which infected individuals

have already been removed and what fraction of their

potential infections actually occurred. Therefore, we

instead derive theoretical expressions that can help us

estimate some of these quantities.

First, we write an expression for the total number of

secondary contacts of those individuals already removed

by time t. Using ideas similar to those above, the total

excess degree of removed individuals can be written as

~Z r
xðtÞ ¼ Zx

Z t

0

~Jðt� �Þ½1��ð�Þ�d�: (22)

Here, ~Zr
xðtÞ represents the total number of edges of

already removed individuals that could have transmitted

the infection by time t. However, only a fraction of these

FIG. 4. This figure illustrates schematically the dependency of

the rate of new infections, ~JðtÞ (blue curve), on its past values.

Only a fraction of the cases infected at time t� �, ~Jðt� �Þ�t,
contributes to the infections at time t, ~Jið�;tÞ�t¼ ~Jðt��Þ�t�ð�Þ
(red curve); the rest, ~Jrð�; tÞ�t ¼ ~Jðt� �Þ�t½1��ð�Þ�, have

already been removed.
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links actually transmitted the disease successfully. This

latter fraction is given by ~IrðtÞ þ ~RrðtÞ, where ~IrðtÞ and
~RrðtÞ represent, respectively, the number of infectious and

removed individuals at time t whose predecessor has

already been removed. The ratio of these two quantities

represents the fraction of potential transmissions that

actually occurred, which we shall refer to as the expected

transmissibility of removed individuals or ~TrðtÞ;

~T rðtÞ �
~IrðtÞ þ ~RrðtÞ

~Zr
xðtÞ

: (23)

Estimates for the expected values for these quantities

can, in principle, be calculated based on the rate of new

infections, JðtÞ, using arguments similar to those above.

These expressions are derived in the next section.

Equations (11) and (23) form a set of equations that allows

us to find two unknowns, for instance, the amplitude and

variance of the infectivity profile; a detailed analysis of this

subject merits a separate manuscript. Here, we solely use

Eq. (23) to estimate one quantity.

C. Expression for the transmissibility

of removed individuals, ~T
rðtÞ

As discussed in the previous section, our methodology is

based on a careful analysis of the characteristics of the

removed individuals. In particular, the expected transmis-

sibility of removed individuals, ~TrðtÞ, will play a crucial

role in the estimation of R0. We now derive an alternative

expression for ~TrðtÞ and other expressions related to

Eq. (23).

The expected transmissibility of removed individuals,
~TrðtÞ, can also be obtained as an extension of Eq. (3) by

replacing the removal distribution, c ð�Þ, with the condi-

tional distribution of removal time, given that it occurred

before time t, defined as ~c rð�; tÞ. The quantity ~c rð�; tÞ��
is proportional to the number of individuals already

removed by time t that were removed after exactly � units

of time, i.e., ~c rð�; tÞ�� / c ð�Þ
R
t��
0

~Jð�0Þd�0��. This

probability function, after incorporating the proper normal-

ization, can be written as

~c rð�; tÞ ¼
c ð�Þ

R
t��
0

~Jð�0Þd�0
R
t
0 c ð�0Þ

R
t��00

0
~Jð�00Þd�0d�00

: (24)

The expected transmissibility of removed individuals can

then be calculated as [see Eq. (3)]

~T rðtÞ ¼
Z t

0

~c rð�; tÞ ~Tð�; tÞd�; (25)

where ~Tð�; tÞ is an extension of Tð�Þ that takes into account
the stochastic effects in the disease-transmission process

(represented by the explicit dependence of this quantity

on t).

D. The basic reproduction number of removed

individuals and an equation for ~R0

The total excess degree of removed individuals [given in

Eq. (22)] takes the simpler form:

~Z r
xðtÞ ¼ Zx

~RðtÞ: (26)

Combining the last equation with Eq. (23) one obtains

~T rðtÞZx ¼
~IrðtÞ þ ~RrðtÞ

~RðtÞ
: (27)

We define the right-hand side of the previous equation

as the reproduction number of the removed individuals
~Rr

0ðtÞ, i.e.,
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FIG. 5. Number of infectious (left panel) and removed individuals (right panel) as a function of time for the binomial (z1 ¼ 5,
�i ¼ 0:127 71, and �r ¼ 0:25) and exponential (� ¼ 4) networks. The solid curves come from the evaluation of Eqs. (20) and (21),

and the symbols come from the direct counting of the infectious and removed individuals at any given time for a specific realization of

the process.
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~R r
0ðtÞ ¼

~TrðtÞZx: (28)

Using Eqs. (27) and (28), we can write a time-dependent

estimator of the basic reproduction number, ~R0 ¼ ZxT:

~R 0ðtÞ ¼
~IrðtÞ þ ~RrðtÞ

~RðtÞ

T
~TrðtÞ

: (29)

On the right-hand side of the last expression, the

expected value of ~IrðtÞ þ ~RrðtÞ can be calculated as

~I rðtÞ þ ~RrðtÞ ¼
Z t

0

Z t0

0

~Jðt0Þ~�ð�; t0; tÞ~�ð�; t0Þd�dt0; (30)

where ~�ð�; t0; tÞ is the fraction of infected individuals who

are removed by time t and who may have infected others at

time t0 � t. ~�ð�; t0; tÞ can be written as

~�ð�; t0; tÞ ¼
~Jið�; t0Þ � ~Jið�þ t� t0; tÞ

~Jið�; t0Þ

¼
�ð�Þ ��ð�þ t� t0Þ

�ð�Þ
; (31)

where ~Jið�; t0Þ ¼ ~Jðt0 � �Þ�ð�Þ. Figure 6 illustrates how

the new infection rate at time t0 depends on the infection

rate at time t0 � �.
~�ð�; t0Þ is the probability function that an infection at

time t0 was caused by any of these individuals. ~�ð�; t0Þ can
be written as

~�ð�; t0Þ ¼
~Jið�; t0Þ ~�ð�; t0Þ

R
t
0
~Jið�0; t0Þ ~�ð�0; t0Þd�0

: (32)

Substituting the expressions of ~�ð�; t0; tÞ and ~�ð�; tÞ in
Eq. (30) we obtain

~IrðtÞþ ~RrðtÞ¼
Z t

0

~Jðt0Þ

�

1�

R
t
0
~Jið�þ t� t0;tÞ ~�ð�;tÞd�
R
t
0
~Jið�;t0Þ ~�ð�;tÞd�

�

dt0:

(33)

Notice that the right-hand side depends only on the

rate of new infections, ~JðtÞ, and disease transmissibility

[represented by ~�ð�; tÞ]. It is also important to notice

that the outcome of Eq. (29) is invariant under JðtÞ !
const� JrepðtÞ, where JrepðtÞ is rate of new reported

cases. Finally, we notice that for a disease with the

constant removal function, �r, ~Jið�þ t� t0; tÞ ¼
~Jðt0 � �Þ�ð�Þ�ðt� t0Þ. Therefore, ~IrðtÞ þ ~RrðtÞ ¼ ~RðtÞ.
This means that the first fraction on the right-hand side

in Eq. (27) equals unity, and thus ~Rr
0ðtÞ ¼ ~TrðtÞZx ¼ 1.

The expression for ~R0ðtÞ then takes the simpler form:

~R 0ðtÞ ¼
T

~TrðtÞ
: (34)

E. An algorithm for the estimation of the

basic reproduction number

Using the expressions derived in the previous section,

we can compute real-time estimates of the basic reproduc-

tion number R0 assuming some knowledge of the under-

lying contact network and certain characteristics of the

disease. For example, if we assume that we know the rate

of new infections up to time t [JðsÞ, s � t], the average

excess degree of the underlying contact network, Zx, and

the removal time density, c ð�Þ, we can calculate an esti-

mator of R0 as follows.

(1) Evaluate the conditional distribution of the removal

time given that it occurred before time t, ~c rð�; tÞ,
using Eq. (24) and JðtÞ.

(2) Calculate ~Tð�; tÞ by equating the left- and right-hand
side of Eq. (27). We should use Eq. (25) to evaluate

the left-hand side of (27). It is worth mentioning that

since we use only one equation, we can estimate

only one parameter. This means that we must as-

sume a functional form for ~Tð�; tÞ that depends on,
at most, one parameter value. For example, we could

assume that ~Tð�; tÞ ¼ T ð�Þ ~AðtÞ, where T ð�Þ
denotes the dependence of the transmissibility on

the age of infection and ~AðtÞ denotes an amplitude

effect that captures the stochasticity of the trans-

missibility as a function of time. Assuming that

T ð�Þ is given, then ~Tð�; tÞ depends only on the

multiplicative parameter ~AðtÞ.
(3) Calculate an estimator of the expected transmissi-

bility, T̂ðtÞ, using ~Tð�; tÞ, c ð�Þ and Eq. (3). Notice

that the dependence of T̂ðtÞ on t denotes that we are
using only information up to time t.

(4) The estimated reproduction number at time t is

given by R̂0ðtÞ ¼ ZxT̂ðtÞ.

FIG. 6. Dependency of the rate of new infections at time t0,
~Jðt0Þ, on the rate of new infections at time t0 � �, ~Jið�; t0Þ. The
blue and red curves show the rates of new infections by time t0

and t, respectively. The green and yellow curves show the

fraction of those that remained infectious for at least � and

�þ t� t0 units of time, respectively.
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The above algorithm can be modified depending on the

information available for the estimation. For example, if

there is enough empirical evidence to determine the distri-

bution of the duration of infectiousness, as well as the

recovery rate of individuals in advance, then the methodol-

ogy can be used to shed light on the structure of the under-

lying contact network by estimating Zx. Examples of this

and other applications of the methodology are given below.

But first, we demonstrate the theoretical aspects of our

analytical framework. For more details please see Ref. [32].

V. NUMERICAL RESULTS

To test the framework presented so far, we performed

epidemic spread simulations on the two networks intro-

duced earlier (binomial and exponential) and in each case

collected the ‘‘time series’’ of case counts resulting from

the simulations.

A. Constant infectivity and removal functions

In Fig. 7, we present the basic reproduction number of

the removed individuals, Rr
0ðtÞ, as a function of the num-

ber of removed individuals, RðtÞ. The symbols show the

results from direct counting during the simulation, whereas

the lines show the results obtained from analytically

evaluating [after setting ~Tð�; tÞ ¼ Tð�Þ and ~�ð�; tÞ ¼
dTð�Þ
d�

in the left- and right-hand sides of Eq. (27)] each of

the terms in Eq. (27). The green (blue) and red (pink)

colors correspond to the left- and right-hand side of

Eq. (27), respectively. The small asymptotic deviation of

our estimate for the exponential network comes from

finite-size effects [28] (for more details, see Fig. 10).

The top panels of Fig. 8 show our estimated basic

reproduction number (blue line) for the binomial (left

panel) and exponential (right panel) networks as a function

of the number of removed individuals available by time t.
The true values (red line) are R0 ¼ 1:6864 and 2.3749,

respectively. For comparison, the figure also shows theR0

estimates obtained from equation Eq. (18), which is

equivalent to the Wallinga-Lipsitch (WL) methodology.

To compute the WL estimates, we require knowledge of

the epidemic exponential phase’s growth rate (�). For each
simulation, we estimated � from the logarithm (base e) of
the cumulative incidence using simple linear regression and

a window of four units of the time of data for each time

point. The figure shows that, in both cases, our estimator

converges and becomes stable quicker than theWL estima-

tor. This is because our methodology does not make an

explicit assumption of exponential-epidemic growth and

is therefore able to incorporate and appropriately weight

the information from the stochastic phase of the epidemic.

The bottom panels of Fig. 8 show the number of removed

individuals by time t (logarithmic scale, base 10). The red

line shows the number of removed individuals from a

realization of the epidemic process and the black line shows

the theoretical exponential phase of the epidemic process.

In order to assess the variability of our estimator,

we simulated 100 different realizations of the epidemic

process and then estimated the value of R0 for each of

them. Figure 9 shows the mean estimated value plus or

minus 1 standard deviation (averaging across realizations)

for each network. Notice that the variability for the expo-

nential network is larger than for the binomial network. We

attribute this to the fact that the exponential degree distri-

bution has a larger variance. In addition, the R0 estimate

for the exponential network also appears to have a negative

bias. As mentioned above, we attribute this phenomena to

finite-size effects, which are stronger for this network in

comparison to the binomial.

FIG. 7. The estimated basic reproduction number of removed individuals for the binomial (left panel: z1 ¼ 5, �i ¼ 0:127 71, and
�r ¼ 0:25) and exponential (right panel: � ¼ 4) networks in terms of the number of removed individuals. The right-hand and left-hand

sides represent the right- and left-hand sides of Eq. (27), respectively. The solid curve represents the ‘‘analytical’’ calculation of Eq. (27)

and the symbols show the ‘‘exact’’ values of the right-hand and left-hand sides for this specific realization of the epidemic process.
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It is worth noting that ~TrðtÞ is a function of �ið�Þ, �rð�Þ,
and JðtÞ [see Eqs. (3), (24), and (25)]. Therefore, when �r is

constant, the condition ~TrðtÞZx ¼ 1 allows one to evaluate,
for a given time series, one of the three quantities �i, �r, or

Zx, if the other two quantities are assumed to be known [this

statement holds even if �r is a function of time, in which

case the more complex equation, (27), should be used].

For instance, we simulated again the epidemic on the

binomial and exponential networks presented earlier, but

this time with constant values for �r and �i. Using these

values and the derived and calculated ~JðtÞ, we calculated the
value of Zx, which is presented in Fig. 10 for the binomial

(left panel) and exponential (right panel) networks. The

green lines show our estimates using the above condition,

while the red lines represent the true values. The blue

symbols indicate the result of the direct count from the

simulation. It is interesting to note that the excess degree

of infected individuals in the simulation very quickly

tends to the average value for the binomial network. This

explains, in part, the excellent agreement of our estimate

and the true basic reproduction number for the binomial

network shown in Fig. 8. However, for the exponential

network, the excess degree of infected individuals in the

simulation has a higher variability and does not agree as

well with the corresponding average excess degree. This is

mainly due to finite-size effects, which, in this case, cause

an excess degree of infected individuals lower than the

average value. And, in turn, this produces biases in the

estimation of R0, like those shown in Fig. 8, and empha-

sizes the importance of heterogeneity effects for a network

such as the exponential. Finally, we should mention that all

the discrepancies discussed above can be removed, or at

least reduced, if one incorporates the true average excess

degree from the simulation (blue dots) in Eq. (25), instead of

FIG. 8. Top panels: Estimated basic reproduction number for the binomial (left panel: z1 ¼ 5, �i ¼ 0:127 71, and �r ¼ 0:25) and
exponential (right panel: � ¼ 4) networks in terms of the number of removed individuals. The red line corresponds to the real value of

the basic reproduction number. The blue line shows the estimatedR0 from our methodology. For comparison, the green line shows the

R0 estimates obtained from Eq. (18) and the estimation of the growth rate during the exponential phase (�). Bottom panels: The

number of removed individuals by time t (logarithmic scale, base 10). The red line shows the number of removed individuals from a

realization of the epidemic process. For comparison, the black line shows the theoretical exponential phase of the epidemic process.
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a theoretical average excess degree. This could be done if

detailed data on the transmission chain and the contacts of

infected individuals during an epidemic were available.

B. Time-dependent infectivity and removal functions

As another example, we use time-dependent infectivity

and removal functions to simulate the epidemic process.

Specifically, we assume that �ið�Þ¼�=ð1þ�2Þð1þ0:5�2Þ
and �rð�Þ ¼ 2�=ð1þ �2Þ. These choices lead to the follow-
ing expressions for Tð�Þ and �ð�Þ, Tð�Þ¼0:5�2=ð1þ�2Þ
and �ð�Þ ¼ 1=ð1 þ �2Þ [or c ð�Þ ¼ 2�=ð1 þ �2Þ2].
Figure 11 shows the estimated reproduction number for

the binomial (left panel; z1 ¼ 5) and exponential (right

panel; � ¼ 4) networks in terms of the number of removed

individuals. The real values in this case are 1.25 for the

binomial and 1.76 for the exponential network. The true

values are shown in red and the estimated values in green.

As discussed above, the estimation of the basic reproduc-

tion number is performed as follows [assuming that �rð�Þ
and Zx are known]. First, for each t, we use Eq. (27) with
~Tð�; tÞ ¼

~AðtÞ�
1þ�2

and ~�ð�; tÞ ¼ 2 ~AðtÞ�
ð1þ�2Þ2

and then find the ~AðtÞ

so that the left- and right-hand sides of the equation are

equal. Second, we use the calculated ~AðtÞ to obtain the

expected transmissibility using Eq. (3). Finally, we calcu-

late the basic reproduction number, R0 ¼ ZxT. This

approach can be used for a specific disease to find the

amplitude of the infectivity function, ~AðtÞ, assuming we

know the dependence of ~�ð�; tÞ [or ~Tð�; tÞ] on the age of

FIG. 9. The estimated basic reproduction number for the binomial (left panel: z1 ¼ 5, �i ¼ 0:127 71, and �r ¼ 0:25) and

exponential (right panel: � ¼ 4) networks in terms of the number of removed individuals. The red line corresponds to the real value

of the basic reproduction number. The blue area shows the variation of the estimated value for a hundred different realizations.

FIG. 10. Estimates for the value of Zx for the binomial (left) and exponential (right) networks, when �i and �r are known. The red

line and green curves correspond to the average and the estimated excess degree.
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infection, �. Figure 11 also shows the estimated values of

R0 that we get if we assume (erroneously) instead that

either �i is constant (blue curve) or that both �i and �r are

constant (pink curve). The results show that although the

methodology is sensitive to misspecifications in the func-

tional forms of �i and �i, the estimated R0 values are still

relatively close to the true value.

C. Sensitivity analysis

Figure 12 shows the sensitivity of the estimated repro-

duction number to misspecifications of the excess degree.

To test this, we vary the assumed excess degree between

4 and 6 for the binomial network (true value equal to 5) and

between 6.04 and 8.04 for the exponential network (true

value equal to 7.04). The results show that although we

assumed a misspecification in the excess degree of up to

20% for the binomial and up to 14.2% for the exponential

network, the estimates had an error of at most 3% and

3.1%, respectively. As described earlier in the description

of the algorithm, we can use Eq. (27) to estimate one model

parameter, in this case �i. Then we can use its value to

evaluate the expected transmissibility and following that,
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FIG. 11. The estimated basic reproduction number for the binomial [left panel: z1 ¼ 5, �i ¼ �=ð1þ �2Þð1þ 0:5�2Þ, and

�r ¼ 2�=ð1þ �2Þ] and exponential (right panel: � ¼ 4) networks in terms of the number of removed individuals. The red line and

green curves correspond to the real and the estimated value. The blue line shows the estimates if we incorrectly assume that �i is

constant. The pink line shows the corresponding estimates if we incorrectly assume that both �i and �r are constant.

FIG. 12. The estimated basic reproduction number for the binomial (left panel: z1 ¼ 5, �i ¼ 0:127 71, and �r ¼ 0:25) and

exponential (right panel: � ¼ 4) networks in terms of the number of removed individuals. The green curve and red line correspond

to the estimated (with the correct excess degree) and real value of the basic reproduction number. The blue area shows the variation of

the estimated value with respect to change of the excess degree.
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the expected reproduction number [the first identity in

Eq. (29)]. This shows the usefulness of Eq. (27), which

acts as a strong constraint that allows us to estimate the

basic reproduction number with good precision regardless

of misspecification in other input parameters.

VI. DISCUSSION

Using concepts from network theory and stochastic

processes, we present a method that provides a reliable

estimate of the basic reproduction number, R0. Our

method takes into account the stochasticity in disease

spread and does not make an explicit assumption about

exponential epidemic growth and therefore is able to pro-

vide estimates of R0 at an early stage of an outbreak (i.e.,

before the exponential regime). We provide the details of

calculations and compare our results at each step against

simulations. Case notification data (time series) are the

main input to this analytical framework. As an outbreak

begins to unfold, the pattern of spread depends substan-

tially on the structure of the underlying contact network. In

fact, this dependency manifests itself in the formation of

the time series of newly infected cases. The proposed

methodology highlights the interplay between the hetero-

geneity in contacts (network structure), estimates of the

basic reproduction number, and infection transmissibility.

Depending on the circumstances, this methodology can be

used to infer other useful quantities as well. For infectious

pathogens that cause repeated outbreaks, there is enough

empirical evidence to establish the distribution of the

duration of infectiousness as well as the recovery rate of

individuals. In this case, in addition to the basic reproduc-

tion number, the proposed methodology can shed light on

the structure of the underlying contact network by estimat-

ing the mean excess degree Zx. This is an important piece

of information, because in many circumstances it is not

possible to capture and build a detailed contact network

among individuals based on some network generative

rules. The importance of this quantity becomes more

apparent when an emerging infectious disease strikes a

population. In this circumstance, there is much less infor-

mation on the characteristics of the disease such as the

duration of infectiousness and recovery rate, which in turn

determine the transmissibility of disease. Knowledge of

disease transmissibility during the early stage of an epi-

demic can play a crucial role, as effective and cost-

effective public health intervention strategies hinge on

the degree of contagiousness of a disease. On the other

hand, before the spread of disease becomes rampant, the

structure of the contact network within a population re-

mains more or less stable. Therefore, the estimated value

of Zx obtained during epidemic lulls, from the time series

corresponding to common infections, can be used to esti-

mate the transmissibility of an emerging infectious disease

at the early stage of an outbreak. We demonstrated this

concept with two examples. Our estimate for the basic

reproduction number converges quickly, thus enabling

epidemiologists and policymakers to identify the optimal

control strategies, in real time and even before or at the

beginning of the exponential growth of an epidemic.
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APPENDIX: SIMULATION ALGORITHM

To perform Monte Carlo simulations of an epidemic

propagation on a contact network, one first requires ex-

plicit knowledge of the network structure. In this article,

we use the method described in [27,28] to produce a

contact network, given a specific degree distribution.

Briefly, we (i) sample a random degree sequence kj of

length N from the degree distribution pk, (ii) make sure

that
P

jkj is an even number since a link is composed of

two stubs by reducing the degree of a random individual by

one if necessary, (iii) for each j, produce a node with kj
stubs, (iv) randomly choose a pair of unconnected stubs

and connect them together, and repeat until all uncon-

nected stubs are exhausted. Finally, we (v) test for the

presence of self-loops and repeated links. Remove the

faulty stubs by randomly choosing a pair of connected

stubs and rewire them by switching stubs. Repeat until

no self-loops and/or repeated links are found.

To simulate the spread of disease on a contact network

in continuous time we follow a Tau-Leaping approach

[33–35], which we describe below. The processes of dis-

ease transmission along one link and the removal of in-

fectious individuals are controlled by �ið�Þ and �rð�Þ,
respectively. We divide time into intervals of length �t
and ensure that �ið�Þ�t and �rð�Þ�t are small enough,

such that the expected epidemic curve does not vary much

by reducing �t even further. At every �t step, each infec-

tious individual recovers with probability �rð�jÞ�t, where

�j is the age of infection of individual j. If an infectious

individual does not recover, then he or she infects inde-

pendently each of his or her susceptible contacts with

probability �ið�jÞ�t.
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