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Abstract 

Background: Tomato gray leaf spot is a worldwide disease, especially in warm and humid areas. The continuous 

expansion of greenhouse tomato cultivation area and the frequent introduction of foreign varieties in recent years 

have increased the severity of the epidemic hazards of this disease in some tomato planting bases annually. This 

disease is a newly developed one. Thus, farmers generally lack prevention and control experience and measures in 

production; the disease is often misdiagnosed or not prevented and controlled timely; this condition results in tomato 

production reduction or crop failure, which causes severe economic losses to farmers. Therefore, tomato gray leaf spot 

disease should be identified in the early stage, which will be important in avoiding or reducing the economic loss 

caused by the disease. The advent of the era of big data has facilitated the use of machine learning method in disease 

identification. Therefore, deep learning method is proposed to realise the early recognition of tomato gray leaf spot. 

Tomato growers need to develop the app of image detection mobile terminal of tomato gray leaf spot disease to 

realise real-time detection of this disease.

Results: This study proposes an early recognition method of tomato leaf spot based on MobileNetv2-YOLOv3 model 

to achieve a good balance between the accuracy and real-time detection of tomato gray leaf spot. This method 

improves the accuracy of the regression box of tomato gray leaf spot recognition by introducing the GIoU bound-

ing box regression loss function. A MobileNetv2-YOLOv3 lightweight network model, which uses MobileNetv2 as 

the backbone network of the model, is proposed to facilitate the migration to the mobile terminal. The pre-training 

method combining mixup training and transfer learning is used to improve the generalisation ability of the model. 

The images captured under four different conditions are statistically analysed. The recognition effect of the models 

is evaluated by the F1 score and the AP value, and the experiment is compared with Faster-RCNN and SSD models. 

Experimental results show that the recognition effect of the proposed model is significantly improved. In the test 

dataset of images captured under the background of sufficient light without leaf shelter, the F1 score and AP value 

are 94.13% and 92.53%, and the average IOU value is 89.92%. In all the test sets, the F1 score and AP value are 93.24% 

and 91.32%, and the average IOU value is 86.98%. The object detection speed can reach 246 frames/s on GPU, the 

extrapolation speed for a single 416 × 416 picture is 16.9 ms, the detection speed on CPU can reach 22 frames/s, the 

extrapolation speed is 80.9 ms and the memory occupied by the model is 28 MB.

Conclusions: The proposed recognition method has the advantages of low memory consumption, high recognition 

accuracy and fast recognition speed. This method is a new solution for the early prediction of tomato leaf spot and a 

new idea for the intelligent diagnosis of tomato leaf spot.
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Background

Tomato is an important economic crop in the world. It is 

easily affected by many kinds of diseases, and this condi-

tion severely affects the quality and yield of tomato and 

causes huge economic losses. Tomato gray leaf spot is a 

common disease in tomato planting; this disease not only 

damages the leaves but also destroys the photosynthesis 

of the leaves, affects the growth of tomato and reduces 

the yield. In recent years, tomato gray leaf spot has been 

a severe outbreak in domestic tomato production base. 

�e tomato gray leaf spot disease is difficult to control. 

�e infection process of tomato gray leaf spot pathogen 

can be divided into four stages: contact, invasion, latency 

and onset periods. Contact period refers to the period 

during which pathogens contact with host plants; inva-

sion period refers to the period during which pathogens 

invade the host and establish a parasitic relationship with 

it; latency period refers to the period during which path-

ogens start to show obvious symptoms from establishing 

a parasitic relationship with the host, during which path-

ogens absorb nutrients, spread and propagate in the host, 

and the symptom is mild; once the appropriate environ-

ment is encountered, the disease enters the onset stage 

and spread rapidly, and the symptom becomes severe. 

�erefore, if early detection of tomato gray leaf spot dis-

ease can be achieved before the large-scale epidemic, 

then prevention and control programmes can be formu-

lated as early as possible. Appropriate prevention and 

control measures should be taken, and passive preven-

tion and control should be changed to active prevention 

and control in advance. �e prevention and control effect 

will be greatly improved, and the loss will also be mini-

mised. Early detection of diseases can also reduce the 

use of pesticides and environmental pollution and ensure 

tomato quality safety and human health. �erefore, the 

early recognition of tomato gray leaf spot is an excellent 

way to inhibit the rapid development of the disease and 

even avoid the disease. Traditional methods of disease 

detection cannot meet the needs of large-scale plant-

ing, and the plants often miss the best control period 

because of low diagnosis efficiency and rapid spread of 

disease [1, 2]. �e application of image processing tech-

nology in crop disease detection at home and abroad has 

achieved good results. Image processing technology can 

quickly and accurately distinguish the types of diseases 

according to the characteristics of diseases. In this way, 

the disease prevention strategies can be adopted timely 

and measures can be taken to prevent further expansion 

of diseases.

In the past, people used to judge the class of tomato 

disease subjectively through experience, but the ability to 

distinguish amongst multiple diseases is limited and the 

process is time consuming.

�e machine learning image processing technology 

is developing rapidly and is widely used in all aspects, 

including the agricultural field. Applying machine learn-

ing and image processing technology to crop disease 

recognition has incomparable advantages over tradi-

tional manual diagnosis and recognition methods [3]. 

People only need to collect a small number of disease 

image samples. �e process involves the following steps: 

firstly, the dataset is pre-processed; secondly, the fea-

ture extraction algorithm is used to extract the features 

of the disease area in the image; lastly, the obtained fea-

ture information is sent to the classifier for training and 

the model parameters are obtained. �e generated model 

can be used to detect the disease category. Training with 

a large number of datasets is time consuming due to the 

lack of datasets and the poor generalisation ability of 

the model. Moreover, the development of agricultural 

modernisation towards the direction of intelligence has 

highlighted the shortcomings of these traditional image 

detection methods.

�e development of new technology has enabled not 

only discovering the characteristics of things artificially 

but also collecting a large number of data, designing 

algorithms and programming, mining laws from data 

and building models by using advanced computer hard-

ware facilities. Deep learning is a representative branch 

of artificial intelligence. Although this concept was only 

introduced in 2012, various network models have been 

produced after its development [4–10]. At present, deep 

learning is widely used in various fields, especially in 

computer vision. It efficiently solves the tasks of image 

classification, object detection and semantic segmenta-

tion. Compared with the traditional pattern detection 

method, the disease detection method based on the deep 

convolutional network (CNN) abandons the sophisti-

cated image pre-processing and feature extraction opera-

tions and uses the end-to-end structure to simplify the 

detection process. CNN can be used to train the model 

prediction results, which not only can save time and 

workforce but also can make a real-time judgment, as 

long as a large number of crop disease image datasets 

can be obtained. �is way greatly reduces the great losses 

caused by the disease.

In recent years, object detection based on deep learn-

ing has rapidly developed. Researchers have proposed 

increasingly sophisticated network structure to improve 

the accuracy of object detection, including RCNN [11] 

(Region-Convolutional Neural Network), SPP-Net [12] 

(Spatial Pyramid Pooling-Networks) and Faster-RCNN 

[13]. �ese object detection networks can achieve high 

accuracy but can only achieve a frame rate below 1 

frame/s due to the limited computing power and mem-

ory resources of the embedded platform.
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In the aspect of deep neural networks for mobile 

object detection, researchers have proposed some min-

iaturised deep neural networks. For example, SSD [14] 

(Single Shot MultiBox Detector) and YOLO [15] (You 

Only Look Once) have been introduced to improve the 

detection speed. They use high-performance GPU to 

achieve the effect of real-time object detection. How-

ever, the speed of object detection will decrease obvi-

ously when these models are applied to the embedded 

platform. The reason is that the performance of the 

GPU of the embedded platform is far less than that of 

PC, and the performance of the former is at least 1/10 

lower than that of the latter. At present, some scholars 

are improving and designing lightweight convolutional 

models, such as MobileNet [16] and SqueezeNet [17], 

according to the application requirements of mobile 

and embedded devices. However, their practical appli-

cation is rarely reported.

In the study of plant diseases, the traditional 

machine learning technology has a good application 

effect, and deep learning is a major step to promote 

this study. Its powerful learning ability improves the 

performance and precision of neural networks. It is a 

recently popular technology for visual image analysis. 

The application of deep learning technology in plant 

disease recognition has become a major research task 

in this field. Current research on plant diseases and 

insect pests based on deep learning involves various 

crops, including different vegetables, fruits and food 

crops. The tasks completed include classification and 

detection of diseases and insect pests. At present, 

few public datasets on plant diseases and pests are 

available. Researchers usually find the best solution 

by comparing different training and test dataset pro-

portions and network models. However, gaps exist in 

complexity between these susceptible images and real 

field scenarios. Solving the problem of real-time field 

pest detection based on mobile devices can still be 

developed.

�is study aims to achieve a proper balance between 

the accuracy of object detection and real-time per-

formance (that is, reduce the size of the model whilst 

ensuring the computing power of the embedded plat-

form to meet the computing demand of the model). 

�us, this study introduces a small network architec-

ture with small computing power demand and stable 

object detection effect, that is, MobileNetv2-YOLOv3, 

on the basis of the latest research results of CNN the-

ory and the characteristics of the tomato grey leaf spot 

image. �e proposed network improves the detection 

speed whilst improving the detection accuracy and 

ensures the detection accuracy of the model whilst 

minimising the volume of the network model.

Related Work

Existing image recognition methods of plant disease 

identi�cation

Traditional plant disease identification method based on 

computer vision technology usually needs to extract the 

texture, shape, vein, colour and other features of the dis-

ease spots. �is method has low recognition efficiency 

because it depends on rich expert knowledge in the field 

of agricultural diseases. With the rapid development of 

artificial intelligence technology in recent years, many 

researchers have conducted relevant research based on 

deep learning technology to improve the accuracy of 

plant disease identification. �e existing analysis meth-

ods of plant diseases are mainly disease classification.

Mohanty et  al. [18] used GoogleNet and AlexNet to 

classify and recognise 54,306 diseased and healthy plant 

leaf images in the PlantVillage dataset and draw a conclu-

sion that the average classification effect of GoogleNet 

is slightly better than that of AlexNet. �e accuracy of 

the trained deep convolutional neural network model 

on the test set is up to 99.35%. �e method of training 

deep learning model on a growing and publicly available 

image dataset is a clear way to identify plant diseases in 

horticultural crops assisted by intelligent mobile phones. 

Amara et al. [19] identified disease types of 60 × 60 col-

oured banana leaves based on LeNet. Deep learning also 

plays a major role in the detection of plant disease sever-

ity. Wang et al. [20] trained a series of deep convolutional 

neural networks to diagnose the severity of diseases by 

using the apple black rot images in the PlantVillage data-

set. �e performances of shallow networks trained from 

scratch and deep models tuned by transfer learning were 

also evaluated. �e best model is deep VGG16 trained by 

transfer learning, and the overall accuracy in the test set 

is 90.4%. Ferentinos et al. [21] used an open database con-

taining 87,848 images to identify 58 kinds of diseases of 

25 different plants based on deep learning, and the best 

performance reaches 99.53% in terms of accuracy rate. 

Barbedo (2019) [22] studied plant disease identification 

from individual lesions and spots using the GoogLeNet 

architecture, and the obtained accuracy ranges from 75% 

to 100% for each crop. �is variation is caused by differ-

ences in the number of images, the number of diseases, 

conditions and the levels of difficulty.

Convolutional neural networks (CNNs) usually require 

a large number of samples for training. However, col-

lecting training data required by models is difficult and 

costly in many applications [23]. �erefore, the research 

on data expansion is particularly important. In previous 

studies, many researchers have combined deep learn-

ing with transfer learning under the condition of limited 

datasets [24], and a tool for plant disease recognition and 

classification has been developed using image processing 
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unit (GPU). Srdjan [25] proposed an evaluation method 

of deep learning model to identify 14 different classes of 

plant diseases, including 13 classes of disease and healthy 

plant leaf images. �e dataset size is 30,880 images and 

the average accuracy reaches 96.3% for this method com-

bined with the transfer learning method. Liu et  al. [26] 

enhanced the training dataset by rotating, mirroring 

and adding Gaussian noise, brightness adjustment and 

contrast adjustment. �is method increases the size of 

the training set by 12 times and reduces the over-fitting 

problem.

In addition to the expansion of data volume, improve-

ments in deep-learning algorithms are critical to the dis-

ease recognition results. Too et  al. [27] researched on a 

deep network architecture and used images from the 

PlantVillage dataset to form data sizes of 34,727 training 

set samples, 8702 validation set samples and 10,876 test 

set samples. �e comparative test verified that DenseN-

ets needs fewer parameters and reasonable calculation 

time to achieve the most advanced performance com-

pared with VGG and ResNet. �e test accuracy achieves 

99.75%. Picon et al. [28] adopted an improved algorithm 

based on deep residual neural network to deal with the 

detection of various plant diseases under actual acquisi-

tion conditions, amongst which different adaptations for 

early disease detection have been proposed. �e results 

obtained showed that the AuC index of all analysed dis-

eases is higher than 0.80. Selvaraj et  al. [29] retrained 

three different CNN architectures using the transfer 

learning method. By using pre-trained disease recogni-

tion models, deep transfer learning was performed to 

generate networks that could make accurate predictions. 

Zhong et al. [30] proposed three methods of regression, 

multilabel classification and focus loss function based on 

DenseNet-121 CNN to identify apple leaf diseases. �e 

proposed methods achieve 93.51, 93.31 and 93.71% accu-

racy on the test set.

�e disease recognition methods in the above-men-

tioned research are different from disease detection, 

which cannot automatically locate the disease area from 

the image and needs to extract the disease area manu-

ally for recognition. Deep learning can also be applied 

to plant disease identification. However, the current 

research in this field is still at an early stage, especially in 

practical application, due to the continuous improvement 

of the requirements for plant disease and pest identifica-

tion under sophisticated background, such as high recog-

nition accuracy, short calculation time, improved system 

robustness and strong generalisation ability.

Research progress of tomato disease image recognition

In tomato disease image classification, Durmus et  al. 

[31] classified and recognised 10 kinds of tomato 

diseases in the PlantVillage dataset by using AlexNet 

and SqueezeNet model. �e experiment found that the 

classification accuracy of AlexNet is slightly higher than 

that of SqueezeNet, but the size of the model and the 

time taken are doubled. Brahimi et al. [32] found that the 

performance of the CNN is better than that of the shal-

low convolutional network, and the performance of the 

model can be improved by initialising the model param-

eters with pre-training weights. On this basis, nine kinds 

of tomato diseases are identified. By fine-tuning the 

AlexNet and GoogLeNet model, the accuracy reaches 

99.18%. Aravind et  al. [33] used AlexNet and VGG16 

combined with transfer learning to identify seven kinds 

of tomato diseases; the experiment showed that the accu-

racies are 97.29 and 97.49%. Although transfer learning 

can make the model converge quickly and achieve better 

recognition effect, it is limited by the original network 

structure. �e original AlexNet and VGG16 models have 

a sophisticated structure and many parameters, which 

greatly limit the practical application and deployment 

of the model. Karthik et  al. [34] proposed an attention-

based deep residual network to detect the infection type 

of tomato leaves. �e experiment used the PlantVil-

lage dataset, amongst which 95,999 images were used as 

training models and 24,001 images were used for valida-

tion. �e dataset included three diseases, namely, early 

blight, late blight and leaf mold. �e experimental results 

showed that the proposed attention-based residual net-

work can utilise the features of CNN learning at various 

processing levels and achieves 98% overall accuracy on 

the validation set in five-fold cross-validation.

In tomato disease object detection, Fuentes et al. (2017) 

[35] proposed a method based on deep learning to detect 

diseases and pests of tomato plant images captured by 

various resolution camera devices. �ree kinds of object 

detectors of CNN were used, and they were called ‘deep 

learning meta-architectures’. �ese meta-architectures 

were combined with ‘deep feature extractor’ to show 

the performance of deep meta-architecture and feature 

extractor. �e method of local and global class annota-

tion and data expansion was used to improve the accu-

racy of training and reduce the number of false-positives. 

�e end-to-end training and testing were conducted 

on the large-scale tomato disease dataset. �e experi-

mental results showed that the system can effectively 

identify nine different types of pests and diseases and 

can deal with sophisticated scenes from the surround-

ing areas of plants. Fuentes et  al. (2018)   [36] proposed 

an improved algorithm of tomato disease and insect pest 

detection aiming at the problem of false alarm and clas-

sification imbalance of tomato diseases and insect pests. 

�e framework is mainly composed of three units: (1) 

main diagnosis unit (bounding box generator), which 
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generates bounding box, and the bounding box contains 

the region and category of diseases and insect pests; (2) 

auxiliary diagnosis unit (CNN filter bank), which trains 

each independent CNN to filter the samples of error 

classification; (3) integration unit, which combines the 

information of independent diagnosis unit and auxiliary 

diagnosis unit whilst maintaining the true positive sam-

ples to eliminate the false positives. �e experiments 

showed that the recognition rate of this method is 

approximately 96%. Fuentes et  al. (2019) [37] proposed 

a method that not only can effectively detect and locate 

plant anomalies but also can produce diagnostic results, 

display abnormal locations and describe sentence symp-

toms as output. In the newly established dataset of 

tomato plant anomaly description, the average accuracy 

is 92.5%. Zhang et al. [38] proposed an improved Faster-

RCNN method to detect healthy tomato leaves and four 

diseases. Firstly, the deep residual network was used 

instead of VGG16 for image feature extraction to obtain 

deep disease features. Secondly, the boundary boxes 

were clustered using a k-means clustering algorithm. 

�e anchor was set on the basis of the clustering results. 

Lastly, k-means experiments were performed on three 

different feature extraction networks. �e experimen-

tal results showed that the improved detection method 

for crop leaf diseases achieves 2.71% higher recognition 

accuracy than the original Faster-RCNN method. How-

ever, in the literature, Faster-RCNN was used to detect 

objects, which needs to be done in two steps: the region 

recommendation was extracted firstly and then detected. 

�e prevailing YOLO can directly generate coordinates 

and probabilities for each category through expressions. 

�erefore, the real-time performance of existing research 

needs to be improved.

Existing problems and development trend of current 

research

1. Previous research has only focused on the applica-

tion of the deep neural convolutional network of 

each variety to coarse-grained disease identification 

and ignored the early detection of the diseases. In the 

actual production, the early and late-stage images of 

the same disease have different characteristics. If the 

disease is identified accurately in the early stage of 

disease occurrence and corresponding control meas-

ures are taken, the loss caused by the disease can be 

greatly reduced. However, the location of early stage 

disease is relatively hidden, and the area of infec-

tion is also small, which occupies a low proportion 

of pixels in the whole image. �erefore, the problem 

of using the CNN to extract early tomato disease fea-

tures and identify fine-grained disease remains to be 

solved.

2. Different areas of tomato diseases show differ-

ent image characteristics: some of them are flaky, 

whereas others have a punctate pattern. �e charac-

teristics of the same disease will change in different 

stages; some gradually progress from point to pieces. 

In the early stage of the disease, the lesion is relatively 

small and occupies a small area in the whole image. 

�erefore, tomato diseases areas have the charac-

teristics of irregular and small size, which make the 

object detection process difficult. For the images of 

tomato diseases collected in the real natural envi-

ronment, the background part (such as weeds and 

ground) is similar to the tomato disease area to a 

certain extent, and the existing object detection algo-

rithm will cause a lot of false detection, which will 

result in reduced accuracy.

3. �e speed of real-time computing on the mobile ter-

minal is difficult to achieve, which is unsuitable for 

scenes with strong real-time requirements, such as 

intelligent mobile phones.

4. In the previous research, influencing factors on the 

accuracy of deep learning models applied to plant 

pathology are rarely involved. Barbedo, J.G.A. (2018) 

[39] argued that many factors may affect the accuracy 

of deep learning models applied to plant pathology. 

�e robustness of the proposed model to different 

kinds of conditions that are commonly found in prac-

tice should be determined.

In view of the above-mentioned problems, this study 

proposes a real-time detection method for tomato gray 

leaf spot under sophisticated background. �is method 

can effectively extract the early stage of tomato gray leaf 

spot characteristics, train and test the images of tomato 

gray leaf spot and achieve the purpose of real-time and 

accurate positioning of tomato gray leaf spot area. �us, 

the proposed method can provide a technical support 

for the mobile-oriented intelligent diagnosis system of 

tomato leaf spot disease.

Materials and methods

Dataset used in the research

�e experience and suggestions of agricultural experts 

indicate that the pathogen of tomato gray leaf spot takes 

about 24 h to propagate from a large number to invade the 

host under suitable meteorological conditions. If the mete-

orological conditions remain within the range suitable for 

the growth and breeding of the pathogen after the inva-

sion and the duration is close to or greater than the incu-

bation period of the pathogen, then the tomato gray leaf 

spot will further develop and various lesions may appear 
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in about 3  days. �erefore, early detection in this study 

means that the symptoms of tomato gray leaf spot can be 

considered early up to 3 days after the initial infection. �e 

dataset must be images of the disease in its early stage in 

a real environment to realise the early detection of tomato 

grey leaf spot images. �e gathering place of tomato gray 

leaf spot images is the Shouguang tomato planting base 

in Shandong Province in China. �e images are captured 

using a variety of equipment, such as a digital camera and 

a smart mobile phone, under natural light; 2166 copies of 

original images are collected, including cloudy, sunny and 

rainy days, to cover all lighting conditions. To ensure the 

diversity of tomato gray leaf spot image dataset, 219 tomato 

gray leaf spot images are obtained through a web crawler, 

and the number of images in the dataset is 2385.

�e aforementioned dataset is annotated using the Labe-

lImg tool. Considering the corresponding relationship 

between labels and data and ensuring uniform distribution 

of the dataset, the dataset is randomly divided into train-

ing, verification and test datasets according to the propor-

tion of 70, 10 and 20% by Matlab. �e final dataset is stored 

in the format of the PASCAL VOC dataset. In accordance 

with the diagnostic criteria and recommendations of agri-

cultural experts, the test dataset is divided into four parts: 

sufficient light (sunny days) without leaf shelter, sufficient 

light (sunny days) with leaf shelter, insufficient light (cloudy 

days) without leaf shelter and insufficient light (cloudy 

days) with leaf shelter. �e final dataset is shown in Table 1.

Principle of MobileNetv2-YOLOv3 model

Principle of YOLOv3 model

�e Yolo algorithm was proposed by Redmon et al. [15] 

in 2016. �e object detection task in this algorithm is 

transformed into a regression problem, which greatly 

accelerates the detection speed. YOLOv3 [40] is pro-

posed based on YOLOv2 [41], the detection speed of 

YOLOv2 is maintained and the detection accuracy is 

greatly improved. YOLOv3 uses the idea of the resid-

ual neural network [42]. �e introduction of multiple 

residual network modules and the use of multiscale 

prediction improve the shortcomings of YOLOv2 net-

work in small object recognition. �is algorithm is one 

of the best algorithms in object detection because of 

the high accuracy and timeliness of its detection. �is 

model uses several 3 × 3 and 1 × 1 convolution layers 

with good performance, and some residual network 

structures are also used in the subsequent multiscale 

prediction. �is model has 53 convolution layers and 

can also be called Darknet-53.

�e loss function of the object detection network of 

YOLOv3 is shown in Formula (1). 

.

In the above-mentioned formula, i represents the i 

square, j represents the j bounding box predicted by 

the square, obj indicates the existence of an object, 

noobj indicates the absence of an object, Ci is the class 

of the predicted object, 
∧

C
i

 is the class of the real object 

and �coord and �noobj are the penalty coefficients. �e 
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Table 1 Datasets and size

Dataset Training set Validation set Test set Total number

Number of images 1669 477 239 2385

Number of annotated samples 9847 2814 1410 14,071
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Bounding regression loss function based on GIoU

IoU is the degree of coincidence between the predic-

tion and marked bounding boxes in the original image. 

�e bounding box regression IoU value is often used as 

the evaluation index in object detection. However, most 

detection frameworks do not combine this value to opti-

mise the loss function. IoU can be back propagated and 

optimised directly as an objective function. Consider-

ing the choice between the optimisation measure and 

the use of alternative loss functions, the best choice is to 

optimise the measure. Traditional IoU as a loss function 

has two disadvantages: if the two objects do not overlap, 

then the IoU value will be 0, and the gradient will be 0, 

which cannot be optimised; if two objects overlap in dif-

ferent directions and the intersection level is the same, 

then their IoU will be exactly the same. IoU cannot accu-

rately reflect the degree of coincidence between two 

objects. Figure 1 shows that using three different meth-

ods to overlap two rectangles can achieve the same IoU 

value, but their coincidence degree differs. �e regression 

effect of the leftmost graph is the best, and the regression 

effect of the rightmost graph is the worst. �e predic-

tion bounding box of the rightmost graph is the rota-

tion candidate bounding box [43]. �erefore, the value of 

the IoU function does not reflect the overlap of the two 

objects. In the detection of tomato gray leaf spot, the 

accuracy of regression box directly determines the suc-

cess rate of detection. �erefore, the shortcomings of IoU 

are solved by introducing GIoU. IoU value range is [0,1], 

whilst GIoU has a symmetric interval and a value range 

of [− 1,1]; the maximum value of 1 is taken when the two 

coincide, and the minimum value of −1 is taken when 

the two do not intersect and are infinitely far away. Con-

sequently, GIoU is a good distance measurement index. 

Unlike IoU, which only focuses on overlapping areas, 

GIoU focuses not only on overlapping areas but also on 

other non-overlapping areas, which can better reflect the 

coincidence degree of the two. GIoU loss can replace the 

loss function of bounding box regression in most object 

detection algorithms, as shown in Formulas (2)–(5). 

In the above formula, A and B are any two rectangu-

lar boxes, C is the smallest circumscribed rectangle sur-

rounding A and B and S is the space of A and B.

Network design of MobileNetv2‑YOLOv3

Traditional YOLOv3 uses the self-defined backbone net-

work Darknet-53, the model calculation is sophisticated, 

and the storage space requirements are high. �e calcula-

tion speed of a 416 × 416 image on GPU is 30 ms, and the 

calculation speed on CPU is 255.8  ms. �is study pro-

poses a lightweight neural network model for real-time 

object detection called MobileNetv2-YOLOv3 network, 

which is designed on the basis of traditional YOLOv3. 

�e inferential speed of GPU is 16.9  ms, and the infer-

ential speed of CPU is 80.9 ms. MobileNet [16] is a light-

weight neural network based on mobile terminal. �is 

study uses MobileNetv2 [44] as the backbone network of 

MobileNetv2-YOLOv3. �e proposed model combines 

the anti-residual module with the depth-wise separable 

convolution. Firstly, the number of channels is increased 

by 1 × 1 convolution; secondly, the depth-wise convolu-

tion is performed by 3 × 3 convolution; lastly, the dimen-

sion is reduced by 1 × 1 convolution.

�is study changes the feature image fusion to make 

deep connection at 19 and 34 layers to avoid reducing 

the object detection accuracy of small objects by using 

(2)IoU =
|(A ∩ B)|

|(A ∪ B)|

(3)GIoU = IoU −
|C(A ∩ B)|

|C|

(4)LGIoU = 1 − GIoU
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Fig. 1 Diagram of two overlapping rectangles. The black rectangle 

represents the predicted bounding box, and the gray rectangle 

represents the original marked bounding box
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MobileNetv2 network. For the input image of 416 × 416, 

13 × 13 feature image is obtained by convolution after the 

convolution network at 53 layers. �e feature image recep-

tive field here is the largest, which is suitable for the detec-

tion of large objects, that is, the first prediction output. To 

achieve fine-grained object detection, the 53-layer feature 

map of convolution layer starts to up sample from the right 

and obtains the feature map of the same resolution with 34 

layers. After the residual module is fused with the 34-layer 

feature map, the 65 layers obtain the feature map of 26 × 26 

after convolution, which has medium-sized receptive field 

and is suitable for detecting medium-sized objects. �e 

65-layer feature map is up sampled again and obtains the 

feature map of the same resolution with 19 layers. �e fea-

ture map is fused with the 19-layer feature image through 

the residual module. �e 52 × 52 feature image is obtained 

by eight times lower sampling than the input image. At 

this time, the receptive field is small, which is suitable for 

detecting small-sized objects.

�e proposed MobileNetv2-YOLOv3 is an end-to-end 

object detection framework based on the idea of regres-

sion. �e use of depth-wise separable convolution to 

extract features can effectively improve the computa-

tional efficiency of the convolutional network and reduce 

its huge number of parameters. At the same time, the 

detection accuracy of the convolutional network model is 

improved using multilayer feature fusion and point con-

volution to increase the network depth.

In the channel dimension mapping of the feature map, 

the conventional convolution is assumed be transformed 

and decomposed into linear combinations. If K  repre-

sents a regular convolution kernel, then 

In the above-mentioned formula, b is an m-dimensional 

matrix composed of two-dimensional convolution of 

S × S size, which can be expressed as 

∧
(b) is defined as a diagonal matrix, and the diago-

nal elements are bi (i = 0, 1, 2, · · · , m) , which can be 

expressed as

M is defined as the numerical matrix of n × m n and m 

represent the dimensions of the output and input feature 

(6)K = M ·

∧
(b).
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maps, respectively. “ · ” represents a special matrix multi-

plication. �e operation formula of conventional convo-

lution kernel K  can be expressed as 

In the aforementioned formula, µnm is the weight coef-

ficient of convolution kernel on position (n, m) . knm is 

the value of convolution kernel on position (n, m) , which 

can be expressed as knm = µnmbm.

According to the above-mentioned formula, the 

number of parameters of conventional convolution 

is s × s × n × m . �e number of depth-wise separa-

ble convolution parameters of MobileNetv2-YOLOv3 

model that meets the requirements of mobile terminal is 

s × s × m + n × m . �e compression rate is

�e batch normalisation (BN) method is used to acti-

vate the corresponding operation. �e mean value of the 

output dimensions is set to 0, and the variance is set to 1. 

�is setting can reduce the change in the input data dis-

tribution of the next layer network and unify the distri-

bution of the input data. It can also effectively improve 

the model convergence speed and avoid gradient explo-

sion. �e basic structure of the depth-wise separable con-

volutional network is shown in Fig.  2. �e figure shows 

that the conventional convolution kernel is replaced by 

two convolution nuclei, that is, depth-wise separable and 

point convolutions are adopted.

�e MobileNetv2-YOLOv3 model is constructed using 

the depth-wise separable convolution mentioned above. 

�e network is a full convolution network, which con-

sists of regular, depth-wise separable and point convolu-

tions. For the output of each convolutional network, BN 

is adopted, that is, the BN layer is added. �e use of the 

BN layer solves the gradient disappearance and explosion 

in the process of back propagation.

According to Huang et  al. [45], the feature map can 

be obtained from the shallow layer network and can be 

fused to obtain better performance. YOLOv2 [41] only 

conducts monolayer feature map fusion. In the pro-

posed model, a new feature map fusion method called 

multilayer feature map fusion is adopted. �e method 

changes the channel of feature map by point convolution 

method, uses reshape method to transform the feature 
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map to the specified size, undergo the same process for 

the multilayer network, overlay with the upper network, 

and obtains the fused feature maps. A deep and narrow 

network architecture is designed on the basis of SSD [14]. 

�e deeper network architecture can obtain higher pre-

cision. By contrast, the narrower network architecture 

limits the complexity of the network. �erefore, the pro-

posed MobileNetv2-YOLOv3 model has fewer network 

layers than other object detection networks. Point and 

depth-wise separable convolutions are used to construct 

the network to limit its complexity. In the main convo-

lution operation at the end of the network structure, the 

depth of the network is increased by increasing the num-

ber of point convolution to limit the complexity of the 

network.

Pre‑trained method combining mixup training and transfer 

learning

Various types of tomato gray leaf spot exist in the natu-

ral environment, and mutual shielding of tomato leaves 

is often encountered due to the limited scenarios cov-

ered by the sample dataset. �us, the detection of 

tomato disease will limit the generalisation ability of the 

model. In this study, the visual coherent image mixup 

method designed for training object detection network 

is used. �e method is effective in enhancing the general 

ability of the model. Mixup refers to combining two input 

images into one image according to a certain weight. �e 

training model based on this composite image is robust 

and can effectively reduce the effect of the differences 

between images.

Transfer learning transfers the knowledge learned from 

the trained model to the new model to help the training 

of the new model. Yosinski et al. [46] conducted transfer 

learning experiment. �ey proved that the underlying 

CNN could learn general features of objects, such as geo-

metric, edge and colour changes. By contrast, the high-

level network is responsible for extracting specific feature 

details. A small dataset can also achieve good training 

effect through transfer learning.

In this study, a hybrid training method is adopted on 

COCO dataset for preliminary training, and the knowl-

edge learned from COCO dataset is transferred to 

tomato gray leaf spot image recognition through transfer 

learning. By freezing part of the convolution layer, only 

correct model parameters of part of the convolution layer 

for back propagation are obtained. By using a method 

combining mixup training and transfer learning, the 

training time can be reduced, the memory consumption 

can be saved and tomato gray leaf spot object recognition 

effect can be improved.

Metrics used to evaluate the proposed method

In this study, F1 score and AP (average precision) are 

used to evaluate the model trained by the loss function. 

�e formula is expressed as follows. 

In the above-mentioned formula, P is the accuracy rate, 

R is the recall rate, TP is the number of true positive sam-

ples, FP is the number of false positive samples and FN is 

the number of false negative samples.

Experimental operation environment

�e experimental hardware environment of this study is 

shown in Table  2. On this basis, the software environ-

ment is built as follows: Ubuntu 16.04, python, OPENCV 

(11)P =
TP

TP + FP
.

(12)R =
TP

TP + FN
.

(13)F1 =
2PR

P + R
.

(14)AP =
1

∫
0

P(R)dR.

Fig. 2 Basic structure of depth-wise separable convolutional network 

a standard convolution filter; b depth-wise separable convolution 

filter; c point convolution filter
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and CUDA. �e framework uses the Caffe and Dark-

net-53 frameworks.

Model training

�e training process of tomato gray leaf spot detection is 

shown in Fig. 3. �is study adopts the method of compar-

ative experiment and uses network model Faster-RCNN, 

SSD, YOLOv3 and MobileNetv2-YOLOv3 to perform 

the comparative experiment and verify the model effect 

on different datasets. Firstly, the collected data are split, 

annotated and stored in the format of PASCAL VOC. 

Secondly, hybrid learning combined with transfer learn-

ing, transfer learning alone and not using the pre-training 

methods are used to train the network model. �e model 

parameters are corrected using the back-propagation 

algorithm to gradually reduce the loss function. �e 

training process is completed when the average loss is 

less than 0.01 and the loss function is no longer reduced 

after multiple iterations.

�e super parameter of the model is set to 32 sample 

number of each batch, the momentum factor is 0.9 and 

the initial learning rate is 0.001. In every 5000 iterations 

of training, the learning rate is reduced by 10 times, 

and the weight of the model is saved every 100 times of 

training.

Results and discussion

Model testing

�e GIoU loss function and the original YOLO loss func-

tion are used to train the MobileNetv2-YOLOv3 network 

model, and their training times are 10.6 and 12.8 h. �e 

loss curve is shown in Fig. 5a. �e loss value in the figure 

is the value of the loss function. �e loss curve iterated 

on the training dataset using the model of YOLO loss is 

shown in the curve YOLO loss-train of Fig. 5a, and the 

loss curve iterated on the verification dataset is shown in 

the curve YOLO loss-val of Fig. 5a. �e loss curve iter-

ated by the model using the GIoU loss function on the 

training dataset is shown in the curve GIoU loss-train 

of Fig. 5a, and the loss curve iterated on the verification 

Table 2 Con�guration of experimental hardware environment

Hardware name Model Number

Main board Asus WS X299 SAGE 1

CPU INTEL I7-9800X 1

Memory The Kingston 16G DDR4 2

Graphic card GEFORCE GTX1080Ti 2

Solid-state drives Kingston 256G 1

Hard disk Western digital 1T 1

Fig. 3 Flowchart of tomato disease detection network training
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dataset is shown in the curve GIoU loss-val of Fig.  4a. 

�e graph of average IoU for training is shown in Fig. 4b.

As shown in Fig.  4, the fitting degree of the model 

using GIoU Loss training is better than that of traditional 

YOLO loss on the verification dataset, and the aver-

age IoU value is significantly higher than that of YOLO 

loss. �e model using YOLO loss is gradually stable after 

3000 times, whilst the model using GIoU loss is gradu-

ally stable after 9000 times. �e validation dataset is used 

to verify the advantages and disadvantages of the model, 

and the super parameters of the model are adjusted by 

comparing the loss curves of the validation and train-

ing datasets. Figure 4a shows the loss curve of the super 

optimal parameter iterated during the constant tuning 

process. �e weights are saved 100 times per iteration, 

and the trained model is tested and evaluated. �is study 

uses objective evaluation criteria (F1 score, AP value and 

average IoU value) to evaluate the advantages and disad-

vantages of the model through the weight saved for every 

100 training sessions.

Test results using mixup training and transfer learning

MobileNetv2-YOLOv3 network is used as the basic 

network. �e traditional method does not use the pre-

training model and trains all of the parameters with the 

training set from scratch. �e transfer learning method 

uses the pre-training model of COCO dataset to train 

part of the layer parameters of the model. �is study pro-

poses the use of the pre-training model of mixup training 

combined with transfer learning to fine-tune the model. 

�e testing results of the three kinds of methods in the 

test dataset are shown in Table 3. Compared with the tra-

ditional method, transfer learning significantly affects the 

improvement of the model. When mixup training and 

transfer learning are combined, the F1 score of the model 

increases by 3.73%, the AP value increases by 2.64% and 

the Average IoU value increases by 2.64%.

Comparison of detection results of di�erent backbone 

networks

�is study compares different network models and 

backbone networks to prove the advantages of Mobile-

Netv2-YOLOv3, and the test results in the test dataset 

are shown in Table 4. �e network structure of YOLOv3 

is more sophisticated than that of YOLOv2. �us, the 

detection speed of the former is slightly lower than that of 

the latter, but the F1 score is increased by 6.20% and the 

AP value is increased by 6.24%. �e recognition accuracy 

increases significantly. Table  3 indicates that the detec-

tion speed and weight size of YOLOv3-Tiny increase 

greatly, but the detection precision decreases obvi-

ously. By using MobileNetv1 as the backbone network 

Fig. 4 Iteration curves. a Iteration curves of loss, b Iteration curves of average IoU

Table 3 Comparison of detection results using di�erent training methods

Training methods F1 score/ % Average precision/ % Average IoU/ %

Original method 88.99 87.65 80.49

Transfer learning method 91.53 89.38 82.57

Mixup + Transfer learning method 92.72 90.29 83.13
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of YOLOv3, the detection speed reaches 270 frames per 

second, and the weight size is only 23 MB. However, the 

AP value is decreased compared with that of the original 

YOLOv3. By using MobileNetv2 as the backbone net-

work of YOLOv3 (the proposed MobileNetv2-YOLOv3), 

the F1 score and the AP value achieve the best results. 

Compared with the original YOLOv3, the AP value is 

increased by 1.77%, the F1 score is increased by 0.95%, 

the weight size is only 28  MB and the detection speed 

reaches 22 frames per second. �erefore, MobileNetv2-

YOLOv3 network has obvious advantages because 

embedded terminal or mobile device is mostly used in 

image recognition of tomato leaf spot.

Test results using GIoU loss function

MobileNetv2-YOLOv3 is used as the basic network and 

the GIoU loss function is utilised to replace the original 

YOLOv3 loss function. After the training of the model, 

the test results are shown in Table  5. �e F1 score is 

increased by 1.47%, the AP value is increased by 2.80% 

and the average IoU value is increased by 4.48%. Com-

pared with the original YOLOv3, the test results are 

improved greatly. �erefore, the GIoU loss function 

greatly affects the accuracy of bounding box regression, 

which enables highly accurate detection of the location of 

tomato leaf spot disease.

Comparison of di�erent backgrounds of disease

�e different backgrounds of disease can affect the detec-

tion accuracy of the model greatly. �erefore, different 

backgrounds of the disease are taken as a control vari-

able in this study, and the MobileNetv2-YOLOv3 model 

is used by the network model. Different backgrounds of 

test dataset are used to verify the test results, as shown 

in Table 6.

For the recognition of disease under the background 

of sufficient light without leaf shelter, the F1 score of the 

model can reach 94.13%, the AP value can reach 92.53% 

and the average IoU can reach 89.92%. Table 5 shows that 

the detection accuracy is slightly low for the recogni-

tion of disease under the background of insufficient light 

with leaf shelter. �e reason is that the backgrounds have 

elements that mimic certain disease characteristics con-

sidering the actual application scenario. �us, the net-

work may learn them, which influences the recognition 

effect. �e P–R curve of the whole test set is shown in 

Fig. 5.

Comparison of di�erent detection methods

Faster-RCNN, SSD and MobileNetv2-YOLOv3 are 

trained, and the test results are compared in different test 

sets (Table  7). Compared with SSD and Faster-RCNN, 

MobileNetv2-YOLOv3 significantly improves in accu-

racy, and the F1 score can reach more than 90% in the 

case of different backgrounds. For the detection of the 

disease under the background of sufficient light without 

leaf shelter, the F1 score and the AP value are 2.12 and 

3.35% higher than those of SSD and 1.68% and 3.11% 

higher than those of Faster-RCNN. Figure  6 shows that 

MobileNetv2-YOLOv3 can miss the detection of tomato 

gray leaf spot under the condition of insufficient light 

(cloudy days) and leaf occlusion, and this performance 

is due to the effect on the detection accuracy of tomato 

gray leaf spot object under a darker background. Table 6 

indicates that SSD is close to Faster-RCNN in terms of 

detection accuracy.

In terms of training time, the batch size of each 

iteration of the model is set to 32. �e training times 

of Faster-RCNN and SSD are 16.7 and 12.2  h, respec-

tively, whilst the training time of the proposed Mobile-

Netv2-YOLOv3 is only 10.6 h. �e full connection layer 

is removed from YOLOv3 and SSD. �us, the training 

time will be significantly improved compared with that 

of Faster-RCNN. �is study also adopts the method 

Table 4 Comparison of detection results using di�erent backbone networks

Network models Backbone networks F1 score/ % Average precision/ % Weight size Detection 
speed

YOLOv2 DarkNet-19 85.67 82.28 195 MB 70

YOLOv3 DarkNet-53 91.77 88.52 236 MB 62

YOLOv3-Tiny Tiny 78.67 77.21 34 MB 220

YOLOv3 MobileNetv1 88.37 86.49 23 MB 270

YOLOv3 MobileNetv2 92.72 90.29 28 MB 246

Table 5 Detection results using GIoU loss function

Network models F1 score/ % Average 
precision/ %

Average IoU/ %

YOLOv3 91.77 88.52 82.49

MobileNetv2-YOLOv3 92.72 90.29 83.13

GIoU + MobileNetv2-
YOLOv3

93.24 91.32 86.98
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of mixup training and transfer learning to effectively 

reduce the training time. In terms of detection speed, 

MobileNetv2-YOLOv3 can achieve a detection speed 

of 246 frames/s, which is nearly 4 times faster than 

that of SSD and nearly 20 times faster than that of 

Faster-RCNN. �e results of the above-mentioned five 

groups of comparative tests indicate that the proposed 

MobileNetv2-YOLOv3 lightweight neural network can 

effectively identify tomato gray leaf spot region under 

natural environment. �e recognition accuracy and 

speed of the proposed method have significant advan-

tages over other methods.

Conclusions and future directions

Conclusions

1. An improved recognition method of tomato gray leaf 

spot based on MobileNetv2-YOLOv3 lightweight 

neural network is proposed. �e test results show 

that, in the test dataset of images captured under the 

background of sufficient light without leaf shelter in 

natural environment, the F1 score and AP value are 

94.13% and 92.53%, and the average IOU value is 

89.92%. In all of the test datasets, the F1 score and 

AP value of model detection reach 93.24 and 91.32%, 

respectively. �e loss function of GIoU regression 

box is used to replace the MSE mean square error 

part of the traditional loss function border regres-

sion, and the average IoU is as high as 86.98%, which 

provides good technical support for tomato gray leaf 

spot localisation.

2. A lightweight neural network model is proposed by 

improving the model. �e model occupies 28 MB of 

memory. For an image of 416 × 416, the detection 

speed can reach 16.9  ms on GPU and 80.9 ms on 

CPU, which can be used to transplant to embedded 

Table 6 Comparison of detection results under di�erent backgrounds

Test set F1 score/ % Average precision/ % Average IoU/ %

Sufficient light without leaf shelter 94.13 92.53 89.92

Sufficient light with leaf shelter 93.22 91.01 87.86

Insufficient light without leaf shelter 91.32 90.07 85.52

Insufficient light with leaf shelter 90.61 90.02 84.31

Fig. 5 P–R curve

Table 7 Comparison of detection results using di�erent network models

Test set Network models F1 score/ % Average 
precision/ %

Sufficient light without leaf shelter GIoU + MobileNetv2-YOLOv3 94.13 92.53

SSD 92.01 89.18

Faster-RCNN 92.45 89.42

Sufficient light with leaf shelter GIoU + MobileNetv2-YOLOv3 93.22 91.01

SSD 91.44 88.52

Faster-RCNN 92.12 92.13

Insufficient light without leaf shelter GIoU + MobileNetv2-YOLOv3 91.32 90.07

SSD 89.67 87.96

Faster-RCNN 90.01 88.33

Insufficient light with leaf shelter GIoU + MobileNetv2-YOLOv3 90.61 90.02

SSD 88.55 86.52

Faster-RCNN 89.77 87.61
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and mobile terminal. A method combining mixup 

training and transfer learning is proposed to transfer 

the knowledge learned from the COCO dataset to 

the tomato gray leaf spot recognition model, which 

improves the generalisation ability of the model and 

greatly reduces the training time and resources.

3. �e recognition accuracy of Faster-RCNN and SSD in 

different scenarios is compared with those of different 

models in terms of the detection accuracy and calcu-

lation speed to verify the feasibility and superiority of 

the proposed method. In natural environment, the F1 

score and AP value are 4.06% and 3.61% higher than 

those of SSD and 3.92% and 3.38% higher than those 

of Faster-RCNN. MobileNetv2-YOLOv3 can achieve 

a detection speed of 246 frames/s, which is nearly 4 

times faster than that of SSD and nearly 20 times faster 

than that of Faster-RCNN. �e proposed method has 

significant advantages over other methods.

Fig. 6 Effect diagram of the proposed detection method
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Future directions

Tomato is a widely planted crop in the world with abun-

dant nutrients. In this study, MobileNetv2-YOLOv3 is 

applied to the early detection of tomato gray leaf spot 

disease to achieve non-destructive detection. However, 

some problems still need to be solved urgently. 

1. �is work only aims to detect tomato gray leaf spot 

disease. Other kinds of common diseases exist in 

tomato. �us, the research of disease types on this 

basis should be increased to realise the detection of 

other kinds of diseases.

2. Given the achievements obtained in this study 

through the combination of software and hardware, 

the proposed algorithm should be run on a computer 

platform or a mobile app to enable application to 

actual production for facilitating farmers’ access to 

aid for their crops anytime and anywhere.

3. �is study realises the early detection of tomato 

gray leaf spot disease, which can play a role in timely 

detection. Subsequent studies will acquire tempera-

ture and humidity information, pathogenic spore 

information, soil information and environmental 

information through multiple sensors, fuse multi-

source data and construct an early warning model 

of tomato gray leaf spot disease based on multidata 

fusion to further realise early warning when the dis-

ease does not occur.
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