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Early risk assessment for COVID‑19 
patients from emergency 
department data using machine 
learning
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Since its emergence in late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) 
has caused a pandemic with more than 55 million reported cases and 1.3 million estimated deaths 
worldwide. While epidemiological and clinical characteristics of COVID‑19 have been reported, 
risk factors underlying the transition from mild to severe disease among patients remain poorly 
understood. In this retrospective study, we analysed data of 879 confirmed SARS‑CoV‑2 positive 
patients admitted to a two‑site NHS Trust hospital in London, England, between January 1st and 
May 26th, 2020, with a majority of cases occurring in March and April. We extracted anonymised 
demographic data, physiological clinical variables and laboratory results from electronic healthcare 
records (EHR) and applied multivariate logistic regression, random forest and extreme gradient 
boosted trees. To evaluate the potential for early risk assessment, we used data available during 
patients’ initial presentation at the emergency department (ED) to predict deterioration to one of 
three clinical endpoints in the remainder of the hospital stay: admission to intensive care, need for 
invasive mechanical ventilation and in‑hospital mortality. Based on the trained models, we extracted 
the most informative clinical features in determining these patient trajectories. Considering our 
inclusion criteria, we have identified 129 of 879 (15%) patients that required intensive care, 62 of 878 
(7%) patients needing mechanical ventilation, and 193 of 619 (31%) cases of in‑hospital mortality. 
Our models learned successfully from early clinical data and predicted clinical endpoints with high 
accuracy, the best model achieving area under the receiver operating characteristic (AUC‑ROC) scores 
of 0.76 to 0.87 (F1 scores of 0.42–0.60). Younger patient age was associated with an increased risk of 
receiving intensive care and ventilation, but lower risk of mortality. Clinical indicators of a patient’s 
oxygen supply and selected laboratory results, such as blood lactate and creatinine levels, were most 
predictive of COVID‑19 patient trajectories. Among COVID‑19 patients machine learning can aid in 
the early identification of those with a poor prognosis, using EHR data collected during a patient’s 
first presentation at ED. Patient age and measures of oxygenation status during ED stay are primary 
indicators of poor patient outcomes.

COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a novel infectious 
disease that leads to severe acute respiratory distress in humans. In March 2020, the World Health Organisation 
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declared the outbreak a pandemic and, by November 2020, it had caused more than 55 million con�rmed cases 
and 1.3 million estimated deaths worldwide. Disease severity for COVID-19 varies drastically between patients, 
including asymptomatic infection, mild upper respiratory tract illness and severe viral pneumonia with acute 
respiratory distress, respiratory failure and thromboembolic events that can lead to  death1–3. Initial reports 
suggest that 6–10% of infected patients are likely to become critically ill, most of whom will require mechani-
cal ventilation and intensive  care2,4. Currently, few prognostic markers exist to forecast whether a COVID-19 
patient may deteriorate to a critical condition and require intensive care. In general, patients can be grouped 
into three phenotypes, being at risk of thromboembolic disease, respiratory deterioration and cytokine  storm5. 
Clinical reports �nd that age, sex and underlying comorbidities, such as hypertension, cardiovascular disease 
and diabetes, can adversely a�ect patient  outcomes6,7. However, few studies have leveraged machine learning 
to systematically explore risk factors for poor prognosis and predict patient outcomes from early clinical data.

Increasingly, hospitals collate large amounts of patient data as electronic healthcare records (EHRs). Com-
bined with state-of-the-art machine learning algorithms, these data can help to predict patient outcomes with 
greater accuracy than traditional  methods8,9. However, EHR data for COVID-19 remains scarce in the public 
domain, prompting many authors to focus on statistical analyses  instead2,10–12. Where machine learning has 
been applied to COVID-19, results have been promising, but most studies su�er from a lack of statistical power 
owing to small sample  size13–16. Jiang et al. applied predictive analytics to data from two hospitals in Wenzhou, 
China, which included 53 hospitalised COVID-19 patients, to predict risk factors for acute respiratory distress 
syndrome (ARDS)13. Exploring the risk factors for in-hospital deaths, Zhou and co-workers used univariate and 
multivariate logistic regression on data of 191 patients in two hospitals in Wuhan,  China14. Similarly, Xie et al. 
used logistic regression to predict mortality, training a model on 299 patients and validating it on 145 patients 
from a di�erent hospital in Wuhan,  China16. Gong et al. used a logistic regression model to identify patients at 
risk of deterioration to severe COVID-19, applied to the data of 189 patients in Wuhan and Guangdong,  China15. 
Studies to date have used a combination of demographics, comorbidities, symptoms, and laboratory  tests13–15,17. 
�ese data typically comprise the patients’ entire historical record, as well as observations collected during the 
current hospital  stay14,16–18. While the inclusion of a patient’s full EHR history improves predictive performance, 
such approaches may be limited in their clinical applicability to early risk-assessment; rarely is the entire EHR 
of a patient available at the point of presentation in hospital.

In this work, we retrospectively apply machine learning to data of 879 con�rmed COVID-19 patients from 
two tertiary referral urban hospitals in London to predict patients’ risk of deterioration to one of three clinical 
endpoints: (A) admission to an adult intensive care unit (AICU), (B) need for invasive mechanical ventilation, 
and (C) in-hospital mortality. We restrict our analysis to EHR data available during a patient’s �rst presentation 
in the emergency department (ED) as this more accurately resembles the hospital reality of early-risk assessment 
and patient-strati�cation. Our analysis provides a proof of principle for COVID-19 risk assessment, with models 
achieving a high prediction performance, indicating that patient age, oxygenation status and selected laboratory 
tests are prime indicators of patient outcome.

Methods
Data collection and study design. Anonymised EHR data of patients admitted to a two-site hospital 
Trust in London, England, between January 1st, 2020 and May 26th, 2020, were gathered by Chelsea & Westmin-
ster NHS Foundation Trust (NHS Trust, herea�er). �e data was supplied in accordance with internal informa-
tion governance review, NHS Trust information governance approval, and General Data Protection Regulation 
(GDPR) procedures outlined under the Strategic Research Agreement (SRA) and relative Data Sharing Agree-
ments (DSAs) signed by the NHS Trust and Sensyne Health plc on 25th July 2018. All analyses were conducted 
on data with no personal identifying information. �erefore, informed consent was waived by the ethics com-
mittee of the Chelsea & Westminster NHS Foundation Trust, which provided ethical approval for the study.

Data encompasses clinical observations collated from inpatient encounters. �e analysis was restricted to 
adult patients aged between 18 and 100 years at the time of their COVID-19 related hospital admission. �e 
latter was de�ned as an admission with a con�rmed SARS-CoV-2 infection determined by quantitative reverse-
transcription PCR (qRT-PCR). 63% of patients in the study cohort were male and 37% female (Table 1). �e 
majority were white British (28.3%) or did not state their ethnicity (23.3%) (see also Supplementary Fig. S1).

Cohort definition. A total of 1235 COVID-19 positive patients fell within the observation time and study 
parameters. From these patients, three cohorts were derived, one for each clinical endpoint, as follows (see also 
Supplementary Fig. S2). First, patients who did not have information relating to an admission to any hospital 
department in 2020 were excluded, resulting in 968 patients. �en the following exclusion criteria were applied 
to each of the considered endpoints: for cohort (A) patients without a documented ward location were excluded; 
for cohort (B) patients without information on oxygen supply were excluded; for cohort (C) patients without 
hospital discharge information were excluded. Finally, since our models were trained on data available during a 
patient’s stay in the ED, we removed patients who did not have a documented ED visit. �e �nal cohorts included 
879, 878 and 619 patients for cohorts, A, B and C, respectively (Table 2). No signi�cant di�erences in composi-
tion were found between these three cohorts (Supplementary Table S1).

Each cohort was divided into target and control groups (see Table 2). For AICU admission, target patients 
comprise those that were admitted to an AICU at any time during their hospital stay, while control patients are 
those that remained in any other ward for their entire admission. Target patients in the ventilation cohort were 
de�ned as requiring invasive mechanical ventilation, whereas control patients required no or only minimal 
breathing assistance. Both categories are based on clinical records of oxygen supply according to Table 3. Note 
that from hospital data the total number of mechanically ventilated patients was 135. However only 62 of these 
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135 patients were visible in our analysis. �is results from staggered deployment of EHR data in the two hospitals 
such that one site is understood to lack certain data related to mechanical ventilation. Mortality data was based 
on the discharge destination (mortuary) in clinical records. All regularly discharged patients were considered 
part of the control cohort.

Data processing and feature generation. �e data set covered patients’ entire encounter history from 
presentation at the hospital’s ED to discharge, with a median length of in-hospital stay of 7.2 days. Features 
were only extracted from data available during a patient’s ED stay (median length of stay of 4.7 h). Variables 
with less than 5% coverage in the patient population were removed from our analysis resulting in a total of 64 
clinical features, including patient demographics (3 in total), vital signs (4 in total), laboratory measurements 
and clinical observations (57 in total). �ese features and their coverage across all three cohorts are listed in 
Supplementary S2. Categorical variables such as patient sex and ethnicity were one-hot encoded. For continu-
ous variables patients may have received multiple test results during their stay. �ese values were aggregated for 
each feature to only retain the respective minimum, maximum, mean and last observation value in ED. Missing 
values in the feature set were imputed with the mean of the training data. For the logistic regression model (see 
below) each feature was also standardised to zero mean and unit variance based on the training set. To account 
for the class imbalance in the data set (see Table 2), we applied minority class oversampling to the training data 

Table 1.  Composition of overall patient population.

Demographics

Patient age (years)

Range 18.0–99.0

Overall mean (std) 67.6 (16.9)

Female mean (std) 70.0 (17.4)

Male mean (std) 66.3 (16.3)

Sex (number of patients)

Female 324 (36.9%)

Male 554 (63.0%)

Unknown 1 (0.1%)

Ethnicity (number of patients)

White British 248 (28.2%)

Not stated 205 (23.3%)

Ethnic other 105 (11.9%)

White other 90 (10.2%)

Asian Indian 65 (7.4%)

Asian other 42 (4.8%)

Unknown 30 (3.4%)

Black African 26 (3.0%)

Black Caribbean 23 (2.6%)

Asian Pakistani 13 (1.5%)

Other 32 (3.6%)

Table 2.  Clinical endpoint cohorts.

Cohort A (AICU admission) Cohort B (ventilation) Cohort C (mortality)

Number of patients 879 878 619

Target patients 129 (15%) 62 (7%) 193 (31%)

Control patients 750 (85%) 816 (93%) 426 (69%)

Table 3.  Target and control de�nition for ventilation cohort.

Category Clinical observation value

Control
Room air, air/none, nasal cannulae, high �ow nasal cannulae, venturi mask, face mask, non-rebreather mask, simple face mask, 
swedish nose with, oxygen, mask, HFOV, face/tracheostomy mask, CPAP, BiPAP

Target Ventilator, tracheostomy, CMV, VC-CMV, t-piece, HELIOX, IPPV, SIMV, PC-BIPAP, APRV, CPAP / ASB_SPN / CPAP/PS
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using  SMOTE19. All models were trained using all features described in Supplementary Table S2. Mean feature 
values across each of the three cohorts separated by control and target patients are provided in Supplementary 
Tables S2-S4.

Patient outcome prediction. �ree machine-learning algorithms were benchmarked to predict patient 
outcomes from EHR data: logistic regression, random forest and Extreme Gradient Boosted Trees (XGBoost). 
Logistic regression, which predicts the probability of a clinical endpoint as a linear function of the feature 
space, was used as a baseline algorithm. �e model was regularised with elastic net using equal weighting given 
to  L1 and  L2 penalties in order to account for the high dimensionality of the data set relative to the number 
of  observations20. A random  forest21 was trained using 100 trees and splits were evaluated using Gini impu-
rity. Classes were inversely weighted to account for the class imbalance present in the data set. An XGBoost 
 algorithm22 was trained with its hyperparameters set to 100 trees, max tree-depth of 6, step-shrinkage of 0.3, no 
subsampling and  L2 regularisation, to minimize log-loss. �is tree-based algorithm trains decision trees sequen-
tially, with each new tree being trained on the residuals of previous trees.

Performance evaluation. All methods were evaluated using a threefold cross-validation strategy with a 
strati�ed validation split based on target patients. �e strati�ed cross-validation splits were kept the same for 
all methods. For each cross-validation split an independent model was trained, resulting in three independent 
models for each method. Results are reported as mean and standard deviation across these independent models. 
Predictive performance was measured in terms of area under curve (AUC) of the receiver operating character-
istic (ROC) and, given the presence of class-imbalance, precision-recall curves are provided to assess expected 
real-world performance relative to random classi�ers. To further account for class imbalance, F1 scores and 
confusion matrices at each model’s ideal classi�cation threshold as derived by Youden’s J statistic on the ROC 
curve were also computed.

In order to extract the clinical features most relevant to predictions, permutation feature importance (PFI) 
was calculated for each model post-hoc21,23. To this end, each feature was individually randomised using ten 
trials per feature. �e model’s average precision on the validation sets was then compared to the average preci-
sion before the feature had been randomised. �e changes in precision were normalised by the sum of absolute 
changes over all features. Averages and standard deviations over the validation sets from three cross-validation 
folds have been reported. From these results, statistical signi�cance was assessed by computing p values based 
on a one-sided t-test with the null hypothesis of no signi�cant di�erences from zero mean.

Accumulated local e�ects (ALE) were computed to determine the directionality of a feature’s e�ect on model 
 predictions24. Speci�cally, the feature space was divided into ten percentile bins and each feature’s e�ect was 
calculated as the di�erence in predicted risk between the upper and lower bounds of each bin, leaving all other 
features unchanged. Binning features in this way can reduce the in�uence of correlated features o�en encountered 
when trying to isolate the e�ect of a single  feature24.

Computation. �e entire analysis was carried out in Python 3.6.8 on a Linux-based system. Data were pro-
cessed using numpy 1.18.125 and pandas 1.0.126. Models were constructed with scikit-learn 0.23.127 and xgboost 
1.0.122. PFI was implemented using scikit-learn’s permutation_importance function. Results were visualised in 
matplotlib 3.1.328 and seaborn 0.10.0.

Results
Patient pathways. A summary of observed patient in-hospital pathways is shown in Fig. 1A. Of the 630 
patients for whom the complete pathway is available, 629 (99.8%) entered the hospital via the ED, while 1 (0.2%) 
patient was admitted directly to AICU. Upon leaving the ED, 596 (94.6%) patients transitioned to regular wards 
and 32 (5.1%) to an AICU. Of the 596 patients admitted to regular wards, 405 (68%) were ultimately discharged, 
12 (2%) remained in hospital and 179 (30%) succumbed to the infection. Among the 596 ward patients, 60 
(10.1%) patients required subsequent admission to an AICU. Hence, a total of 92 patients have been admitted 
to an AICU at some point during their hospital journey. Of these 92 AICU patients, 50 (54.3%) were ultimately 
discharged, 38 (41.3%) did not survive and 4 (4.3%) remained in hospital.

�e median time from hospital presentation to receiving a positive COVID-19 test result was 26.2 h. Patients’ 
median length of stay in ED was 4.7 h (IQR 3.13 h). During this time, demographic information, vitals and 
laboratory values were collected (Fig. 1B). To aid an early patient strati�cation, our models use data collected 
during the ED stay only to predict whether a patient reached any of three clinical endpoints during their sub-
sequent admission.

AICU admission. First, we studied patients transitioning to critical care and requiring admission to an 
AICU. All three models reach good prediction performance on this endpoint, as measured by area under the 
curve (AUC) of the receiver operating characteristic (ROC) and precision-recall curves, signi�cantly outper-
forming random classi�ers (Fig. 2). �e best performing model, XGBoost, reaches an AUC-ROC of 0.84 and an 
F1 score of 0.52. Both tree-based methods perform better than logistic regression (Table 4). �is is to be expected 
since logistic regression cannot model interactions between features unless such interactions are explicitly 
encoded into the training data set through feature engineering. To further corroborate model performance on 
our imbalanced data set (see Table 2), we analysed the calibration of the models’ predicted patient risk against 
true patient outcomes. Both the random forest and XGBoost models show close to ideal calibration with Brier 
scores of 0.10, whereas logistic regression is calibrated noticeably worse, reaching a Brier score of 0.21 (Supple-
mentary Fig. S3A). Similarly, both tree-based methods yield a lower number of false positive predictions com-
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Figure 1.  Patient pathways and outcome prediction. (A) Patient transitions between hospital departments are 
shown as bands proportional in size to patient numbers. Di�erent departments are indicted by rectangles (ED, 
emergency department; Ward, regular hospital ward; AICU, adult intensive care unit). Patients who remain 
in hospital, are being discharged or die in hospital are indicated on the right. (B) Patient outcome prediction 
models use clinical data recorded within the ED stay of a patient to predict clinical endpoints during the 
remainder of the in-hospital stay.

Figure 2.  Prediction performance for AICU admission. Model performances for the logistic regression, 
random forest and XGBoost models are shown as ROC (A) and precision-recall curves (B). AUC is provided 
in brackets. Solid lines and shaded areas indicate the mean and standard deviation across three cross-validation 
folds, respectively. Dashed lines indicate random classi�ers.
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pared to logistic regression (Supplementary Fig. S4) as well as a higher sensitivity and speci�city (Supplemen-
tary Table S6). All models show a moderate amount of variability across cross-validation folds (notice standard 
deviations in Fig. 2 and Table 4), which can compromise subsequent analyses. �is instability originates from the 
limited number of patients and imbalance between target and control patients (see Table 2). Speci�cally, in each 
of the three cross-validation folds the models are only trained and validated on two thirds and one third of the 
data set, respectively, leaving few target patients for these tasks.

Next, we assessed which clinical variables contribute the most to model predictions by applying PFI. Figure 3A 
presents the 15 most important features for the logistic regression with elastic net regularisation. Note that 
clinical variables that can be recorded multiple times during a patient’s ED visit were aggregated to retain only 
the minimum, maximum, mean and last observation value during the ED stay. Only patient age reached high 
importance and signi�cance over cross-validation folds for the logistic regression. �e random forest (Fig. 3B) 
and XGBoost (Fig. 3C) models assign high importance to patient age, with respiratory rate following therea�er. 
Intriguingly, ALE analyses reveal that lower patient age increases the likelihood of AICU admission in all three 
models (Fig. 3D–F). �is agrees well with a bias towards younger patients when comparing AICU-admitted 
patients with control patients (Supplementary Fig. S5A). However, clinical indicators of disease severity, such 
as C-reactive protein and ferritin levels, show no clear trend across age groups (Supplementary Fig. S6). We also 
�nd that the anion gap (Fig. 3D) and respiratory rate (Fig. 3E,F) exhibit a positive e�ect on AICU admission 
probability.

In summary, machine learning algorithms can predict those COVID-19 patients most likely to require AICU 
admission from EHR data available during the initial ED stay with high precision. Patient age and measures of 
oxygenation status are strong indicators of patient outcome, with advanced age decreasing the probability of 
AICU admission.

Mechanical ventilation. For mechanical ventilation prediction, we categorised patients into those that 
needed a ventilator (e.g., patients receiving SIMV, BIPAP or APRV ventilation) and control patients that either 
were able to breathe normally or required minimal assistance (e.g., those patients receiving oxygen via nasal can-
nulae or face masks). Prediction performance on this endpoint is comparable to prediction of AICU admission 
(Fig. 4). Speci�cally, random forest and XGBoost perform best, reaching AUCs of 0.87, while logistic regression 
reaches 0.74 (Table 4). �is result is expected since most patients receive mechanical ventilation in AICU, mean-
ing the ventilation cohort is a subset of the critical care cohort (55 of 62 target patients in Cohort B are target 
patients in Cohort A). Notably, all models show a decrease in F1 scores and stability when predicting this clinical 
endpoint (Table 4 and Fig. 4). �is is most likely due to a higher class-imbalance and lower number of patients 
receiving ventilation. However, both the random forest and XGBoost models maintain good calibration of pre-
dicted risk against true outcomes with Brier scores of 0.06 (Supplementary Fig. S3B).

Feature importance analysis for the logistic regression shows a large e�ect of patient age and deoxyhaemo-
globin levels (Fig. 5A). �is mirrors the results for AICU admission. Both tree-based methods rank patient 
age as well as the fraction of inspired oxygen  (FiO2) and blood lactate levels highly (Fig. 5B,C), although few 
contributions are signi�cant. In general, all models rely on a broader set of features for the ventilation endpoint. 
ALE analysis shows younger patients had an increased probability of receiving ventilation (Fig. 5D–F), which 
agrees with an inherent bias towards younger age when comparing ventilated with non-ventilated patients (Sup-
plementary Fig. S5B). In addition, a low deoxyhaemoglobin level and a high fraction of inspired oxygen were 
associated with a poor prognosis.

Taken together, models show good performance when predicting ventilation, albeit with a decreased model 
stability (higher standard deviation) and F1 scores. Patient age and oxygenation status are most predictive of poor 
outcome, with additional contributions from blood test values, such as lactate and deoxyhaemoglobin levels.

Mortality. �e performance of all three models shows a marked decrease in AUC-ROC when predicting 
mortality (Fig. 6). �e logistic regression reaches an AUC of 0.70, whereas random forest and XGBoost reach 
0.77 and 0.76, respectively. However, all models show improved precision with F1 scores of 0.56–0.61, reaching 
their highest values among all clinical endpoints (Table 4).

Table 4.  Model performance on clinical endpoint prediction (standard deviation shown in brackets). Best 
model in bold.

Model

Endpoint A (AICU 
admission) Endpoint B (ventilation) Endpoint C (mortality)

AUC F1 AUC F1 AUC F1

Logistic regression 0.72 (0.049) 0.40 (0.025) 0.74 (0.082) 0.23 (0.014) 0.70 (0.031) 0.56 (0.028)

Random forest 0.83 (0.005) 0.49 (0.036) 0.87 (0.028) 0.31 (0.030) 0.77 (0.030) 0.61 (0.026)

XGBoost 0.84 (0.014) 0.52 (0.012) 0.87 (0.028) 0.42 (0.059) 0.76 (0.034) 0.60 (0.032)
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Figure 3.  Feature importance for AICU admission. (A–C) Permutation feature importance for the logistic 
regression (A), random forest (B) and XGBoost (C) models. Only the top 15 features are shown. Asterisks mark 
features with importance scores signi�cantly di�erent from zero across three cross-validation folds with t-test 
p value thresholds of 5% ( *) and 1% (* *). (D–F) Accumulated local e�ects plots for the logistic regression (D), 
random forest (E) and XGBoost models (F). �e top two features according to permutation feature importance 
are shown for each model. Vertical bars at the bottom indicate feature values observed in the data set.
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Predictions from the logistic regression model are dominated by patient age, with patient sex adding a small 
but signi�cant contribution (Fig. 7A). Similarly, tree-based methods rely heavily on age for their predictions, with 
smaller contributions of respiratory rate, Troponin T and creatinine levels (Fig. 7B,C). More generally, prediction 
of mortality shows several blood tests that are not strictly related to oxygenation status among the important 
features. ALE analysis shows that advanced age is predictive of higher mortality (Fig. 7D–F). �is agrees with a 
bias towards older age in patients that die in hospital (Supplementary Fig. S5C). Moreover, low eosinophil counts 
and high respiratory rates increase the risk of mortality in our models (Fig. 7D–F).

In summary, our models show an increased F1 score but lower AUC-ROC performance when predicting 
mortality. Feature importance scores reveal a high and signi�cant contribution of patient age with advanced age 
contributing to poor patient outcomes.

Discussion
Disease severity can vary dramatically between COVID-19 patients, ranging from asymptomatic infection to 
severe respiratory distress and failure. To evaluate the potential of an early strati�cation of hospitalised patients 
into risk groups, we built machine learning models from EHR care data of con�rmed COVID-19 positive 
patients, aimed at predicting one of three clinical endpoints: admission to AICU, the need for mechanical ven-
tilation and mortality. On all three cohorts, our models reach good performance with the best model showing 
AUC-ROC between 0.76 and 0.87. Overall, machine learning methods can thus reliably predict poor outcomes 
for COVID-19 patients from early clinical data, available during the ED stay of patients.

�e most predictive feature for all three endpoints was patient age, followed by indicators of patients’ oxy-
genation status, including fraction of inspired oxygen and respiratory rate. Given that SARS-CoV-2 causes an 
infection of the respiratory tract, which can lead to severe respiratory distress, these results were to be expected. 
Our �ndings are supported by similar works, in which age is consistently found to be the most important 
 feature14–16. However, we note that other potential indicators for severe viral infection, like increased temperature 
and markers of immune system activation, e.g. C-reactive protein, are less prominent in our feature importance 
scores. Overall, prediction of mortality relies more strongly on blood tests as opposed to indicators of oxygen 
supply observed in other endpoints. �e reason for this observation and its clinical signi�cance merits further 
investigation. Our ALE analysis reveals that lower patient age contributes to an increased probability of receiv-
ing mechanical ventilation and critical care in AICU, while coinciding with lower mortality. We also note that 
Docherty et al. �nd that 17% of COVID-19 patients require admission to a High Dependency or Intensive Care 
 Unit29, which is similar to 15% of patients in our data. Conversely, our �ndings regarding the importance of 
features relating to patients’ oxygenation status are not corroborated by other works. Speci�cally, other studies 
�nd that one important predictor of patient outcome is the level of lactate  dehydrogenase15,16, which, although 
present in our data set, does not signi�cantly contribute to predictions.

Figure 4.  Prediction performance for mechanical ventilation. Model performances for the logistic regression, 
random forest and XGBoost models are shown as ROC (A) and precision-recall curves (B). AUC is provided 
in brackets. Solid lines and shaded areas indicate the mean and standard deviation across three cross-validation 
folds, respectively. Dashed lines indicate random classi�ers.
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Figure 5.  Feature importance for mechanical ventilation. Permutation feature importance for the random 
forest (A), logistic regression (B) and XGBoost (C) models. Only the top 15 features are shown. Asterisks mark 
features with importance scores signi�cantly di�erent from zero across three cross-validation folds with t-test 
p value thresholds of 5% ( *) and 1% (* *). (D–F) Accumulated local e�ects plots for the logistic regression (D), 
random forest (E) and XGBoost models (F). �e top two features according to permutation feature importance 
are shown for each model. Vertical bars at the bottom indicate feature values observed in the data set.
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A novel aspect of the present analysis is the use of data limited to a patient’s �rst few hours in ED. While 
this perhaps more accurately re�ects the data available at the time of admission, it may well come at the cost of 
missing important information, such as medical history or primary care data, for predicting patient outcome. 
�is may explain the comparative di�culty in predicting mortality, since a patient’s overall chance of surviving 
infection may depend heavily on their medical history. Also note that, in our analysis, all patients were considered 
together for mortality prediction and the cohort was not further split according to confounding factors such as 
age or sex. In addition, mortality data for recent hospital admissions are by their nature censored, with clinical 
endpoints for patients who remain in hospital not yet fully known.

While we base our study on a comparatively large data set from a two-site NHS hospital trust, longitudinal 
information from additional treatment centres and geographic regions may improve a model’s ability to gener-
alise. We note that such data is currently unavailable for COVID-19. However, future studies may bene�t from 
a multicentre approach. As a result of limited data and the imbalanced cohorts, model stability remains a major 
challenge. While we use minority class oversampling, inverse class weights and strati�ed threefold cross valida-
tion to mitigate this issue, large uncertainties in model results persist, and many predictions do not reach statis-
tical signi�cance. Increased patient numbers, in particular among target patients, may lead to more conclusive 
results. Once such data is available, more complex models, such as deep neural networks, may achieve higher 
prediction performance. A key aspect which should be considered in such works is the prediction horizon, which 
impacts on how useful a model could be.

In conclusion, our models represent a �rst step towards the prediction of COVID-19 patient pathways in 
hospital at the point of admission in the emergency department. While they succeed in predicting patient out-
comes and reveal critical clinical variables that may in�uence patient trajectories, larger data sets and further 
analyses are required to draw clinically relevant conclusions.

Figure 6.  Prediction performance for mortality. Model performances for the logistic regression, random forest 
and XGBoost models are shown as ROC (A) and precision-recall curves (B). AUC is provided in brackets. Solid 
lines and shaded areas indicate the mean and standard deviation across three cross-validation folds, respectively. 
Dashed lines indicate random classi�ers.
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Figure 7.  Feature importance for mortality. (A–C) Permutation feature importance for the logistic regression 
(A), random forest (B) and XGBoost (C) models. Only the top 15 features are shown. Asterisks mark features 
with importance scores signi�cantly di�erent from zero across three cross-validation folds with t-test p value 
thresholds of 5% ( *) and 1% (* *). (D–F) Accumulated local e�ects plots for the logistic regression (D), random 
forest (E) and XGBoost models (F). �e top two features according to permutation feature importance are 
shown for each model. Vertical bars at the bottom indicate feature values observed in the data set.
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