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Abstract 33 

Background  Since its emergence in late 2019, the severe acute respiratory syndrome 34 

coronavirus 2 (SARS-CoV-2) has caused a pandemic, with more than 4.8 million reported 35 

cases and 310 000 deaths worldwide. While epidemiological and clinical characteristics of 36 

COVID-19 have been reported, risk factors underlying the transition from mild to severe 37 

disease among patients remain poorly understood. 38 

 39 

Methods  In this retrospective study, we analysed data of 820 confirmed COVID-19 positive 40 

patients admitted to a two-site NHS Trust hospital in London, England, between January 1st 41 

and April 23rd, 2020, with a majority of cases occurring in March and April. We extracted 42 

anonymised demographic data, physiological clinical variables and laboratory results from 43 

electronic healthcare records (EHR) and applied multivariate logistic regression, random 44 

forest and extreme gradient boosted trees. To evaluate the potential for early risk 45 

assessment, we used data available during patients’ initial presentation at the emergency 46 

department (ED) to predict deterioration to one of three clinical endpoints in the remainder of 47 

the hospital stay: A) admission to intensive care, B) need for mechanical ventilation and C) 48 

mortality. Based on the trained models, we extracted the most informative clinical features in 49 

determining these patient trajectories. 50 

 51 

Results  Considering our inclusion criteria, we have identified 126 of 820 (15%) patients that 52 

required intensive care, 62 of 808 (8%) patients needing mechanical ventilation, and 170 of 53 

630 (27%) cases of in-hospital mortality. Our models learned successfully from early clinical 54 

data and predicted clinical endpoints with high accuracy, the best model achieving AUC-55 

ROC scores of 0.75 to 0.83 (F1 scores of 0.41 to 0.56). Younger patient age was associated 56 

with an increased risk of receiving intensive care and ventilation, but lower risk of mortality. 57 

Clinical indicators of a patient’s oxygen supply and selected laboratory results were most 58 

predictive of COVID-19 patient trajectories. 59 

 60 

Conclusion  Among COVID-19 patients machine learning can aid in the early identification of 61 

those with a poor prognosis, using EHR data collected during a patient’s first presentation at 62 

ED. Patient age and measures of oxygenation status during ED stay are primary indicators of 63 

poor patient outcomes.  64 
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Introduction 65 

COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is 66 

a novel infectious disease that leads to severe acute respiratory distress in humans. In March 67 

2020, the World Health Organisation declared the outbreak a pandemic and, by May 19th, it 68 

had caused more than 4 800 000 confirmed cases and 310 000 deaths worldwide [1]. 69 

Disease severity for COVID-19 appears to vary dramatically between patients, including 70 

asymptomatic infection, mild upper respiratory tract illness and severe viral pneumonia with 71 

acute respiratory distress, respiratory failure and thromboembolic events that can lead to 72 

death [2–4]. Initial reports suggest that 6%-10% of infected patients are likely to become 73 

critically ill, most of whom will require mechanical ventilation and intensive care [3,5].  74 

Currently, few prognostic markers exist to forecast whether a COVID-19 patient may 75 

deteriorate to a critical condition and require intensive care. In general, patients can be 76 

grouped into three phenotypes, being at risk of thromboembolic disease, respiratory 77 

deterioration and cytokine storm [6]. Early clinical reports find that age, sex and underlying 78 

comorbidities, such as hypertension, cardiovascular disease and diabetes, can adversely 79 

affect patient outcomes [7,8]. However, few studies have leveraged machine learning to 80 

systematically explore risk factors for poor prognosis.  81 

Increasingly, hospitals collate large amounts of patient data as electronic healthcare 82 

records (EHRs). Combined with state-of-the-art machine learning algorithms, these data can 83 

help to predict patient outcomes with greater accuracy than traditional methods [9,10]. 84 

However, EHR data for COVID-19 remains scarce in the public domain, prompting many 85 

authors to focus on statistical analyses instead [11–14]. Where machine learning has been 86 

applied to COVID-19, results have been promising, but most studies suffer from a lack of 87 

statistical power owing to small sample size [15–18]. Jiang et al. applied predictive analytics 88 

to data from two hospitals in Wenzhou, China, which included 53 hospitalised COVID-19 89 

patients, to predict risk factors for acute respiratory distress syndrome (ARDS) [15]. Exploring 90 

the risk factors for in-hospital deaths, Zhou and co-workers used univariate and multivariate 91 

logistic regression on data of 191 patients in two hospitals in Wuhan, China [16]. Similarly, Xie 92 

et al. used logistic regression to predict mortality, training a model on 299 patients and 93 

validating it on 145 patients from a different hospital in Wuhan, China [18]. Gong et al. used a 94 

logistic regression model to identify patients at risk of deterioration to severe COVID-19, 95 

applied to the data of 189 patients in Wuhan and Guangdong, China [17].  96 

A key factor that determines the success of risk prediction models is the quality and richness 97 

of the available data. Studies to date have used a combination of demographics, 98 

comorbidities, symptoms, and laboratory tests [15–17,19]. These data typically comprise the 99 

patients’ entire historical record, as well as observations collected during the current hospital 100 

stay [16,18–20]. While the inclusion of a patient’s full EHR history improves predictive 101 

performance, such approaches may be limited in their clinical applicability to early risk-102 

assessment; at the point of presentation in hospital, the entire EHR of a patient is rarely 103 

available. 104 

In this work, we retrospectively apply machine learning to data of 820 confirmed COVID-19 105 

patients from two tertiary referral urban hospitals in London to predict patients’ risk of 106 

deterioration to one of three clinical endpoints: A) admission to an adult intensive care unit 107 

(AICU), B) need for mechanical ventilation, and C) in-hospital mortality. We restrict our 108 

analysis to EHR data available during a patient’s first presentation in the emergency 109 

department (ED) as this more accurately resembles the hospital reality of early-risk 110 
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assessment and patient-stratification. Our analysis provides a proof of principle for COVID-19 111 

risk assessment, with models achieving a high prediction performance, indicating that patient 112 

age, oxygenation status and selected laboratory tests are prime indicators of patient 113 

outcome. 114 

 115 

Methods 116 

Data collection and study design 117 

Anonymised EHR data of patients admitted to two hospitals in London, England, between 118 

January 1st, 2020 and April 23rd, 2020, were gathered by Chelsea & Westminster NHS 119 

Foundation Trust (NHS Trust, hereafter). The data was supplied in accordance with internal 120 

information governance review, NHS Trust information governance approval, and General 121 

Data Protection Regulation (GDPR) procedures outlined under the Strategic Research 122 

Agreement (SRA) and relative Data Sharing Agreements (DSAs) signed by the NHS Trust and 123 

Sensyne Health plc on 25th July 2018. 124 

Data encompasses clinical observations collated from inpatient encounters. The analysis was 125 

restricted to adult patients aged between 18 and 100 years at the time of their most recent 126 

hospital admission (assumed to be the COVID-19-related admission). Only confirmed SARS-127 

CoV-2 positive patients, as determined by quantitative reverse-transcription PCR (qRT-PCR), 128 

were included. 65% of patients were male and 35% female (Table 1). The majority were white 129 

British (28%) or did not state their ethnicity (24%) (see also Fig. S1). All clinical features and 130 

their coverage in the data set are listed in Table S1. Features include patient demographics (3 131 

in total), vital signs (4 in total), laboratory measurements and clinical observations (60 in total). 132 

For vital signs and laboratory measurements, patients may have received multiple test results 133 

during their stay. These values were aggregated for each feature to only retain the respective 134 

minimum, maximum, mean and last observation value. Only clinical features with at least 5% 135 

coverage in the patient population were considered. The data set covered the patient’s entire 136 

encounter history from their admission to the hospital’s ED, with a median length of stay in 137 

that department of 5 hours, to their discharge. The median length of in-hospital stay was 7.2 138 

days. 139 

 140 

Cohort definition 141 

A total of 3229 patients fell within the observation time and study parameters. From these 142 

patients, three cohorts were derived, one for each clinical endpoint, as follows (see Fig. S2 143 

for flow diagram and patient numbers). Only confirmed COVID-19 positive patients were 144 

considered. Patients who did not have information relating to an admission to any hospital 145 

department in 2020 were excluded. Furthermore, the following exclusion criteria were applied 146 

to each of the considered endpoints: for cohort A) patients without a documented ward 147 

location were excluded; for cohort B) patients without information on oxygen supply were 148 

excluded; for cohort C) patients without hospital discharge information were excluded. 149 

Finally, since our models were trained on data available during a patient’s stay in the ED, we 150 

removed patients who did not have a documented ED visit. 151 

 152 

Each cohort was divided into target and control groups (see Table 2). For AICU admission, 153 

target patients comprise those that were admitted to an AICU at any time during their 154 

hospital stay, while control patients are those that remained in any other ward for their entire 155 

admission. Target patients in the ventilation cohort were defined as requiring invasive 156 
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mechanical ventilation, whereas control patient required no or only minimal breathing 157 

assistance. Both categories are based on clinical records of oxygen supply according to 158 

Table 3. Note that from clinical data the total number of mechanically ventilated patients was 159 

135, however only 62 were visible in our data. This results from staggered deployment of 160 

EHR data in the two hospitals such that one site is understood to lack certain data related to 161 

mechanical ventilation. Mortality data was based on the discharge destination (mortuary) in 162 

clinical records. All regularly discharged patients or patients remaining in hospital were 163 

considered alive. 164 

 165 
Table 1. Composition of patient population. 166 

 167 

 168 

 169 

 170 

 171 

 172 

 173 

 174 

 175 

 176 

 177 

 178 

 179 

 180 

 181 

 182 

 183 

 184 

 185 

 186 

 187 

 188 

  189 

 190 
Table 2. Clinical endpoint cohorts. 191 

 Cohort A 

(AICU admission) 

Cohort B 

(ventilation) 

Cohort C 

(mortality) 

Number of patients 820 808 630 

Target patients 126 (15%) 62 (8%) 170 (27%) 

Control patients 694 (85%) 742 (92%) 460 (73%) 

 192 
Table 3. Target and control definition for ventilation cohort. 193 

Category Clinical observation value 

Control room air, air/none, nasal cannulae, high flow nasal cannulae, venturi mask, face 

mask, non-rebreather mask, simple face mask, swedish nose with, oxygen, 

mask, HFOV, face/tracheostomy mask, CPAP, BiPAP 

Target ventilator, tracheostomy, CMV, VC-CMV, t-piece, HELIOX, IPPV, SIMV, PC-

BIPAP, APRV, CPAP / ASB_SPN / CPAP/PS 

Demographics 

Patient age (years) 

Range 18-100 

Overall mean (standard deviation) 67.3 (16.8) 

Female mean (standard deviation) 70.3 (17.2) 

Male mean (standard deviation) 65.8 (16.4) 

Sex (number of patients) 

Female 286 (34.9%) 

Male 533 (65.0%) 

unknown 1 (0.1%) 

Ethnicity (number of patients) 

White British 230 (28%) 

Not Stated 196 (23.9%) 

Ethnic Other 97 (11.8%) 

White Other 76 (9.3%) 

Asian Indian 63 (7.7%) 

Asian Other 39 (4.8%) 

Unknown 29 (3.5%) 

Black African 24 (2.9%) 

Black Caribbean 23 (2.8%) 

Asian Pakistani 11 (1.3%) 

Black Other 10 (1.2%) 

Others  22 (2.7%) 
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Patient outcome prediction 194 

Three machine-learning algorithms were benchmarked to predict patient outcomes from EHR 195 

data: logistic regression, random forest and Extreme Gradient Boosted Trees (XGBoost). 196 

Logistic regression, which predicts the probability of a clinical endpoint as a linear function of 197 

the feature space, was used as a baseline algorithm. The model was regularised with elastic 198 

net using equal weighting given to L1 and L2 penalties in order to account for the high 199 

dimensionality of the data set relative to the number of observations. A random forest [21], 200 

i.e., an ensemble of decision trees where each tree is trained on a slightly different subset of 201 

data, was trained using 100 trees and splits were evaluated using Gini impurity. Classes were 202 

inversely weighted to account for the class imbalance present in the data set. An XGBoost 203 

algorithm [22] was trained with its hyperparameters set to 100 trees, max tree-depth of 6, 204 

step-shrinkage of 0.3, no subsampling and L2 regularisation, to minimize log-loss. This tree-205 

based algorithm trains decision trees sequentially, with each new tree being trained on the 206 

residuals of previous trees. 207 

 208 

Performance evaluation 209 

All models were evaluated using a stratified 3-fold cross-validation strategy. Results are 210 

reported as mean and standard deviation across these folds. Predictive performance was 211 

measured in terms of area under curve (AUC) of the receiver operating characteristic (ROC) 212 

as well as F1 score at each model’s ideal classification threshold as derived from the ROC 213 

curve. Given the presence of class-imbalance, precision-recall curves were also computed to 214 

assess expected real-world performance relative to random classifiers. 215 

 216 

In order to extract the clinical features most relevant to predictions, permutation feature 217 

importance (PFI) was calculated for each model post-hoc [21,23]. Each feature was 218 

individually randomised. The model’s AUC-ROC on the validation sets was then compared to 219 

the AUC-ROC before the feature had been randomised. PFI provides an estimate of the 220 

extent to which a model relies on a feature for its predictive performance and generalisability. 221 

The changes in performance were normalised by the sum of absolute changes over all 222 

features. Averages and standard deviations over the validation sets have been reported. 223 

 224 

Accumulated local effects (ALE) were computed to determine the directionality of a feature’s 225 

effect on model predictions [24]. Specifically, the feature space was divided into ten 226 

percentile bins and each feature’s effect was calculated as the difference in predictions 227 

between the upper and lower bounds of each bin, leaving all other features unchanged. 228 

Binning features in this way can reduce the influence of correlated features often encountered 229 

when trying to isolate the effect of a single feature.  230 
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Results 231 

Patient pathways 232 

A summary of observed patient in-hospital pathways is shown in Figure 1A. Of the 820 233 

patients in cohort A, which we present as an example, 818 (99.8%) entered the hospital via 234 

the ED, while 1 (0.1%) and 1 (0.1%) patients were admitted directly to a ward and the AICU, 235 

respectively. Upon leaving the ED, 775 (94.5%) patients transitioned to regular wards and 44 236 

(5.4%) to an AICU. Of the 775 patients in regular wards, 81 (10.5%) patients required 237 

subsequent admission to an AICU, 441 (57%) were discharged, 113 (14.5%) remained in 238 

hospital and 138 (18%) succumbed to the infection. From the 126 patients that have been 239 

admitted to an AICU, 57 (37%) were ultimately discharged, 32 (35%) did not survive and 37 240 

(29%) are still in hospital. Patients’ median length of stay in ED was 5 hours (IQR 3.45 hours). 241 

During this time, demographic information, vitals and laboratory values were collected (Fig. 242 

1B). To aid an early patient stratification, our models use data collected during the ED stay 243 

only to predict whether a patient reached any of three clinical endpoints during their 244 

subsequent admission. 245 

 246 

 247 

Figure 1. Patient pathways and outcome prediction. (A) Patient transitions between hospital departments are 248 
shown as bands proportional in size to patient numbers. Different departments are indicted by rectangles (ED, 249 
emergency department; Ward, regular hospital ward; AICU, adult intensive care unit). Patients who remain in 250 
hospital, are being discharged or die in hospital are indicated on the right. (B) Patient outcome prediction 251 
models use clinical data recorded within the ED stay of a patient to predict clinical endpoints during the 252 
remainder of the in-hospital stay. 253 
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 254 

AICU admission 255 

First, we studied patients transitioning to critical care and requiring admission to an AICU. All 256 

three models reach good prediction performance on this endpoint, as measured by area 257 

under the curve (AUC) of the receiver operating characteristic (ROC) and precision-recall 258 

curves, significantly outperforming random classifiers (Fig. 2). The best performing model, 259 

XGBoost, reaches an AUC-ROC of 0.83 and an F1 score of 0.51. Both tree-based methods 260 

perform better than logistic regression (Table 4). This is to be expected since logistic 261 

regression cannot model interactions between features unless such interactions are explicitly 262 

encoded into the training data set through feature engineering. All models show a moderate 263 

amount of variability across cross-validation folds (notice standard deviations in Fig. 2 and 264 

Table 4), which can compromise subsequent analyses. This instability originates from the 265 

limited number of patients and high class imbalance between target and control patients (see 266 

Table 2). Specifically, in each of the three cross-validation folds the models are only trained 267 

and validated on two thirds and one third of the data set, respectively, leaving few target 268 

patients for these tasks. 269 

 270 

 271 

Figure 2. Prediction performance for AICU admission. Model performance for the logistic regression (LR), 272 
random forest and XGBoost models are shown as ROC (A) and precision-recall curves (B). AUC under ROC is 273 
provided in brackets. Solid lines and shaded areas indicate the mean and standard deviation across three 274 
cross-validation folds, respectively. Dashed lines indicate random classifiers. 275 

 276 

Table 4. Model performance on clinical endpoint prediction (standard deviation shown in brackets). 277 

Model Endpoint A 
(AICU admission) 

Endpoint B 
(ventilation) 

Endpoint C 
(mortality) 

  AUC F1 AUC F1 AUC F1 

Logistic regression  0.76 

(0.067) 

0.40 

(0.029) 

0.79 

(0.097) 

0.41 

(0.083) 

0.66 

(0.030) 

0.50 

(0.035) 

Random forest 0.79 

(0.058) 

0.41 

(0.031) 

0.81 

(0.045) 

0.37 

(0.081) 

0.75 

(0.016) 

0.55 

(0.039) 

XGBoost 0.83 

(0.045) 

0.51 

(0.037) 

0.83 

(0.083) 

0.41 

(0.052) 

0.74 

(0.011) 

0.56 

(0.035) 

 278 

Next, we assessed which clinical variables contribute the most to model predictions by 279 

applying PFI. Figure 3A presents the 15 most important features for the logistic regression 280 

with elastic net regularisation. Note that clinical variables that can be recorded multiple times 281 
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during a patient’s ED visit were aggregated to retain only the minimum, maximum, mean and 282 

last observation value during the ED stay. Patient age, C-reactive protein and sex reached 283 

high importance and significance over cross-validation folds for the logistic regression. 284 

Moreover, the fraction of inspired oxygen (FiO2) contributes to predictions, albeit without 285 

being significant. The random forest (Fig. 3B) and XGBoost (Fig. 3C) models assign a higher 286 

importance to patient age, with respiratory rate following thereafter. Intriguingly, ALE analyses 287 

reveal that lower patient age increases the likelihood of AICU admission in all three 288 

models (Figs. 3D-F). This agrees well with a bias towards younger patients when comparing 289 

AICU-admitted patients with control patients (Fig. S3A). However, clinical indicators of 290 

disease severity, such as C-reactive protein and ferritin levels, show no clear trend across 291 

age groups (Fig. S4). We also find that the fraction of inspired oxygen (Fig. 3D) and 292 

respiratory rate (Figs. 3E and F) exhibit a positive effect on AICU admission probability. 293 

In summary, machine learning algorithms can predict those patients most likely to require 294 

AICU admission in COVID-19 patients from EHR data available during the initial ED stay with 295 

high precision. Patient age and indicators of oxygenation status are strong indicators of 296 

patient outcome, with advanced age decreasing the probability of AICU admission. 297 
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 298 
 299 

Figure 3. Feature importance for AICU admission. (A-C) Permutation feature importance for the logistic 300 
regression (A), random forest (B) and XGBoost (C) models. Only the top 15 features are shown. Asterisks mark 301 
features with importance scores significantly different from zero across three cross-validation folds with t-test p-302 
value thresholds of 5% (∗) and 1% (∗∗). (D-F) Accumulated local effects plots for the logistic regression (D), 303 
random forest (E) and XGBoost models (F). The top two features according to permutation feature importance 304 
are shown for each model. Vertical bars at the bottom indicate feature values observed in the data set. 305 

 306 

  307 
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Mechanical ventilation 308 

For mechanical ventilation prediction, we categorised patients into those that needed a 309 

ventilator (e.g., patients receiving SIMV, BIPAP or APRV ventilation) and control patients that 310 

either were able to breathe normally or required minimal assistance (e.g., those patients 311 

receiving oxygen via nasal cannulae or face masks). Prediction performance on this endpoint 312 

is comparable to prediction of AICU admission (Fig. 4). Specifically, XGBoost performs best, 313 

reaching an AUC of 0.83, while logistic regression and random forest reach 0.79 and 0.81, 314 

respectively (Table 4). This result is expected since most patients receive mechanical 315 

ventilation in AICU, meaning the ventilation cohort is a subset of the critical care cohort (56 of 316 

62 target patients in Cohort B are target patients in Cohort A). Notably, all models show a 317 

decrease in stability in predicting this clinical endpoint. This is most likely due to a higher 318 

class-imbalance and lower number of patients receiving ventilation. 319 

 320 

 321 

Figure 4. Prediction performance for mechanical ventilation. Model performance for the logistic regression (LR), 322 
random forest and XGBoost models are shown as ROC (A) and precision-recall curves (B). AUC under ROC is 323 
provided in brackets. Solid lines and shaded areas indicate the mean and standard deviation across three 324 
cross-validation folds, respectively. Dashed lines indicate random classifiers. 325 

 326 

Feature importance analysis for the logistic regression shows a large effect of the fraction of 327 

inspired oxygen and patient age (Fig. 5A). This mirrors the results for AICU admission. We 328 

also observe a significant influence of haemoglobin levels on model predictions. Both tree-329 

based methods rank age highly (Figs. 5B and C). In addition, blood lactate levels and oxygen 330 

saturation are used by the random forest (Fig. 5B), while XGBoost relies on the fraction of 331 

inspired oxygen and levels of thyroid stimulating hormone (Fig. 5C), although few values are 332 

significant. In general, all models rely on a broader set of features for the ventilation endpoint. 333 

ALE analysis shows younger patients had an increased probability of receiving 334 

ventilation (Fig. 5D-F), which agrees with an inherent bias towards younger age when 335 

comparing ventilated with non-ventilated patients (Fig.S4B). By contrast, a higher fraction of 336 

inspired oxygen and higher blood lactate level were associated with a poor prognosis. 337 

Taken together, models show good performance when predicting ventilation, albeit with a 338 

decreased model stability (higher standard deviation). Patient age and oxygenation status are 339 

most predictive of poor outcome, with additional contributions from blood test values, such 340 

as lactate and haemoglobin levels. 341 
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 342 

 343 
Figure 5. Feature importance for mechanical ventilation. Permutation feature importance for the random forest 344 
(A), logistic regression (B) and XGBoost (C) models. Only the top 15 features are shown. Asterisks mark features 345 
with importance scores significantly different from zero across three cross-validation folds with t-test p-value 346 
thresholds of 5% (∗) and 1% (∗∗). (D-F) Accumulated local effects plots for the logistic regression (D), random 347 
forest (E) and XGBoost models (F). The top two features according to permutation feature importance are 348 
shown for each model. Vertical bars at the bottom indicate feature values observed in the data set. 349 

  350 
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Mortality 351 

The performance of all three models shows a marked decrease when predicting mortality 352 

(Fig. 6). The logistic regression and XGBoost reach AUCs of 0.66 and 0.74, respectively, only 353 

outperformed by random forest reaching an AUC of 0.75. However, model stability is 354 

improved with standard deviations across cross-validation folds reaching their lowest levels 355 

over all three clinical endpoints (Table 4). 356 

 357 

 358 

Figure 6. Prediction performance for mortality. Model performance for the logistic regression (LR), random forest 359 
and XGBoost models are shown as ROC (A) and precision-recall curves (B). AUC under ROC is provided in 360 
brackets. Solid lines and shaded areas indicate the mean and standard deviation across three cross-validation 361 
folds, respectively. Dashed lines indicate random classifiers. 362 

 363 

Predictions from the logistic regression model are dominated by patient age, with C-reactive 364 

protein levels adding a small but significant contribution (Fig. 7A). Similarly, tree-based 365 

methods rely heavily on age for their predictions, with smaller contributions of respiratory rate 366 

and Troponin T levels (Figs. 7B and C). More generally, prediction of mortality relies more 367 

strongly on blood tests as opposed to indicators of oxygen supply observed in other cohorts. 368 

ALE analysis shows that advanced age is predictive of higher mortality (Fig. 7D-F). This 369 

agrees with a bias towards older age in patients that die in hospital (Fig. S4C). Higher C-370 

reactive protein, respiratory rate and Troponin T levels increase the risk of mortality in our 371 

models (Figs. 7D-F). 372 

In summary, models show an increased stability but lower overall performance when 373 

predicting mortality. Feature importance scores reveal a high and significant contribution of 374 

patient age with advanced age contributing to poor patient outcomes. 375 
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 376 
 377 

Figure 7. Feature importance for mortality. (A-C) Permutation feature importance for the logistic regression (A), 378 
random forest (B) and XGBoost (C) models. Only the top 15 features are shown. Asterisks mark features with 379 
importance scores significantly different from zero across three cross-validation folds with t-test p-value 380 
thresholds of 5% (∗) and 1% (∗∗). (D-F) Accumulated local effects plots for the logistic regression (D), random 381 
forest (E) and XGBoost models (F). The top two features according to permutation feature importance are 382 
shown for each model. Vertical bars at the bottom indicate feature values observed in the data set. 383 
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Discussion 384 

Disease severity can vary dramatically between COVID-19 patients, ranging from 385 

asymptomatic infection to severe respiratory distress and failure. To evaluate the potential of 386 

an early stratification of hospitalised patients into risk groups, we built machine learning 387 

models from EHR care data of confirmed Covid-19 positive patients, aimed at predicting one 388 

of three clinical endpoints: admission to AICU, the need for mechanical ventilation and 389 

mortality. On all three cohorts, our models reach good performance with the best model 390 

showing AUC-ROC between 0.75 and 0.83. Overall, mortality proved to be the most difficult 391 

prediction task, presumably reflecting the complex interactions underlying in-hospital death.  392 

The most predictive feature for all three endpoints was patient age, followed by indicators of 393 

patients’ oxygenation status, including fraction of inspired oxygen and respiratory rate. Given 394 

that SARS-CoV-2 causes an infection of the respiratory tract, which can lead to severe 395 

respiratory distress, these results were to be expected. Our findings are supported by similar 396 

works, in which age is consistently found to be the most important feature [16–18]. However, 397 

we note that other potential indicators for severe viral infection, like increased temperature 398 

and markers of immune system activation, e.g. C-reactive protein, are less prominent in our 399 

feature importance scores. Overall, prediction of mortality relies more strongly on blood tests 400 

as opposed to indicators of oxygen supply observed in other cohorts. The reason for this 401 

observation and its clinical significance is, as of yet, unclear. Our ALE analysis reveals that 402 

lower patient age contributes to an increased probability of receiving mechanical ventilation 403 

and critical care in AICU, while coinciding with lower mortality. We also note that Docherty et 404 

al. find that 17% of COVID-19 patients require admission to a High Dependency or Intensive 405 

Care Unit [25], which is similar to 15% of patients in our data. 406 

Conversely, our findings concerning the importance of features relating to patients’ 407 

oxygenation status are not corroborated by other works. Specifically, other studies find that 408 

one important predictor of patient outcome is the level of lactate dehydrogenase [17,18], 409 

which, although present in our data set, does not significantly contribute to predictions. 410 

A novel aspect of the present analysis is the use of data limited to a patient's first few hours 411 

in ED. While this perhaps more accurately reflects the data available at the time of admission, 412 

it may well come at the cost of missing important information, such as medical history or 413 

primary care data, for predicting patient outcome. This may explain the comparative difficulty 414 

in predicting mortality, since a patient's overall chance of surviving infection may depend 415 

heavily on their medical history. Also note that, in our analysis, all patients were considered 416 

together for mortality prediction and the cohort was not further split according to 417 

confounding factors such as age or sex. In addition, mortality data for recent hospital 418 

admissions are by their nature censored, with clinical endpoints for patients who remain in 419 

hospital not yet fully known. 420 

While we base our study on a comparatively large data set from two hospitals, longitudinal 421 

information from additional treatment centres and geographic regions may improve a model’s 422 

ability to generalise. We note that such data is currently unavailable for COVID-19. However, 423 

future studies may benefit from a multicentre approach. As a result of limited data and the 424 

imbalanced cohorts, model stability remains a major challenge. While we use inverse class 425 

weights and stratified 3-fold cross validation to mitigate this issue, large uncertainties in 426 

model results persist, and many predictions do not reach statistical significance. Increased 427 

patient numbers, in particular among target patients, may lead to more conclusive results. 428 

Once such data is available, more complex models, such as deep neural networks, may 429 
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achieve higher prediction performance. A key aspect which should be considered in such 430 

works is the prediction horizon, which impacts on how useful a model could be. 431 

In conclusion, our models represent a first step towards the prediction of COVID-19 patient 432 

pathways in hospital at the point of admission in the emergency department. While they 433 

succeed in predicting patient outcomes and reveal critical clinical variables that may influence 434 

patient trajectories, larger data sets and further analyses are required to draw clinically 435 

relevant conclusions. 436 
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