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Early Sample Measures of Variability
H. A. David

Abstract. This paper attempts a brief account of the history of sample
measures of dispersion, with major emphasis on early developments. The
statistics considered include standard deviation, mean deviation, median
absolute deviation, mean difference, range, interquartile distance and
linear functions of order statistics. The multiplicity of measures is seen
to result from constant efforts to strike a balance between efficiency
and ease of computation, with some recognition also of the desirabil-
ity of robustness and theoretical convenience. Many individuals shaped
this history, especially Gauss. The main contributors to our story are in
chronological order, Lambert, Laplace, Gauss, Bienaymé, Abbe, Helmert
and Galton.
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1. INTRODUCTION

The purpose of this article is to trace the early
history of sample measures of dispersion, including
their statistical properties and their use in deter-
mining the accuracy of estimators. Interest in es-
timates of variability was stimulated originally by
astronomical data. The basic paper by Gauss (1816)
already illustrates the use of several measures of
dispersion on data representing the error incurred
in a set of 48 astronomical observations. In addi-
tion to the sample standard deviation we will be
considering the mean deviation, the median abso-
lute deviation, the mean difference, the range, the
interquartile distance and linear functions of order
statistics.

Why so many measures? As will be seen, Gauss
already realized the importance of what we now call
efficiency and unbiasedness (especially asymptotic).
But he was also aware of the desirability of ease of
computation and it is mainly this aspect that ex-
plains the multiplicity of estimators. Another factor
was concern with lack of robustness against outliers.
Of course, theoretical convenience was also relevant.
As a result of these different considerations orderly
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progress can hardly be expected, especially since re-
search was often undertaken in ignorance of previ-
ous work.

Stigler (1986) has given an excellent description of
the struggles of 18th- and 19th-century astronomers
and geodesists to arrive at ways of reconciling ob-
servations that, due to errors of measurement, pro-
duced different estimates of unknown parameters.
It needs to be noted that the early concern was with
variation due to errors of measurement, rather than
with variation in general.

Foremost, but not first, in dealing with this
problem of reconciliation was the method of least
squares. Although Gauss (1777–1855) had been us-
ing the method earlier, Legendre (1752–1833) in
1805 was the first to publish it and to name it, with
instant success. Before him, Boscovich (1711–1787)
had proposed in 1757 minimizing the sum of the
absolute (vertical) deviations from a linear regres-
sion line and had provided a geometric solution
(Eisenhart, 1961; Sheynin, 1973). Both Legendre
and Boscovich were content with advancing meth-
ods that had intuitive appeal and that were capable
of implementation, at least in simple situations.

What was still needed was a probabilistic frame-
work for these two methods. Without such a basis
there is no satisfactory way of assessing the accu-
racy of the estimates produced. Early attempts in
this direction go back to Galileo, Simpson, Mayer
and especially Lambert. According to Sheynin
(1971), Lambert (1728–1777) set down in 1760 the
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following three criteria which still seem reasonable
for a theory of errors:

1. The absolute values of errors are finite.
2. The quantity of errors with a given absolute

value decreases with increase of this absolute
value.

3. The probability of an error depends on its abso-
lute value, not its sign.

The real starting point of the present account
is the work of Gauss, who, no doubt inspired by
his great older contemporary Laplace (1749–1827),
raised the crude early attempts to astonishing
heights in his study of the method of least squares.
We also describe the relevant contributions of
Laplace as well as of later 19th-century inves-
tigators such as Bienaymé (1796–1878), Abbe
(1840–1905), Helmert (1843–1917) and others. The
20th-century will be visited only to note some de-
velopments and extensions of the various statistics
put forward earlier. See also the integrated his-
torical account of the theory of errors by Sheynin
(1995) and the extensive general historical text by
Hald (1998).

2. STANDARD DEVIATION

2.1 Mean Known

In his famous “first proof” (Gauss, 1809) of the
method of least squares Gauss, in modern terminol-
ogy, took the distribution underlying n independent
errors of observation to be normal with pdf

�2:1� f�x� = h√
π

exp�−h2x2�; −∞ < x <∞:

He pointed out that the positive constant h could be
viewed as a measure of accuracy of the observations
and he named it the precision. This term remained
in common use for the next 100 years, until h was
gradually replaced by the standard deviation σ =
1/h
√

2.
We focus here on Gauss (1816), where he con-

siders the estimation of h. To introduce this work
Gauss writes almost defensively:

In the application of the method of least
squares to the determination of the most
probable values of those quantities [pa-
rameters] on which the observations de-
pend, there is no need at all to know the
value of h. Also, the ratio of the accu-
racy of the results to the accuracy of the
observations is independent of h. How-
ever, knowledge of this quantity is in it-
self of interest and instructive, and I will

therefore show how it is possible to at-
tain such knowledge through the obser-
vations themselves.

To effect the estimation, Gauss maximizes the
posterior pdf of h under the assumption that its
prior is uniform over �0;∞�. Since the posterior pdf
is by (2.1) proportional to

hn exp
(
−h2∑x2

i

)
;

the maximization gives what Edwards (1974) terms
the maximum-probability estimator

�2:2� ĥ =
(

n

2
�
X2
i

)1/2

;

where, as usual, Xi denotes the random variable
corresponding to its realization xi, i = 1; : : : ; n. Of
course, this is also the maximum likelihood estima-
tor, but the distinction between the methods of max-
imum probability and maximum likelihood is con-
ceptually important.

Gauss points out that (2.2) holds whether n is
large or small, but then obtains some interesting
large-sample results for the interval estimation of
h. He shows that, for large n, the true value of h
lies with probability 1/2 in

�2:3�
(
ĥ�1− cn−1/2�; ĥ�1+ cn−1/2�

)
;

where c = 8−1�0:75�/
√

2 = 0:4769363, 8 denoting
the standard normal cdf. Correspondingly, the long
widely used true probable error r = 8−1�0:75�σ ,
which satisfies P�−r < Xi < r� = 1/2, lies with
probability 1/2 in

�2:4�
(
r̂�1− cn−1/2�; r̂�1+ cn−1/2�

)
; r̂ = c/ĥ:

We see that (2.3) and (2.4) are in modern termi-
nology large-sample 50% Bayesian confidence inter-
vals, corresponding to (inconsistent!) assumptions of
uniform priors, and hence are also ordinary large-
sample confidence intervals. The important early re-
sults (2.3) and (2.4), ingeniously obtained by Gauss,
seem to have received little notice. With our present
knowledge that asymptotically ��X2

i /n�1/2 has a
N�σ;σ2/2n� distribution, (2.4) is seen at once.

Gauss goes on to study

�2:5� Sm =
n∑
i=1

�Xi�m

for large n and positive integral m. Evidently using
Laplace’s central limit theorem, he writes that the
most probable value of Sm lies in the interval
(
nνm−c�2n�ν2m−ν2

m��1/2; nνm+c�2n�ν2m−ν2
m��1/2

)
;
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with probability 1/2, where νm = E��X�m� and, as
before, c = 8−1�0:75�/

√
2. This result, he states,

holds for any parent distribution (presumably with
finite ν2m). For the normal distribution (2.1), for
which νm = 0��m+ 1�/2�/hm√π, Gauss proceeds to
demonstrate numerically, for m ≤ 6, that the length
of the interval for the probable error r decreases
from m = 1 to m = 2 and then increases. Of course,
a much stronger result can now be stated in view of
the sufficiency of S2 for σ or h.

Also in this paper Gauss suggests the possible use
of the mean deviation S1/n and, surprisingly, of the
median absolute deviation, med �Xi�, because of the
greater computational simplicity of these measures
(see Sections 3 and 4).

Gauss was not comfortable with the assumption
that had led him to normality of the observations,
namely, that for iid observations from a pdf f�x−µ�,
the sample mean is the maximum-probability es-
timator of µ. In a series of stellar papers (Gauss,
1821, 1823, 1826) he developed what has come to
be known as the Gauss linear model. These have
been translated, with some commentary, by Stewart
(1995). An informal English version of all of Gauss’s
work on least squares, based on Bertrand’s (1855)
French translation from the original Latin and Ger-
man, has been prepared by Trotter (1957). Gauss’s
contributions to least squares have been summa-
rized by, for example, Seal (1967) and Sprott (1978),
both using matrix notation. A valuable critical re-
view is given by Sheynin (1979). What concerns us
here is just the estimation of the variability of the
observations.

Essentially, Gauss assumes the model Xi = µi +
Zi, i = 1; : : : ; n, where the Zi are independent with
mean zero, unknown variance σ2 (possibly after ap-
propriate weighting) and a common unknown dis-
tribution; the µi are linear functions of parameters
θ1; : : : ; θk, k < n. Apart from no longer requiring
normality of the Zi, Gauss chooses σ2 = E�Z2

i � as
measure of uncertainty of the deviations Xi − µi.
The arbitrariness of this measure is fully recog-
nized by him, and he points out that Laplace’s use
of E�Zi� is equally arbitrary and “less suited to an-
alytic study” (Gauss, 1821, Section 6). Moreover, a
small error incurred twice seems preferable to one
twice its size.

In spite of the radically new aim of estimating
θ1; : : : ; θk so as to minimize σ2, without distribu-
tional assumptions, Gauss arrives again at

�
Z2
i /n

as the appropriate estimator of σ2. Although aware
of the need for a better approach in small samples,
he still follows the then standard practice of re-
garding the residuals Ei = Xi − µ̂i as if they were
Zi =Xi − µi.

2.2 Mean Unknown

The breakthrough comes in 1823 when Gauss re-
alizes that the estimation of θ1; : : : ; θk imposes k
linear constraints on the Ei. This enables him to
show that the sum of squares of the residuals,

�
E2
i ,

has to be divided by n − k for an unbiased (not
Gauss’s term) estimator S2 of σ2. However, small-
sample unbiasedness is not crucial to Gauss, who
advocates S as an estimator of σ . He then under-
takes the intricate task of finding the standard error
of S2 for any population (with finite fourth moment).

2.3 Distribution under Normality

We return to the case of independent N�µ;σ2�
variatesX1; : : : ;Xn. Gauss did not consider the dis-
tribution of S2. There are fascinating antecedents
to Karl Pearson’s “discovery” and naming of the χ2

distribution (Pearson, 1900). See also Hald (1998,
pages 633–645).

Ernst Abbe (1840–1905), a man far ahead of his
time, made a brilliant meteoric appearance on the
statistical scene. His main astounding contribution
to statistics was largely forgotten until rediscovered
by Sheynin (1966).

Abbe obtained a Ph.D. at 21 from Göttingen with
a dissertation on thermodynamics. Two years later
he submitted his “habilitation” dissertation (Abbe,
1863), which enabled him to join the faculty at Jena.
Referring to Gauss’s work on the method of least
squares, he proceeds in this paper to derive the dis-
tributions of both

S2 =
n∑
i=1

X2
i and T =

n∑
i=1

�Xi −Xi+1�2;

where Xn+1 = X1, when the Xi are independent
variates with pdf (2.1). Abbe’s aim is to use S2 and
T as gauges of how compatible the Xi are with the
model for specified h. He goes on to obtain the dis-
tribution of S2/T, essentially the first circular serial
correlation coefficient.

Our presentation of Abbe’s derivations can be
brief in view of a fine summary by Kendall (1971).
Abbe’s approach for S2 is of interest and facilitated
the more difficult arguments needed for T and
S2/T. An English translation of Abbe’s paper, with
a short introduction, is available from the present
writer.

To arrive at what is effectively the χ2 distribution
with n degrees of freedom, Abbe notes that

�2:6�
P�S2 < 1�

= hn

πn/2

∫
· · ·
∫

exp�−h2y�dx1 · · ·dxn;
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where y = �
x2
i and the integration extends over

0 < y < 1. To deal with this integral he introduces
the “discontinuity factor”

�2:7� 1
2π

∫ ∞
−∞

ec�a+φi�

a+φi dφ; i =
√
−1;

which, by contour integration, equals 1 or 0 accord-
ing as c > 0 or c < 0. The discontinuity factor, a
technique which Abbe acknowledges having learned
from Riemann at Göttingen, enables him, upon set-
ting c = 1− y, to replace (2.6) by

P�S2 < 1�

= 1
2π

hn

πn/2

∫ ∞
−∞

exp�1�a+φi��
a+φi dφ

·
n∏
j=1

(∫ ∞
−∞

exp�−�h2+a+φi�x2
j�dxj

)

= hn

0�n/2�
∫ 1

0
exp�−h2y�y�n/2�−1 dy;

after further reduction.
Abbe went on to make his name in optics, work-

ing with Carl Zeiss. As noted by Seneta (1983),
he wrote only two more papers in statistics, in
1878 and 1895. These were short articles on the
properties of counts taken with the new Zeiss
haemacytometer. Although immediately useful and
anticipating Student (1907), these articles were
overlooked by statisticians.

In a way, Abbe was scooped by I. J. Bienaymé
(1796–1878) in the discovery of the χ2 distribution.
Like Abbe, Bienaymé was long forgotten by statis-
ticians, although unlike Abbe he was well known
as a probabilist in his time (Heyde and Seneta,
1977). In the noteworthy paper that concerns us
(Bienaymé, 1852), he carries the title Inspecteur
général des Finances. Contrasting with Abbe’s de-
liberate approach, Bienaymé arrives quite inciden-
tally at the integral

p = 1
πn/2

∫ n∏
i=1

(
exp�−x2

i �dxi
)
;

where the integration extends over
�
x2
i ≤ γ2.

Clearly, p = P��Z2
i ≤ 2γ2�, where the Zi are

independent N�0;1� variates.
Bienaymé’s evaluation of the integral is of interest

in that he uses only elementary methods, whereas
modern classroom proofs of

�
X2
i ∼ χ2

n typically ask
the student to accept the uniqueness theorem of
moment generating functions; but see also Kruskal
(1946).

Noting that, by symmetry about 0, p may be writ-
ten

p = 2n
πn/2

∫
0

n∏
i=1

(
exp�−x2

i �dxi
)
;

over
�
x2
i ≤ γ2, with x1 ≥ 0; : : : ; xn ≥ 0, make the

transformation from xn to u = ��x2
i �1/2:

xn =
(
u2 − x2

1 − · · · − x2
n−1

)1/2
:

This gives

p = 2n

πn/2

∫ γ
0
u exp�−u2�du

·
∫

0

dx1 · · ·dxn−1

�u2 − x2
1 − · · · − x2

n−1�1/2
;

where
∫

0 now extends over x2
1+· · ·+x2

n−1 ≤ u2, with
x1 ≥ 0; : : : ; xn−1 ≥ 0.

To deal with the inner integral, Bienaymé makes
repeated use of the beta-integral-type result

∫ √a
0
�a− x2�p/2 dx =

√
π

2
a�p+1�/2 0�p/2+ 1�

0�p/2+ 3/2�
by successively setting

a=u2−x2
1− · · · −x2

i for i=n−2; n−3; : : : ;1;0:

This reduces the inner integral to

un−2 · π
n/2

2n
· 2
0�n/2�

and gives Bienaymé’s final result

p = 2
0�n/2�

∫ γ
0
un−1 exp�−u2�du;

equivalent to showing that

p = P
(
χ2
n ≤ 2γ2):

As Lancaster (1966) points out, the series expan-
sions for p developed by Bienaymé are essentially
those found independently by Pearson (1900).

The prominent German geodesist F. R. Helmert
(1843–1917) was evidently unaware of both Abbe’s
and Bienaymé’s derivations and produced yet an-
other proof, by induction (Helmert, 1876a). Much
more important, however, is his proof (Helmert,
1876b) that if X1; : : : ;Xn are independent N�µ;σ2�
variates, then

��Xi −X�2/σ2 ∼ χ2
n−1.

Helmert begins with a transformation from
x1; : : : ; xn to uj = xj − x, j = 1; : : : ; n − 1, and x,
and then makes the further transformation

vj =
√
j+ 1
j

[
uj +

1
j+ 1

�uj+1 + · · · + un−1�
]
;

j = 1; : : : ; n− 2;

vn−1 =
√

n

n− 1
un−1:
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It is the combination of these two transformations,
together with vn =

√
nx and the relabeling xn →

x1, xj → xj+1, j = 1; : : : ; n − 1, that results in
the useful orthogonal transformation involving n−1
successive linear contrasts

vj = �j�j+ 1��−1/2�jxj+1 − x1 − · · · − xj�;
j = 1; : : : ; n− 1

and

vn = �x1 + · · · + xn�/
√
n;

that has become known as a Helmert transforma-
tion. Since V1; : : : ;Vn−1 are independent N�0; σ2�
variates and

n∑
1

�Xi −X�2 =
n−1∑

1

V2
j;

the result follows at once.
Although almost there, Helmert fails to note the

independence of X and S2. This independence is ex-
plicitly pointed out in Fisher (1920), where Fisher
provides a swift geometric proof of the distribution
of �n−1�S2. Pearson (1931) apologizes for Helmert’s
work having been overlooked by the “English school
of statisticians” and gives a detailed exposition of
Helmert’s argument, with a slight geometric addi-
tion. He suggests that the distribution should in fu-
ture be named for Helmert.

Fisher first shows awareness of Helmert’s work in
Fisher (1934), but there and subsequently cites only
Helmert (1875), a note that merely announces that,
essentially,

∑
�Xi − µ�2/σ2 ∼ χ2

n:

Fisher’s first-hand knowledge of the relevant
Helmert (1876b) must be in doubt, especially as in
Fisher (1939) he is clearly unaware that Helmert
had found the joint distribution of S2 and X on the
way to finding the distribution of S2.

Helmert continues to use S as the “most favor-
able” (günstigster) estimator of σ . His considerable
contributions to statistics have been extensively re-
viewed by Sheynin (1995).

3. MEAN DEVIATION

3.1 Mean and Median

Given observations x1; : : : ; xn we can distinguish
two mean deviations: the mean absolute deviation
from the mean x and from the median m, given by
nd = � �xi − x� and nd′ = � �xi −m�. In a way to
be made more precise shortly, m is the value of µ
minimizing

� �xi − µ� and, of course, x is the value

of µ minimizing
��xi − µ�2. These are very special

cases of L1- and L2-estimation, respectively.
Laplace (1818) compares the large-sample behav-

ior of L1- and L2-estimation in a situation that in-
cludes as a special case the estimation of the center
of a symmetric distribution by the median and by
the mean.

Assuming that his central-limit theorem applies,
Laplace uses an order-statistics-type argument to
show that in large samples the median, like the
mean, is approximately normally distributed. By
comparing their two large-sample densities Laplace
shows that the median is superior to the mean (i.e.,
the pdf of M is more concentrated about µ than the
pdf of X) if, in modern notation,

�3:1� f�0� > 1/�2σ�;

where the parent density f�x� is taken to be
symmetric about zero, with variance σ2. Clearly,
Laplace has come impressively close to the no-
tion of asymptotic relative efficiency. He goes on
to point out that for a normal distribution X is
superior. Although Laplace provides no other ex-
ample, his language implies that he regards (3.1)
as quite possible. Nevertheless, he continues to call
L2-estimation “the most advantageous method,”
leaving the reader to infer that his earlier claims
of optimality for L2 and his choice of terminology
were unfortunate. See also Stigler (1973a).

3.2 Mean Absolute Deviation from the Median

As a special case of a more general result
in Laplace (1799, Section 40) and repeated in
Laplace (1818), it follows that

� �xi − µ� is mini-
mized by µ = m = x��n+1�/2�, n odd, and by m in
�x�n/2�; x�n/2+1��, n even.

It seems natural therefore to regard D′ = � �Xi−
M�/n as a basis for estimating variability. But D′

was difficult to handle in the 19th century and in
any case turns out to be not very promising.

Since

nD′ =





X�n� + · · · +X��n+3�/2�

−X��n−1�/2� − · · · −X�1�; n odd;

X�n� + · · · +X�n/2+1�

−X�n/2� − · · · −X�1�; n even;

the mean and variance of D′ can be found from ta-
bles of the first two moments of the order statistics.
In the normal case D′ was found to be less efficient
than D = � �Xi−X�/n (e.g., Godwin, 1949). On the
other hand, one would expect D′ to do well for a
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Laplacian pdf

f�x� = 1
2θ

exp
(
−
∣∣∣∣
x− µ
θ

∣∣∣∣
)
; θ > 0;

since M and D′ are MLE’s for µ and θ.
However, even here D′ is not optimal and better

estimators of θ that are linear in the order statistics
can be found (Govindarajulu, 1966).

3.3 Mean Absolute Deviation from the Mean

Commonly known simply as the mean deviation,
d = � �xi−x�/n was long motivated primarily by be-
ing easier to compute than the standard deviation
s. Gauss (1816) already made essentially this point
when comparing

� �xi − µ�/n and ���xi − µ�2/n�1/2
(Section 2.1) and Pearson (1945) still cites ease of
computation of d in routine situations when intro-
ducing tables of the cdf of D in normal samples ob-
tained by Godwin and Hartley (1945).

The editor of Astronomische Nachrichten seems to
have been the first to find, in present terminology,
that (Peters, 1856)

E�D� = σ
√
n− 1
n
·
√

2
π
:

Writing Xi = µ+ εi, so that, for example,

X1 −X =
n− 1
n

ε1 −
ε2

n
− · · · − εn

n
;

he was lucky to have obtained the correct an-
swer, tacitly assuming that Xi − X is normally
distributed. The normality of a sum of indepen-
dent normal variates was laboriously proved by
Helmert (1876b), although this result cannot have
been unknown (see Hald, 1998, page 634). In the
same paper Helmert also succeeds in deriving the
variance of D by use of a discontinuity factor (cf.
Section 5 and see Hald, 1998, page 642).

It is of interest to return here to Fisher (1920), al-
ready cited in Section 3. This early paper of Fisher’s
is important for introducing an example of a suffi-
cient statistic. Fisher shows that if in a sample from
a N�µ;σ2� population the value of S is known, then
D or any other statistic can shed no further light
on σ . Preceding this result Fisher expeditiously de-
rives the distribution of �n−1�S2 and the variance of
D. Later (Fisher, 1950) he acknowledges that both
these results, although unknown to him in 1920,
were not new then. However, he manages not to
mention Helmert’s name at this point. In Fisher
(1939) he makes clear his low opinion of D for which
“the only recommendation seems to be that for some
types of work it is more expeditious than the use
of squares.” Fisher continues that in preoccupation

with D “Helmert seems to have lost sight of the
value of his discovery respecting the mean square.”

Pace Fisher and his strong brief for the normal
distribution (e.g., Fisher, 1939, page 2), it has also
long been recognized that D is less sensitive to out-
liers than S, a point very forcefully made by Tukey
(1960). Whereas for a sample from a N�µ;σ2� pop-
ulation D has asymptotic efficiency 0.88 relative
to S in estimating σ , the situation changes drasti-
cally if some contamination by a wider normal, say
N�µ;9σ2�, is present: as little as 0.008 of the wider
population will render D asymptotically superior.

4. MEDIAN ABSOLUTE DEVIATION

As already mentioned, Gauss (1816) briefly
treats M = med �Xi�, where X1; : : : ;Xn is a
random sample from (2.1). In fact, Gauss states
without proof that, for large n, the probable er-
ror r = 8−1�0:75�σ �σ = 1/h

√
2� is the “most

probable” value of M and that M lies in r�1 ±
exp�ρ2�

√
π/�8n��� with probability 1/2, where

ρ = rh = 8−1�0:75�/
√

2.
A detailed proof, by Dirichlet (1805–1859), is pro-

vided in Encke (1834). Writing ψ�x� for the pdf
of �X�, where X has an unspecified distribution,
Dirichlet shows that the likelihood ofM is still max-
imized asymptotically when M equals the probable
error r. Here r = 9−1�1/2�, the median of the cdf
of �X�. Dirichlet goes on to establish the asymptotic
normality of M, without being aware that this fol-
lows from Laplace (1818) (Section 3.1). He then ob-
tains the interval containing M with probability 1/2
as �r − δ; r + δ�, where δ = rh/�

√
2nψ�r��. In the

normal case, ψ�x� = �2h/√π� exp�−h2x2�, Gauss’s
formula results.
M requires 272 observations to achieve the same

efficiency (interval) as does S for 100 observations.
See also Harter (1978) on Gauss (1816).

5. MEAN DIFFERENCE

Some 50 years after the path-breaking statisti-
cal researches of Gauss a lively sequence of pa-
pers on the estimation of dispersion begins in the
German journal Astronomische Nachrichten (Astro-
nomical News). Triggering this activity is the bum-
bling figure of W. Jordan, professor at Carlsruhe.
He proposes to improve on Gauss by basing the es-
timation not on the n observations x1; : : : ; xn them-
selves, but rather on their n�n−1�/2 absolute differ-
ences �xi − xj�, i; j = 1; : : : ; n, i 6= j. Specifically he
proposes, in modern notation, the statistic (Jordan,
1869)

Gk =
�n
i<j �Xi −Xj�k
n�n− 1�/2 ;



374 H. A. DAVID

for k = 1 or 2. Having in mind an underlying normal
distribution, Jordan thinks he has improved preci-
sion on Gauss’s root-mean-square estimator essen-
tially by a factor of �n�n − 1�/2�1/2 to �n − 1�1/2, in
view of the respective divisors!

Jordan’s paper is dated July 4, 1869. It appears
that Herr von Andrae, privy counselor in Kopen-
hagen, cannot wait to register his protest in German
and on August 11 fires off a letter to the editor in
Danish (von Andrae, 1869): Jordan has overlooked
the dependence of the differences; moreover, G2 is
just 2S2.

Nevertheless, Jordan has started something: G1,
henceforth just G, seems to deserve further atten-
tion. Von Andrae (1872) makes a detailed study of
G, obtaining its mean and standard error. He notes
that g may be conveniently calculated from

�5:2� g =
∑
�n− 2i+ 1��x�n+1−i� − x�i��;

where the summation runs from 1 to the integral
part of n/2. The computational convenience mis-
leads von Andrae, however, in using (5.2) for the-
oretical purposes, resulting in long and not quite
complete proofs of the results for a normal distribu-
tion with s.d. σ :

�5:3� E�G� = 2σ√
π
;

�5:4�

s.d. �G� = 2σ
�n�n− 1�π�1/2

·
[
n

(
1
3
π + 2

√
3− 4

)

+
(

6− 4
√

3+ 1
3
π

)]1/2

:

From (5.4) von Andrae shows essentially that the
asymptotic efficiency of G (w.r.t. S) is 97.8% and
writes that therefore G, given its much simpler cal-
culation, is a serious competitor to the usually pre-
ferred S.

Helmert (1876b) firmly establishes (5.3) and (5.4)
(apart from two canceling minor errors in his proof!)
by use of (5.1) and the elegant representation (com-
pare (2.7))

�xi − xj� =
2
π

∫ ∞
0
�xi − xj� sin�u�xi − xj��

du

u
:

These results in Astronomische Nachrichten have
often been overlooked by later writers. In fact, G
is generally known as Gini’s mean difference, Gini
(1912) being an influential paper in which Gini in-
troduced G as an index of variability in a population
consisting of x1; : : : ; xn. Actually, Gini states that he
became aware of the earlier work after completing
his own. See also David (1968).

6. RANGE

The range Wn = X�n� −X�1� is the most obvious
estimator of variability. According to Ptolemy (Har-
ter, 1978), it was used already in the second cen-
tury B.C. by Hipparchus, who estimated the max-
imum variation in his observations on the length
of the year by half their range. However, the range
remained only a descriptive statistic until the 20th
century. In view of its importance, especially in qual-
ity control, we now trace its rather gradual devel-
opment.

Theoretical research on the range was stim-
ulated by pioneering work of von Bortkiewicz
(1922a, b), who concentrated on E�Wn� in normal
samples (see Harter, 1978). Von Mises (1923) soon
pointed out that, for any distribution, E�Wn� =
E�X�n�� − E�X�1�� and that, in generalization of
von Bortkiewicz’s result, E�Wn� is given by the
Stieltjes integral

�6:1� E�Wn� =
∫ ∞
−∞

x�dFn�x� − d�1−F�x��n�:

Moreover, von Mises initiated asymptotic theory,
proving that for a continuous distribution for which
E�X� <∞ and

lim
n→∞

1−F�x+ c�
1−F�x� = 0 (c any positive constant),

one has

lim
n→∞

E�X�n��
F−1�1− 1/n� = 1:

Important progress was made by Tippett (1925),
who using quadrature on the formula

�6:2� E�Wn� =
∫ ∞
−∞
�1− �1−F�x��n −Fn�x��dx;

computed E�Wn� when F�x� = 8�x�, the standard
normal cdf, for n = 2�1�1;000. Equation (6.2) fol-
lows from (6.1), but was obtained otherwise by Tip-
pett, who also developed formulae for the higher
moments of Wn and obtained some approximate nu-
merical values. With dn = E�Wn�, one now has an
unbiased range estimator σ∗ of σ , namely, σ∗ =
Wn/dn, where Wn is the mean of k samples, each
of size n. In Shewhart style, control charts for the
mean could now use control limits at, for level α,

=
x±3σ∗√

n
= =x±Aαw;

where
=
x is the grand mean of k samples of n,

mean range replaces standard deviation and Aα is
a widely tabulated constant.
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Dealing with the distribution of Wn still took
some effort. Supplementing Tippett’s results, Pear-
son (1932) was able to obtain approximate percent-
age points of Wn in normal samples by fitting his
father’s curves. This made possible approximate
control charts for the range. Publication of con-
stants needed in the construction of control charts
for both µ and σ ensued in the influential manual
by Pearson (1935).

The exact pdf of Wn for samples from any contin-
uous distribution was first derived by McKay and
Pearson (1933), but the more convenient formula
for the cdf

P�Wn ≤ w� = n
∫ ∞
−∞
�F�x+w� −F�x��n−1f�x�dx

had to wait for Hartley (1942). Detailed tables of the
cdf for F = 8 were then developed in Pearson and
Hartley (1942). Also given were percentage points
for n ≤ 12 which made it possible to construct exact
control limits for the range.

7. INTERQUARTILE RANGE AND LINEAR
FUNCTIONS OF ORDER STATISTICS

The interquartile range (IQR) or interquartile dis-
tance of a population with cdf F�x� is F−1�0:75�−
F−1�0:25�. Since for a symmetric distribution
with mean µ this is twice the probable error r=
F−1�0:75� − µ, the IQR can be regarded as hav-
ing a very long history (see Hald, 1998, page 360).
If X ∼ N�0; σ2�, Gauss (1816) estimated r from
a sample x1; : : : ; xn as in (2.4). However, nonpara-
metric estimation of r, directly from the (grouped)
frequency distribution of the x’s, seems to have been
first attempted by the Belgian “father of biometry”
Adolphe Quetelet (Quetelet, 1846, Letter 18).

Direct consideration of the interquartile range
and the interdecile range began with Galton (1882),
who coined both terms. His approach is to arrange
the observations in increasing order of magnitude
and then to remove the desired fraction from each
end, using interpolation to obtain the exact cutoff
points.

Although Galton recognized the greater stability
of the more central quantiles, his “interquantile”
ranges were necessarily purely descriptive statis-
tics. From formulae for the variances and covari-
ances of sample quantiles X�nλ�, 0 < λ < 1, Pearson
(1920) points out that while �1/2�IQR has the ad-
vantage of directly estimating the probable error,
other pairs of symmetrically spaced sample quan-
tiles can provide more efficient estimators of vari-
ability in the normal case. Specifically, he recom-
mends, as estimator of σ ,

�X�nλ2� −X�nλ1��/2:93050;

with λ1 = 1 − λ2 = 1/14. This has asymptotic effi-
ciency (AE) 65% as against

�X��3/4�n� −X��1/4�n��/1:34898;

with AE 37%.
The asymptotic estimation of both location and

scale parameters by general linear functions of the
order statistics was considered in a pioneering paper
by Daniell (1920); see Stigler (1973b).

Such investigations were greatly advanced when
Mosteller (1946) showed that normalized sample
quantiles are asymptotically multivariate normal
(see also David, 1992). Much more efficient esti-
mators of σ that are linear functions of a larger
number of sample quantiles are developed by
Ogawa (1951).

Major progress in the small-sample estimation by
linear functions of order statistics was made possi-
ble by the advent of high-speed computers. Tables of
means, variances and covariances of order statistics
were prepared for many (standardized) distribu-
tions, typically for n ≤ 20. With the help of these it
has become easy to estimate the parameters of dis-
tributions which, like the normal, depend only on
parameters of location and scale. Using a general-
ized least-squares approach, Lloyd (1952) was able
to give expressions for the linear functions of order
statistics that are of minimum variance for σ within
the class of unbiased estimators that are linear in
the order statistics; likewise for the estimation
of µ.

For these and related developments see, for exam-
ple, Sarhan and Greenberg (1962), Harter (1970),
David (1981), Hoaglin, Mosteller and Tukey (1983),
Balakrishnan and Cohen (1991) and Arnold, Bal-
akrishnan and Nagaraja (1992).
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