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Abstract. Early-season crop identification is of great importance for monitoring crop growth and predicting

yield for decision makers and private sectors. As one of the largest producers of winter wheat worldwide, China

outputs more than 18 % of the global production of winter wheat. However, there are no distribution maps of

winter wheat over a large spatial extent with high spatial resolution. In this study, we applied a phenology-based

approach to distinguish winter wheat from other crops by comparing the similarity of the seasonal changes of

satellite-based vegetation index over all croplands with a standard seasonal change derived from known win-

ter wheat fields. Especially, this study examined the potential of early-season large-area mapping of winter

wheat and developed accurate winter wheat maps with 30 m spatial resolution for 3 years (2016–2018) over

11 provinces, which produce more than 98 % of the winter wheat in China. A comprehensive assessment based

on survey samples revealed producer’s and user’s accuracies higher than 89.30 % and 90.59 %, respectively. The

estimated winter wheat area exhibited good correlations with the agricultural statistical area data at the munici-

pal and county levels. In addition, the earliest identifiable time of the geographical location of winter wheat was

achieved by the end of March, giving a lead time of approximately 3 months before harvest, and the optimal

identifiable time of winter wheat was at the end of April with an overall accuracy of 89.88 %. These results are

expected to aid in the timely monitoring of crop growth. The 30 m winter wheat maps in China are available via

an open-data repository (DOI: https://doi.org/10.6084/m9.figshare.12003990, Dong et al., 2020a).

1 Introduction

Wheat is one of the most important cereal crops in the

world (FAOSTAT, 2018; Guo et al., 2019). According to the

statistics provided by the Food and Agriculture Organization

(FAO), the harvested area of wheat reached 215×106 ha in

2018 worldwide, accounting for 30 % of the global grain area

and 29 % of the grain production (FAOSTAT, 2018). As a

major type of wheat, winter wheat dominates the wheat pro-

duction in many countries including China, United States,

France, Russia, Ukraine, Argentina, and Australia (National

Bureau of Statistics of China, 2018; USDA-ERS, 2018). It

accounts for more than 70 % of the total wheat production

in the United States (USDA-ERS, 2018). Quickly acquir-
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ing the detailed location and planting area of winter wheat

provides the basis for forecasting winter wheat yield, under-

standing winter wheat management, and assessing food se-

curity (Franch et al., 2015, 2019; Huang et al., 2015; Wang

et al., 2019; Zhang et al., 2019; Zhuo et al., 2019).

Satellite-based methods are an effective and quick tool for

crop mapping owing to their great spatial coverage and tem-

poral continuity (Belgiu and Csillik, 2017; Griffiths et al.,

2019; Jin et al., 2019). Most studies have used supervised

classification methods, such as decision tree classification

(Brown and Pervez, 2014; Wardlow and Egbert, 2008), and

supervised machine learning methods (Yang et al., 2019),

such as random forests (Wang et al., 2019; Yin et al., 2020),

support vector machines (Zheng et al., 2015), and neural net-

works (Cai et al., 2018; Zhong et al., 2019), to distinguish

crop types. However, these methods strongly depend on the

selection of the training samples, which is time-consuming

and labor-intensive (Skakun et al., 2017b). For instance, the

30 m resolution Cropland Data Layer (CDL) product gener-

ated by the USDA (United States Department of Agricul-

ture) National Agricultural Statistics Service (NASS) clas-

sified more than 100 types of crops grown in the United

States using the decision tree classification method (Bo-

ryan et al., 2011). The CDL product uses a large volume of

USDA Common Land Unit (CLU) data as training samples,

which are renewed every year. In Nebraska alone, more than

250 000 CLU polygon records were used to train and validate

the CDL product (Boryan et al., 2011). Such large volumes

of CLU data can only be acquired with government support

and are usually confidential (Boryan et al., 2011). Therefore,

the accuracy of national and subnational crop classification

products based on supervised classification algorithms is lim-

ited because of the lack of training datasets (Petitjean et al.,

2012).

As an alternative approach, several studies have used phe-

nological characteristics as a metric for identifying geo-

graphic locations of winter wheat (Qiu et al., 2017; Skakun

et al., 2017b; Wardlow et al., 2007). The common method

differentiates winter wheat from other crops based on the dif-

ferences in key phenological phases (e.g., tillering, heading,

and harvesting) in combination with spectral signatures (Pan

et al., 2012; Skakun et al., 2017a). Some studies integrate ac-

cumulated growing degree day (GDD) to consider the phe-

nology difference to reduce phenology variability due to dif-

ferent climatic conditions (Franch et al., 2015; Skakun et al.,

2017b; Zhong et al., 2014). Other methods like dynamic time

warping (DTW) have been proven to be an effective solution

for mapping crop distribution, e.g., for identifying rice paddy

fields (Guan et al., 2016) and classifying vegetables types (Li

and Bijker, 2019). DTW was initially designed for speech

recognition (Sakoe and Chiba, 1978). Maus et al. (2016) pro-

posed a time-weighted version of the DTW method, namely

time-weighted dynamic time warping (TWDTW), which ac-

counts for seasonality in crop types, thus further improving

the classification accuracy. Unlike supervised classification

methods, these methods require very low volumes of train-

ing data, thus substantially reducing the need for field sur-

veys (Belgiu and Csillik, 2017).

China produces approximately one-sixth of the world’s

wheat in one-tenth of the world’s wheatland (FAOSTAT,

2018), with winter wheat constituting 95 % of the total wheat

production in China (National Bureau of Statistics of China,

2018). Numerous studies have been conducted to identify the

cultivation map of winter wheat at county (Pan et al., 2012),

province (He et al., 2019), and regional scales (Wu et al.,

2007). Significant efforts have been made to generate a plant-

ing area map of winter wheat over the large regions of China.

Based on MODIS (Moderate Resolution Imaging Spectrora-

diometer) surface reflectance products, Qiu et al. (2017) used

the differences in the enhanced vegetation index before and

after heading dates to develop two indicators to map winter

wheat in the major winter wheat producing regions of China.

A recent study generated a 30 m resolution distribution map

of winter crop, instead of winter wheat over the main pro-

ducing areas in China using the decision tree classification

method (Tian et al., 2019). However, several limitations in

existing winter wheat maps remain. First, previous studies

showed that the MODIS dataset failed to identify the plant-

ing areas of winter wheat because of the relatively low spa-

tial resolution (Tian et al., 2019). In China, because of the

large population and implementation of household responsi-

bilities, farmers have the freedom to select the type of crop

they wish to plant. The planting area per household is only

1.37 ha on average (Guo, 2008), which accounts for 5 % of a

500 m MODIS pixel. Therefore, identification methods with

low spatial resolution data (e.g., MODIS dataset) will result

in large misclassifications (Qiu et al., 2017). Second, identifi-

cations based on high-spatial-resolution satellite datasets still

show large uncertainty in several regions. For example, based

on the Landsat 7, Landsat 8, and Sentinel-2 images with a

spatial resolution of 30 m, Tian et al. (2019) found a rela-

tive error greater than 50 % in identifying the planting areas

compared to statistical data for Hubei and Shanxi provinces.

Especially, identifying the geographic location and areas

of winter wheat as early as possible is important for moni-

toring crop growth, simulating crop water use, and meeting

the timeliness requirement of yield predictions (Chipanshi et

al., 2015; Q. Song et al., 2017). Under the background of

climate change, the frequencies of extreme weather events

and natural disasters are expected to increase (Trenberth et

al., 2014; Zambrano et al., 2018). Therefore, early mapping

of crop distribution is urgently necessary for policymakers

to reduce economic loss and assess food security (Inglada

et al., 2016). Identifying the crop distribution in the early-

season period is more challenging than that by the end of the

growing season because of the limited input information.

In this research, we used a phenology-based method to

identify the geographic locations of winter wheat in China

and produced a 30 m resolution winter wheat map for the

period of 2016–2018. Moreover, we explored the potential
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Figure 1. Study area spans 11 provinces over China (the re-

gion covered by oblique lines). The solid black lines represent the

boundary of the provinces. The black dots indicate survey sites

obtained from Google Earth; the red triangles indicate field sur-

vey sites; and each site covers 1 km2. The green five-pointed stars

show field survey samples. Provincial administrative boundary data

and global country administrative boundary data are sourced from

http://www.resdc.cn/DOI/ (last access: 1 December 2019) © Insti-

tute of Geographic Sciences and Natural Resources Research, Chi-

nese Academy Sciences.

for early-season mapping of the planting areas of winter

wheat and determined the earliest identifiable time and op-

timal identifiable time. The identification accuracy was as-

sessed based on field surveys, visual interpretation results of

very high-spatial resolution images, and agricultural statis-

tical data. The proposed method can generate winter wheat

maps that can be updated annually, proving a useful tool for

crop management and policymaking.

2 Data and method

2.1 Study area

This study identified planting areas of winter wheat for

the period of 2016–2018 in 11 provinces covering an

area of 390×106 ha: Henan (HN), Shandong (SD), Anhui

(AH), Jiangsu (JS), Hebei (HB), Hubei (HuB), Shanxi (SX),

Shaanxi (SAX), Sichuan (SC), Xinjiang (XJ), and Gansu

(GS) (Fig. 1). These provinces are the most important winter-

wheat-producing regions of China, constituting 96 % of the

total planting areas with 21.6×106 ha and 98 % of the total

production of winter wheat in China with 125×106 t reported

in 2017 (National Bureau of Statistics of China, 2018).

2.2 Method

The methodological workflow consists of the following

steps: (1) image preprocessing to construct monthly max-

imum composite NDVI (normalized difference vegetation

index) images and extraction of cropland based on the

FROM-GLC (Finer Resolution Observation and Monitoring

of Global Land Cover) product (see Sect. 2.3 for more de-

tails); (2) data processing, which produces standard seasonal

change of NDVI for winter wheat for each province based

on the winter wheat samples; (3) winter wheat identification,

where TWDTW is used to measure the similarity of seasonal

changes of NDVI for known winter wheat fields with inves-

tigated fields, and area statistical data use at the province

level to determine the thresholds of similarity measurements;

and (4) evaluation for assessing the classification accuracies

(Fig. 2).

2.2.1 Time-weighted dynamic time warping

In this study, we used the time-weighted dynamic time warp-

ing (TWDTW) method to identify the planting locations and

areas of winter wheat. The TWDTW is an improved ver-

sion of the DTW algorithm (Petitjean et al., 2012; Sakoe

and Chiba, 1978). In the DTW algorithm, the distance (i.e.,

cost) (Fig. 3a) between two time series, namely series X of

known winter wheat fields and series Y of unknown land

cover, is calculated by warping the series Y via stretching

or shortening the time dimension (Fig. 3b and c), in order

to find the optimal warping path, which is the minimum dis-

tance between the two series. Compared to other similarity-

based methods, such as Euclidean distance, the DTW is more

advantageous in that it can flexibly deal with the temporal

distortions associated with seasonal change, such as ampli-

tude, time scaling, or shifting (Lhermitte et al., 2011). Tak-

ing the seasonal change in land cover types into considera-

tion, Maus et al. (2016) added a time constraint to the DTW

(i.e., TWDTW) to balance shape matching and phenological

change, thus further increasing identification reliability con-

trast with the DTW method.

In order to use the TWDTW method, first, the standard

seasonal change curve of NDVI of winter wheat retrieved at

some known winter wheat fields is required (Fig. 4). Tak-

ing each province as a unit, the dissimilarity values can then

be calculated by comparing the seasonal change in NDVI of

each investigated pixel with the standard seasonal curve of

winter wheat in a given province. The pixels with low dis-

similarity values have a higher probability of being winter

wheat. In this research, we employ the area statistical data of

winter wheat at the province level to determine the thresholds

of dissimilarity. The pixels (N th) having the lowest dissimi-

larity values are considered winter wheat in a given province,

and the total area of all N pixels should be equal to the sta-

tistical area of winter wheat in the investigated province.

https://doi.org/10.5194/essd-12-3081-2020 Earth Syst. Sci. Data, 12, 3081–3095, 2020
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Figure 2. Flowchart of the proposed methodology for winter wheat classification.

Figure 3. (a) Accumulated cost matrix and optimal warping path between two NDVI sequences and (b, c) original and warped time series,

respectively. DOY: day of year.

This study used satellite-based NDVI extracted from

Sentinel-2 and Landsat composite imageries to indicate the

seasonal change in the vegetation. The standard seasonal

curve of winter wheat was generated by averaging the NDVI

with 20 % of the winter wheat pixels randomly selected

from field surveys in each province (see Sect. 2.3). The

winter wheat over all the 11 provinces has similar seasonal

changes (Fig. 4). Generally, winter wheat reaches the max-

imum growth period during March to June and is harvested

during May to June. We assumed that the seasonal change

of winter wheat for each province does not vary from year

to year. We used the standard seasonal curves derived from

NDVI measurements taken in 2018 to identify the planting

area of winter wheat for the period of 2016–2018 to further

examine the applicability of the method.

To determine the earliest identifiable time, we employed

incremental time windows by setting 1 October of the pre-

vious year as the start and extending it with an increment

of 1 month until the following June to compare the seasonal

changes with different lengths. In other words, we started to

identify the planting areas from the previous October, and

subsequently, at each month, a new image is acquired to com-

pose longer time series and generate a new identification. The

influence of seasonal change length on identification accura-

cies was assessed based on these classification accuracies.

2.2.2 Removing the disturbances of winter rapeseed

Three winter crops are grown over the whole study area, in-

cluding winter wheat, winter rapeseed, and winter garlic. The

Earth Syst. Sci. Data, 12, 3081–3095, 2020 https://doi.org/10.5194/essd-12-3081-2020
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Figure 4. Seasonal changes of NDVI for winter wheat over 11 provinces in the study area.

first two crops constitute 91 % and 8 % of the planting area

of winter crops, respectively (National Bureau of Statistics

of China, 2018); winter rapeseed may affect the identifica-

tion of winter wheat. Relying solely on optical imagery to

discriminate them would be a challenge because of their sim-

ilar spectral characteristics and phenological stages (Veloso

et al., 2017). Widely planted in HuB, winter rapeseeds cover

an area of 0.97×106 ha, nearly equal to that of winter wheat

with 1.1×106 ha reported in 2017 (Hubei Statistical Bureau,

2018). In addition, winter rapeseed is grown in AH and JS,

and its total area is 0.78×106 ha, whereas the total area of

winter wheat grown here is 4.57×106 ha (Anhui Statistical

Bureau, 2018; Jiangsu Statistical Bureau, 2018). Winter gar-

lic is mainly distributed in SD, HN, JS, and HB. Compared

with winter wheat, the planting area of winter garlic is very

small. For example, as the largest garlic producer, SD plants

0.15×106 ha of garlic, accounting for only 3.8 % of winter

wheat in 2017 (Shandong Statistical Bureau, 2018). There-

fore, this study ignored the impact of garlic when identifying

the planting areas of winter wheat.

Fortunately, the difference in the plant structure between

winter wheat and winter rapeseed makes it possible to differ-

entiate them based on radar data (Veloso et al., 2017). There-

fore, we used radar data to exclude the interference from win-

ter rapeseed in this study. By investigating the survey sam-

ples in HuB, we found that the VH (vertical transmit and

horizontal receive) backscatter values in April are a good in-

dicator to differentiate winter wheat from winter rapeseed.

The VH backscatter values in April for winter wheat were

lower than −15.5, whereas they were higher for winter rape-

seed (Fig. 5), which meant the pixels (with VH values greater

than −15.5) had less possibility to plant winter wheat. Ac-

cordingly, by assigning a higher dissimilarity to these pixels,

this study distinguished winter wheat and rapeseed in HuB,

JS, and AH.

2.2.3 Classification accuracy assessment

The identification accuracy of winter wheat was evaluated

based on two methods: (1) validation using the ground truth

samples at the field level, including ground surveys and

visual interpretation of very high-resolution images from

Google Earth, and (2) comparisons with agricultural statis-

tical data at administrative units. Eighty percent of the win-

ter wheat samples and all non-winter wheat samples were se-

lected to obtain the confusion matrix of the winter wheat map

for each province (see Sect. 3 for more details). The overall

accuracy (OA) was measured to investigate the overall effec-

tiveness of the method. The producer’s accuracy (PA) shows

the proportion of ground truth samples properly judged as the

target class, and the user’s accuracy (UA) shows the propor-

tion of samples judged as the target class on the classifica-

tion map that are actually present on the ground. In addition,

the planting area of winter wheat identified in this study was

compared with that obtained from agricultural statistical data

at the county and municipal levels through Pearson’s corre-

lation coefficient. Other statistical indicators, including the

mean absolute error (MAE) and the root mean square error

(RMSE), were also used to evaluate the performance.

2.3 Data

2.3.1 Satellite data

The methodology in this study mainly relied on the simi-

larity measurement between the NDVI seasonal change in

an investigated pixel and a known seasonal change of win-

https://doi.org/10.5194/essd-12-3081-2020 Earth Syst. Sci. Data, 12, 3081–3095, 2020
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Figure 5. The seasonal change in monthly maximum composite NDVI (a) and VH (b) of winter wheat and winter rapeseed in HuB.

(c) Frequency histograms of winter wheat and winter rapeseed in terms of VH in April.

ter wheat. Two different data sources were used to calcu-

late the NDVI: the constellation of the Landsat 7, Landsat

8 and Sentinel-2 satellites. The NDVI was derived from the

Landsat Surface Reflectance (SR) products produced by the

United States Geological Survey (USGS), which have been

processed for atmospheric corrections. The quality bands

provided by the SR products were used to remove pixels

contaminated by clouds. The study also used the NDVI ob-

tained from the MultiSpectral Instrument (MSI) sensor on

board Sentinel-2. The SR products generated from Level-

2A products by running Sen2Cor provided by ESA (https:

//github.com/senbox-org, last access: 10 October 2019) were

used. We employed the QA60 band to mask clouds from the

Sentinel-2 images (ESA, 2019). As a result, the study re-

gion with an area of 390×106 ha corresponded to 4.3 billion

30 m pixels covering the entire winter wheat growing season

(October to July) during the period of 2016–2018. Monthly

cloud-free image frequencies from October to July at each

pixel are visualized in Fig. 6.

To differentiate winter wheat from other winter crops (i.e.,

winter rapeseed), this study used the synthetic aperture radar

(SAR) (i.e., Ground Range Detected, Level-1; GRD) prod-

uct from Sentinel-1. It had a dual-polarized vertical trans-

mission with VV (vertical transmit and vertical receive) and

VH (vertical transmit and horizontal receive) bands. We pro-

cessed each image and acquired the backscatter coefficient

(σ ◦) in decibels (dB) on the platform of Google Earth Engine

(GEE) (as operated by the Sentinel-1 Toolbox; ESA, 2015),

comprising thermal noise removal, radiometric calibration,

and terrain correction (orthorectification). Even with stan-

dard noise-reduction techniques applied, SAR images con-

tained a speckle noise due to the interferences between adja-

cent backscatter returns. In this study, we chose the refined

Lee filter, as described in Abramov et al. (2017), to further

correct the SAR images for speckle noise.

In this study, the VH and NDVI data are both compos-

ited into their corresponding monthly maximum images,

respectively, for the period between 1 October 2015 and

31 July 2018 on the platform of GEE. The operations were

run on GEE in pixels: within a month, we obtained NDVI

values of all available clean pixels and got the maximum for

the monthly composite. The pixels of the monthly composite

imageries had the highest quality and represented the whole

month, whereas a small number of pixels had no values. The

reason for this is that imageries from Landsat 7, Landsat 8

and Sentinel had several pixels with bad quality owing to

clouds, cloud shadows, and/or no data acquisition (e.g., fail-

ure of Landsat 7) (Fig. 6).

2.3.2 Field data

To obtain the standard seasonal change curve of winter wheat

and validate how the proposed method performs, we col-

lected survey samples from the following three sources. First,

38 sites (red triangles in Fig. 1) were investigated through

field surveys during 2018 in the six provinces (i.e., SD,

HN, HB, JS, SAX, and HuB) (Tian et al., 2019) (Fig. 1).

Each field site covered 1 km2. In all the field sites, the avail-

able field samples cover 29 754 pixels (i.e., 30 m × 30 m), of

which 17 971 pixels are winter wheat samples and 11 783 are

non-winter wheat samples. Second, we collected 291 field

survey samples (five-pointed stars in Fig. 1) through coop-

erating with other researchers. An MG858 handheld GPS

was used for ground survey. Third, we made visual inter-

pretations of the very high-resolution images from Google

Earth for 2018 to select large fields for winter wheat and ac-

quired a total of 3759 samples, among which 1750 samples

are for winter wheat and another 2009 samples are for non-

winter wheat. The three sets of samples were used to validate

and evaluate the accuracy of the method. Moreover, the total

number of field sites, survey samples, and Google Earth sam-

ples for each province are showed in Table 1.

Earth Syst. Sci. Data, 12, 3081–3095, 2020 https://doi.org/10.5194/essd-12-3081-2020
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Figure 6. Times of good observations in the study area obtained from monthly maximum NDVI composite images between 1 October 2017

and 31 July 2018. The right column shows the frequency of the times of good observations during the period of 2016–2018 from October

to the following July. Provincial administrative boundary data and global country administrative boundary data are sourced from http:

//www.resdc.cn/DOI/ © Institute of Geographic Sciences and Natural Resources Research, Chinese Academy Sciences.

Table 1. The total number of samples of different types for each

province during 2018.

Province Field Survey Google Earth

sites samples samples

Shandong (SD) 8 65 158

Henan (HN) 11 81 159

Hebei (HB) 6 27 201

Hubei (HuB) 10 28 114

Jiangsu (JS) 1 37 655

Shaanxi (SAX) 2 2 1009

Anhui (AH) – 29 378

Shanxi (SX) – 6 327

Sichuan (SC) – 16 290

Gansu (GS) – – 226

Xinjiang (XJ) – – 242

2.3.3 Land cover dataset and agricultural statistical data

In this study, the Finer Resolution Observation and Monitor-

ing of Global Land Cover (FROM-GLC) product with 30 m

resolution was used to extract cropland locations. The prod-

uct can be downloaded via http://data.ess.tsinghua.edu.cn/

(last access: 10 October 2020) (Gong et al., 2013; Li et al.,

2017). Agricultural statistical area data of winter wheat at

the county, municipal, and province levels during the period

of 2016–2018 were acquired from the National Bureau of

Statistics of China (2018). The winter wheat growth condi-

tions were collected by agro-technicians from survey sam-

ples via investigating the registered farmlands or gathering

the estimates made by farmers; they were then reported to

the National Bureau of Statistics of China (2018), where the

planting areas were inferred based on weighting of the sam-

pling croplands. The area statistical data are the most reli-

able data with a high level of accuracy (Franch et al., 2015).

The municipality-level statistical data of winter wheat can be

found in only eight provinces, and county-level data can be

found in only six provinces.

3 Results

To examine the potential for early-season identification of

winter wheat and explore how early we could produce the

distribution maps before the harvest, we investigated the

method with shorter time windows and assessed its perfor-

mance based on all the survey samples collected, which cor-

respond to 33 776 pixels in total. We compared the pro-

ducer’s accuracy (PA), user’s accuracy (UA), and overall ac-

curacy (OA) for different seasonal change lengths starting

from October, with monthly increments thereafter (Fig. 7).

The identification accuracy increases with seasonal change

length until March with an overall accuracy of 87.3 %. From

April onward, the identification results reach saturation in

terms of the accuracy, with an overall accuracy close to max-

imum, 89.88 %. This indicates that the method can identify

https://doi.org/10.5194/essd-12-3081-2020 Earth Syst. Sci. Data, 12, 3081–3095, 2020
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Figure 7. Evolution of producer’s accuracy (PA), user’s accuracy

(UA), and overall accuracy (OA) with monthly increments. PA of

non-winter wheat and PA of winter wheat represent the probabilities

that the ground truth reference data of non-winter wheat and wheat

class are correctly classified, respectively. UA of non-winter wheat

and UA of winter wheat indicate the ratio of the total quantity of

pixels correctly classified into the objective class (i.e., non-winter

wheat and winter wheat) to the total quantity of pixels classified

into the objective class using the proposed method.

the planting area of winter wheat 3 months before harvest

(i.e., March), with stable performance until April.

We used the time window from October to April to com-

pare the similarity between the seasonal change of inves-

tigated fields and that of known winter wheat field; thus,

we produced winter wheat distribution maps (Fig. 8). Our

method shows good performance in identifying the planting

areas of winter wheat over all the 11 provinces. Based on

winter wheat and non-winter wheat survey samples, the over-

all identification accuracy varies among the 11 provinces,

ranging from 84.97 % to 95.85 % (Table 2). The user’s ac-

curacy (UA) and producer’s accuracy (PA) are high in most

provinces. For SC and GS, the same approach produced the

lowest PA of winter wheat, 72.78 % and 73.08 %, respec-

tively (Table 2).

In addition, this method accurately estimates the areas of

winter wheat compared to the available agricultural statisti-

cal data at the municipal and county levels (Fig. 9). The cor-

relation coefficient (R2 values) between the identified and

agricultural statistical areas range from 0.85 to 0.99 at the

municipal level (Fig. 9Ia–h), indicating a strong correlation.

At the county level, the method performs a little worse, with

correlation coefficient (R2 values) ranging from 0.7 to 0.88

(Fig. 9IIa–h). Considering the MAE and the RMSE, JS, HN,

and AH show higher error at the municipal and county level.

Finally, we examined the capability of the method for

extending the standard seasonal change of NDVI acquired

from a single year to apply it in other years (i.e., 2016 and

2017). We used the same seasonal change of NDVI of win-

ter wheat for each province derived from field samples ob-

tained from 2018 to compare the dissimilarity with that of

unknown fields for 2016–2017. We then compared the esti-

mated winter wheat areas with agricultural statistical area for

the 2 years (Fig. 10). R
2 and slope for the period of 2016–

2018 changed little in most provinces, except for JS and HN

at the county level.

4 Discussion

Winter wheat is one of the most important crops in the world,

and information on its spatial extent is critical for making

economic and grain subsidy policies (FAOSTAT, 2018). To

our knowledge, there are currently no distribution maps for

winter wheat over China on a large scale with a spatial reso-

lution of 30 m. Previous studies have made efforts to gener-

ate the distribution map of winter wheat over the major pro-

ducing areas in China based on moderate-spatial-resolution

satellite data (i.e., MODIS) (Qiu et al., 2017). However, ow-

ing to small plot sizes for crops, the distribution map with

moderate resolution may lead to large uncertainties because

of mixed pixels, further restricting the classification accuracy

(Tian et al., 2019). Machine learning methods, such as ran-

dom forests and support vector machines, have been proven

to be effective in identifying the spatial distribution of vari-

ous crops (Cai et al., 2018; Liu et al., 2018); these methods,

however, strongly depend on the number of training samples,

thus restricting the large-area crop mapping because of the

lack of data (Belgiu and Csillik, 2017; Millard and Richard-

son, 2015; Valero et al., 2016).

In this study, we generated winter wheat distribution maps

with a spatial resolution of 30 m for the period of 2016–2018

based on the TWDTW method using Landsat- and Sentinel-

derived monthly maximum composite NDVI. The results ob-

tained based on field surveys and statistical data indicate that

the proposed method can accurately identify the winter wheat

planting areas over all the 11 provinces. Compared to ma-

chine learning methods, our method performs well even if

with only a few training samples, which is a significant ad-

vantage for large-scale crop identification given the lack of

survey samples available (King et al., 2017). In addition, the

performance is ideal even when using the same standard sea-

sonal change of the winter wheat for each province for the

years when ground surveys are lacking (Fig. 10). Therefore,

the proposed method can identify winter wheat quickly with

a few training samples and can be extended for years when

training samples are scarce (Maus et al., 2016). Recent re-

search suggested that the TWDTW method is more robust in

contrast to other identification techniques, such as the ran-

dom forests, when there are only a small number of training

samples (Belgiu and Csillik, 2017).

More importantly, this method can identify planting areas

of winter wheat 3 months before harvesting (i.e., March) and
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Figure 8. Final winter wheat identification map of China in 2018. Panels 1–6 on the right and bottom are the zoomed-in maps, indicating

the local details in the different provinces and regions, including SD, HN, AH and JS, HuB, central and western regions of China, and

XJ, respectively. Provincial administrative boundary data and global country administrative boundary data come from the Resource and

Environment Science and Data Center cloud platform (http://www.resdc.cn/DOI/).

can achieve stable performance in April, which are signifi-

cant for early and continuous winter wheat production pre-

dictions (Franch et al., 2015; McNairn et al., 2014). There-

fore, understanding where crops are distributed, especially

during the early within-season period, is a top priority in pre-

dicting total production and monitoring trends in production

(Shao et al., 2015; Skakun et al., 2017b). Existing agricul-

tural estimates on crop area or mapping of crop distribution

are usually available at the end of the season or after crop har-

vest (Boryan et al., 2011; Zhong et al., 2019), and the limited

input information makes early identification of winter wheat

distribution a challenge (Kontgis et al., 2015; X.-P. Song et

al., 2017). For example, machine learning methods strongly

depend on field survey data and time series features as input;

this increases the difficulty in early identification because

collecting field data during the season is time-consuming and

laborious, especially over large areas (Skakun et al., 2017b;

Q. Song et al., 2017). Moreover, the time series input fea-

tures are generally obtained for the entire growing season,

making early mapping more challenging (Johnson, 2016). In

this study, our results indicate that early-season identification

of winter wheat planting area is feasible up to 3 months be-

fore harvest with limited imageries and time information.

Some potential uncertainties could affect the identifica-

tion accuracy. First, the quantity of cloud-free satellite data

substantially determines effectiveness of retrieving the sea-

sonal change of crop growth; this can influence the identi-

fication quality (Dong et al., 2020b). In this study, we used

all the available satellite data of Landsat and Sentinel and

composited multitemporal monthly maximum NDVI images,

in order to avoid cloud contamination as much as possible.

However, there are large differences in the available images

among various provinces; it remains a challenge to acquire

cloud-free images in cloudy and rainy southern areas, such as

in SC, HuB, and JS (X.-P. Song et al., 2017). The low iden-

tification accuracy in these provinces is likely due to the rel-

atively poor data quality of satellite data (Dong et al., 2015).

Second, although the seasonal change of winter wheat is rel-

atively consistent in most provinces (i.e., a low peak in NDVI

in winter and a high peak in NDVI in spring), there is an in-

terclass difference in winter wheat in each province, such as

wheat variety, sowing time, and irrigation conditions. Some

winter wheat fields may have an earlier sowing time, showing

https://doi.org/10.5194/essd-12-3081-2020 Earth Syst. Sci. Data, 12, 3081–3095, 2020
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Table 2. Confusion matrix for the identification map of planting areas of winter wheat in 11 provinces during 2018.

Province Class Non-wheat Wheat User’s Producer’s Overall

accuracy accuracy accuracy

SD Non-wheat 2786 109 90.84 % 96.23 % 94.49 %

Wheat 281 3896 97.28 % 93.27 %

HN Non-wheat 2495 615 94.12 % 80.23 % 91.85 %

Wheat 156 6191 90.96 % 97.54 %

HB Non-wheat 2013 189 97.62 % 91.42 % 95.85 %

Wheat 49 3478 94.85 % 98.61 %

HuB Non-wheat 3443 447 93.43 % 88.51 % 91.70 %

Wheat 242 4169 90.23 % 94.51 %

AH Non-wheat 166 12 86.46 % 93.26 % 90.66 %

Wheat 26 203 94.42 % 88.65 %

JS Non-wheat 377 20 84.15 % 94.96 % 86.85 %

Wheat 71 224 91.8 % 75.93 %

SAX Non-wheat 529 54 97.24 % 90.74 % 93.18 %

Wheat 15 413 88.44 % 96.5 %

SX Non-wheat 187 9 86.57 % 95.41 % 88.59 %

Wheat 29 108 92.31 % 78.83 %

GS Non-wheat 117 5 80.69 % 95.9 % 85.4 %

Wheat 28 76 93.83 % 73.08 %

XJ Non-wheat 115 6 79.31 % 95.04 % 85.12 %

Wheat 30 91 93.81 % 75.21 %

SC Non-wheat 145 3 77.13 % 97.97 % 84.97 %

Wheat 43 115 97.46 % 72.78 %

a pattern deviation from the standard average pattern of this

province, and therefore, may lead to some omission errors.

Besides, there are some particularities in the NDVI seasonal

change curves of SC and HB, where NDVI shows an increas-

ing trend from October to April. This is different from the

typical seasonal change curves with two NDVI peaks during

the growing season, and this may make it difficult to differen-

tiate winter wheat from other crops. That may be the reason

for relatively lower identification accuracy. So, the identifica-

tion of winter crops in warmer regions should be paid more

attention.

5 Data availability

The derived winter wheat maps in China

for 3 years (2016–2018) are available at

https://doi.org/10.6084/m9.figshare.12003990 (Dong et

al., 2020a).

To help the readers to reproduce this work, Table 3 sum-

marizes the data source and platform information of datasets

and processing steps in this study. The input datasets came

from three parts including: the GEE platform, our group,

and freely accessible websites. Specifically, the four satel-

lite datasets in Sect. 2.3.1 were available at the GEE plat-

form. The survey samples were collected by our group from

the three sources, which have been introduced in detail in

Sect. 2.3.2. The land cover product (i.e., FROM-GLC prod-

uct) in Sect. 2.3.3 was downloaded from the freely accessible

website of Tsinghua University, and the agricultural statisti-

cal area data in Sect. 2.3.3 were downloaded from the Na-

tional Bureau of Statistics of China.

In addition, the process of monthly maximum NDVI

composition was implemented on the GEE platform. The

TWDTW algorithm, the exclusion of disturbances of win-

ter rapeseed, and the classification accuracy assessment were

operated on the localhost platform.

6 Conclusions

Information on the geographical location and distribution of

crops at global, national, and regional scales is valuable for

many applications. To our knowledge, there are no published

distribution maps for winter wheat over China on a large

scale with a spatial resolution of 30 m. Based on the avail-

able Landsat and Sentinel imageries and a time-weighted dy-

namic time warping (TWDTW) method, this study produced

Earth Syst. Sci. Data, 12, 3081–3095, 2020 https://doi.org/10.5194/essd-12-3081-2020
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Figure 9. Comparison between the estimated planting area of winter wheat and agricultural statistical area at the municipal (I) and county

level (II) for 2018. The dotted line denotes the 1 : 1 line. The agricultural statistical area at the county level for AH and SAX are not available.

The units of RMSE and MAE are 1000 ha.

Table 3. The detailed information of the datasets and processes in this study.

Data source and platform Detailed datasets and processing steps

Datasets GEE platform Landsat 8 optical, Landsat 7 optical, Sentinel-2 optical, Sentinel-1 SAR

Our group Survey samples

Freely accessible websites FROM-GLC

Agricultural statistical area data

Processes GEE platform Composing the monthly maximum NDVI

Localhost platform Running the TWDTW algorithm

Removing the disturbances of winter rapeseed

Classification accuracy assessment

https://doi.org/10.5194/essd-12-3081-2020 Earth Syst. Sci. Data, 12, 3081–3095, 2020
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Figure 10. Comparison between the estimated and statistical winter wheat area at the municipal (a, b) and county level (c, d) for the period

of 2016–2018. The agricultural statistical area at the county level for AH and SAX are not available.

an unprecedented 30 m spatial resolution winter wheat dis-

tribution map of China for the period of 2016–2018. The

method performed well over the 11 provinces that produce

more than 98 % of the winter wheat in China. When vali-

dated with 33 776 survey samples, the overall accuracy was

89.88 %, and the producer’s and user’s accuracies reached

89.30 % and 90.59 %, respectively. The resultant planting ar-

eas of winter wheat were spatially consistent with the agri-

cultural statistical area, and the method explained 78 % of the

spatial variabilities in the planting areas at the county level

averaged over six provinces. More importantly, this method

is effective in identifying the planting areas of winter wheat

3 months prior to harvest, which is beneficial for early yield

estimation. In general, this paper produced a 30 m spatial

resolution winter wheat map of China, which is expected to

contribute to the timely monitoring of winter wheat growth.

In future work, the main goal to be achieved is to improve

the method and apply it to other staple crops (e.g., corn and

rice) and eventually complete maps of staple crops at national

scales.
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