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Abstract

Background: Gestational diabetes mellitus (GDM) is one type of diabetes that presents during pregnancy and significantly
increases the risk of a number of adverse consequences for the fetus and mother. The microRNAs (miRNA) have recently
been demonstrated to abundantly and stably exist in serum and to be potentially disease-specific. However, no reported
study investigates the associations between serum miRNA and GDM.

Methodology/Principal Findings: We systematically used the TaqMan Low Density Array followed by individual
quantitative reverse transcription polymerase chain reaction assays to screen miRNAs in serum collected at 16–19
gestational weeks. The expression levels of three miRNAs (miR-132, miR-29a and miR-222) were significantly decreased in
GDM women with respect to the controls in similar gestational weeks in our discovery evaluation and internal validation,
and two miRNAs (miR-29a and miR-222) were also consistently validated in two-centric external validation sample sets. In
addition, the knockdown of miR-29a could increase Insulin-induced gene 1 (Insig1) expression level and subsequently the
level of Phosphoenolpyruvate Carboxy Kinase2 (PCK2) in HepG2 cell lines.

Conclusions/Significance: Serum miRNAs are differentially expressed between GDM women and controls and could be
candidate biomarkers for predicting GDM. The utility of miR-29a, miR-222 and miR-132 as serum-based non-invasive
biomarkers warrants further evaluation and optimization.
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Introduction

Gestational diabetes mellitus (GDM), defined as any degree of

glucose intolerance at first recognition during pregnancy, is one of

the most common pregnancy complications and affects approx-

imately 3–8% of all pregnancies [1,2]. Importantly, the incidence

is increasing with the increased prevalence of obesity among

women at reproductive age [3,4,5,6]. Although the detailed

mechanism how the GDM happened remains poorly known, the

GDM could lead to various adverse outcomes on pregnant women

and their offspring, such as gestational hypertension, cesarean

delivery, preterm birth, macrosomia and hyperbilirubinemia, as

well as the predispositions to the development of metabolic

syndrome and type 2 diabetes [7].

GDM is usually diagnosed at the end of the second trimester or

early third trimester based on pregnancy physiology. As recom-

mended by the American College of Obstetricians and Gynecol-

ogists (ACOG) and the American Diabetes Association (ADA), the

serum-based screening for GDM typically begins at 24–28 weeks

of gestation; however, as many use a 2-step process, testing may

not be completed until 32 weeks [8]. This leaves little time for

intervention and management of GDM. Detection of women at

higher risk of GDM early in pregnancy is a desirable goal, because

interventions, such as diet, medication and exercise, may be

applied earlier to have a positive effect on maternal and fetal

outcomes.

MiRNAs are a class of small non-coding RNAs that function as

translational repressors involved in many important biological

processes [9,10]. Specifically, miRNAs are required for pancreatic

development and the regulation of glucose stimulated insulin

secretion [11,12,13]. Growing evidence indicates that miRNAs are

involved in the pathogenesis of diabetes and that a number of

miRNAs have been reported to be differently expressed in

pancreatic b-cells, liver, adipose tissue, and/or skeletal muscle of

animal models of type 1 or type 2 diabetes, such as miR-146a, miR-

21, miR-29a, miR-34a, miR-222, and miR-375 [14]. Recently,
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miRNAs were found to be abundant in human serum, and the

serum miRNAs attracted most attention because of their unique

merits (i.e., stable, easily to be detected, and potentially disease-

specific) [15]. Although the exact mechanism how miRNAs enter

into the serum and whether they are biologically functional or

simply biomarkers for unknown etiological factors is still a big

obsession, a recent study reported that miRNAs could be selectively

packaged into microvesicles and actively secreted [16]. Therefore,

serum miRNAs could be a potential independent predictive system

for different diseases, compared with biomarkers derived from

target tissues.

In this study, we hypothesized that serum miRNA could serve as

candidate biomarkers for predicting GDM in the relatively early

pregnancy. To address this hypothesis, we systematically screened

serum miRNAs by using the Taqman Low Density Array (TLDA)

chips followed by individual quantitative reverse transcriptase

polymerase chain reaction (qRT-PCR) assays. We also performed

internal and two-centric external validations by using individual

qRT-PCR assays. Finally, in vitro analysis of miR-29a was con-

ducted in HepG2 cell lines to investigate the potential role of miR-

29a in GDM development.

Results

The characteristics of participants are summarized in Table 1.

The cases and controls were well matched on age, BMI, gestational

week and gravidity. For the discovery and internal validation

samples, serum glucose levels were slightly higher for GDM

patients, and in all samples, only eight subjects have a serum

glucose level .7.8 mmol/L but none of them .11.0 mmol/L at

that time.

In all subjects, 73 miRNAs showed DDCT.3 (i.e. 8-fold) by the

pooled TLDA chip assay (Table S1). Based on both scientific and

applicable considerations, we selected miRNAs that had at most

35 of CT value by TLDA in both two pools for further individual

qRT-PCR confirmation. As a result, 10 miRNAs were identified

and subjected to individual qRT-PCR analyses on 48 discovery-stage

samples (Table 2). Because the expression pattern of miR-222 was

reported to be associated with hyperglycemia, we included it in

further analysis, although it did not meet the criteria (TLDA:

DDCT = 2.834) [17]. In the discovery stage, the expression levels of

three miRNAs (i.e., miR-132, miR-29a, and miR-222) were

significantly different between GDM women and controls

(P = 0.042, 0.032, and 0.041 for miR-132, miR-29a, and miR-

222, respectively) (Figure 1).

As shown in Table 3, the expression levels of the three miRNAs

were significantly different between cases and controls in internal

validation-stage samples (P = 0.034, 0.045, and 0.016 for miR-132,

miR-29a, and miR-222, respectively), while miR-29a and miR-

222 were still significantly differently expressed in the two-centric

external validation-stage samples (Wuxi: P = 0.001 and 0.017 for

miR-29a and miR-222, respectively; Changzhou: P = 0.001 and

0.019 for miR-29a and miR-222, respectively) (Table 3 and

Figure 1).

We further plotted the Receiver Operating Characteristic

(ROC) curves and calculated the Area under the ROC Curve

(AUC) to assess the sensitivity and specificity of the miRNA

signature individually and in combination for GDM predicting. In

the consideration of the heterogeneity of different centers, the

AUC analysis was only performed in the samples from the

discovery and internal validation stages (from Nanjing Maternity

and Child Health Hospital of Nanjing Medical University). As a

result, for single miRNA, the AUC was 64.2%, 65.8% and 60.0%

for miR-132, miR-29a and miR-222, respectively; and the AUC

was 66.9% (sensitivity = 66.7% and specificity = 63.3%), when we

combined all three miRNAs. Overall, 22 (18.3%) false-positive and

20 (16.7%) false-negative subjects were found in the 120 samples

(detailed data not shown).

Because insulin-induced gene 1 (Insig1) was demonstrated as a

target gene of miR-29a, and Krapivner et al. showed that Insig1

played a role in glucose homeostasis and that the action of Insig1

was related to sterol regulatory element-binding proteins (SREBP)-

mediated regulation of the hosphoenolpyruvate Carboxy Kinase 2

(PCK2), a key enzyme in gluconeogenesis and glycolysis, we further

Table 1. Characteristics of the study population.

Variable Discovery Stage Pa Internal Validation Pa

External Validation
(Wuxi) Pa

External Validation
(Changzhou) Pa

case Control case control case control case control

Age(years) 28.7962.21 29.4661.89 0.267 29.2161.61 28.5761.80 0.074 26.8861.96 26.8862.06 1 27.9462.72 26.7561.65 0.146

BMI(kg2/m) 21.4461.70 21.961.81 0.374 21.5061.85 21.3162.17 0.638 20.6261.25 20.7361.37 0.811 21.9561.99 22.1361.93 0.794

Gestational
Week

17.4060.70 17.1660.79 0.262 17.0960.78 17.2360.76 0.373 17.5560.92 17.5360.93 0.935 16.9560.85 17.1760.88 0.470

Serum
glucose

5.3060.90 4.7660.90 0.042 5.5261.06 4.9661.20 0.041 5.5262.09 5.3561.31 0.772 5.3161.99 5.2360.48 0.875

OGTT

2+ 17 24 14 8

3+ 7 11 2 4

4+ 0 1 0 4

Gravidity

1 14 12 0.925b 20 20 0.351b 10 10 0.470b 11 11 1.000b

2 7 8 8 13 4 6 4 5

. = 3 3 4 8 3 2 0 1 0

aStudent’s t test.
bFisher’s exact test.
doi:10.1371/journal.pone.0023925.t001
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investigated the relationship between Insig1 levels and miR-29a

expression, and subsequently altered expression of PCK2 [18,19].

As shown in Figure 2, the expression of miR-29a in HepG2 cells

was significantly decreased when transfected with anti-miR-29a

compared with that in those cells transfected with anti-miR-neg.

In addition, the expression of Insig1 protein in HepG2 cells was

increased when miR-29a was down-regulated (P , 0.01), and cells

with down-regulated miR-29a also had a significantly higher level

of PCK2 mRNA expression (P , 0.01).

Discussion

Numerous studies have demonstrated the associations between

GDM and both neonatal morbidity and maternal complications.

Most protocols for screening and diagnosis are initiated at 24–28

gestational weeks, and previously studies have demonstrated a

number of serum markers (e.g. sex hormone-binding globulin, the

homeostasis model assessment index and C-reactive protein)

measured in the first and early second trimesters are associated

with the later diagnosis of GDM [20,21,22,23]. The present study

firstly revealed a serum miRNA signature for predicting GDM in

the early second trimester and found that signatures of the

miRNAs (mir-29a and mir-222 and miR-132) aberrant expressed

prior to serum glucose abnormality.

Several studies had reported that human serum/plasma could

serve as a class of novel promising noninvasive biomarkers for

diseases [15,24,25,26,27]. Previously, we had used a two-stage

study to investigate the role of serum miRNAs in predicting

prognosis of nonsmall-cell lung cancer (NSCLC) and found that

expression levels of four miRNAs (miR-486, miR-30d, miR-1 and

miR-499) were significantly associated with NSCLC survival [24].

Ng et al. found that the expression levels of plasma miR-92 were

significantly elevated in colorectal cancer patients and well

distinguished from gastric cancer, inflammatory bowel disease

and normal subjects [25]. Fichtlscherer et al. reported that the

expression levels of miR-126, miR-17, miR-92a and miR-155

were significantly reduced in the plasma of coronary artery disease

patients compared with healthy controls’ [26]. Finally, plasma

miR-1 expression level was found to be significantly higher in

acute myocardial infarction (AMI) patients compared with

non-AMI subjects, and the level was dropped to normal on

discharge following medication [27].

For diabetes, Chen et al. compared the serum miRNA expres-

sion in type 2 diabetic patients with that in healthy individuals and

found that the serum miRNA profiling was significantly different

between patients and controls [15]. Recently, Zampetaki et al. used

the microarray screening and qRT-PCR methods to assess the

plasma miRNA profiling in type 2 diabetes and found that

expression levels of miR-20b, miR-21, miR-24, miR-15a, miR-

126, miR-191, miR-197, miR-223, miR-320, and miR-486 were

lower in prevalent type 2 diabetes [28]. Kong et al. found that

serum miR-29a was significantly down-regulated in type 2

diabetes susceptible individuals with normal glucose tolerance (s-

NGT) and in pre-diabetes individuals compared with type 2

diabetes patients (n-T2D), but no significantly different expression

between s-NGT and pre-diabetes individuals was observed [29].

The differences between our study and those two previous studies

are: (1) Compared to non-pregnant women, pregnant women were

typically characterized as a ‘‘diabetogenic state’’ because of the

placental hormones. The human placenta is considered an active

organ playing a role in the aggravated insulin resistance by

secreting substances such as inflammatory cytokines and adipokine

[30,31,32]. (2) We tested serum miRNAs in the early second

trimester when the subjects were not having diagnostic GDM, and

none of them have increased blood glucose .11.0 mmol/L.

As of today, we just begin to understand the complex

mechanisms that culminate into the GDM phenotype and its

complications. Insig1 was a validated target gene of miR-29a and a

blocker of proteolytic activation of SREBPs, which activated genes

regulating cholesterol and fatty acid metabolism and possibly

genes involved in glucose homeostasis because of the target gene of

SREBPs was PCK2, a key enzyme in gluconeogenesis in hepatic

cells [18,33,34,35,36,37,38,39]. Therefore, overexpression of miR-

29a causing decreased levels of Insig1 may lead to a reduced

expression of PCK2, exhibiting reduced glucose concentration

[19]. A recent study reported that high glucose could reduce the

levels of miR-29a in HK-2 cells [40]. In our study, we found that

the knockdown of miR-29a could increase Insig1 expression level

and subsequently increased the level of PCK2, which may lead to

elevation of the glucose level, and the serum miR-29a expression

Table 2. Results of 11 miRNAs in the discovery stage.

miRNA GDM No GDM DDCTb Pc

N DCTa mean SD median N DCTa mean SD median

hsa-miR-1 24 6.336 4.03*10-5 3.59*10-5 2.98*10-5 24 2.781 4.92*10-5 4.67*10-5 3.37*10-5 3.894 0.463

hsa-miR-125b 24 9.248 5.95*10-5 3.25*10-5 5.55*10-5 24 4.73 7.73*10-5 3.75*10-5 7.07*10-5 4.857 0.085

hsa-miR-132 24 7.27 11.98*10-5 10.47*10-5 8.75*10-5 24 3.77 17.88*10-5 9.00*10-5 16.24*10-5 3.839 0.042

hsa-miR-29a 24 7.325 11.20*10-4 8.18*10-4 8.33*10-4 24 3.766 17.01*10-4 9.89*10-4 14.38*10-4 3.898 0.032

hsa-miR-203 24 8.197 1.80*10-5 1.15*10-5 1.44*10-5 24 4.757 2.55*10-5 1.58*10-5 2.10*10-5 3.779 0.065

hsa-miR-222 24 3.203 2.43*10-3 1.72*10-3 2.02*10-3 24 0.708 3.76*10-3 2.57*10-3 3.26*10-3 2.834 0.041

hsa-miR-378 24 8.353 10.07*10-4 5.77*10-4 9.00*10-4 24 5.214 11.17*10-4 6.86*10-4 9.82*10-4 3.478 0.550

hsa-miR-518d-3p 24 7.26 8.22*10-6 9.79*10-6 4.43*10-6 24 3.814 8.68*10-6 8.01*10-6 5.49*10-6 3.785 0.860

hsa-miR-632 24 7.348 1.68*10-4 1.05*10-4 1.44*10-4 24 4.205 2.07*10-4 1.12*10-4 1.80*10-4 3.482 0.226

hsa-miR-923 24 3.324 2.70*10-3 2.84*10-3 1.62*10-3 24 0.077 3.48*10-3 6.25*10-3 1.45*10-3 3.586 0.584

hsa-miR-99a 24 9.257 7.07*10-5 3.40*10-5 6.03*10-5 24 5.785 8.88*10-5 4.66*10-5 8.44*10-5 3.811 0.131

aTLDA results of 24 pooled samples, DCT = CTsample2CTRNU6B.
bDDCT =DCTcase2DCTcontrol2DCTCel-39 from TLDA data.
cStudent’s t test from individual assay data.
doi:10.1371/journal.pone.0023925.t002
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decreased ahead of the elevation of serum glucose. Taken

together, we inferred that miR-29a is a negative regulator of

serum glucose. Mir-222 is located on Xp11.3, and the up-

regulation of miR-222 may be involved in cell cycle regulation

through its control of cyclin-dependent kinase inhibitor (p27Kip1)

expression [41]. It has been shown that miR-132 was reported

significantly differently expressed in the pancreatic islets of the GK

rats, and the up-regulated miR-132 expression could decrease

production of key proteins of the insulin exocytotic machinery and

reduce insulin secretion of the GK rats [42]. However, the

biological function of miR-222 and miR-132 in GDM was not

clear up to date. Additional investigation of the regulatory

mechanism of these miRNAs and their target mRNAs may improve

our understanding of the molecular pathogenesis of GDM as well as

the effectiveness in identifying potential therapeutic targets and

surveillance markers for GDM.

Major strengths of our study include the use of a multistage

study design. We collected blood samples of pregnant women at

their 16–19 gestational weeks, and GDM was diagnosed at 25–28

gestational weeks. It shed light on the possible effects of earlier

intervention and greater aggressive treatment on maternal and

fetal outcomes. Furthermore, we spiked-in cel-mir-39 to normalize

the results and conducted qRT-PCR with equal numbers of cases

and control on the same plate together with cel-mir-39. However,

some limitations also need to be addressed. First, the sample size of

the external validation was relatively small, which may present

underpowered results. Second, the expression levels of miRNAs

were slightly higher in external validation samples than in

discovery and internal validation samples that may be the

consequence of lower stored temperature, which lead to less

degradation of miRNAs. Therefore, we cannot combine external

validation results when performing predictive analyses. Third,

because the investigation of the role of miR-29a in insulin

signaling was just a replication of previous studies [18,19],

additional functional studies are needed to further investigate the

role miR-29a as well as miR-222 and miR-132 in GDM. Finally,

although we demonstrated that the serum miRNAs (miR-29a,

miR222 and miR-132) were differentially expressed between

GDM women and controls, the clinical application of these

miRNAs in predicting GDM still needs further investigation and

optimization.

Materials and Methods

Study Design and Study Population
We designed a multistage retrospective nested case-control

study to determine whether serum miRNA profiling could predict

GDM development and whether the predicting property may be

prior to the change of blood glucose. All pregnant women

provided blood samples, when they received prenatal care at 16–

19 gestational weeks. The sera were isolated within 4 hours after

collection and tested for levels of random glucose using Olympus

AU5400 analyzer (Olympus Diagnostic Systerms, Southall,

Middlesex, UK). The sera of discover and internal validation

samples were stored at 220uC, and those of external validation

were stored at 270uC. At 24–28 weeks of gestation, all

Figure 1. Expression levels of miRNAs. DS: discovery stage; IS:
internal validation stage; WX: Wuxi; CZ: Changzhou Three serum
miRNAs were quantified by qRT-PCR in patients with subsequent GDM
and matched controls (n = 24, 36, 16 and 16 each for DS, IS, WX and CZ,

respectively). The Box-whisker Plot represented the relative expression
levels of miRNAs that were determined by the equation 22DCT, in
which DCT = CT sample-CT cel-39. The bottom and top of the box were
the 5th and 95th percentiles, and the band near the middle of the box
was the 50th percentile of the relative expression levels of miRNAs. Any
data beyond these whiskers were shown as points.
doi:10.1371/journal.pone.0023925.g001
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participants had a subsequent 50-g glucose challenge test (GCT),

and women with an abnormal 1-h post-GCT glucose level

($7.8 mmol/L) would undergo 3-h 75-g oral glucose tolerance

test (OGTT), assessing the blood glucose levels at 0, 1, 2 and 3 h

after glucose administration. Those who had results $2 abnormal

values on OGTT in accordance with ADA guidelines were

defined as cases; while those who passed GCT and/or OGTT

were chosen as controls. To control sample heterogeneity, only

those controls matched with cases on age, body mass index (BMI)

and pregnant weeks at the time of blood collecting were included

in this study. We excluded subjects with diabetes history, multiple

gestation, other pregnancy complications, and those found to have

glucose intolerance at ,20 weeks of gestation, and BMI .26, age

.33 years, and small-for gestational-age infants.

To detect the generalizable signatures of miRNAs for the

prediction of GDM, we pooled serum samples of 24 cases (from

Nanjing Maternity and Child Health Hospital of Nanjing Medical

University, Nanjing) and 24 controls, respectively, to subject them

to TLDA chip screening in the discovery stage. Then, we

performed individual qRT-PCR for the discovery-stage samples

to further filter signals of the screened miRNAs due to

heterogeneity in the subjects, as described previously [24].

Subsequently, a two-stage validation, including an internal

validation and a two- centric external validations, was conducted

to confirm the results from the discovery stage. For internal

validation, 36 cases (again from Nanjing Maternity and Child

Health Hospital of Nanjing Medical University, Nanjing) and 36

controls were tested. The controls used for discovery and internal

validation stages were recruited at the same hospital and during

the same time period as cases between July 2008 and June 2009.

The external validation was conducted with samples from two

independent centers of Wuxi and Changzhou, respectively. In

brief, 16 cases and 16 controls from Wuxi Maternity and Child

Health Hospital were recruited in parallel between March 2008

and December 2008, and 16 cases and 16 controls were recruited

in parallel between July 2006 and June 2007 from Changzhou

Maternity and Child Health Hospital. This study was approved by

the institutional review boards of Nanjing Medical University and

the participating hospitals, and a written informed consent was

also obtained from each participant. Clinical information and

birth outcomes were collected from the obstetric electronic

medical records.

Serum preparation and RNA extraction
Five-ml venous blood was collected from each participant using

a procoagulant drying tube, when they received prenatal care at

16–19 weeks of gestation. The whole blood was separated into

serum and cellular fractions by centrifugation at 4,000 rpm for

10 min, followed by 12000 rpm for 15 min to completely remove

cell debris.

Isolation of serum total RNA was described previously with some

modifications [43]. In brief, the Trizol Reagent (Invitrogen,

Carlsbad, CA) was used for serum denaturizing and Qiagen

miRNeasy Mini kit (Qiagen, Valencia, CA) for RNA collection

and purification according to the manufacturer’s protocol. Because

there was no consensus on the use of housekeeping miRNA for the

serum qRT-PCR analysis, after the initial denaturizing step, we

routinely spiked in synthetic C.elegans miR-39 (cel-mir-39, 59-ucacc-

ggguguaaaucagcuug -39) to a final concentration of 1024 pmol/ml

for all samples in order to control variations in RNA extraction and/

or purification procedures because of the absence of homologous

sequences in humans [44]. Furthermore, all study subjects were

recruited during the same period, stored under the same conditions

(for each center), and the samples were handled in equal volume in

each experiment step to control the potential bias.

TLDA chip assays and qRT-PCR
In the discovery stage, we used TLDA Chips (human

microRNA panel V2.0, Applied Biosystems Inc, CA, USA) to

screen differentially expressed miRNAs from the two pooled

samples. A total of 960-ml serum from each pool (24 samples) was

used. Megaplex RT reactions and pre-amplification reactions were

run according to the manufacture’s protoco, in which 75-ml 0.16
TE was added to PreAmp product, and 9 -ml diluted PreAmp

product was used to run the RT-PCR reactions by dispensing

100 ml of the PCR reaction mix into each port of the TaqMan

MicroRNA Array. The default PCR procedure was used, and the

analysis was performed by using RQ manager software (Applied

Biosystems Inc.). DCT and DDCT were calculated using the

following mathematical formula: DCT = CT sample2CT RNU6B,

DDCT =DCT case2DCT control. Finally, the DDCT was normalized

against the cel-miR-39.

Then, we used TaqMan microRNA probes (Applied Biosystems

Inc.) to perform qRT-PCR assays according to the manufacturer’s

instructions [45,46]. The probe information was shown in Table

Table 3. Expression of the identified three miRNAs in the validation stages.

Validation stage miRNAs GDM No GDM Pa

N Mean SD Median N Mean SD Median

Internal validation mir-132 36 12.15*10-5 9.36*10-5 9.85*10-5 36 21.24*10-5 23.41*10-5 13.34*10-5 0.034

mir-29a 36 11.11*10-4 8.02*10-4 7.89*10-4 36 17.06*10-4 15.54*10-4 13.67*10-4 0.045

mir-222 36 2.32*10-3 1.54*10-3 1.90*10-3 36 3.51*10-3 2.45*10-3 2.97*10-3 0.016

External validation mir-132 16 3.23*10-4 2.56*10-4 2.35*10-4 16 4.32*10-4 2.56*10-4 4.00*10-4 0.235

Wuxi mir-29a 16 19.66*10-4 9.69*10-4 17.97*10-4 16 36.74*10-4 15.85*10-4 33.35*10-4 0.001

mir-222 16 5.72*10-3 2.71*10-3 5.27*10-3 16 8.73*10-3 3.91*10-3 8.02*10-3 0.017

External validation mir-132 16 14.62*10-5 7.71*10-5 13.02*10-5 16 27.55*10-5 11.75*10-5 26.27*10-5 0.001

Changzhou mir-29a 16 11.39*10-4 5.18*10-4 10.31*10-4 16 19.61*10-4 7.16*10-4 18.44*10-4 0.001

mir-222 16 3.10*10-3 1.45*10-3 2.94*10-3 16 4.48*10-3 1.69*10-3 4.36*10-3 0.019

Expression levels were relative to CTCel-39.
aStudent’s t test.
doi:10.1371/journal.pone.0023925.t003
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Figure 2. Expression of miR-29a in HepG2 cells transfected with 100 nM anti-miR-29a, anti-miR-neg or mock to determine the knockdown
efficiency of anti-miR-29a. ** P,0.01. B. Western blots for Insig1 or tubulin using protein extracts from HepG2 cells transfected with 100 nM anti-miR-
29a or anti-miR-neg. C. Expression of PCK2 in HepG2 cells transfected with 100 nM anti-miR-29a, anti-miR-neg to determine the regulation of miR-29a
on the expression of PCK2. Data represented three independent experiments 6S.E.M. with n = 3. ** P,0.01.
doi:10.1371/journal.pone.0023925.g002
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S2. Equal volume of samples was used in each step from serum

purification to qRT-PCR. The total RNA was reverse-transcribed

to cDNA by using a TaqMan microRNA RT Kit and stem-loop

RT primers (Applied Biosystems Inc.). RT-PCR was performed

using the TaqMan PCR kit on the ABI 7900 Real-Time PCR

System (Applied Biosystems Inc.). The reactions were initiated in a

384-well optical plate at 95uC for 5 min, followed by 40 cycles of

95uC for 15 s and 60uC for 1 min. We assigned equal number of

patients and controls on one plate and run the RT-PCR for target

miRNAs and cel-miR-39 simultaneously. All reactions, including

no-template controls, were run in triplicate. The CT values were

determined using the fixed threshold settings. The relative

expression levels of target miRNAs were determined by the

equation 22DCT, in which DCT = CT sample2CT cel-39.

Cell Culture
The human liver carcinoma cell line HepG2 was purchased

from the cell culture center of the Chinese Academy of Medical

Sciences (Beijing, China). Cells were maintained in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 1 mg/ml

glucose, 10% heat-inactivated FBS, 100 IU/ml penicillin and

100 mg/ml streptomycin (Gibco/Life Technologies, Paisley, UK)

and incubated at 37uC in a humidified incubator with 5% CO2.

Transient transfection of anti-miR miRNA inhibitors
HepG2 cells were seeded in 6-well plates at 105 cells/well. After

24 h, 100 nM anti-hsa-miR-29a or anti-miR-neg (Gene-pharma)

were transiently transfected into HepG2 cells by Lipofectamine

2000 (Invitrogen). Forty-eight hours after transfection, cells were

extracted to perform western blot and real-time PCR.

Quantitative RT-PCR
Quantitative RT-PCR was performed to determine the

expression level of mRNAs of the hosphoenolpyruvate Carboxy

Kinase2 (PCK2) gene. RNA from HepG2 cells was isolated with

Trizol Reagent (Invitrogen, Carlsbad, CA, USA) according to the

manufacturer’s protocol. Real-time PCR was performed with

Power SYBR Green PCR Master Mix (Applied Biosystems Inc.).

Primers 59-ACCCTGCGAGTGCTTAGTG-39 and 59-TTCTC-

AGCCTCAGTTCCATC-39 were used to amplify the PCK2 gene,

and primers 59-CAAGAGATGGCCACGGCTGCT-39 and 59-

TCCTTCTGCATCCTGTCGGCA-39 were used to amplify the

b-actin gene to normalize the expression level of PCK2. All

quantitative real-time PCR reactions were run by using the

ABI7900 Real-Time PCR System (Applied Biosystems Inc.) and

performed in triplicate. Relative expression of PCK2 was calculated

using the equation 22DCT in which DCT = CT PCK22CT b-actin.

Western blot analysis
The insulin-induced gene1 (Insig1) protein was analyzed by

western blot from the total cell lysate as described previously [47].

Proteins were extracted with the urea lysis buffer. Proteins (50 mg)

were fractionated by electrophoresis on 12% SDS polyacrylamide

gel and transferred onto a nitrocellulose membrane (GE

Healthcare, San Francisco, CA). The membranes were blocked

in Tris-buffered saline (TBS) containing 5% nonfat milk powder for

1 h and then incubated in polyclonal anti-Insig1 (1:500, Abcam,

Cambridge, MA, USA) and anti-b-tubulin (1:2000, Abcam, Cam-

bridge, MA) diluted in TBS/5% non-fat milk powder overnight.

The expression of b-tubulin was used as the loading control.

Membranes were washed three times (10 min each) with TBS and

then incubated for 1 h with horseradish peroxidase (HRP)-

conjugated goat anti-rabbit IgG (1:1000; Beijing ZhongShan

Biotechnology CO., Beijing). Specific proteins were detected using

an ECL kit and AlphaImager (FluorChem 5500, Alpha Innotech,

San Leandro, CA). The protein expression level was analyzed by

AlphaEaseFC software (Alpha Innotech, San Leandro, CA).

Statistical Analysis
Differences in demographic and clinical characteristics and

mean expression levels of miRNAs were evaluated by x2 tests or

the student’s t test between GDM women and controls. To

investigate the effectiveness of the three-miRNA (miR-132, miR-

29a and miR-222) signature for GDM predicting, a risk score

analysis was constructed. The upper 25% reference interval of

each miRNA value in controls of the discovery stage was set as the

threshold to code the expression level of the corresponding

miRNA for each sample as 0 and 1 in discovery and internal

validation stages (from Nanjing Maternity and Child Health

Hospital of Nanjing Medical University). The risk score of each

miRNA was calculated using the weights by the regression

coefficient that was derived from the univariate logistic regression

analysis of each miRNA. We further assigned each patient a risk

score function according to a linear combination of the expression

level of the miRNAs. The risk score = (21.21546expression

level of miR-132)+(21.6083856expression level of miR-29a)+
(20.9295366expression level of miR-222). The AUC was

calculated for each and the combination of the three miRNAs,

respectively, in orders to assess the individual and combined effects

of the miRNAs on GDM predicting. All the statistical analyses

were performed with Stata version 9.2 (Stata Corporation, College

Station, TX, USA). A P value of less than.05 was considered

statistically significant, and all tests were two tailed.
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