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Summary: For patients with medically intractable epilepsy, there have been few
effective alternatives to resective surgery, a destructive, irreversible treatment. A
strategy receiving increased attention is using interictal spike patterns and continuous
EEG measurements from epileptic patients to predict and ultimately control seizure
activity via chemical or electrical control systems. This work compares results of seven
linear and nonlinear methods (analysis of power spectra, cross-correlation, principal
components, phase, wavelets, correlation integral, and mutual prediction) in detecting
the earliest dynamical changes preceding 12 intracranially-recorded seizures from 4
patients. A method of counting standard deviations was used to compare across
methods, and the earliest departures from thresholds determined from non-seizure EEG
were compared to a neurologist’s judgement. For these data, the nonlinear methods
offered no predictive advantage over the linear methods. All the methods described
here were successful in detecting changes leading to a seizure between one and two
minutes before the first changes noted by the neurologist, although analysis of phase
correlation proved the most robust. The success of phase analysis may be due in part
to its complete insensitivity to amplitude, which may provide a significant source of
error. Key Words: Prediction—Epilepsy—Nonlinear—Power spectrum—Correla-
tion—Dimension.

Whether epileptic seizures can be predicted by quan-
titative analysis methods applied to EEG has been a
focus of much recent interest (Lehnertz and Elger, 1998;
Le Van Quyen et al., 1999; Schiff, 1998). This resur-
gence of interest has been motivated by several factors,
including the proliferation of powerful new methods for
analyzing nonlinear system dynamics, as well as interest
in developing epilepsy control devices. Nevertheless,
attempts to detect seizures automatically from EEG are
not new, and older linear analysis methods showed
promise nearly 20 years ago (Lange et al., 1983; Ro-
gowski et al., 1981).

Rather than referring to a declaration in advance of

the time and location of a seizure, the term prediction
has frequently been used to refer to the process of
identifying a state from the EEG that precedes a
clinical seizure that is known to have occurred. Using
this meaning, the period of prediction refers to the
time between identification of a preseizure state and
either the onset of the clinical seizure or the time at
which a well-trained clinician can pick up evidence of
changes by visual inspection of the EEG. From the
point of view of designing a control device, the dis-
tinction between clinical and neurologist-determined
onset may be meaningless—the device simply needs
to detect the seizure dynamics early enough to permit
effective intervention. From a clinical perspective,
what is meaningful is whether the fact that a seizure is
about to occur can be determined reliably when the
future is unknown. Successful completion of this goal,
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which entails “prediction” in a slightly but crucially
different sense from that just described, can only be
shown by validating the method on out-of-sample
data, in which the location or even the presence of
seizures is unknown to the tester, and false-positive/
false-negative detection rates can be established to
determine sensitivity and specificity.

To facilitate meaningful comparisons between EEG
analysis techniques reported commonly in the seizure
prediction literature, we performed a set of analyses
on a common dataset of 12 intracranially recorded
seizures from four children undergoing presurgical
evaluation for intractable epilepsy, chosen to represent
a range of spatial extent, location, and type of under-
lying pathology. A battery of both linear and nonlinear
methods (power spectral density, cross-correlation,
principal component analysis, phase synchronization,
wavelet packet analysis, correlation dimension, and mutual
nonlinear prediction) was applied to the same set of 12
seizures to characterize the earliest dynamic changes lead-
ing up to the clear onset of an epileptic seizure.

Clinical EEG interpretation and time series analysis of
seizure EEG have traditionally been conducted sepa-
rately, by specialists with very different training and
without awareness of each other’s techniques and con-
clusions. This division has contributed to a fragmented
knowledge base and has limited the practical application
of results to relieving patient suffering. Seeking to avoid
such fragmentation, close consultation with a clinician
was maintained throughout these investigations, and the
final results were compared with judgments made by a
neurologist who is board certified in electroencephalog-
raphy (S.W.)—still the “gold standard” in seizure
identification.

Inspection of the raw ictal EEG suggests that an
increase in coherent neuronal behavior occurs during
seizures. Each of the seven methods presented has been
applied previously with variable success to characteriz-
ing this coherent behavior, although the theoretical bases
of their approaches differ dramatically. In our opinion,
the extreme complexities involved in developing an
understanding of seizure dynamics warrant addressing
this problem from a variety of viewpoints.

POWER SPECTRUM

Power spectral analysis has been applied to EEG
more frequently than any of the other techniques
applied here, and it provides the basis for all analyses
in the frequency domain. Almost two decades ago,
spectral analysis was used to distinguish between
epochs not associated with seizures and those preced-

ing the spike–wave bursts of absence seizures with as
high as 80% accuracy (Siegel et al., 1982). Siegel et al.
(1982) pointed out, however, that each subject’s pre-
burst EEG seemed to be characterized by a unique
pattern of changes, and that no common prodromal
pattern was found that could be applied uniformly
across patients. However, when a nonstationary power
spectral analysis was applied that computed the instan-
taneous power spectrum every 0.1 second for 10
seconds preceding a spike and wave complex, the
results reflected a relative increase in arrhythmic slow
activity leading up to spike and wave complexes in all
10 subjects (Inouye et al., 1994). Increased spectral
power at high frequencies (40 to 150 Hz) has been
noted at the start of seizures beginning with a well-
defined pattern of low-amplitude signal, referred to as
the electrodecremental event (Fisher et al., 1992).

The mechanisms of the electrodecremental EEG pattern
remain obscure, despite having been recognized for decades
(Jasper, 1964). One central question is whether this period
reflects an overall decrease in activity. Fisher et al. (1992)
suggested that the electrodecremental period does not indi-
cate a lack of signal, but rather a shift of the spectral energy
from lower to higher frequencies. In a study correlating
characteristics extracted from the power spectrum of pa-
tients with partial epilepsy to surgical outcome (Alarcon et
al., 1995), one of the most common early ictal manifesta-
tions noted was the generalized electrodecremental event,
present in 12 of 15 patients. That study suggested, based on
surgical outcome, that these events may not be part of the
ictal process itself. Instead, they may reflect generalized
cerebral changes that enhance the likelihood of seizure
formation in susceptible tissue—consistent with the “two-
hit” hypothesis of seizure initiation and propagation.

Application of spectral methods to interictal EEG has
revealed increased power in lower frequencies (0.25 to 8
Hz) relative to higher frequencies (8.25 to 30 Hz) when
EEGs from epileptic subjects were compared with EEGs
from normal subjects and headache patients with normal
EEGs (Drake et al., 1998). Spectral analysis of bilateral
interictal recordings taken over several days from the
mesiobasotemporal lobes showed a striking asymmetry
in the variability of the power spectrum that persisted for
hours, with what Wang and Wieser (1994) termed the
relatively “rigid” side showing 80% coincidence with
lateralization of the seizure based on positron emission
tomography (Wang and Wieser, 1994).

CROSS-CORRELATION

To our knowledge, autocorrelation was first applied
to EEG by Norbert Weiner and his colleagues in 1968
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(Wiener, 1969). More recently, autocorrelation was
used to assess the likelihood of future neuronal bursts
(Colder et al., 1996). Colder et al. (1996) reported
decreased likelihood of bursting near the site of sei-
zure onset from sites located within the hippocampus
or entorhinal cortex. Shortly after the seizure predic-
tions of Rogowski et al. (1981) of several seconds
based on an autoregressive model, cross-correlations
between interictal spikes from homologous brain
structures were used to demonstrate changes in the
EEG up to tens of minutes before the clinical onset of
some epileptic seizures (Lange et al., 1983). During
the past 20 years, the cross-correlation technique has
been applied to EEG in countless studies as one of the
more conventional analysis tools against which newer
tools are compared. A few of these applications in-
clude using cross-correlation for determining the lo-
cation of epileptogenic foci (Mars and Lopes da Silva,
1983), investigating interdependence of EEG signals
(Lopes da Silva et al., 1989), estimating time delays
between channels (Harris et al., 1994), and character-
izing dynamic properties of sleep EEG (Mann et al.,
1993).

PRINCIPAL COMPONENTS ANALYSIS (PCA)

PCA is a linear method that has been used in EEG
research to combine information across channels and to
reduce the dimensionality of the original multichannel
EEG to a smaller set of theoretically meaningful com-
ponent variables. Accomplishing this involves construct-
ing a linear composite of the original variables by select-
ing a set of weights that maximizes the variance of the
original data. In this case, the number of variables equals
the number of electrodes or amplifier channels. To ex-
plain 100% of the variance expressed by the original
data, the number of principal components extracted from
the correlation matrix would be equal to the number of
channels, and no reduction in dimensionality would oc-
cur. Thus, one must choose an acceptable percentage of
the overall variance that one seeks to preserve by calcu-
lating its principal components. In 1987, when Maier et
al. (1987) used PCA for source localization of human
visual evoked potentials, they chose a level of 95%,
assuming a noise level of 5% “after prolonged averag-
ing.” In the same year, Freeman and van Dijk (1987)
reported that using only the first principal component
was sufficient for their comparison between spatial pat-
terns in the visual cortex and the olfactory bulb of a
rhesus monkey. Nine years later, Barrie et al. (1996)
compared results obtained from applying PCA, a modi-
fied fast Fourier transform method, and calculation of

root mean square amplitudes to extraction of the broad-
spectrum waveform common to all channels of an 8 3 8
electrode array placed on the cortical surface of a rabbit,
and found the three methods to yield equivalent spatial
patterns. In that same study, they reported the first
principal component to account for 90 to 99% of their
data variance (Barrie et al., 1996). Jobert et al. (1994)
found that after performing PCA on the results of their
spectral analysis, the first two principal components
retained 89.0 to 99.4% of the initial variance for their 16
subjects, a sufficient amount for their automatic analysis
of sleep EEG. A sophisticated algorithm for choosing the
number of principal components to extract can be found
in the paper by Arruda et al. (1996).

WAVELETS

Originating from the field of seismology (Goupillaud
et al., 1984), during the last 15 years wavelet transforms
have been applied to a number of problems including
data compression (Coifman, 1986; DeVore et al., 1992),
turbulence (Argoul et al., 1989), and speech processing
(Kadambe and Boudreaux–Bartels, 1992). After the orig-
inal work by Gotman (1982) using decomposition of the
EEG into half waves for automatic seizure detection,
there followed a number of applications of wavelet
transforms to EEG analysis and seizure detection (Eber-
hart et al., 1989; Gabor and Seyal, 1992; Gabor et al.,
1996; Jando et al., 1993; Ozdamar et al., 1991; Schiff et
al., 1994a, b; Webber et al., 1994). Seizure prediction by
a mean of 15.5 seconds in 92% of 125 seizures has been
reported (Osorio et al., 1998), using a method based on
Danbechies’ PAUB4 wavelet (Danbechies, 1992).

PHASE CORRELATION

Methods of measuring phase synchrony include those
based on spectral coherence (Bressler et al., 1993; Me-
non et al., 1996), which incorporates both amplitude and
phase information, detection of maximal values after
filtering (Yordanova et al., 1997), and wavelet filtering
(Rodriguez et al., 1999). In their 1996 investigation of
phase synchronization of chaotic oscillators, Rosenblum
et al. (1996) pointed out that “the notion of synchroni-
zation itself lacks a unique interpretation,” but settled on
the general description of synchronization by Blekhman
(1988) as “an appearance of some relations between
functionals of two processes due to interaction.” They
then showed that for weakly coupled nonlinear equa-
tions, a condition exists in which the phases are locked,
but the amplitudes vary chaotically and are practically
uncorrelated. Tass et al. (1998) developed a technique
based on this work, which they applied to noisy nonsta-
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tionary bivariate data from magnetoencephalograms and
muscle activity in Parkinson’s disease. Stratonovich
(1963) described synchronization of noisy systems as the
“appearance of peaks in the distribution of the cyclic
relative phase” that point to preferred phase difference
values. To characterize the strength of synchronization,
Tass et al. (1998) proposed two indices, one based on
Shannon entropy and one based on conditional probabil-
ity that builds on the idea of Stratonovich (1963), aiming
to quantify the degree of deviation of the relative phase
distribution from a uniform phase distribution.

CORRELATION DIMENSION

With the advent of nonlinear time series analysis tools
that could be applied to experimental data, particularly
the correlation integral (Grassberger, 1983), much inter-
est arose in investigating nonlinear dynamics of EEG
activity. There has been much discussion aimed at es-
tablishing the appropriate and optimal application of
these methods. It has been suggested that estimating
fractal dimension, a characteristic associated with cha-
otic systems, may provide additional insight to define a
preseizure state or the seizures themselves (Babloyantz
and Destexhe, 1986). It has also been pointed out that
obtaining evidence of chaotic activity may not be trivial.
Osborne and Provencale (1989) showed by obtaining a
finite correlation dimension for colored noise that the
sole observation of a finite fractal dimension from the
analysis of a time series is not sufficient to infer the
presence of chaos in the system dynamics. Along the
same lines, Theiler’s (1995) analysis of an EEG time
series reported previously to be chaotic emphasized that
interpreting a calculated dimension as the number of
degrees of freedom of a system may be misleading. In
that study, Theiler (1995) found that the estimated cor-
relation dimension and Lyapunov exponent were essen-
tially the same for the original data and the surrogate
datasets, created by shuffling the phases of the original
dataset and thereby ensuring that no dynamic correlation
was present from one spike-and-wave pattern to another.
With these caveats in mind, Lehnertz and Elger (1995),
in their study published the same year as Theiler’s
analysis, were careful to point out that they were inter-
ested only in relative dimension changes over time, and
were not considering the dimension estimates to repre-
sent absolute degrees of freedom of the system. In 1998,
they reported a marked drop in estimated dimension as
long as several minutes before seizures that persisted
until seizure offset (Lehnertz and Elger, 1998).

Another consideration regarding correlation dimen-
sion is whether time series from individual electrodes

should be treated separately, reconstructing by time lags
alone, or with other channels, forming multichannel
reconstructions based on time lag and spatial position.
The majority of applications have used separate chan-
nels, despite the conclusion of Lachaux et al. (1997),

FIG. 1. (A–D) MR images of brain and lateral skull radiographs showing
electrode placement. (A) Patient A. MR image demonstrating left temporal
lobe cortical dysplasia extending into the parieto-occipital region, and
electrodes are shown by radiograph to overlie this region. (B) Patient B.
Although MRI results were normal, scalp and subdural ictal mapping
revealed seizure generation from the left anterior–inferior frontal lobe, and
radiography shows grid placement over this area. (C) Patient C. MRI
shows a 2 3 2-cm densely calcified lesion on the surface of the left inferior
parietal lobe, eroding the inner table of the skull. (D) Patient D. MRI shows
a dysgenetic right occipital lobe and a small cyst in the right choroid fissure
near the anterior atrophic hippocampus. Because of this apparent dual
pathology, a single long-depth electrode was placed to record simulta-
neously from both areas, running from the occipital lobe to the anterior
hippocampus.
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based on simulated EEG data, that single channels did
not do as well as the multichannel method in quantifying
spatially extended dynamics. Lerner (1996) articulated
another central issue of EEG analysis that transcended
estimation of dimension when he stated, “The fundamen-
tal problem [leading to poor reproducibility of results]
lies in the fact that the time series associated with the
EEG are not stationary over periods of sufficient length
to permit reliable estimation of the quantities of interest.
Indeed, the most interesting feature of the EEG is its
nonstationary character.”

MUTUAL PREDICTION

Nonlinear systems may synchronize in complex ways
that require methods designed specifically for their de-
tection (Pecora et al., 1995; Rulkov et al., 1995). To

characterize nonlinear dynamic interdependence be-
tween two neuronal systems, Schiff et al. (1996) derived
a method based on mutual nonlinear prediction that they
applied to spinal cord motoneurons. This method defines
the nonlinear predictability of each system based on
knowledge about the other system, and it provides infor-
mation on the directionality of the coupling. This is done
by using time-delay reconstructions of two simulta-
neously sampled time series. Similar states found in a
small neighborhood in one reconstruction are checked to
determine whether they correspond to similar states in
the second reconstruction and to what degree. This
method of mutual prediction has been applied to intra-
cranial EEGs of patients with medial temporal lobe
epilepsy by Le Van Quyen et al. (1998), and their results
indicated a marked difference between the degree of

FIG. 2. Samples of raw data from all four patients for three 10-second windows. Every other recording channel is plotted. Note the variability between
patients with respect to the number of channels involved in the seizure and the apparent “rhythmicity” of fully developed seizure activity. This
heterogeneous set of patients was chosen for comparison of the methods when applied to a range of seizure types.
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linear interaction measured by the cross-correlation co-
efficient (which was low) and the degree of nonlinear
interaction measured by mutual prediction (which was
high) at seizure onset.

These seven methods (power spectral density, cross-
correlation, principal components analysis, wavelet
packet analysis, phase analysis, correlation dimension,
and mutual prediction) were applied as described else-
where (Jerger et al., 2001) to EEG recordings from
subdural and depth electrodes from four children with
medically intractable epilepsy during presurgical evalu-
ation (Fig. 1). Three of the children had lesional epilepsy
arising from neocortical or hippocampal structures as
defined by MRI and confirmed by pathology at the time
of resection. One showed glioses by pathology only
(normal MRI). After surgical removal of the electro-
graphic seizure focus, each patient either remained sei-
zure free or experienced markedly reduced seizure fre-
quency and severity.

Raw data were bandpass filtered between 0.5 to 30 Hz
and referenced externally. The data were segmented into
10-second half-overlapping blocks (2,000 data points per
window). Samples of raw data from all four patients for
three 10-second windows are displayed in Fig. 2 to give
a qualitative sense of how the heterogeneity of seizure

origin between patients was reflected in the EEG. The
state of all patients before and during seizure onset was
confirmed as awake and alert from videotapes recorded
simultaneously with the EEG. Note the variability be-
tween patients with respect to the number of channels
involved in the seizure and the apparent “rhythmicity” of
seizure activity. One of the questions asked by the study
of Jerger et al. (2001) was whether these differences
would be reflected in differential performance of each of
the seven methods, and whether a particular method
could be best suited to certain seizure characteristics.

For the purpose of comparison across methods, results
from each of the seven methods are expressed in num-
bers of standard deviations. The mean and standard
deviation of each method’s values during a baseline
period with no evidence of seizure activity were calcu-
lated for each seizure. Results from all methods were
normalized by these values to give the number of stan-
dard deviations from the baseline mean for each channel.
Results for channels with the top 10% of values were
averaged. The maximum value of this average during the
baseline period was used as a threshold value, and the
first time this value was exceeded was recorded for each
seizure.

The average number of standard deviations from the

FIG. 3. Average standard deviations
from baseline mean of phase analysis
for all 12 seizures using the top 10% of
channels.
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baseline mean over time for all seizures and all chan-
nels is shown in Fig. 3. A neurologist (S.W.) identified
three times for each of the 12 seizures using only the
electrographic record: (1) initial ictal EEG changes,
from here on referred to as the “time of seizure onset”;
(2) the beginning of “rhythmic” ictal activity; and (3)
seizure cessation. These times are indicated by the
dashed vertical lines in Fig. 3. For these 12 seizures,
the average amount of time by which the threshold
crossing preceded the first vertical line (seizure onset)
was 105 seconds.

Fig. 4 shows the differences between threshold cross-
ing times and neurologist-determined seizure onset times
for all methods and all seizures, with one color corre-

sponding to each patient. Addressing our earlier question
of whether particular methods are best suited to a par-
ticular patient, there is a tendency for results from a
particular patient to be grouped together across methods
(giving the appearance of longitudinal colored stripes),
suggesting that factors specific to individual patients
play an important role in determining how early a seizure
may be detected, and in many cases this variability
between individuals may have more of an influence on
the predictability of seizures than the seizure detection
method chosen.

These seven methods were successful in detecting
changes leading to a seizure as long as 2.5 minutes
before the first visual evidence of electrographic seizure

FIG. 4. Difference between threshold crossing time and the neurologist’s judgment of electrographic seizure onset. Results for all 12 seizures are shown for
each method, with one color corresponding to each patient, and one shape corresponding to the seizure number. One standard deviation is indicated by the
horizontal bar, with the vertical bar at its center indicating the mean result over all seizures for that method. The vertical gray line at 0 second corresponds
to the time given by the neurologist as electrographic seizure onset. This time preceded clinical seizure onset by an average of 25 seconds.
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onset was noted by the neurologist. It should be empha-

sized that the time most frequently reported in the liter-

ature as that of seizure onset is the time rhythmic activity

is evident in the EEG. Here we have used instead the

time the first epileptiform changes were noted by the

neurologist, which always preceded rhythmic activity by

an average of 25 seconds. Thus, the average lead time

given by phase correlation, before clinical onset, is more

than 2 minutes.

Interestingly, the threshold crossing times given by the

linear methods often occurred earlier than or at the same

time as some of the nonlinear methods. We found this

surprising because many behaviors of neurons are known

to follow nonlinear dynamics, from all-or-none firing to

communication through synaptic transmission. Thus, one

may expect that there is always underlying nonlinear

behavior in EEG that is not fully characterized by linear

tools—activity that should be reflected in our nonlinear

measures. It is likely that the EEG signals are so complex

that nonlinear reconstruction methods may not capture

the dynamics accurately. Nonlinear tools are often de-

signed to reveal structure from low-dimensional nonlin-

ear systems. Faced with a truly complex system (with

many degrees of freedom), they may fare worse than a

linear analysis, as seen for correlation dimension and

mutual prediction in these results. In addition, the

method of obtaining the initial measurement may ex-

clude relevant information. Using higher than standard

sample frequencies and electrode placement density as

well as using distant recording sites to improve the

resolution and widen the spatial range of sampling may

lead to reconstructions that better reflect the true system

dynamics.

Linear methods also have weaknesses. For example, a

limitation of PCA is that it is restricted to defining

directions that are orthogonal to each other. In their

analysis of functional MRI, McKeown et al. (1998)

found that their method based on Bell and Sejnowski’s

(1995) independent component analysis algorithm,

which allows for nonorthogonal directions as well as a

related fourth-order decomposition technique (Comon,

1994), was superior to PCA in determining the spatial

and temporal extent of task-related activation. A method

for performing a nonlinear form of PCA has recently

been proposed (Scholkopf et al., 1998) that involves the

use of integral operator kernel functions. An open ques-

tion remains as to how to choose the ideal kernel for a

particular application.

The substantial differences between patients appeared

to play a greater role in seizure predictability than the

method selected. This result may be due in part to our
choice not to “individualize” parameters. Had we chosen
settings most appropriate for a particular patient, we may
have found particular methods to be patient specific. In
any case, it is likely that results could be improved by
optimizing parameters for a particular patient, and by
“training” the algorithm on known seizures before pre-
senting it with test data.

In conclusion, all seven methods were successful in
indicating seizure onset before the neurologist for all
but a few seizures—most of them 1 to 3 minutes in
advance of electrographic onset. Because clinical sei-
zure onset occurred an average of 25 seconds after
electrographic onset, the lead time before clinical
onset given by these methods (at p , 0.05) was even
longer and may prove to be sufficient for incorpora-
tion into future control devices. Nevertheless, these
procedures should be applied to recordings spanning
many minutes or hours to see how they fare when
blind to whether a seizure will occur. Only with such
validation can conclusions regarding their usefulness
for true seizure prediction be reached. Finally, al-
though we did not uncover significant differences
between linear and nonlinear methods, our analysis of
phase performed slightly better than the other meth-
ods, which may reflect its sensitivity in detecting
weakly coupled nonlinear systems.
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