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Abstract

Developmental plasticity enables the appearance of long-term effects in offspring caused by exposure to environmental stressors 
during embryonic and foetal life. These long-term effects can be traced to pre- and post-implantation development, and in both cases, 
the effects are usually sex specific. During preimplantation development, male and female embryos exhibit an extensive 
transcriptional dimorphism mainly driven by incomplete X chromosome inactivation. These early developmental stages are crucial for 
the establishment of epigenetic marks that will be conserved throughout development, making it a particularly susceptible period for 
the appearance of long-term epigenetic-based phenotypes. Later in development, gonadal formation generates hormonal differences 
between the sexes, and male and female placentae exhibit different responses to environmental stressors. The maternal environment, 
including hormones and environmental insults during pregnancy, contributes to sex-specific placental development that controls 
genetic and epigenetic programming during foetal development, regulating sex-specific differences, including sex-specific epigenetic 
responses to environmental hazards, leading to long-term effects. This review summarizes several human and animal studies 
examining sex-specific responses to environmental stressors during both the periconception period (caused by differences in sex 
chromosome dosage) and placental development (caused by both sex chromosomes and hormones). The identification of relevant 
sex-dependent trajectories caused by sex chromosomes and/or sex hormones is essential to define diagnostic markers and  
prevention/intervention protocols.
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Introduction

Thefoetal origins of adult disease hypothesis (so-called 
‘Barker hypothesis’) (Barker & Osmond 1986) proposes 
that undernutrition during gestation is, in part, responsible 
for adult cardiac and metabolic disorders due to foetal 
programming in utero that permanently shapes the body’s 
structure, function and metabolism and contributes to 
susceptibility to adult diseases. This hypothesis has led 
to a wider theory, known as the ‘Developmental Origins 
of Health and Disease (DOHaD)’, which is based on 
developmental plasticity (the ability of the genotype to 
produce different phenotypes in response to different 
environments) and the concept of evolutionary mismatch 
(evolved traits that were once advantageous but became 
maladaptive due to changes in the environment). There 
are several critical stages when development is malleable 
(periconception, pregnancy and early postnatal life) and 
exhibits an enhanced plasticity that enables the organism 
to fine-tune epigenetic control of gene expression in 
accordance with environmental cues. During these 
periods, the embryo can adapt to novel conditions and 
diverse environments, reprograming developmental 

trajectories in order to confer the best chance of survival 
and reproductive success. However, these adaptive 
changes can conflict with the postnatal environment 
and impair adult heath. The time of maximal plasticity 
appears during periconception, as plasticity is reduced 
progressively as foetal development proceeds (Fig.  1). 
There are three key periods (embryonic, foetal, lactation) 
during which environmental stress exerts a greater effect. 
Sexual dimorphism in the DOHaD context of health and 
disease is a phenomenon among a variety of species, but 
it generally occurs in most common noncommunicable 
diseases (NCDs), including cardiovascular disease, 
metabolic diseases, hypertension, neurological disorders 
and cancer (Junien et  al. 2012, Kalisch-Smith et  al. 
2017). NCDs continue to be the leading cause of deaths 
worldwide and were responsible for 38 million of the 
world’s 56 million deaths in 2012, and WHO predicts a 
17% increase in NCDs during the next decade (Mendis 
et  al. 2015). The concept of DOHaD represents an 
important approach to the understanding and prevention 
of the alarming and increasing incidence of NCD, as 
recent studies of variable regions of neonatal methylome 
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demonstrate that the interaction of genotype with the 
uterine environment accounts for 75% of unexplained 
variability (Teh et al. 2014).

In the context of DOHaD, the epigenetic marks that 
respond to the environment register the effects during 
the development of a specific sex (Heijmans et al. 2009). 
Environmental epigenetics investigates environmental 
factors that impact on the organism to modulate the 
expression of genes across the life course. The two 
most prominent stages are the perimplantation period 
and the period of foetal development, where epigenetic 
alterations may affect not only birth outcomes but also 
lifelong health. Some early environmental events such as 
stress, nutrition, behavior and environmental pollutants 
may disturb the precisely timed processes that sculpt 
the embryo and foetus in a sex-dependent manner and 
thus influence its health in later life (Attig et al. 2010). 
We have reported that sex differences in embryonic 
metabolism, gene expression and epigenetics start from 
the blastocyst stage (Gutierrez-Adan et al. 2000, 2006, 
Bermejo-Alvarez et  al. 2008), and these differences 
are caused by extra gonadal and dosage effects of 

genes encoded on sex chromosomes. Sex has been 
proposed as a major factor determining the type and 
severity of the long-term effects originating during the 
preimplantation period (Bermejo-Alvarez et al. 2011a). 
Preimplantation developmental plasticity has evolved 
in order to offer the best chances of survival under 
changing environments. Conversely, environmental 
conditions experienced in early life can dramatically 
influence neonatal and adult biology, which may result 
in detrimental long-term effects (Laguna-Barraza et  al. 
2012). There are many human and animal studies 
demonstrating sexual differences in response to various 
developmental insults during periconception (Fleming 
et al. 2015a) and pregnancy (Sundrani et al. 2017) and 
demonstrating sexual differences in response to various 
developmental insults during pregnancy (Sundrani et al. 
2017). However, there is a gap in knowledge of the 
mechanism(s) mediating environmental and maternal 
programing of preimplantation development. For 
example, how can environmental conditions during the 
preimplantation period have a long-term effect? How 
does the early embryo sense its environment and how 

Figure 1 Pre- and peri-implantation embryo adaptations to environmental stress. Comparative pre- and peri-implantation embryo development 
in mammals. Critical events taking place during this developmental window (pluripotency emergence, epigenetic reprogramming, lineage 
allocation and X chromosome inactivation) render the embryo especially sensitive to environmental stress. Such embryos and the resulting 
foetus respond to stressors by sex-specific mortality or by adaptive responses in order to optimize their developmental program and offspring 
survival. The adaptability due to developmental plasticity (the ability of the genotype to produce different phenotypes in response to different 
environments) decrease throughout embryo and foetal development until early postnatal life. Later in adult life, this adaptability disappears and 
only the brain maintains a certain degree of plasticity. The female placenta (in pink), due to its higher adaptability, buffers more efficiently the 
impact of endogenous and exogenous stressors on the foetus and it is less compromised than male foetus (in blue) under similar stress 
conditions. However, compensatory mechanisms can compromise adult health according to the developmental origins of adult health and 
disease (DOHaD).
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are morphogenesis, metabolism, genetic and epigenetic 
alterations induced? What are the sex-specific 
differences and how are they maintained, erased or gave 
rise to new ones?

Preimplantation embryo development, a crucial 
period for the appearance of sex-specific long-
term effects

Sex differences in gene expression emerge with embryonic 
genome activation, and they are dynamic throughout 
the lifespan. Although some authors have suggested that 
transcriptional sex differences are higher in adult tissues 

compared with preimplantation embryos at the 8-cell 
stage (Lowe et al. 2015), no transcriptional analysis in 
adult tissues has reported the massive transcriptional 
sex differences observed in both mouse (Kobayashi 
et  al. 2006) and bovine (Bermejo-Alvarez et  al. 2010) 
blastocysts. Preimplantation embryo development 
constitutes a critical period for the establishment of 
epigenetic marks, being one of the two unique moments 
during the lifespan where genome-wide demethylation 
occurs (Seisenberger et  al. 2012). During these early 
developmental stages, key epigenetic processes, 
such as X chromosome inactivation (XCI) or initial 
telomere lengthening, take place (de Frutos et al. 2016). 

Table 1  Different studies showing sex-specific effects of environmental alterations during preimplantation development, either in vivo through 
maternal stress or in vitro by assisted reproductive technologies (ARTs).

 Treatment
Effect

ReferenceBoth sexes Females only Males only
Maternal stress

Mouse Heat stress-induced 
oxidative damage in 
pregnant mice and 
in vitro cultured 
embryos

  Increased embryo loss Perez-Crespo et al. 
(2005)

Sheep Restriction of B 
vitamins and 
methionine in 
maternal diet

Obesity, insulin 
resistance, elevated 
blood pressure, DNA 
methylation alterations

 More severe phenotype Sinclair et al. (2007)

Mouse, rat Low-protein maternal 
diet

Cardiovascular, 
metabolic and 
behavioural alterations

More severe phenotype  Fleming et al. 
(2015b)

Assisted reproductive technologies
Bovine High glucose 

environment in vitro
 Increased embryo loss  Gutierrez-Adan et al. 

(2001)
Mouse, bovine High glucose 

environment in vitro
Increased apoptosis Increased survival and 

implantation
 Jimenez et al. (2003)

Mouse In vitro culture with 
serum

Altered behavior, 
imprinted genes 
expression

Increased body weight, 
liver steatosis

Hyperactivity, anxiety Fernandez-Gonzalez 
et al. (2004)

Mouse In vitro culture without 
CSH2

Restricted foetal growth, 
increased body weight 
and adiposity, placenta 
alterations

 Increased body weight 
and adiposity, 
decreased brain size

Sjoblom et al. (2005)

Mouse ICSI with DNA-
fragmented sperm

Reduced embryo 
development and 
offspring, altered gene 
transcription and 
methylation, 
increased mortality, 
premature aging

Behavioural alterations, 
higher body weight 
and organ size, 
increased tumor 
incidence

Delayed active 
demethylation of 
male pronucleus

Fernandez-Gonzalez 
et al. (2008)

Mouse IVF, ISCI, SCNT Increased body weight Altered glucose 
clearance, higher 
body weight and 
adiposity

 Scott et al. (2010)

Mouse IVF   Increased body weight 
and heart size, 
glucose intolerance

Donjacour et al. 
(2014)

Mouse IVF Sex-specific differences 
in sterol metabolism, 
redox state, 
mobilization and 
oxidation of fatty acids

Increased fat 
accumulation, 
altered fat metabolite 
composition

Altered liver metabolite 
composition

Feuer et al. (2014)

Mouse 
 

IVF 
 

  
 

Increased apoptosis 
and pregnancy loss 

Placental overgrowth, 
postnatal overgrowth

Tan et al. (2016) 
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These  dynamic changes of the epigenetic landscape 
exert a double impact on sex-specific long-term 
effects. On the one hand, incomplete XCI results in 
sex-unbalanced expression of X-linked genes, leading 
not only to an upregulation of these genes in females, 
but also to a genome-wide sex-specific transcriptional 
regulation in autosomal genes. On the other hand, the 
dynamic changes in the epigenome make this period 
particularly vulnerable to the appearance of aberrant 
epigenetic marks. In this perspective, the combination 
of the greatest transcriptional sexual dimorphism with 
the most susceptible period for the appearance of stable 
epigenetic alterations results in the most relevant period 
for the generation of sex-specific responses to stressors, 
leading to sex-specific phenotypic consequences for the 
offspring (Table 1).

Sex chromosomes drive sex differences in the 
absence of gonads

In the absence of gonads, and therefore without any sex-
specific hormonal bias, sexual dimorphism during the 
preimplantation period relies solely on the differences 
in sex chromosome dosage. Thus, Y-linked genes will 
only be expressed in males, whereas X-linked genes will 
be upregulated in females if XCI is not accomplished, 
which is actually the case for most preimplantation 
embryos (Bermejo-Alvarez et al. 2012a). The dynamics 
and mechanism leading to XCI during preimplantation 
development have been the subject of debate over 
the last 10 years. Initial experiments conducted in the 
mouse observed that XCI was effectively accomplished 
in an imprinted manner by the blastocyst stage, 
experiencing a reactivation exclusively in the inner 
cell mass (Kay et al. 1994). This situation was thought 
to be comparable to other mammalian species, but 
transcriptional studies in bovine blastocysts refuted this 
notion, as most X-linked genes were upregulated in 
female blastocysts compared to their male counterparts 
(Bermejo-Alvarez et  al. 2010). This situation was also 
observed in rabbit and human blastocysts by conducting 
in situ hybridization (ISH) studies (Okamoto et  al. 
2011), and in pigs, by transcriptional (Park et al. 2012) 
and methylation analyses (Hwang et  al. 2015), so the 
mouse model was deemed to be more an exception 
than a rule for XCI dynamics (Bermejo-Alvarez et  al. 
2012a). Indeed, bovine (Bermejo-Alvarez et  al. 2010) 
and rabbit (Okamoto et  al. 2011) embryos achieve 
extensive XCI later, around the time of gastrulation, 
which opens a large window when the upregulation of 
X-linked genes in female embryos occurs and provides 
a molecular basis for the appearance of sex-specific 
phenotypes. In the case of human embryos, a recent 
study using single-cell RNA-Seq has observed that 
before XCI is accomplished, biallelic expression of 
XIST in female embryos causes progressive dampening 

of X chromosome expression (Petropoulos et al. 2016), 
an unexpected phenomenon that urges the revisiting 
of XCI dynamics in human stem cells (Lamas-Toranzo 
et al. 2017). This progressive downregulation, occurring 
in both X-chromosomes, gradually compensates for 
the differences in the expression of X-linked genes 
between the sexes, but it still leaves a large period of 
significant transcriptional sexual dimorphism – almost 
all preimplantation development, in fact – which may 
result in sex-specific long-term effects.

Sex chromosomes regulate autosomes, amplifying 
transcriptional sex differences

Sex-biased expression of Y- and X-linked genes is not the 
only transcriptional difference between male and female 
preimplantation embryos. Extensive transcriptional sex 
differences, affecting not only genes located on sex 
chromosomes but also many autosomal genes has been 
uncovered in preimplantation embryos by genome-
wide transcriptional analyses in mice (Kobayashi et al. 
2006) and, especially, cattle blastocysts, where almost 
one-third of the genes actively expressed showed 
transcriptional sex differences (Bermejo-Alvarez 
et  al. 2010). The wider extent of transcriptional sex 
differences in bovine blastocysts compared with murine 
can be explained as a consequence of the incomplete 
XCI status in cattle compared to mice. In agreement 
with this notion, transcriptional sex differences are 
dramatically reduced in more advanced stages of bovine 
embryogenesis, such as in Day 14 (Bermejo-Alvarez 
et al. 2011b) or Day 19 (Forde et al. 2016) elongated 
conceptuses, once XCI has been mostly accomplished. 
Besides, gene co-expression networks analysis between 
X-linked genes upregulated in bovine female blastocysts 
and autosomal genes showing transcriptional sex-
dependent differences has identified a major module 
of autosomal genes for which sex differences are likely 
driven by the X genes (Itoh & Arnold 2014). Effects of 
X chromosome on autosomal transcriptional regulation 
are also evident in sex-reversed mouse models: over 
1000 autosomal genes were found differentially 
expressed between XY and XX males or XX and XY 
females (Wijchers et al. 2010).

The mechanisms by which upregulated X-linked 
genes affect the expression of autosomal genes remain 
to be determined; however, the presence of different 
genes encoding for chromatin modifiers on the X 
chromosome provides a plausible explanation. Both 
KDM5C (H3K4 demethylase, also known as JARID1C) 
and UTX (H3K27 demethylase, also known as KDM6A) 
are X-linked genes, and the chromatin marks they 
regulate are particularly relevant for preimplantation 
development. H3K4me3 is involved in transcriptional 
activation, whereas H3K27me3 is associated with 
transcriptional repression. Both opposing marks are 
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present in early blastomeres on the promoters for genes 
involved in early cell differentiation. Bivalent domains 
keep these genes, including Sox2, Lifr, Nanog, Cdx2, 
Eomes and Tbpa, poised for activation, occurring once 
they lose the repressive H3K27me3 mark (Dahl et  al. 
2010). Given the sex differences in the transcription 
of key regulators of these bivalent domains, the effect 
of different stressors on the differentiation processes 
occurring during preimplantation development may also 
be sex specific. This effect may depend on the stressor, 
as although high glucose exposure does not have a sex-
dependent effect on inner cell mass and trophectoderm 
cell counts in mouse blastocysts (Bermejo-Alvarez et al. 
2012b), human male blastocysts have been reported to 
exhibit a better quality trophectoderm (TE) than female 
when cultured in vitro (Ebner et al. 2016), which may 
have short-term consequences on implantation or long-
term consequences on placental development.

Developmental consequences of preimplantation 
transcriptional sex differences

Genes which transcription is sex dependent exert 
different functions which may determine a sex-specific 
response to a given stressor (Fig. 1). Metabolic differences 
between male and female embryos could determine a 
differential response to nutritional stress that may result 
in sex-specific early embryonic death or long-term 
effects. Glucose metabolism was initially reported to be 
different between sexes based on the upregulation of 
glucose-6-phosphate dehydrogenase (G6PD) in bovine 
(Gutierrez-Adan et al. 2000, Wrenzycki et al. 2002) and 
human (Taylor et  al. 2001) female blastocysts, and on 
the overexpression of the autosomal SLC2A3 in bovine 
male blastocysts (Morton et  al. 2007). However, gene 
ontology analysis of global transcriptional differences 
between male and female bovine blastocysts did not 
highlight glucose metabolism as a sexually dimorphic 
pathway (Bermejo-Alvarez et  al. 2010). The specific 
transcriptional analysis of genes involved in either 
anaerobic glycolysis or the pentose phosphate pathway 
do not show a clear sex bias (Bermejo-Alvarez et  al. 
2011a), and the transcriptional response of bovine 
blastocysts to the presence of glucose was found to be 
unrelated to sex (Cagnone et al. 2011), all in agreement 
with the overall inconsistent reports regarding glucose-
mediated sex biases (reviewed in Bermejo-Alvarez et al. 
2012b). On the other hand, gene ontology analysis 
of bovine blastocysts highlighted mitochondria and 
protein translation, proteolysis and protein transport 
as sex-dependent pathways (Bermejo-Alvarez et  al. 
2010), which correlates with the differences between 
sexes in mtDNA content (Bermejo-Alvarez et al. 2008) 
and amino acid metabolism (Sturmey et  al. 2010) as 
previously reported. Sex-specific differences in these 
and other pathways provide a molecular basis for the 
appearance of a sex-specific response to nutritional 

stressors and may also be used for non-invasive embryo 
sexing methods (Sturmey et al. 2010, Gomez et al. 2016).

Other pathways reported to exhibit sex differences 
include those related to apoptosis and embryo–maternal 
communication. The X-linked inhibitor of apoptosis 
XIAP is, as are most X-linked genes, upregulated in 
female embryos (Gutierrez-Adan et al. 2001), which is 
consistent with the notion that male embryos are more 
sensitive to oxidative-induced heat stress (Perez-Crespo 
et al. 2005). Nevertheless, under normal in vitro culture 
conditions, female bovine blastocysts seem to be more 
prone to apoptosis (Ghys et  al. 2016). The differential 
apoptotic rates between sexes under different stressors 
may result in one sex being more susceptible than the 
other to blastomere loss, which may have consequences 
for subsequent development. Furthermore, sex 
differences may also affect embryo–maternal signaling, 
which is essential for proper late embryonic development 
and implantation. Interferon tau, IFNT, a major embryo-
derived signaling molecule for pregnancy recognition 
in ruminants, and PGRMC1, a progesterone receptor, 
are upregulated in female bovine embryos (Larson et al. 
2001, Arias-Alvarez et al. 2011, Bermejo-Alvarez et al. 
2011b), and the embryokine CSF2 exerts a sex-specific 
response (Dobbs et al. 2014).

Finally, transcriptional differences between sexes 
may directly affect epigenetics in a sexually dimorphic 
manner, thereby exerting a direct impact on the 
appearance of sex-specific long-term developmental 
consequences. Apart from the X-linked genes already 
discussed, autosomal genes including both de novo 
DNA methyltransferases (DNMT3A and DNMT3B) and 
two genes related with histone methylation (HMT1 
and ILF3) are upregulated in male bovine blastocysts 
compared to their female counterparts (Bermejo-
Alvarez et al. 2008). These transcriptional differences are 
reflected in the methylation levels of specific sequences 
such as the repetitive sequence VNTR (Bermejo-Alvarez 
et  al. 2008) and one differentially methylated region 
(DMR) in the imprinted gene IGF2 (Gebert et al. 2009), 
both being hypomethylated in female bovine blastocysts 
compared to males. Similar methylation differences are 
observed in closely related biological systems such as 
murine embryonic stem cells (ES), where XX cell lines 
are hypomethylated compared to XY lines (Zvetkova 
et al. 2005). Sexual dimorphism in histone modification 
may also arise, as differences in histone modifications 
methyltransferases of H3K4me3, H3K27me3 and 
H3K9me3, as well as DNA methyltransferases, have 
been observed in male and female E10 pig embryos 
(Gao et al. 2011).

Sexual dimorphism at the epigenetic level is directly 
bound to the appearance of sex-specific epigenetic-
based phenotypes. An example of sex-biased epigenetic 
alteration is Beckwith–Wiedemann syndrome, a human 
epigenetic disorder to which the so-called ‘Large 
Offspring Syndrome’ in animals is considered equivalent 
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(Farin et al. 2004). This syndrome is caused by altered 
methylation patterns at imprinting domains; it occurs 
at a relatively high frequency in monozygotic twins, 
and in almost all cases, the affected twins are female 
(Lubinsky & Hall 1991, Weksberg et al. 2002). External 
stressors acting during the periconceptional period 
have also been reported to exert a sex-specific effect. 
In sheep, a methyl-deficient maternal diet during the 
periconceptional period leads to epigenetic alterations, 
which are more pronounced in males than in females 
(Sinclair et al. 2007). In rats, a restriction of dietary protein 
supplementation during the periconceptional period 
results in sex-specific cardiovascular and behavioral 
diseases in the offspring (Kwong et  al. 2000, Watkins 
et  al. 2008b), with females being more susceptible 
(Fleming et al. 2015b). The effect of this low-protein diet 
was mediated through changes in branched-chain amino 
acids and insulin levels in the uterine fluid, which were 
detected by embryos via the mTOR signaling pathway. 
These embryos were able to activate compensatory 
mechanisms in order to enhance maternal nutrient 
retrieval, by stimulating trophectoderm and primitive 
endoderm proliferation, endocytosis and cellular 
motility (Eckert et  al. 2012, Sun et  al. 2014, 2015). 
Although these responses protected foetal growth, at the 
same time, they led to abnormal growth and increased 
adult adiposity, resulting in adverse long-term effects, 
with female offspring more severely affected. Moreover, 
these effects were observed even when the embryos 
were transferred to mothers on a normal nutritional 
regime (Watkins et al. 2008a, 2010, 2011). Consistent 
with these studies, other authors have reported a greater 
response to stress by the female placenta compared to 
the male placenta in terms of gene expression (Clifton 
2010, Osei-Kumah et al. 2011).

Sex-specific long-term effects mediated by assisted 
reproductive technologies

Assisted reproductive technologies may constitute an 
environmental stressor to the preimplantation embryo. 
Several studies reporting long-term consequences of in 
vitro culture or other ART identified a sex bias in the 
frequency and nature of the long-term effect (Fernandez-
Gonzalez et  al. 2004, Sjoblom et  al. 2005, Feuer & 
Rinaudo 2012, Tarin et  al. 2014). These deleterious 
effects have pointed to epigenetic alterations produced 
by ARTs. A number of reports have demonstrated that 
in vitro culture conditions induce alterations and errors 
in the epigenetic reprogramming of bovine embryos, 
leading to alterations in their DNA methylation pattern 
(Fernandez-Gonzalez et al. 2004, Niemann et al. 2010, 
Salilew-Wondim et  al. 2015). Studies in mice have 
demonstrated that genomic imprinting in preimplantation 
embryos can be disturbed by specific culture conditions 
(Doherty et al. 2000, Khosla et al. 2001). Furthermore, 
mouse embryos cultured to the blastocyst stage using 

commercially available sequential media have been 
shown to suffer a shift in the expression of some non-
imprinted genes (Morgan et al. 2008). Recently, we have 
shown that the presence of oviductal fluid within the 
culture medium during in vitro culture of bovine embryos 
provoked alterations of the methylation level of regions 
CpG in the developmental genes MTERF2, ABCA7 
and OLFM1 and in the retrotransposon LINE-1 at the 
blastocyst stage when compared to control conditions 
using conventional culture medium supplemented with 
BSA (Barrera et al. 2017). Others have also shown that 
the methylation levels of the embryonic epigenome are 
affected by culture conditions in a developmental stage-
dependent manner (Salilew-Wondim et al. 2015). These 
epigenetic alterations, especially those provoked under 
suboptimal in vitro culture conditions, have been blamed 
as the cause of diverse disorders in the offspring, such 
as the ‘Large Offspring Syndrome’ in cattle and sheep 
(Chen et  al. 2013). This condition is characterized by 
a disproportionate growth and reduced viability of the 
foetus. Similar effects are observed when mouse embryos 
are cultured in vitro with serum, but only in females, 
together with sex-dependent behavioral abnormalities 
(Fernandez-Gonzalez et al. 2004). However, in a similar 
model in mice, increased body weight and decreased 
brain size were only observed in males when they were 
cultured in the presence or absence of a specific growth 
factor, granulocyte-macrophage colony-stimulating 
factor, also known as colony-stimulating factor 2 (CSF2) 
(Sjoblom et al. 2005). CSF2 is a cytokine produced in 
the oviduct and endometrium that has been implicated 
in developmental programming (Giacomini et al. 1995, 
de Moraes et  al. 1999, O’Leary et  al. 2004, Nahar & 
Kadokawa 2016) and its expression is modified by 
environmental factors. For example, seminal plasma 
triggers CSF2 expression (Tremellen et al. 1998, O’Leary 
et  al. 2004, Bromfield et  al. 2014), while maternal 
obesity can suppress it (Nahar & Kadokawa 2016). In 
cattle, treatment with CSF2 from Day 5 to Day 7 after 
fertilization improved blastocyst development for 
female but not for male embryos. Furthermore, this 
treatment decreased embryo elongation and intrauterine 
accumulation of IFNT in females and affected the 
transcriptome and methylome in a different way for 
males and females (Siqueira & Hansen 2016).

Metabolic alterations in the offspring associated with 
ARTs are also dependent on sex according to different 
studies. In mice, long-term effects associated with in 
vitro fertilization (IVF), intracytoplasmic sperm injection 
(ICSI) and somatic cell nuclear transfer (SCNT) were 
found to be sex specific, with females showing altered 
glucose clearance, higher body weight and adiposity 
(Scott et al. 2010a). In agreement, another study reported 
sex-specific differences in sterol metabolism, redox state, 
mobilization and oxidation of fatty acids after IVF in 
murine offspring, with females being more predisposed 
to increased fat accumulation (Feuer et  al.  2014). 
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However, in another study in mice produced from 
IVF, altered postnatal growth and glucose intolerance 
were only observed in males (Donjacour et al. 2014). 
Additional sexual dimorphic patterns induced by IVF 
were reported by Tan and coworkers (Tan et al. 2016). 
In this study, female embryos were more susceptible to 
apoptosis during the preimplantation and mid-gestation 
stages. Later in gestation, both males and females showed 
reduced placental angiogenesis, but compensatory 
placental overgrowth was more evident in males. Finally, 
overgrowth was only observed in males after birth 
(Tan et al. 2016). Our group has also reported a large 
number of sex-dependent alterations after ICSI using 
fresh or frozen sperm, including behavioral alterations, 
higher body weight and organ size and increased tumor 
incidence in females (Fernandez-Gonzalez et al. 2008, 
Ramos-Ibeas et al. 2014).

Sex differences after implantation: another source 
for sex-specific long-term effects

Once the embryo has been implanted and XCI has been 
accomplished, transcriptional sex differences driven by 
sex chromosome dosage are reduced, but not abolished 
(Wijchers et  al. 2010), compared to preimplantation 
development. However, once the gonads develop, a new 
factor for sexual dimorphism arises: sex hormones. From 
an evolutionary point of view, sex differences in foetal 
survival is seen as a way to adjust the energy invested 
by parents in male vs female offspring to the postnatal 
environment faced by the offspring (Trivers & Willard 
1973, Koskela et  al. 2009). According to the Trivers–
Willard hypothesis, mothers with plentiful resources 
invest in the sex with a reproductive disadvantage while 
those mothers facing adverse environment preferentially 
produce offspring of the sex with a greater chance of 
reproductive success (Trivers & Willard 1973). The 
dominant concept is that female and male foetuses 
have different growth strategies, leading to differential 
survival and pregnancy outcomes. Thus, by their greater 
sensitivity to the maternal environment, females would 
follow modest growth changes and therefore better 
adaptation to deleterious signals such as maternal 
asthma and a restricted or high-fat diet. In contrast, male 
foetuses show a more divergent growth curve and as 
consequence poor adaptation to adverse environment 
(Clifton 2010, Eriksson et  al. 2010, Cox et  al. 2013). 
Although multiple observations support this hypothesis, 
there is a lack of solid experimental data from animal 
models in the literature unequivocally proving that male 
growth and survival in the womb is more affected than 
that of females when the environment is perturbed. It 
has been reported that a high-fat diet provokes under-
methylation only of female placentas in mice, which is 
indicative of an active response to this stressor (Gallou-
Kabani et al. 2010); this was confirmed by another study 
showing that female placenta was more responsive to 

nutritional perturbations by more significant changes in 
the placental transcriptome (Mao et  al. 2010). In rats, 
this higher adaptation was also observed for the female 
placenta in contrast to its male counterpart in response 
to ethanol by decreasing the 11β-hydroxysteroid 
dehydrogenase-2 activity (Wilcoxon et  al. 2003). In 
addition, in humans, the female placenta responds 
to antenatal steroid administration by upregulating 
11β-hydroxysteroid dehydrogenase-2 (Stark et al. 2009). 
These observations suggest that male foetuses are less 
buffered than females against certain environmental 
insults. Thus, under various stressors, male foetuses 
exhibit higher late foetal mortality due to a greater in 
utero vulnerability (Eriksson et al. 2010), and their foetal 
growth is more affected than that of females (Sundrani 
et al. 2017) (Fig. 1).

Placental response to environmental stress

The placenta is a gestational interface between mother 
and foetus that controls foetal development and growth 
through the exchange of gases, nutrients and waste 
products and also in the production of pregnancy-
induced hormones, growth factors and immune 
response. Thus, the adaptive properties of this organ 
are essential for foetal survival during specific stresses 
and seem to be the main reason for the sex differences 
associated with stress observed during early and 
later foetal stages, affecting adult life as well (Gabory 
et  al. 2013). The reported higher protection of female 
offspring in utero (Wilcoxon et al. 2003, Vickers et al. 
2011) could be due to inherent sex differences in the 
placenta making the female placenta more adaptive 
and plastic. The sex differences of the human placenta 
have been revealed at the transcriptomic level. Global 
transcriptomic analyses revealed that females possess 
more upregulated autosomal genes, including immune-
regulating genes, than males (Sood et al. 2006). This may 
indicate that human female placentae respond better to 
potential infections. In contrast, analyses of isolated cells 
derived from human placentae revealed sex-dependent 
differences in four placental cell types: cytotrophoblasts, 
synctiotrophoblasts and arterial and venous endothelial 
cells. In these analyses, male placentae showed 
enrichment of signaling pathways reported to mediate 
graft vs host disease and other transcripts involved in 
immune function and inflammation (Cvitic et al. 2013). 
The authors suggested that male placentae may be 
forced to upregulate immune-associated transcripts 
in an attempt to counteract the response of the 
maternal immune system due to a reduced maternal–
foetal compatibility compared to female placentae. 
It has also been suggested that the structural and 
functional differences may contribute to enhance male 
susceptibility to in utero environmental perturbations 
(Kalisch-Smith et  al. 2016). The placenta of human 
males invades more deeply into the spiral arteries than 
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female placenta. In contrast, the latter exhibits more 
effective placental surface differentiation (Alwasel et al. 
2014). In the spiny mouse (Acomys cahirinus), the 
female placenta contains a larger labyrinth but smaller 
spongy region than that of the male, and genes related 
to glucose transport were found to be differentially 
expressed among sexes in the two placental regions 
(O’Connell et  al. 2013a). Based on rodent literature, 
it has been suggested that perturbation during early 
placental development may have a greater impact on 
viability and growth of the female foetus while those 
occurring later in gestation may preferentially affect the 
male foetus (Kalisch-Smith et al. 2016).

Placental response to maternal diet

All these inherent differences between male and female 
placenta are likely behind the differential response 
to the maternal environment. The available literature 
demonstrates that environmental exposures can disrupt 
placental morphology, epigenetic regulation and gene 
expression in a sex-dependent manner (Tarrade et  al. 
2015). The placenta adapts to the maternal diet and 
metabolic status altering foetal nutrient supply. This is 
done in a different way in male and female placentae 
showing different profiles of energy metabolism 
including glycogen storage and metabolism throughout 
gestation (O’Connell et  al. 2013b). Animal studies 
have observed transcriptional sex differences in 
placentae under different maternal dietary regimes. In 
mice, it has been found that a low-fat vs high-fat diet 
deregulates significantly more genes in female than in 
male placentae (Mao et al. 2010) mainly affecting cell 
signaling of immune cells and uptake and metabolism 
of amino acids. In contrast, the genes affected in male 
placenta were related to development and function of 
the vascular system as well as uptake and metabolism 
of glucose and fatty acids (Gabory et  al. 2012). These 
differences in gene expression can be explained by 
changes in epigenetic regulation. Thus, female placentae 
were found to be hypomethylated in response to a high-
fat diet in mice (Gallou-Kabani et  al. 2010, Gabory 
et al. 2012). In rats, high-fat and high-salt diets lowered 
placental size of males, increasing the expression of 
genes associated with metabolism and pro-inflammatory 
mediators, which has been related to future cardio-
metabolic disturbances (Reynolds et  al. 2015). In 
rabbits, high-fat and high-cholesterol diets provoke 
higher accumulation of triacylglycerol in males while 
they upregulate genes of the lipid pathway in females 
(Tarrade et al. 2013). In non-human primates, nutritional 
restriction has been reported to suppress genes related 
to programmed cell death and enhance genes associated 
with cell proliferation in female placentae. In contrast, 
male placentae showed less responsiveness in terms of 
the number of affected genes and pertinent pathways 
(Cox et al. 2013). In humans, it has been reported that 

obese women show thicker and less efficient placentae 
showing significant alterations meant for adaptation 
only in the female placenta (Mandò et al. 2016).

Placental response to maternal psychological stress

In utero exposure to maternal psychological distress 
affects the function of the foetal hypothalamus–adrenal–
pituitary (HPA) axis, which has implications for the 
development of diverse foetal tissues (Cottrell & Seckl 
2009, Harris & Seckl 2011). Although this response 
to stress could be physiological, high stress and 
prolonged levels of prenatal stress and cortisol exposure 
can produce negative effects on foetal development 
(Laplante et  al. 2004, Davis & Sandman 2010). In 
response to this signaling, differential sex-dependent 
responses have been reported in both human and animal 
studies at both normal and pathological distress levels 
(Sandman et al. 2013). In order to buffer the impact of 
maternal psychological stress, placentae express 11β-
HSD2 that degrades cortisol to cortisone. Interestingly, 
the female placenta is more reactive than the male, 
and higher expression of 11β-HSD2 has been shown 
in female placenta exposed to glucocorticoid treatment 
than that of males (Stark et al. 2009). Treatments with 
glucocorticoids have been shown to induce other 
alterations such as increased placental oxidative stress, 
expression of pro-inflammatory cytokine and 5 alpha-
reductase (Scott et  al. 2009, Vu et  al. 2009, Stark 
et  al. 2011), showing a more pro-oxidative state in 
male placentae.

According to the hypothesis of DOHaD (Barker 
2007), the glucocorticoids transmitted from mother to 
foetus during gestation could be exploited by the foetus 
to optimize development in preparation for survival 
and success after birth (Gluckman et  al. 2009, Ellis 
& Del Giudice 2014). However, it has been argued 
that while sex-specific foetal growth strategies result 
in greater adaptive flexibility for females in the short 
term, especially under maternal distress, it increases 
the long-term risk of developmental psychopathology. 
Thus, anxiety and depression are two examples of stress-
related psychopathology for which there are clear sex 
differences in presentation and prevalence (Altemus 
et al. 2014).

Response to sex hormones and endocrine disruptors

From the early stages of development, the foetus is 
very susceptible to steroid hormone exposure, which 
plays important roles in tissue and organ differentiation 
(Sundrani et al. 2017). Thus, androgens have a role not 
only in the maturation of the male foetus but also in the 
development of mammary gland and folliculogenesis 
in the female foetus. Changes in these hormones due to 
maternal distress or endocrine disruptors differentially 
affect male and female foetuses. Low levels of androgen 
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affect the development of testes in male foetuses and 
ovaries and adrenal cortex in female foetuses (Abbott 
et  al. 2006) and an excess provokes alteration in 
testicular development (Rojas-García et al. 2013) and 
induces masculine characteristics in female foetuses 
(Wolf et al. 2002), foetal growth retardation (Manikkam 
et al. 2004) and polycystic ovarian syndrome in adult 
life (Hogg et  al. 2011). At the same level as the sex 
hormones, also affecting the overall development 
of the foetus, endocrine-disrupting chemicals (EDC) 
have been highlighted as the main effectors altering 
placental and foetal performance in a deleterious 
way. EDC has been shown to alter gene transcription, 
signaling pathways (Tan et  al. 2013, Xu et  al. 2015), 
DNA methylation patterns (Nahar et al. 2015), miRNAs 
(Avissar-Whiting et  al. 2010) and placental structure 
(Tachibana et  al. 2007). However, a sex-dependent 
placental response is still not strongly supported by 
the literature. Thus, the only evidence to date is the 
differential DNA methylation of AluYb8 in response 
to the xenoestrogen burden in human placentas 
as higher methylation in males and no response in 
females (Vilahur et al. 2014). Other studies have also 
suggested that EDC can affect imprinted genes in the 
placenta (Susiarjo et  al. 2013, Shin et  al. 2014), but 
sex differences were not explored. Further studies 
are thus essential in addressing this critical gap in 
our understanding of how environmental chemicals 
interact with sex to affect placental outcomes.

Conclusions

Exposure to environmental stressors during 
preimplantation and peri-implantation development 
occurring either in vivo, such as during maternal 
diet imbalance, or in vitro, due to ARTs, activates 
compensatory responses in the embryo. These responses 
are often sex specific, due to the marked sex differences 
in transcriptional profiles at these stages, and may 
lead to long-term consequences, given the relevant 
epigenetic changes occurring during these early stages 
of development. Later, during foetal development, sex-
specific foetal and placental responses may determine 
sex-specific long-term consequences to the exposure 
of environmental stressors such as maternal diet, stress 
or the exposure to endocrine disruptors. The epigenetic 
marks induced by specific environmental factors need 
to be identified in order to improve our understanding 
of the ontology of chronic diseases in response to 
these environmental factors by taking into account 
that male and female embryos and fetuses respond 
differently to the same environmental insult. Advances 
in transcriptomic and epigenomic tools make it possible 
to uncover the epigenetic roots of chronic diseases and 
their link to environmental insults and sex.
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