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Introduction:Many research papers have reported successful implementation

of hybrid brain-computer interfaces by complementarily combining EEG and

fNIRS, to improve classification performance. However, modality or feature

fusion of EEG and fNIRS was usually designed for specific user cases, which

were generally customized and hard to be generalized. How to e�ectively

utilize information from the two modalities was still unclear.

Methods: In this paper, we conducted a study to investigate the stage

of bi-modal fusion based on EEG and fNIRS. A Y-shaped neural network

was proposed and evaluated on an open dataset, which fuses the bimodal

information in di�erent stages.

Results: The results suggests that the early-stage fusion of EEG and fNIRS

have significantly higher performance compared to middle-stage and late-

stage fusion network configuration (N = 57, P < 0.05). With the proposed

framework, the average accuracy of 29 participants reaches 76.21% in the

left-or-right handmotor imagery task in leave-one-out cross-validation, using

bi-modal data as network inputs respectively, which is in the same level as the

state-of-the-art hybrid BCI methods based on EEG and fNIRS data.

KEYWORDS

EEG, fNIRS, hybrid-BCI, modality fusion, motor imagery

1. Introduction

Brain–computer interfaces (BCIs) are communication systems that utilize control

signals generated by the brain to interact with the surrounding environment

without the participation of the peripheral nervous system and muscles (Nicolas-

Alonso and Gomez-Gil, 2012). These years have witnessed thriving progress in

the field of BCI. Motor imagery (MI) is one of the common paradigms in BCI

research (Kaiser et al., 2011), which is accomplished by imagining performing the

given task (Jeannerod, 1995), such as grabbing (Herath and Mel, 2021), lifting

(Kasemsumran and Boonchieng, 2019), and so on. MI-BCIs are widely used to

aid patients with motor function impairments caused by stroke (Ang et al., 2010),

amyotrophic lateral sclerosis (Lulé et al., 2007), spinal cord injury (Cramer et al.,

2007), and so on, either for daily-life assistance or rehabilitative training. Since motor

imagery tasks induce event-related desynchronization and synchronization (ERD/ERS)
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in EEG (Jeon et al., 2011), various feature extraction algorithms

have been designed to detect ERD/ERS activities in EEG (Kee

et al., 2017; Selim et al., 2018; Sadiq et al., 2019; Dagdevir and

Tokmakci, 2021). However, due to its nonstationary nature,

EEG is considered as bio-signals of extremely low signal-

to-noise ratio with spatial ambiguity and distortion (Hallez

et al., 2007). EEG feature extraction process, which is highly

dependent on prior knowledge, is challenged by its high time

complexity, imposing the risk of information loss (Zhang

et al., 2018, 2021). Many researchers turned to deep learning

methods for EEG feature extraction. For example, Schirrmeister

et al. (2017) proposed an end-to-end learning network called

ConvNets that was able to learn the spectral power modulation

of different frequency bands and produce accurate spatial

mapping for learned features. Lawhern et al. (2018) proposed

a compact convolutional neural network to accurately decode

EEG recorded from various paradigms.

The low spatial resolution characteristic of EEG leads to

challenges in the accurate localization of cortical activation

sources despite the fact that EEG signals are themost widely used

bio-signals in BCIs (Liu et al., 2021). Due to its disadvantage

in spatial resolution, some researchers attempted to incorporate

the information from functional near-infrared spectroscopy

(fNIRS) data to improve the performance of BCIs (Pfurtscheller,

2010; Fazli et al., 2012; Buccino et al., 2016). fNIRS measures

oxygenated and deoxygenated hemoglobin (HbO and HbR)

using near-infrared light (Fazli et al., 2012). On the one hand,

the fusion of EEG and fNIRS has technical support because

the electrophysiological signal and the inner edge light signal

are not affecting each other. On the other hand, fNIRS-based

BCIs are most commonly of the active type, where users

react purposefully and independently (Khan and Hong, 2017).

Therefore, plenty of mental tasks exploit fNIRS signals to assess

brain status, which have proven to be effective in previous

studies (Hong et al., 2015). Yin et al. introduced joint mutual

information (JMI) to combine features and optimize BCIs,

which was used to classify MI tasks with different strengths and

speeds when clenching a fist. JMI reached an accuracy of 89 ±

2% with 1–5% improvement compared to using EEG or fNIRS

alone. Al-Shargie et al. applied canonical correlation analysis

to decode EEG-fNIRS and maximized the correlation between

EEG and fNIRS to classify the influence of psychological stress

on the prefrontal cortex (Al-Shargie et al., 2017). Sun et al.

used tensor fusion and p-order polynomial fusion with deep

learning technologies, which improved the accuracy at the cost

of increased computational complexity and reduced the stability

(Sun et al., 2020).

There are relatively mature methods and a relatively clear

consensus for dealing with multimodal fusion problems in the

field of computer vision. Depending on those methods, the

researchers combined features in the early or late stage to achieve

the best results. For example, Aygün et al. (2018) adapted

various fusion methods, which were previously used in video

recognition problems, to solve the brain tumor segmentation

problem and conducted the related experiments in the BRATS

dataset in the early, middle, and late fusion methods. A Y-shape

network is widely used in tasks with multimodal inputs. The

multimodal models usually have their own encoders on each

modality. For example, the image encoder and the language

encoder form a twin tower structure model that is used for loss

calculation in CLIP, which is a training structure of language–

image multimodal fusion (Radford et al., 2021). Lan et al. (2019)

used a Y-shaped network to combine two encoders with the

path of one decoder and extract more information from raw

data. As a result, the Y-shape network is extremely helpful for

data reconstruction and multimodal fusion. However, in the

field of biomedical signal processing, there is no consensus on

the processing of physiological signals from different modalities.

Fusion of EEG and fNIRS information is conducted mostly

arbitrarily at the feature level, which has been proven to be

suitable for several specific user cases. When and how to

effectively combine the bimodality data is still unclear. This

study conducted experiments on an open dataset. A compact

Y-shaped ANN architecture has been proposed and validated

to investigate the EEG-fNIRS fusion methods and strategies.

The main framework of EEGNet is used in the EEG processing

branch, which is a proven successful framework for EEG data

analysis. As the temporal resolution of fNIRS is low andminimal

frequency information is present, only the second and third

modules of EEGNet are used in the fNIRS processing branch.

The results suggest that neural networks with EEG-fNIRS

features integrated at an early stage demonstrated statistically

higher accuracy. The final classification accuracy of the proposed

method reaches 76.21%, which is at the same level compared

to the state-of-the-art on the investigated open dataset in

discriminating left and right motor imagery.

This article is organized as follows. In the “Materials

and methods” section, the dataset is briefly introduced, and

the preprocessing method and the proposed framework are

demonstrated in detail. In the “Results” section, the results

are presented. In the “Discussion” section, an in-depth

discussion is presented. In the “Conclusion” section, conclusions

are presented.

2. Materials and methods

2.1. Datasets

Shin et al. released two publicly available datasets of EEG-

fNIRS multimodal, which were Dataset A, left-hand motor

imagery and right-hand motor imagery, and Dataset B, mental

arithmetic and relax imagery (Shin et al., 2017). The primary

focus of this study was MI classification, and Dataset A was

used to conduct a series of experiments and analyze further in

this study.
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For Dataset A, there were 29 participants (14 men and

15 women), all of whom had minimal experience with motor

imagery experiments. In the experiment, a black arrow pointing

to the left or right was shown in the middle of the screen for

the first 2 s. Then, the arrow disappeared and a fixed black

cross was shown on the screen for 10 s. All the participants

were instructed to perform kinesthetic motor imagery at a

speed of approximately 1 repetition per s, such as imagining a

designated hand opening and closing as if they were grasping a

ball, followed by a rest period of 10–12 s. Finally, there were 30

trials for each task of each participant. Common spatial pattern

(CSP) features of EEG data and the mean and slope values of

fNIRS signals were extracted from the data as features. A sliding

window was used to conduct 10× 5-fold cross-validation on the

unimodal data and bimodal data, respectively, with window size

set to 3 s, step size set to 1 s, and the range of sliding window set

to between 5 s before the cue and 20 s after the cue. sLDA was

used as a classifier to classify data between left and right motor

imagery tasks.

In their article, the average classification accuracy of the 10

× 5-fold cross-validation under each window was considered

as the classification accuracy of this window. In addition, the

maximum classification accuracy among all the windows was

regarded as the final classification accuracy for each participant.

The highest classification accuracy of EEG-only was about 65%,

and the highest classification accuracy of unimodal classification

was HbO-fNIRS, which was approximately 57% according to the

resulting figure.

2.2. Pre-processing

For dataset A, the EEG was recorded using a BrainAmp

EEG amplifier, with the sampling rate set to 200Hz in the

original dataset. First, the data were downsampled from 200

to 128Hz, and the channels related to EOG were removed for

later analysis. Then, the EEG data were re-referenced to the

common average reference. A band-pass filter with a frequency

range of 8–25Hz was applied to remove noise, leaving the µ-

band and low-β band data unmodified. Since we wanted to focus

on channels related to the sensorimotor cortex and maintain

the correspondence with fNIRS optical channels, eight relevant

electrodes were chosen around the sensorimotor cortex, namely,

FCC5 h, FCC3 h, CCP5 h, CCP3 h, FCC4 h, FCC6 h, CCP4 h,

and CCP6 h (shown in Figure 1). The amplitude of the signals

was normalized to [−1, 1] for subsequent processing.

The sampling rate of the fNIRS signal was set to 10Hz in

the original dataset. First, the data were up-sampled from 10Hz

to 128Hz to be consistent with EEG data (Abtahi et al., 2020).

We chose eight optical channels (6 emitters and 6 detectors with

3-cm optrode separation) around the sensorimotor cortex, i.e.,

FC3-FC5, FC3-FC1, C5-C3, C1-C3, FC4-FC2, FC4-FC6, C2-C4,

and C6-C4 (shown in Figure 1), whose positions corresponded

to the selected EEG channel locations, to ensure spatial

consistency of the recorded data. The modified Beer–Lambert

lawwas used to convert the raw light intensity data to the relative

oxyhemoglobin and deoxyhemoglobin concentrations. Then, a

band-pass filter with a frequency range of 0.01–0.1Hz was used

to remove the effect of physiological noises such as heartbeat,

breath, and other artifacts.We extracted 10 s data during the task

period, and data from 5 s to 2 s before the visual cue were used

to remove the baseline. Finally, the amplitude of the signals was

normalized to [−1, 1] for subsequent processing.

2.3. Fusion network

The basic network structure is inspired by the EEGNet

(Lawhern et al., 2018). The original EEGNet is composed

of three modules. The first module is a temporal-domain

convolution layer through which the time-frequency features

of the signals are constructed. The kernel size is set to (1,

fs//2), where fs is the sample rate of signals, and the sign //

denotes the rounding operation. The second module is depth-

wise convolution through which spatial filters are generated

and more task-related channels are selected by the convolution

kernel, where the kernel size is set to (Nchan, 1), where Nchan

denotes the number of EEG channels. Average pooling is used

to down-sample the feature dimension. The third module is

a separable convolution layer, which consists of depth-wise

convolution and pointwise convolution.

In this study, we followed EEGNet architecture with three

complete modules for EEG data. For fNIRS, we only used

the second and third modules since the fNIRS signals did not

contain much information in the frequency domain due to

the low sampling rate, and the features are mostly extracted

from the time domain. At the end of the Y-shaped network, a

SoftMax layer was used as a classifier to generate the outputs.

The complete network architecture is shown in Figure 2.

In the literature, one of the commonly used fusion methods

is the concatenation of features from each modality (Baltrusaitis

et al., 2019). The network architecture is shown in Figure 2. In

this study, three similar networks are proposed to investigate

the effect of fusing bimodal features in different stages, i.e.,

before depth-wise convolution (referred to as E_0_Net and

E_1_Net, please see Figure 2A), before separable convolution

(referred to as M_0_Net and M_1_Net, please see Figure 2B),

and before flatten layer (referred to as L_0_Net and L_1_Net,

please see Figure 2C), where E, M, and L represent early stage

fusion, middle-stage fusion, and late-stage fusion, respectively,

and numbers 0 or 1 represent concatenation fusion performed

at the depth-dimension or the channel-dimension. In this study,

to maintain the integrity of the original design of EEGNet, the

proposed network used the same hyperparameters as proposed

in the original EEGNet paper (Lawhern et al., 2018); only the

kernel size of the first layers in EEG branch was tuned as we had
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FIGURE 1

The placement of EEG electrodes, fNIRS sources, and fNIRS detectors.

a very limited number of trials in the investigated open dataset

and a larger kernel size created more parameters to be learned.

We tried kernel sizes of (1, 34), (1, 44), (1, 54), and (1, 64) to

perform temporal-domain convolution on EEG data to have the

best model performance during the training process.

Table 1 summarizes the number of network parameters

with different fusion strategies. The numbers of neural network

parameters for different fusion methods are similar, except for

M_0_Net. For the open dataset used in this study, the amount

of data from a single participant in one particular type of

task is too small when using networks with a large number

of parameters. Therefore, the use of a lightweight network can

alleviate overfitting to a certain extent.

2.4. Model training

Early stopping is a form of regularization that prevents

overfitting by stopping the iteration number. When training

error decreases quickly, we hope that the model continues to be

trained and that the generalization losses have a higher chance

of being “repaired”. In this study, we used an early stopping

criterion that assumes that overfitting does not begin until the

error decreases slowly. The algorithm is shown in Equations

(1) and (2), referred to from Prechelt (2012). In this study, we

did not use a validation dataset and we used an early stopping

strategy to reduce jitter.

Pk = (t) 1000·(

∑t
t′=t−k+1 Etr

(

t′
)

k·mint
t′=t−k+1Etr

(

t′
)−1) (1)

Pk (t)<α (2)

where k is the training strip, Etr is the training error, and α is

the threshold value. When Pk(t) is less than α, we think that it is

time to stop. In this study, k is 10 and α is 0.001.

Due to the limitation in the amount of data, for each

participant, there were only 30 trials for eachmotor imagery task

in the open dataset. A data augmentation method designed for

long-interval EEG-fNIRS hybrid BCI applications was used to

expand the size of the dataset. Due to the limitation in response

time of fNIRS signals, the time intervals between experiment

tasks were more than 10 s. Therefore, data augmentation can be

achieved by repetitively sampling sub-trials from a single trial.

In this study, two training strategies were adopted. For

training Strategy A, the window size was set to a 3-s time

window, and the step size was set to 3 s. Then, each 10-s trial

was divided into 3 sub-trials without overlapping. Therefore,

the number of trials for each participant from one task was

expanded to 90 trials and was used for neural network training.

All the sub-trials were randomly shuffled before the train-test

segmentation of data. The data were then randomly divided into

an 80% training set and a 20% testing set. The proposed neural
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FIGURE 2

(A) The network architecture of early stage fusion, which is referred to as E-0-Net and E-1-Net in the following contents, depends on whether

the concatenation was performed on the 1st or 2nd dimension. (B) The network architecture of middle-stage fusion, which is referred to as

M-1-Net and M-0-Net in the following contents. (C) The network architecture of late-stage fusion, which is referred to as L-1-Net and L-0-Net

in the following content.
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TABLE 1 The number of all parameters.

Method Number of parameters

E_0_Net 3,792

E_1_Net 3,792

M_0_Net 8,880

M_1_Net 4,172

L_0_Net 4,176

L_1_Net 4,176

networks either were trained for 500 epochs or met the early

stopping criteria.

For training Strategy B, we used leave-one-out cross-

validation for each participant. The voting method was used to

train the network with the idea of decision fusion. We divided

each trial with a window size of 3 s and a step size of 1 s. Each

trial was divided into 8 sub-trials. In the training set and testing

set, two overlapping sub-trials from the same trial did not appear

at the same time. The data from the open dataset were further

expanded without the training set leakage. During the training

process, all data were randomly shuffled. The proposed neural

networks were either trained for 500 iterations or met the early

stopping criteria.

2.5. Voting mechanism

Ensemble learning is one of the most popular research topics

(Wozniak et al., 2014). It extracts a set of features through a

diversity of projections on data using multiple machine learning

algorithms and performs various transformations of features.

Then, various classification algorithms are used to generate

prediction results based on the extracted features. Information

from the abovementioned results is integrated to achieve better

performances than information obtained from any stand-alone

algorithm (Dong et al., 2020). For classification tasks, the voting

method is often used to improve the final results (Zhou, 2012).

One of the commonly used voting combinations is the majority

voting combination, where the predicted results of most are

considered as the final output. The voting algorithm is shown

in Equation (3).

ŷ=

{

1, n
ŷi
>n

ŷ0

0, n
ŷi
<n

ŷ0

(3)

where n
ŷi
is the number of test samples with its predicted results

being 1. n
ŷ0 is the number of test samples with its predicted

results being 0, and ŷ is the final predicted result of this trial.

In this study, we used a sliding window of 3 s with a step

size of 1 s. Therefore, each trial is divided into 8 sub-trials. Then,

a leave-one-out cross-validation scheme was used to test the

model performance for each actual trial after data augmentation

from each participant. The predicted results of the majority

voting combination of 8 sub-trials were the final prediction

results of one trial.

3. Results

3.1. Data augmentation

Deep convolutional neural networks have achieved

outstanding performance in many areas, which is driven by

improvements both in computational power and the availability

of large datasets. However, it is extremely difficult to acquire

or collect large datasets for lots of application fields, such

as datasets of physiological signals. If a small dataset was

used to train a model with a large number of parameters,

overfitting would happen, resulting in poor generalization

performance. In the related studies on computer vision,

overfitting can be alleviated by data augmentation, such as

geometric transformation, random cropping, feature space

manipulation, adversarial training, and so on, to improve the

model performance and expand its limited dataset (Shorten and

Khoshgoftaar, 2019).

In the dataset investigated in this study, there were only 30

trials in each task for each participant in this open dataset, and

each trial is 10 s long. Data augmentation was used in the model

generation to improve the model performance. The data from

one trial of 10 s were truncated to three trials as 0–3 s, 3–6 s, and

6–9 s without overlap. Through the augmentation process, the

original dataset was expanded to three times its original size.

We selected unimodal data (EEG-only and HbO-only)

without data augmentation from different time windows using

themethod from the original dataset study (Shin et al., 2017) and

chose the average accuracy of all participants among different

time windows as average accuracy for statistical analysis. The

CSP algorithm was used to extract features from augmented

EEG data, the mean and slope features were extracted from

HbO-fNIRS, and sLDA was used as a classifier to generate a

classification model. The highest classification accuracy of left-

right motor imagery classification with only EEG data (referred

to as EEG-only in the following content) was 66.09%, and

the highest classification accuracy of left-right motor imagery

classification with only HbO data (referred to as fNRIS-only

in the following content) was 54.31%, which were similar to

the results of the original study. After data augmentation, the

highest average accuracy for EEG-only reached 69.25% and for

fNIRS-only reached 58.33%. The average accuracy improved

for both EEG-only and fNIRS-only. It can be seen from

Figure 3 that the classification accuracy of 65.52% of participants

improved for EEG and that 72.41% of participants improved for

fNIRS compared with the original data. This method of data

augmentation not only expands the dataset but also improves

the classification performance.
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FIGURE 3

(A) The scatter plot of classification accuracy of each participant based on EEG signals before and after data augmentation. (B) The scatter plot

of classification accuracy of each participant based on the fNIRS signal before and after data augmentation.

FIGURE 4

The PSD analysis of EEG signal. The PSD analysis of sub09 is shown above the horizontal dashed line and that of sub25 is shown below the

horizontal dashed line.

Similarly, we used artificial neural networks to classify EEG

and fNIRS data from different tasks. The average accuracy

of all participants is 65.00%. Sub01, sub09, sub16, sub25,

sub26, and sub27 demonstrated good classification performance

using EEG data with a classification accuracy of more than

80%. Participants with top model classification performance

(sub09 and sub25) were analyzed with power spectral density

(PSD) (shown in Figure 4). Clear EEG power lateralization

was identified both before data augmentation and after data

augmentation. The proposed method of data augmentation

can maintain the original temporal-spatial characteristic in the

EEG data.

For fNIRS-HbO, the average accuracy of the lightweight

network of all participants is 63.13%. Sub09, sub19, sub20,

sub21, sub24, and sub29 were able to demonstrate good

classification performance using fNIRS, with the classification

accuracy reaching more than 70%. We used the cerebral oxygen

exchange (COE, where COE value = HbO – HbR) (Naseer

and Hong, 2015) as input and selected the participants with

the top performances (sub20 and sub21) for temporal-domain

analysis. As shown in Figure 5, before data augmentation, clear

lateralization of the COE values can be identified in both left-

hand and right-hand motor imagery tasks: the COE values

of the left channels were significantly higher than that of the

right channels during the left-hand motor imagery, and COE

values of the right channels were significantly higher than

that of the left channels during the right-hand motor imagery,

which was consistent with the results presented in the literature

(Asahi et al., 2004; Hétu et al., 2013). At the same time, data

augmentation with a sliding window of 3 s with a 1 s step size

also demonstrated similar lateralization characteristics, as shown

in Figure 5. The proposed data augmentation method did not
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FIGURE 5

The temporal-domain analysis of the fNIRS signal. The temporal-domain analysis of sub20 is above the horizontal dashed line, and that of sub21

is below the horizontal dashed line.

FIGURE 6

The model training loss (sub09 as an example) varies with the

number of epochs under di�erent network architectures.

disturb the temporal-spatial characteristics of original fNIRS

data and maintained good consistency.

3.2. Model generation

As shown in Figure 6, model training loss varied with the

number of iterations under different network architectures. It

was clear that the value of training loss reduced as the number

of epochs increased. In addition, the convergence speed was the

lowest when fNIRS-only data were used for model generation,

which required 150 epochs before convergence. However, for

EEG-only data, the convergence speed was faster than fNIRS-

only data, and the training reached convergence within 50

epochs. The model converged faster with a bimodal fusion

network than with a single-modality network.

3.3. Test results

Due to the obvious temporal characteristic difference

between EEG and fNIRS, we attempted different sizes of kernels

(parameters used for temporal-domain convolution) during the

comparison of fusion results at different stages. We divided the

results into four groups at different stages, namely, (1, 34), (1,

44), (1, 54), and (1, 64). In Table 2 for different kernel sizes, the

classification accuracies of the two methods of early stage fusion

were significantly higher than that of other fusion methods.

In addition, the accuracies of the two early fusion methods

were both within the range of 69–70%. For middle-stage

fusion methods, the classification accuracies ranged from 65 to

66%. For late-stage fusion methods, the classification accuracies

ranged from 62 to 63% (see Figure 7). Since none of these results

conformed to a normal distribution, the Wilcoxon signed-rank

test was adopted to investigate the statistical significance. Table 2

summarizes the results of the significance analysis of different

fusion methods. We observed that p-values between early stage

fusion and middle-stage fusion or for late-stage fusion were all

below 0.05 regardless of the kernel size, which represents the

statistical significance of the performance difference between

the early stage fusion method and other stage fusion methods.
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TABLE 2 Statistical analysis results between the di�erent fusion methods.

HbO Kernel size Early-mid (N = 57) Early-late (N = 57) Mid-late (N = 57) Dim_0-Dim_1 [E-M] (N = 28)

P-values (1,34) 0.0007 0.0011 0.3550 0.0566

(1,44) 0. 0003 0.0013 0.7033 0.2801

(1,54) 0.0007 0.0007 0.5872 0.2864

(1,64) 2.8884 0.0001 0.2066 0.2594

HbR Kernel size Early-mid (N = 57) Early-late (N = 57) Mid-late (N = 57) Dim_0-Dim_1 [E-M] (N = 28)

P-values (1,34) 0.0024 0.0014 0.5217 0.0540

(1,44) 0.0033 0.0045 0.3226 0.0257

(1,54) 0.0025 0.0034 0.6294 0.3470

(1,64) 0.0062 0.0008 0.4265 0.0809

FIGURE 7

(A) The average classification accuracy of all participants using EEG-HbO in di�erent fusion strategies. (B) The average classification accuracy of

all participants using EEG-HbR in di�erent fusion strategies.

The performance of early stage fusion was significantly higher

than late-stage fusion. We also optimized the proposed bimodal

fusion network to achieve the best classification performance

further. We further optimized the size of the pooling layer

and the number of convolution filters to optimize the model

performance. For the pooling layer, we searched from (1, 4) to

(1, 16), with (1, 4) as the step size and four options in total.

Other hyperparameters were still the same as in the original

paper of EEGNet. The optimal parameters are shown in Table 3.

In addition, the optimal average accuracy was 71.60% and the

standard deviation was 1.42% using EEG-HbO with E-N-0. The

optimal average accuracy was 71.21%, and the variance was

1.88% using EEG-HbR with E-N-0.

3.4. Ablation analysis

The proposed fusion network architecture consisted of

a temporal convolution layer, spatial convolution layer, and

separable convolution layer, where the temporal convolution

layer learned the time-frequency feature of each channel, the

spatial convolution layer selected and extracted the spatial

pattern of interesting channels, and separable convolution layer

extracted global joint features and facilitated the design of

a relatively lightweight network for small datasets. Feature

fusion was conducted in these three modules, through which

early fusion, middle fusion, and late fusion were configured

and investigated. Ablation analysis was conducted to further

explore the significance of multimodal fusion.We conducted the

ablation experiments based on training strategy A and training

strategy B, respectively.

First, we optimized the proposed bimodal fusion network

to achieve the best classification performance. For training

strategy A, we can conclude that, when using EEG-only,

the average accuracy of all participants was 65.00% and the

standard deviation was 2.11% using EEGNet with the same

hyperparameters related to EEG in the bimodal process.

When using HbO-fNIRS, the average accuracy was 63.13%

and the standard deviation was 0.57% using ANN (consists

of spatial convolution layer and separable convolution layer)

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.1062889
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2022.1062889

TABLE 3 Parameter table.

Block Layer #filters Size Activation Options

1 Conv2D 8 (1, 54) Padding

2 DepthwiseConv2D 2∗8 (8, 1)

Activation ELU

AveragePool2D (1, 4) for EEG+Hbo /(1, 16) for EEG+Hbr

Dropout P= 0.2

3 SeparableConv2D 2∗8 (1, 8) padding

Activation ELU

AveragePool2D (1, 16)for EEG+Hbo /(1, 12)for EEG+Hbr

Dropout P= 0.2

FIGURE 8

The comparison between unimodality and bimodality. A P-value

of <0.05 and the performance of bimodal fusion is significantly

superior to that of unimodality.

with the same hyperparameters related to HbO in bimodal

process. When using HbR-fNIRS, the average accuracy was

62.43% and the standard deviation was 1.08% using ANN

with the same hyperparameters related to HbR in a bimodal

process. The average accuracy was 71.60% using EEG-HbO

with E-N-0. The average accuracy was 71.21% using EEG-

HbR with E-N-0. Statistical analysis was performed by using

the Wilcoxon signed-rank test to compare the performance of

unimodality with that of bimodality. As shown in Figure 8,

it was found that P-values were below 0.05, and a P-value

of below 0.05 was regarded as statistically significant. The

results are summarized in Figure 8, which demonstrated a

consistent and significant model performance improvement,

with the introduction of the other modalities. Multimodal fusion

can complement advantages of each modality and improve

classification performance significantly.

3.5. Voting results

In this study, we divided each trial into 8 overlapping sub-

trials and used the majority voting method to achieve the final

result of each trial. We used training strategy B to train networks

and used the same hyperparameter to perform 500 epochs. As

shown in Figure 9, during the leave-one-out analysis, the average

accuracy without the voting mechanism was 72.13% and the

standard deviation was 0.1391, while the average accuracy with

the voting mechanism was 76.21% and the standard deviation

was 0.1611.

4. Discussion

Bimodal fusion methods demonstrated higher performance

than that of unimodal data, whether using traditional machine

learning methods with feature extraction classification schemes

or deep learning methods with an end-to-end learning process.

The heterogeneity between EEG and fNIRS data does exist;

however, the heterogeneity is not as high as we thought based

on the signal sources. In addition, incorporating special methods

for bimodal fusion boosts BCI performance.

The classification results of the proposed Y-shape model

are summarized in Figure 7, which contains conditions with

different types of fNIRS data (Hbo vs. Hbr) and different kernel

sizes on the first layers of the EEG branch. Figure 7A showed the

fusion of EEG andHbo, and Figure 7B showed the fusion of EEG

and Hbr. According to the consistent performance of the two

types of fNIRS information, models with an early fusion of EEG

and fNIRS data have better classification accuracy than those of

other stages, regardless of the size of the kernel and fNIRS data

type. Comparing two types of fNIRS data, models with Hbo as

input demonstrated higher resilience of model hyperparameter

than the models using Hbr as input, although these two types

of information were inherently correlated by the mechanism

of blood supply in the human brain. Hbr data might be more
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FIGURE 9

Using a leave-one-out analysis scheme, the average accuracy of each participant with the voting mechanism.

sensitive to subtle changes in brain activities, which introduced

more irrelevant activities other than motor imagery.

The common analysis for fNIRS signals was limited to

the temporal-domain features such as the mean value, slope,

peak, and so on, due to the low sampling rate. However,

these features might not be informative enough to reflect the

overall and detailed characteristics of fNIRS signals. Thus,

the resultant information loss deteriorated the classification

performance. We noticed that the classification accuracy of

each participant with temporal convolution was lower than

that without temporal convolution in fNIRS models using deep

learning methods, which is consistent with our prior knowledge

of fNIRS signals. In addition, the classification accuracies using

deep learning methods for fNIRS signals (HbO-only, 63.13%)

were better than that using traditional machine learning with

handcrafted features and a predefined learning model (HbO-

only, 58.33%), which demonstrated the superiority of the deep

learning methods in the field of BCI research.

The average accuracy for the EEG-only model was 66.09%

using traditional machine learning techniques, and for the HbO-

only model, the average accuracy was 54.31% without data

augmentation. With data augmentation, the highest average

accuracy for EEG-only was 69.25%, and for the HbO-only

model, the highest average accuracy was 58.33%. With data

augmentation combined with deep learning methods, the

highest average accuracy for the EEG-only model was 65.00%,

and the HbO-only model was 63.13%. Therefore, the size of

the dataset had a great impact on the classification performance

of left-vs.-right MI tasks. An effective data augmentation

method was able to boost model performance and improve

generalization. The data augmentation method we propose in

this study is valid and effective, especially for long recording

interval paradigms when integrating EEG and fNIRS data.

Based on the classification results from different networks,

it was clear that the early fusion techniques demonstrated

significant positive impacts on the bimodal MI classification.

A slight decreasing trend was observed with early, middle,

and late fusion methods, respectively (shown in Figure 7 and

Table 2). Although all three of these networks were feature-

level fusion, the difference in model performance might be

a compound effect of the heterogeneity of data, the level of

feature (high-level features vs. low-level features), and bimodal

co-adapted learning. Early stage fusion of bimodal data might

have added additional constraints on the learning process and

subsequently regularized the two feature extraction branches

in the Y-shaped network. It seemed that early fusion could

mitigate the loss of information. In previous studies in computer

vision, it was suggested that multimodal data with higher

heterogeneity tend to have better performance in late-fusion

models, while multimodal data with low heterogeneity tend

to perform better in the early fusion in the field of medical

image (Ramachandram and Taylor, 2017; Mogadala et al., 2021;

Yan et al., 2021). The heterogeneity of EEG and fNIRS might

not be as high as we expected since they were able to be

fused in the temporal domain, although these two types of

data were recorded from completely different signal sources.

However, this phenomenon was preliminarily observed and

validated with only one open dataset due to limited access to

bimodal BCI datasets of EEG and fNIRS; further analysis with

more datasets should be done in the future. In addition, it was
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interesting that no statistically significant difference was found

between middle-stage fusion and late-stage fusion, which might

be caused by insufficient complementary features. The temporal-

spatial feature of EEG and the spatial feature of fNIRS were

extremely important.

In the dataset investigated in this study (Shin et al., 2017),

there were only 30 trials for each task of each participant. The

major limitation in the amount of data severely limited the

scale of the neural network as well as the final classification

performance. Future studies should be done to validate the

conclusions in this study with a large bimodal EEG-fNIRS

dataset. In addition, compared to the classification results in the

literature, the proposed framework showed the same level of

performance compared to that of the state-of-the-art methods

(ours at 76.21 vs. 78.59% in the literature) (Kwak et al., 2022).

More advanced learning techniques should be investigated to

further improve the performance of the proposed network.

5. Conclusion

In this study, bimodal fusion methods of EEG and fNIRS

were investigated with an open dataset. Compact Y-shaped ANN

architectures are proposed and validated to investigate EEG-

fNIRS fusion methods and strategies. The main framework of

EEGNet is used in the proposed network. The results suggested

that networks with EEG-fNIRS features integrated at an early

stage demonstrated statistically higher accuracy compared to

the other fusion methods in motor imagery classification tasks,

which partially suggested that the heterogeneity of EEG and

fNIRS might be relatively low despite the fact that these

two types of signals were acquired from different sources.

With the proposed framework, the final classification accuracy

of the proposed method reached 76.21%, which was at the

same level compared to the state-of-the-art on an EEG-fNIRS

hybrid BCI open dataset in discriminating left and right

motor imagery.
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