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Abstract
The necessity of the rapid evolution of wireless communications, with continuously 
increasing demands for higher data rates and capacity Zheng (Big datadriven optimization 
for mobile networks toward 5g 30:44–51, 2016), is constantly augmenting the complexity 
of radio frequency (RF) transceiver architecture. A significant component in the configura-
tion of such complex radio transceivers is the power amplifier(PA). Multiple distributed 
PAs are now common in proposed RF architectures. PAs exhibit non linear behaviour, 
causing signal distortion in transmission. Behavioural models offer a concise representa-
tion of a PAs characteristic performance which is extremely useful in simulating perfor-
mance of multiple nonlinear power amplifiers. A considerable drawback with using the 
Recursive Least Squares (RLS) technique is that the instability of the coefficients during 
the training of the model. This manuscript provides a computationally efficient technique 
to detect the onset of instability during adaptive RLS training and subsequently to inform 
the decision to cease training of dynamic memory polynomial based behavioural models, 
to avoid the onset of instability. The proposed technique does not require modification of 
the RLS algorithm, merely an observation of the pre-exsisting autocorrelation function 
based update. This technique is experimentally validated using four different signal modu-
lation schemes, LTE OFDM, 5G-NR, DVBS2X and WCDMA.

Keywords Behavioural modeling · Power Amplifier · Recursive least squares (RLS) · 
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1 Introduction

Ideally a PA is an active device which linearly transforms an input signal, x, into an 
output signal, y such that y = Gx . G is the gain experienced. PAs, in reality, illicit non 
linear behaviour and the linearity versus efficiency is a historical trade-off.

RF transceiver architecture now propose multiple parallel transmission paths, to 
incorporate high data throughput. The computation involved in modelling these increas-
ingly complex systems has accelerated substantially. A considerable amount of work 
has been done to model many digital signal processing induced consequences such as 
by [2], authors utilise the statistical properties of the autocorrelation function to combat 
autoregressive fading , and adaptive clipping and selective mapping applied to achieve a 
distortion-less reduction of the average power of transmitted signals [3] .

Another prevalent modeling task which contributes to signal distortion on each sig-
nal path, is the PA. In PA modelling, RLS has been used in the past to train polyno-
mial models with memory terms, however instability can occur when training the model 
weights.

The main objective in behavioural modelling RF systems is to identify the most com-
putationally efficient structure that can accurately characterise the behaviour of such a 
complex non linear system.

Regardless of architecture, all PA’s operate as voltage controlled current sources. 
There are two categories in which PA behaviours can be subdivided. 

1. Short term memory effects are caused by the frequency response of networks located 
in the matching networks and device parasitics.

2. Long term memory effects are caused by a multitude of environmental components such 
as temperature, trapping effects and non ideal bias networks.

Behavioural modeling is utilised to produce models of PAs that take into account the 
above effects and characterise them adequately while maintaining high fidelity.

The primary objective of this manuscript is to train a model combining a polynomial 
based model with memory and RLS error correction in order to identify an early stop-
ping criterion for use during training of the PA model.

The Volterra model and RLS error correction were chosen due to their combined 
propensity for instability during training. Experimental analysis was conducted to deter-
mine and implement the early stopping criteria in this context.

The major contributions of this manuscript is presented as follows 

1. A dedicated literature review for RLS stability inducing modifications.
2. The introduction of a computationally efficient method to halt RLS training before model 

experiences instability.

The remainder of the paper is organised as follows: Sect.  2 discusses pre-exsisting 
research. Sect. 3 and 4 provides an outline of Volterra modeling and conventional RLS 
algorithm respectively. In Sect. 5 the early stopping criteria is introduced and justified. 
Sect. 6 describes the methodology specific to this manuscript. Experimental measure-
ments are presented for the validation of the approach in Sect. 7, the future works are 
outlined in Sect. 8 and finally the concluding remarks are outlined in Sect. 9.
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2  Related Work

In this section, the review of the existing works contributed towards RLS instability detec-
tion is presented with associated advantages, disadvantages, merits and limitations.

Previous papers have demonstrated alternative methods to maintain stability during 
training using the RLS algorithm.

Previous works by the author of [4], demonstrated that altering the RLS algorithm to 
include periodic regularisation and maximum and minimum eigenvalue limitations can 
help to maintain stability. Regularisation by padding the diagonal of the autocorelation 
function causes a slight degradation in dynamic range. The method of padding the auto-
correlation function is relatively simple although it is not disclosed in the paper how the 
eigen decomposition was calculated.The disadvantages of this methodology is that extra 
computations are needed. Computations are needed to set the eigenvalue thresholds and to 
determine a suitable padding window which is sensitive to noise. Disparate accuracy was 
reported dependent on the eigenvalue limits and regularisation period.

Authors of [5] alter the RLS algorithm by adapting a hybrid approach of directional 
and exponential forgetting factorisation to implement an adaptive forgetting factor. The 
proposed methodology ensures stability and convergence to a minimum error. Disparate 
accuracy of the proposed method is reported when comparing results using alternate PAs. 
The results are highly dependent on a priori statistical PA data. The high data dependency 
leads to reduced accuracy of RLS estimates. Although the methodology is robust, it is not 
suitable for modelling strong PA non linearities. Due to the high computationally complex-
ity of works by [5], this method suffers from latency.

In [6] two computations of DPD coefficients are performed, with one set of coefficients 
specifically containing peaks. The computational complexity introduced by the necessity 
of computing two sets of DPD coefficients is an unattractive solution. Authors of [6] report 
an improvement in error estimation when compared to the RLS algorithm alone but does 
not conclusively eliminate instability.

Research conducted by [7] propose utilising a hybrid approach adopting both RLS and 
Least Mean Squares (LMS) for performing DPD. The adaptive algorithm utilises RLS 
when the error signal is large, for quick convergence, and subsequently automate their 
algorithm to adopt LMS when the error is below a set threshold value. The work by [7] 
details an improvement of 17dB when compared to a system without DPD. The validation 
in this work is simulated. This hybrid approach for DPD produces favourable results, but 
a sudden increase/decrease in error in noise, as experienced in typical experimental work, 
could caused the error threshold to switch RLS to LMS or visa versa.

Recent research [8] presents a method to modify the RLS algorithm by applying an 
error threshold. The update is based on the computation of the error as seen in (8). Should 
the value of the error at an instantaneous time sample be above the error threshold at an 
particular time sample, the algorithm re-computes the error for the following time sample, 
omitting the previous from the calculation of the DPD coefficients. The methodology pro-
posed by [8] reports a 30dB improvement when compared to the un-modified RLS algo-
rithm. The validation performed in [8], using a memory depth of 2, is simulated but the 
methodology would be robust against spurious noise. Authors of [8] present results which 
indicate severe latency.

In, authors propose that computing both a variable convergence factor and variable 
forgetting factor improves the steady state alignment of the proposed method when 
compared to both the Non Linear LMS and RLS algorithm. [9] reported a 6dB mean 
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square error improvement when compared to the RLS algorithm. Authors of [9] mini-
mise the a priori error signal of the RLS function when determining the variable con-
vergence factor and variable forgetting factor, which are updated by thresholding the 
value of the bit error rate. The authors present a look up table method to apply DPD.

Works by [4–8] and [9] all propose techniques that require additional computations 
and or a modification of the RLS algorithm in order to maintain the stability during 
training. In this work a computationally efficient approach is presented to avoid the 
onset of instability during model coefficient training for the RLS algorithm. The afore-
mentioned works present alternative methods to this manuscript and predominantly 
focus on reducing the error - not the elimination of error. As a result of the above 
works altering the RLS algorithm authors, such as [7] and [8] , achieve an improved 
NMSE at the cost of computational complexity.

3  The Volterra Model

Digital predistortion (DPD) is a technique that illicits linear behaviour of the PA by 
altering the magnitude and phase of an input signal. In order for DPD to create a com-
plimentary or inverse function to eliminate non linearities introduced by a PA, behav-
ioural modelling is used.

The Volterra series[10, 11] calculates each interaction of its inputs up to a defined 
order of non-linearity. As the number of inputs or the order of non-linearity increases, 
the number of coefficients increases rapidly and therefore increases the computational 
complexity [12]. Although the computational complexity is increased the Volterra 
Model is capable of accurately describing non linear systems with memory[13]

Behavioural modeling using the Volterra series combines numerous linear convolu-
tions and a non linear power series, allowing the system to be modelled while incor-
porating memory effects[12]. Although the accuracy of the Volterra model is high the 
computational complexity is also high as the number of parameters to be estimated 
escalates rapidly as the non linear order of the model and the memory depth heightens.

A system with finite order of non-linearity with finite memory depth can be 
described in the time domain by eq. 1.

Where,

Where x(n) and y(n) is the input and output signal to the system respectively. hp(i1, ..., ip) 
represents the filter co-efficient expansion utilising, p, the highest order for the non-linear-
ity of the Volterra series expansion. N represents the maximum memory tap length chosen 
[14].

(1)y(n) =

P∑
p=1

yp(n)

yp(n) =

N−1∑
i1=0

⋯

N−1∑
iP=0

hp(i1,⋯ , ip)

p∏
i=1

x(n − ir)
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4  Theory of Conventional Recursive Least Squares (RLS) Training 
Algorithm

RLS is an iterative form of least mean squares that is more rapid in converging to the mini-
mum error while training a model[15, 16]. Using RLS without limiting the input training 
signal length can lead to instability during training [17]. RLS has a tendency to produce 
unstable models. Previous literature to the best of the authors knowledge has not identified 
a factor that can predict the point at which the training routine will become unstable. The 
following mathematical analysis provides a method to predict and constrain training to pre-
vent instability occurring.

The exponentially weighted RLS algorithm can be adequately described in terms of its 
cost function. Model coefficients (in this case specifically referring to the Volterra model), 
are adapted based on the cost function J(n), shown below in eq. 2.

� is an exponentially weighted factor, 0 < 𝜆 < 1 , controlling the convergence speed of the 
function, referred to here, as the forgetting factor. � closer to 1 enables the algorithm to 
decay slowly, tracking signal alterations more closely. The inverse is true for � tending to 
0. d(k), refers to the actual output signal at sample k.Filter coefficients, H⃗(n) , are deter-
mined such that the weighted average of the squared estimation error is minimised from 
time k = 1 to k = n . [17]. X(k) represents the input signal to the model at sample k.

The following equations give a mathematical description of the RLS algorithm to mini-
mise the cost function in eq. 2 by minimising the error � to update H⃗(n) and the update 
matrix C−1(n) in an iterative fashion , heuristically as in the conventional RLS algorithm 
[17] where K(n) depicts the gain vector.

Where,

C(n) depicts the weighted least squares auto-correlation function, X(k)XT (k) , of the N 
dimensional input vector X(n).

When updating the RLS algorithm model coefficients as seen in eq. 6, the size of C−1(n) 
is determined by the total number of Volterra model coefficients given a particular memory 

(2)J(n) =

n∑
k=1

𝜆
(n−k)(d(k) − H⃗

T
(n)X(k))2

(3)�(n) = d(n) − X
T (n)H(n − 1)

(4)K(n) = C
−1(n)X(n)

(5)C
−1(n) =

C
−1(n − 1)

�
−

K(n)XT (n)C−1(n − 1)

�

(6)H(n) = H(n − 1) + K(n)�(n)

(7)C(n) =

n∑
k=1

�
(n−k)

X(k)XT(k)

(8)e(n) = d(n) − X
T (n)H(n)
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length and model order of non linearity as defined by eq. 1. Increasing the order of non lin-
earity and memory tap length of the Volterra model increases the size of C−1(n) , thus eigen 
decomposition, as utilised in cited related work, can become extremely complex.

Equation 5 of the RLS training algorithm presents that the expected value of C−1(n) is a 
function of the auto correlation matrix. When examining an isolated sample of the signal, 
Xn , it is treated as a random variable with expected values in the form of E{XXT} . This is 
used in eq. 7 and expanded in eq. 9 to illustrate the behavior of the calculation .

Equation 9 assumes that all of the components are real random vectors. Should the vec-
tors be considered as complex values random vectors R

xx
 must be in Hermitian form [17], 

which is not realisable in every Volterra model when using various memory and non linear 
order values.

The model depicted in Fig. 1 was of non linear order one, two, three, and seven with 
a memory length of three. The model error estimate e(n), is given by e(n) = d(n) − d̂(n) , 
where d̂(n) represents the estimated output of the model. The value of e(n) becomes 
extremely high abruptly at the onset of instability due to the error having reached it’s mini-
mum as defined by RLS, resulting in a divergence from the minimum error.

Each order of non-linearity encounters the onset of instability at a different time sample 
for the same dataset. The calculation of minimum error is estimated utilising 9, of different 
sizes depending on the non linear order of the model as shown in eq. 5. Therefore there is 
a finite input length of training signal X(n) that can be utilised for this model before insta-
bility occurs, regardless of the value of non-linear order, memory tap length and sampling 
frequency.

5  Early Stopping Criterion

RLS is an iterative form of the least squares (LS) estimation. For a linear system, the LS 
estimate is given by

(9)R
xx

=

⎡
⎢⎢⎢⎣

E[X1X1] E[X1X2] … E[X1Xn]

E[X2X1] … ⋮

⋮

E[XnX1] E[XnX2] … E[XnXn]

⎤⎥⎥⎥⎦

Fig. 1  An illustration of the error 
signal increasing in magnitude 
versus time samples of the input 
training signal. Instability is 
indicated by a rapid increase in 
magnitude, as shown for each 
non linear order of the Volterra 
model
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The LS solution is calculates a value of x such that Ax is the closest value as possible to b. 
LS exploits the fact that ‖b − Ax‖ is the square root of a sum of squares. Consider A to be 
an n × m matrix, b is in Rm , the LS solution of (10) is a value of x in Rn such that

for all x in Rn . Considering (11) graphically in vector form the LS estimate deems that Ax 
will be in column space A (C(A)), as it is inherently limited to C(A). LS calculates a value 
of x such that Ax is as geometrically as close to b as possible in terms of distance, such that 
‖Projection(b) − b‖ → 0

b̂ must be the orthogonal projection of b on to Col(A), for the solution of Ax = b̂ to 
be valid. This entails that Ax = b̂ is consistent and that there is a solution of x̂ in Rn . By 
the orthogonal decomposition principle, the projection has the property that b − b̂ is 
orthogonal to Col(A) [18].

In RLS the cost function as seen in (2) can be written as eq. 13.

As illustrated above in Fig. 2 d̂(n) must be orthogonal to d(n), a change in phase indicates 
a change in the d̂(n) projection. �(n−k) is inherently a scalar value. Multiplying by �(n−k) will 
not change the phase of d̂ as the imaginary term will always be 0.

Aforementioned related works focus on improving the NMSE or adding additional 
computational complexity by altering the RLS algorithm. This manuscript determines 
a method by which to desist training of a model using RLS before instability occurs. 
Instability can be circumvented by a simple observation of a value that is pre-existing 
natively in the conventional RLS algorithm and therefore does not increase computa-
tional complexity.

(10)Ax = b

(11)‖b − Ax̂‖ ≤ ‖b − Ax‖

(12)Ax̂ − b ∈ CA

(13)J(n) =

n∑
k=1

𝜆
(n−k)(d(k) − d̂(n))2

Fig. 2  Illustration of orthogonal-
ity of LS estimation on column 
space A
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6  Methodology

The update matrix as in eq. 5 is calculated by the difference of two separate matrix manip-
ulations, with one matrix manipulation containing the more current information of the 
autocorrelation function, consisting of the right hand side of eq. 5. Henceforth, this will 
be referred to as the change in update matrix and denoted it as △C−1(n) , as defined in 
equ. 14. Equation 5 contains an inherent flaw i.e. that a difference equation has the poten-
tial to generate eigenvalues that result in a divergence from the trajectory of minimum 
error [17]. To avoid the estimated output of the model diverging from the least squares 
error, previous authors have examined eigen analysis of the auto correlation function. This 
involves altering the limits specified in the auto correlation function based on the statistical 
analysis of the specific input training signal and, therefore, requiring individual computa-
tions for each respective training signal.

As RLS minimises the linear least cost function, the phase △C−1(n) is expected to tend 
toward the projection of the minimum error with consistent phase, i.e the desired output 
and actual output are tending toward the same point in the complex plane. Significant devi-
ations in the complex values of △C−1(n) from the original trajectory indicates definitively 
the onset of instability. The phase of △C−1(n) was chosen as the stopping criterion as it 
does not add any additional computational complexity.

By observing △C−1(n) on a sample per sample basis it is possible to identify the sam-
ple point at which instability begins to occur. As the auto correlation function relates X(n) 
and X(n − 1) , which contain N − 1 common elements, and therefore should remain highly 
similar to previous values. Observing the first element of the matrix △C−1(n) , allows for 
a comprehensive measurement of the eigen vector behaviour as the diagonal values of 
△C−1(n) will be identical as seen in eq. 9. In this way, a deviation in the sample to sample 
values in △C−1(n) indicates a deviation from the trajectory towards the minimum error.

Figure  3 depicts how stability may be inferred from the proposed surrogate measure 
△C−1(n) . As previously stated, stability is indicated by the plotted vectors remaining 
in close proximity to the trajectory of minimum error. A change in direction and sudden 
increase of the magnitude of the vectors indicates that the estimate d̂(n) , is tending away 
from the plane of the least squares estimation of the error.

While a simulated PA will not introduce any external errors into the model, experimen-
tal validation may incur errors such as those resulting from noise contributions. As such it 
is necessary to introduce a threshold into the early stopping criterion to prevent premature 
termination of training. The tolerance we suggest is that the phase component of △C−1(n) 
should fall between ∓0.25 Radians. The phase of the △C−1(n) rises rapidly, as can be seen 
in Figs. 6 (a) and 3. Therefore ∓0.25 Radians was considered to be a suitable prescribed 
tolerance as ceasing training prior to an extreme divergence of the phase component allows 
for the RLS algorithm preserve high fidelity of the estimated output without alteration to 
the RLS algorithm.

In Fig. 3 it can be seen that the model behaviour has become imbalanced i.e. the vec-
tors have exceeded ∓0.25 Radians prescribed tolerance. Once the point of convergence, 
or minimum error, is exceeded the eigen vectors are becoming oscillatory and increase in 
magnitude, i.e. attempting to point in the direction of largest variance, ∞ [19]. Therefore, it 
is beneficial to cease training once the point of convergence has been exceeded as defined 

(14)△C−1(n) =
K(n)XT (n)C−1(n − 1)

�
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by the prescribed threshold that is applied to the resulting surrogate measure obtained from 
the first value of the matrix given by eq. 9.

7  Experimental Validation

In order to validate the early stopping criteria proposed in this work a variety of single car-
rier signals are sent from an AD-FMCOMMS3 evaluation board, through a Doherty PA 
at 2.6GHz (NXP BGA7210). The corresponding input and output signals are sampled at 
30.72 MHz.

As can be seen in fig. 4 the hardware configuration to complete model extraction was a 
combination of the ZC706 and FMCOMMS3. The SMA cables were connected from TX1 
to the input of the PA (NXP BGA7210) and connected back via RX1 from the output of 
the PA. A spectrum analyser, Rhode & Schwarz FSL, was utilised to visually inspect the 
various non linearities captured.

Fig. 3  Illustration of phase dis-
crepancy, of △C

−1(n) . �
1
 depicts 

the phase of the first complex 
value of △C

−1(n) is 0.1876 
Radians. �

2
 is 0.5278 Radians. 

* The limits of this figure have 
been truncated for aesthetic 
purposes. Please note the mag-
nitude of the second unstable 
△C

−1(n) extends to co-ordinates 
0.5891 + 0.2888i

Fig. 4  Experimental hardware 
setup
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Various strengths of non linearity was modelled by the proposed methodology. Sig-
nal strength was increased to induce severe saturation as shown in Fig. 5. Prompting this 
response from the PA enabled the authors to discern the fidelity of the PA model and 
ensure robust modelling.

To illustrate the onset of instability an arbitrary memory length and order of non 
linearity was tested. For the purposes of illustration both values were set to 2 producing 
Fig. 6. Each of the four modulation schemes become unstable at different time samples 
(n) as seen in 6 (a). DVBS2x becomes unstable at n = 1.3742 × 104 , WCDMA becomes 
unstable at n=1.385 × 104 , 5G NR becomes unstable at n = 1.425 × 104 and OFDM LTE 
becomes unstable at n = 1.428 × 104.

Fig. 5  AMAM plot of examples 
of input output signal pairs sent 
and received through the PA 
using AD-FMCOMMS3

Fig. 6  Experimentally validated 
output signal a estimated signal 
output without early stopping 
criterion and b with proposed 
early stopping criterion. It can be 
seen in (b) that the input training 
signal length has been truncated 
prior to the onset of instability. 
Let it be noted that for illustra-
tive purposes only samples from 
13700 onwards are depicted
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Figure 6 (b), plots the experimentally validated output of the PA versus the estimated 
output of the PA model utilising the proposed algorithm. The early stopping criterion 
algorithm ceased training prior to instability as defined by the phase contained by the first 
complex value of △C−1(n) > 0.25 Radians. Both estimated outputs were compared to the 
experimentally validated output in terms of the Normalised Mean Square Error (NMSE) as 
illustrated by Table 1.

Figure 7 illustrates the onset of instability with regard to the phase, imaginary and real 
component of △C−1(n) . The imaginary and phase components of the first element of 
△C−1(n) diverge by a large amount close the point of onset of instability.

The model utilising the proposed algorithm returned acceptable model accuracy in 
terms of NMSE values, as seen in Table 1. The NMSE values listed in the table show that, 
by utilising the early stopping criterion, the NMSE value indicates high fidelity between 
the estimated output and the actual output (visually illustrated in Fig. 8). Severe degrada-
tion of the NMSE values occurs rapidly after this point, as shown by the NMSE values 
listed for +10 and +20 samples after the early stopping criterion recommends the cessation 
of training. Not only will the early stopping criteria prevent the training routine producing 
unstable outputs, but it will also maximise the length of the input training signal. Therefore 
allowing the continued reduction of the model coefficient error, maximising the accuracy 
of the extracted model.

Autonomous control of the stopping criteria removes the possibility of experimental 
error through heuristic approaches. Let it be noted that this experiment was conducted 
with various non linear orders and memory lengths. The early stopping criteria operated as 
expected for all values, including memory lengths and non linear orders of disparate val-
ues. As expected from Fig. 1, the input training signal length approached instability earlier 
as the memory lengths and non linear orders increased.

Figure 8, plots the experimentally validated output of the model trained with distinct 
signal standards versus the estimated output of the model using the proposed algorithm. 
All signals were 5MHz bandwidth single carrier signals sent through a Doherty PA at 
2.6GHz, the same experimental procedure as mentioned above.

The NMSE values shown in Table 1 for the various signal standards each show a 
distinct improvement where the early stopping criterion has been implemented. Three 
of four signals NMSE values dis-improve marginally up to ten time samples after the 
early stopping criterion is met. However, twenty time samples after the early stopping 

Fig. 7  Real, Imaginary and 
Phase components of the change 
in update matrix, △C

−1(n) , as 
the early stopping criterion is 
surpassed. The early stopping 
criterion is shown as a constant 
0.25 Radians threshold that indi-
cates instability when exceeded 
by the phase. Phase was chosen 
rather than the real or imaginary 
components as the indicating 
factor in order to maximise the 
input training signal length. Let it 
be noted the limits of this figure 
have been truncated for aesthetic 
purposes
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criterion is met, the extracted model NMSE values have dramatically degraded in all 
four cases. The NMSE values in Table 1 indicate that, through the application of the 
proposed early stopping criterion, training is terminated prior to instability occurring. 
This does not require alteration of the RLS algorithm rather a monitoring of a single 
value that is inherent to the calculation.

Fig. 8  Experimental signal 
output versus estimated signal 
output of various signal stand-
ards with proposed algorithm 
a 5G-NR, b DVBS2X, c LTE 
OFDM and d WCDMA.In each 
of these cases it can be seen that 
the estimated output corresponds 
closely with the experimentally 
validated output, indicating that 
the applied algorithm does not 
negatively affect the modeling 
capabilities. Zoomed in sections 
have been provided for clarity. 
Let it be noted that for illustrative 
purposes only samples from 103 
onwards are depicted

Table 1  A comparison of NMSE 
values when stopped using early 
stopping criterion(ESC), 10 
samples beyond ESC, 20 samples 
beyond ESC

Signal Standard ESC ESC+10 ESC + 20

WCDMA − 25.514 dB − 24.737 dB 5.286 dB
DVBS2X − 25.427 dB − 14.459 dB 14.941 dB
LTE OFDM − 24.904 dB − 24.903 dB 4.118 dB
5G-NR − 24.4079 dB − 23.615 dB -3.136 dB
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8  Further Work

The limitations with this work is associated with the evolution of future generations of 
telecommunications. Although RLS is utilised in this manuscript for modelling PAs, 
the proposed methodology could be augmented to conduct error corrections for future 
generations of wireless communications. Further work is planned in order to keep up to 
date with the progression of emerging LiFi enhancements. Optical communications sys-
tems, although transmit data predominantly via light [20], errors can occur and quickly 
converging error estimates could be necessary to correct or model distortions such as 
motion blur[21]. Another limitation related to the proposed methodology is that, unlike 
works by [4–8] and [9], the error of the behavioural model is halted prior to instability 
and inherently does not contribute to actively developing methods to improve NMSE 
values but instead guarantees stability.

9  Conclusion

In conclusion, this paper provides an early stopping criterion to avoid the onset of insta-
bility of a polynomial model during RLS training. Experimental validation of the pro-
posed procedure shows that the NMSE of the experimental output vs estimated output 
indicates high fidelity until the training instance identified by the early stopping crite-
rion is exceeded and then it deteriorates rapidly. NMSE values are detailed in Table 1 
and visually illustrated by Fig. 3, 6, and 7. Application of this early stopping procedure 
eliminates the need to apply supplementary computational analysis, thereby minimising 
the computational complexity required to guarantee a stable model while maintaining 
it’s accuracy. Automating this early stopping procedure is conveniently implemented, 
only requiring the observation of a pre-existing value that is produced by the RLS algo-
rithm, the autocorrelation based update. This method has been experimentally validated 
for a high power amplifier using four signal standards namely LTE OFDM, WCDMA, 
DVBS2X and 5G-NR.
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