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Abstract 26 

 27 

Introduction: Functional magnetic resonance imaging (fMRI) often involves long scanning 28 

durations to ensure the associated brain activity can be detected. However, excessive 29 

experimentation can lead to many undesirable effects, such as from learning and/or fatigue 30 

effects, discomfort for the subject, excessive motion artifacts and loss of sustained attention on 31 

task. Overly long experimentation can thus have a detrimental effect on signal quality and 32 

accurate voxel activation detection. Here, we propose dynamic experimentation with real-time 33 

fMRI using a novel statistically-driven approach that invokes early stopping when sufficient 34 

statistical evidence for assessing the task-related activation is observed.  35 

 36 

Methods: Voxel-level sequential probability ratio test (SPRT) statistics based on general linear 37 

models (GLMs) were implemented on fMRI scans of a mathematical 1-back task from 12 38 

healthy teenage subjects and 11 teenage subjects born extremely preterm (EPT). This approach 39 

is based on likelihood ratios and allows for systematic early stopping based on statistical error 40 

thresholds. We adopt a two-stage estimation approach that allows for accurate estimates of 41 

GLM parameters before stopping is considered. Early stopping performance is reported for 42 

different first stage lengths, and activation results are compared with full durations. Finally, 43 
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group comparisons are conducted with both early stopped and full duration scan data. 44 

Numerical parallelization was employed to facilitate completion of computations involving a 45 

new scan within every repetition time (TR).  46 

 47 

Results: Use of SPRT demonstrates the feasibility and efficiency gains of automated early 48 

stopping, with comparable activation detection as with full protocols. Dynamic stopping of 49 

stimulus administration was achieved in around half of subjects, with typical time savings of up 50 

to 33% (4 minutes on a 12 minute scan).  A group analysis produced similar patterns of activity 51 

for control subjects between early stopping and full duration scans. The EPT group, individually, 52 

demonstrated more variability in location and extent of the activations compared to the normal 53 

term control group. This was apparent in the EPT group results, reflected by fewer and smaller 54 

clusters. 55 

 56 

Conclusion: A systematic statistical approach for early stopping with real-time fMRI 57 

experimentation has been implemented. This dynamic approach has promise for reducing 58 

subject burden and fatigue effects. 59 

 60 

1.0 Introduction 61 

 62 

Analysis of task-based fMRI scans is typically performed with fixed, predetermined 63 

experimental designs. As a result, subjects must often endure stimulus protocols that are overly 64 

long in order to ensure the neural activity can be statistically discerned in the noisy data. 65 

However, this can lead to fatigue, learning effects and excessive motion, such as from agitation, 66 

as well as being costlier to administer due to longer scan times and potentially less reliable 67 

measurement. Also, the experimenter does not know if the neural activity is detectable until 68 

long after the scanning session is over. Real-time functional MRI (RT-fMRI) provides an 69 

opportunity to ameliorate these issues. RT-fMRI has been successfully applied in the field of 70 

neurofeedback and biofeedback from neural responses, where subjects may be trained to alter 71 

their brain activity based on real-time information provided from the fMRI scans. This has been 72 

reported in ADHD (1), healthy subjects with no psychiatric or neurological disorders (2, 3), 73 

Alzheimer’s disease (4) and Parkinson’s disease (5, 6). Its uses have also been described in 74 

psychoradiology to aid diagnosis and treatment planning in psychiatric disorders (7). Real-time 75 

resting state fMRI has for instance been studied and implemented as well using TurboFIRE (8). 76 

A largely unexplored application of RT-fMRI is to dynamically and statistically determine when a 77 

stimulus has been sufficiently presented in terms of replication of blocks to terminate early. The 78 

magnitude of effort and variability in neural activity while completing a task will vary from 79 

person to person. Trial administration within a block design can be stopped early if sequentially 80 

updated statistical inference on activation can be determined with sufficient accuracy based on 81 

the observed BOLD (blood oxygen level dependent) signal response up to that point. This 82 

application will be explored in detail.  83 

 84 

The benefits of adaptive RT-fMRI include: 1) Shorter scan times for fMRI testing: Shorter scan 85 

times cannot only save in technology and personnel costs, but fatigue and learning effects can 86 

be avoided, improving signal quality. Scanning becomes less burdensome on the subject as 87 
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well, which is an especially important consideration for children or elderly subjects. 2) Real-time 88 

quality control: greater consistency in activation classification error can be obtained, through 89 

statistical error-based benchmarks for stopping rules and real-time feedback on classification 90 

performance and adjustment of stimulus durations. 3) Richer information: Paradigms can 91 

become more complex and sophisticated. With greater time efficiency and flexibility, more 92 

variations of a stimulus, such as reflected by a broader range of difficulty levels, can be 93 

administered in the same amount of time. 4) Wide applicability: Dynamic adjustment of stimuli 94 

based on BOLD response in real time can be generally applied across a range of focus areas that 95 

investigate localization of brain activity, including cognition and motor functioning.  96 

 97 

Since the advent of RT-fMRI in the mid 1990’s (9), a handful of mainstream software packages 98 

have been developed for use by the fMRI community. These include Turbo BrainVoyager (10), 99 

AFNI’s real-time plugin (9) and FSL-based FRIEND (11). There have been a few previous studies 100 

that have employed adaptive task-based RT-fMRI. In one example, it has been used to 101 

determine ‘good’ and ‘bad’ brain states to optimize learning (12). The presentation of novel 102 

scenes was prompted by the detection of ‘good’ brain states; the ‘good’ template was 103 

determined based on a prior standard acquisition test scan. They used real-time general linear 104 

model (GLM) methods described in (13) to estimate the BOLD signal magnitude at each time 105 

point (each scan) and compared it to a value within a region of interest from the earlier test 106 

scan. Another adaptive RT-fMRI study has used a person’s brain state to judge their attention to 107 

a task (14). When their attention appeared to wander, the difficulty of the task was increased 108 

bringing their attention back. The authors applied multivariate pattern analysis to determine 109 

task-relevant and task-irrelevant activity. In another example, Lorenz et al (2016) ran FSL to pre-110 

process the scans in real-time before applying a GLM-based analysis. Their study involved 111 

eliciting activity in particular brain regions by presenting stimuli chosen based on the response 112 

to the previous stimulus. The aim was not to investigate brain activity related to a particular 113 

task but simply activate a brain region (15). Another example of adaptive RT-fMRI implemented 114 

a Bayesian optimization algorithm to estimate when brain activity was mapped to a particular 115 

network (16). The Bayesian optimization was trained on 4 difficulty levels of a task prior to 116 

switching to choosing the optimal difficulty levels to elicit the desired activity, where there 117 

were 12 other levels to choose from. 118 

 119 

Here, we extend the use of a statistically-based dynamic approach to RT-fMRI experimentation 120 

described in (17), addressing issues related to practical implementation. This approach involves 121 

the sequential updating of voxel-level likelihood ratio tests, known as sequential probability 122 

ratio tests (SPRTs) and assessing after each scan whether there is sufficient statistical evidence 123 

to determine whether or not an associated parameter value indicates task activation. Such 124 

results, considered in aggregate across a collection of voxels, can be used as a basis for early 125 

stopping of experimentation. Most off-line, post-hoc analyses of fMRI data use the general 126 

linear model to test statistical associations of voxel activation magnitude to task administration 127 

(18-20). This approach involves the voxel-level estimation of task-related regression parameters 128 

that indicate magnitude of association between an expected hemodynamic response signal 129 

from a task and the observed BOLD signal. We have adapted this general method for real-time 130 

fMRI by sequentially updating GLM regression parameter estimates as soon as the brain 131 
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volumes are collected. At the individual voxel level, we can then assess hypothesis tests related 132 

to activation that are based on these estimates. In aggregate, the voxel level analyses inform 133 

decisions on early stopping and the tailoring of fMRI experimentation (17).  134 

 135 

In comparison to (17), we adopt a two-stage estimation approach that allows for the alternative 136 

hypothesis test parameter values that represent activation thresholds to be formulated in 137 

terms of z-score scale at the voxel level.  This adaptive specification avoids the intractable 138 

problem of pre-specifying magnitudes of GLM parameter values that would be considered as 139 

“active”. Such magnitudes need to be scaled relative to error variance, which is estimated in a 140 

first stage. We determine an appropriate duration of the first stage by monitoring estimation 141 

convergence of key GLM parameters. Also, while in (17) serial independence was assumed, 142 

here we use the “sandwich” estimator to recognize serial covariance in inference (21, 22).  The 143 

impact of early stopping on group analysis is considered here as well. Importantly, we now 144 

present a novel workflow to apply and implement these methods on a Philips scanner, with a 145 

dynamic feedback system that allows for real-time dynamic adjustment of the experimentation 146 

with subjects. This was facilitated with adoption of numerical parallelization techniques. This 147 

work supports the premise that adaptive, individualized experimentation is feasible and can 148 

lead to practical and useful savings in scan times by reducing experimental redundancy. 149 

 150 

Another novel aspect of this work is the application of adaptive RT-fMRI in a sample group of 12 151 

healthy adolescent subjects and 11 adolescents born extremely preterm (EPT). The fMRI 152 

stimulus was a mathematical version of the well-known 1-back task. Early stopping was 153 

implemented using sequential probability ratio test (SPRT) statistics and our server was a Linux 154 

workstation located in a nearby building. Processing of RT-fMRI was completed within 3 155 

seconds before the next scan arrived.  We observed time savings of up to 33 % based on early 156 

stopping when 80% of voxels were classified, which equals up to 4  minute savings with a 12-157 

minute scan. The impact on activation analysis from the selection of early stopping criteria is 158 

assessed, as described in detail below. Finally, we conduct a comparison of group analyses 159 

between EPT versus healthy controls, to assess the effects of early stopping in this context. 160 

 161 

2.0 Background Information 162 

2.1 General linear model 163 

Briefly, the general linear model involves convoluting a double gamma hemodynamic response 164 

function (HRF) with task indicator variables that denote timing of administration to reflect 165 

expected task-related BOLD responses. Voxel-level task-related regression parameters are 166 

estimated and represent the association of the observed response to expected task-activated 167 

BOLD signal. Thus, activation is assessed through statistical inference on regression parameters. 168 

For a given voxel up to time t (i.e. for scans 1 through t), the GLM takes the form: 169 

 170 

 Yt  = XtB+Et (1.1) 

 171 

Where Yt is a t × 1 vector of observed BOLD signal intensities for the voxel up to time t, and Et is 172 

a t × 1 vector that represents the error components. Xt is a t × p design matrix and includes the 173 

expected BOLD signal values per task. We also include cosine functions of increasing periodicity 174 
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(scan duration*2, scan duration, scan duration/1.5, scan duration/2 and scan duration/2.5) to 175 

model physiological and other low frequency noise (23). For large periodicities, cosine functions 176 

are approximately linear for the time frame of scans we consider here, and hence are 177 

essentially collinear from a GLM modeling perspective. Five regressors were thus added to the 178 

design matrix. B = ��� … �� … ��� �, a p × 1 regression coefficients vector. In this formulation, a 179 

regression parameter bj can represent magnitude of association with task j. Et is assumed to be 180 

distributed as multivariate normal with mean zero and covariance Wt, where Wt is a t × t matrix 181 

that represents the temporal autocorrelation structure. For spatial correlation, we conduct 182 

spatial smoothing, so do not explicitly model the spatial correlation structure. Yt is assumed to 183 

have a multivariate normal probability distribution as follows: 184 

 185 

 ����, 
, ���� �  1
�2�� �� |����| exp �� 1

2 ��� � ��
����������� � ��
� 
 

(1.2) 

 186 

where |σ2
Wt| is the determinant of σ2

Wt. Major sources of noise in fMRI data include brain 187 

metabolism, physiology, and spontaneous fluctuations (24). 188 

 189 

We fit regression models in parallel for all voxels under consideration in a target region of 190 

interest (ROI), which could include the whole brain. Real-time analysis requires signal and 191 

image processing steps, as well as the continual updating of statistical estimates as new scan 192 

data are received from the scanner. Hence, given the large number of voxels to be analyzed, 193 

real-time fMRI presents “big data” computational challenges. 194 

 195 

2.2 Sandwich Estimator   196 

 197 

In our previous work (17), we assumed serial independence for computational simplicity. Here 198 

we recognize potential serial correlation using the nonparametric sandwich estimator  ���� �� !�   199 

for contrast c (21, 22). The sandwich estimator is a robust, model-free variance estimator that 200 

does not require distributional assumptions. Importantly, it still provides asymptotically 201 

consistent variance estimates, although convergence rates can be slow (21, 22). The approach 202 

is computational feasible for real time analysis.  203 

 204 

2.3 Wald’s Sequential Probability Ratio Test   205 

 206 

At the voxel level, we can use the sequential analytic framework of (17, 25-29), to adaptively 207 

assess activation status using real-time fMRI. As we will demonstrate, Wald’s SPRT test statistic 208 

can serve as the basis of an efficient, sequential testing approach that can greatly reduce the 209 

need for experimental block administrations compared with fixed designs while attaining 210 

similar classification performance in simulation, and activation patterns with subject data. This 211 

approach relies on a SPRT statistic to conduct hypothesis testing, with the null hypothesis 212 

representing no activation with respect to a task, and the alternative hypothesis representing 213 

some threshold of activation, as represented by a GLM parameter value (17). This statistic is 214 

updated with each new observation, and its value is compared with thresholds for stopping.  215 
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 216 

The general procedure of Wald’s SPRT is described as follows. Consider a one-sided hypothesis 217 

of the form "	: �
 �  �
 	 versus "�: �
  $  �
 �, where �
� � �  	 $ 0. Two-sided 218 

formulations are described in (25) and (17). Implementation of Wald’s SPRT involves updating 219 

Wald’s likelihood ratio statistic as new data are observed (25):  220 

 221 

 Λ� � '() *�+��|�� �, ���� �� !� ,
�+��|�� 	, ���� �� !� ,- 

 

(1.3) 

 222 

 223 

where ���|�� 	, ���� �� !� ) and ���|�� �, ���� �� !�  are the respective probability densities 224 

functions of Yt given �
 	 or �
 � is the true value of parameter of interest and conditioning on 225 

the estimated covariance. After Yt is observed at a time point, t, one of three possible decisions 226 

is made according to the following rules:  227 

1. Continue sampling if 
 . Λ� . / 228 

2. Stop sampling and accept "	 if Λ� . 
 229 

3. Stop sampling and accept "� if / . Λ� 230 

 231 

where stopping boundaries (A, B) = (log((1-βE)/αE), log(βE/(1-αE))), and the target Type I and 232 

Type II error levels are respectively denoted as αE and βE. These error levels are specified before 233 

testing. Note that both the Type I and Type II error levels are controlled for with SPRT, as 234 

opposed to standard hypothesis test formulations that only control for Type I error level. 235 

Multiple SPRTs are conducted concurrently across voxels and boundary error levels can be 236 

adjusted for instance by Bonferroni correction to account for this simultaneous testing.  237 

 238 

A practical modification of the original SPRT formulation for stopping is to consider the 239 

truncated SPRT (30), which will additionally call for stopping if an upper bound for the number 240 

of observations is reached. In our case, this is reached when a fixed number of blocks have 241 

been administered. Additional modifications include conducting two-stage estimation to allow 242 

sufficient observation for preliminary estimates of the voxel-level error variance from a first 243 

stage where stopping is not yet considered  (31).  With these estimates, we can derive an 244 

alternative hypothesis value for a linear contrast of task parameters �
  that will correspond to 245 

a desired z-statistic value. As an illustration, suppose a z-statistic value of 3.10 is selected, as 246 

will be done below in our studies. Note 3.10 is the one-sided p-value = 0.001 - critical value for 247 

the standard normal distribution. Given an estimated value σ�1 �
 from a first stage of length t 248 

scans, we solve for the value of θ�  � �
  that satisfies 
� 

����� �����
� 3.10 , where �� is the design 249 

matrix up to scan 5. This value becomes the alternative hypothesis, and it represents the voxel-250 

level targeted activation magnitude threshold. We update the value of θ� and σ�6at each scan, 251 

so that the alternative hypothesis is actually dynamic, since the estimation variance for ��β8  252 

changes as well.   253 

 254 
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Ultimately, we aggregate the findings of the voxel-level SPRTs to determine whether or not 255 

experimentation within a block design should be terminated early. A “global” stopping rule that 256 

considers all voxels in a region of interest (can be whole brain or smaller ROIs) that we have 257 

adopted is to terminate task administration when a predetermined percentage of voxels have 258 

been classified by their respective SPRTs. For instance, we have used 80% as a global stopping 259 

criterion. Note that 80% classified means either as active or non-active. We choose this cut-off 260 

as it is fairly strict, and yet approximately one half of the participants still stop early. As we will 261 

see, it also facilitates correspondence with full scan data results, particularly if the activation 262 

threshold is adjusted to recognize longer scan durations.  We also consider other global 263 

stopping criterion here, 70% and 90%, and assess impact on stopping times and resultant 264 

images arising from early stopping. We also choose Type I and Type II error levels that are 265 

relatively more stringent for Type I error. Note that for �
  parameter values that are “in-266 

between” the null and alternative hypothesis values, the SPRT is indifferent to preferring one 267 

hypothesis over the other. This leads to larger numbers of scans needed before a stopping 268 

boundary is crossed. So, we have to accept a lack of decisive stopping decisions for these cases 269 

in order for overall experimentation to stop early, even as θ� decreases as t increases. This can 270 

be an acceptable trade-off for shorter experimental scan times and the ability to tailor 271 

experimentation.  272 

 273 

In sum, we propose that the important design parameters for implementation are selected 274 

through analysis of a training sample. For training, each subject undergoes the full duration of 275 

experimentation. We consider selection through the following criteria: 1) First stage duration: It 276 

is desirable for the voxel-level error variance and beta parameter estimates to stabilize – we 277 

assess this qualitatively by assessing plots from a sample of voxels. 2) A z-score activation 278 

threshold based at the end of the first stage: we choose a z-score threshold of 3.10 after the 279 

first stage since this is a standard threshold value for determining activation of a voxel. Note 280 

that thresholds at earlier scans correspond to even larger z-score thresholds at later durations, 281 

as we discuss below. 3) Type I and Type II error levels: We want to observe some level of early 282 

stopping based on these parameters while the corresponding activation maps with early 283 

stopping appear have correspondence to full duration scans (after threshold adjustment for 284 

larger number of scans). 4) Global stop rule percentage: a percentage level is selected by relying 285 

on similar guidance as when selecting the hypothesis testing error levels. 286 

 287 

3.0 Methodology 288 

3.1 Participants 289 

 290 

Twelve healthy subjects were recruited, 7 males. They were aged 15-16 years old and 11 were 291 

right-handed. They had no known neurological conditions and a normal developmental history. 292 

A group of 11 adolescents born EPT were also recruited, 1 male. EPT is defined as being born at 293 

< 26-week gestation and weighing < 1000g. All were aged 15-17 years old and 8 were right-294 

handed, 2 left-handed and 1 ambidextrous. All subjects were recruited as part of a larger study 295 

to evaluate functional and structural differences associated with mathematical abilities and 296 

working memory between those born EPT and those born at normal term. The aim of the larger 297 

study is to improve our understanding of mathematics disabilities and potentially lead to 298 
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improvements in pedagogical practices for young people experiencing problems acquiring 299 

mathematics skills. Adolescents were recruited as they can handle the stress of fMRI 300 

experimentation, are mathematically advanced enough and have had time to master the 301 

subject area compared to younger children. This age range is also an advantageous time to 302 

implement interventions to improve mathematical abilities before leaving school, hence adults 303 

were not studied. EPT subjects were included to show that differences with patient populations 304 

are detectable with our methods. A subsection of the full study is reported here to demonstrate 305 

the real-time analysis.  306 

 307 

The subjects made one two-hour visit to the MRI department at University Hospitals Cleveland 308 

Medical Center (UHCMC). Ethics approval was obtained from the UHCMC Institutional Review 309 

Board office prior to the study and complied with the Declaration of Helsinki for human subject 310 

research. Subjects and their parents gave informed consent prior to taking part.  311 

 312 

As part of our wider study, subjects also made another, separate 3 hour visit to the study 313 

offices to undergo neuropsychological testing and a refresher of fraction calculations. In the 314 

interests of brevity, the full neuropsychological testing results are not reported here. One 315 

finding that is particularly relevant to the fMRI task considered here is that nearly two thirds 316 

(63.6 %) of the EPT cohort have lower working memory function, compared to just over one 317 

third (35.7 %) of controls subjects. 318 

 319 

3.2 MRI protocols 320 

 321 

The subjects were positioned head-first supine on the scanner bed with their head fixed in 322 

position using inflatable pads. An 8-channel head coil was used for data acquisition. Echo planar 323 

imaging scans were acquired on a Philips Ingenuity 3T PET/MR imager at UHCMC. The following 324 

fMRI scan parameters were used: TR = 3.0 s, TE = 35 ms, in-plane resolution was 1.797 mm
2
 325 

(matrix 128 x 128), slice thickness was 4 mm, number of slices = 36 slices and flip angle = 90°. A 326 

SENSE P reduction factor of 2 was implemented and scans were acquired in an ascending 327 

interleaved fashion. 328 

 329 

In addition to the fMRI scans, a high-resolution T1-weighted anatomical image of the brain was 330 

also acquired. This was taken using a magnetic preparation gradient-echo sequence (3D IR TFE). 331 

Imaging parameters were: TR = 7.5 ms, TE = 3.7 ms, in-plane resolution was 1 mm
2
 (matrix 256 332 

x 256), slice thickness was 1 mm, number of slices = 200 slices and flip angle = 8°. 333 

 334 

3.3 Stimulus protocols 335 

 336 

During data acquisition subjects were presented with a mathematical version of the well-known 337 

1-back memory task. It involved performing basic addition and subtraction calculations and 338 

required the answer to be remembered and compared to the next answer. Two difficulty levels 339 

were included. The protocol was developed by our lab as part of a battery to assess 340 

mathematical and working memory abilities in 14 – 17 year olds to evaluate the functional 341 

differences between those born EPT and those born at normal term. The stimulus was 342 
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presented on an MRI compatible LCD monitor (manufactured by Cambridge Research Systems, 343 

Rochester, UK) positioned at the end of the bore and viewed via a mirror attached to the head 344 

coil. Equations were presented, for example, the subject may see “2 + 3 = ?”. The subject was 345 

required to work out the answer and then remember it while working out the next equation, 346 

for example “1 + 4 = ?”. If they thought the answers matched, then the subject pressed a 347 

button on a response box held in their right hand. If they thought the answers did not match, 348 

then they did nothing but remember the new answer to compare to the answer of the next 349 

equation. An example sequence is shown in Figure 1A.  350 

 351 

The stimulus was presented in a block design, see Figure 1B and Table 1. Eight equations were 352 

presented per block. Each block lasted 36 seconds followed by 21 seconds of rest condition 353 

(fixation dot). Two difficulty levels were presented. The easier level consisted of single digit 354 

numbers to add or subtract and the answers were always a single digit. The harder level 355 

involved addition or subtraction of single or two-digit numbers and the answers were always 356 

two digits. Blocks of difficulty levels were alternated during the scan and a total of 6 blocks per 357 

level were presented. Note: although only 2 difficulty levels are used here, the setup is able to 358 

accommodate any number of difficulty levels. The full duration of the task was 238 scans or 11 359 

minutes and 54 seconds. This was based on a moderate length of experimentation for a 1-back 360 

block design (e.g. see (32-35)), allowing approximately 6 minutes for each difficulty level.  361 

 362 

Two difficulty levels were included to investigate differences in neural responses associated 363 

with increasing task demand. As the brain is ‘pushed’ to solve more complex problems, 364 

differential networks may be apparent, and these may be different between normal term and 365 

EPT subjects. Additionally, increasing the difficulty level serves to maintain the subject’s 366 

attention and, generally, increases their effort. This can have the effect of increasing brain 367 

activation cluster sizes and magnitude as well as causing recruitment of additional areas, which 368 

is of interest. Incorporating difficulty levels into protocols that can be terminated early in a 369 

separate fashion demonstrates the flexibility of the proposed approach. 370 

 371 

3.4 Real-time fMRI acquisition 372 

 373 

The visual stimulus was presented using an in-house custom written program that was 374 

developed using the Python programming language (Python Software 375 

Foundation, https://www.python.org/) and libraries from Psychopy - an open source visual 376 

presentation program (36-38). The program connected to a Cedrus Lumina controller to receive 377 

stimulus responses from the subject and trigger pulses from the MRI scanner (outputted every 378 

dynamic). The timing of the presentation of the visual stimulus was synchronized to the trigger 379 

pulses to ensure that stimulus images were displayed at the expected time. A Supervisor 380 

Window displayed on the experimenter’s computer screen allowed the visual stimulus to be 381 

tracked throughout. It displayed the current block number being presented, how many 382 

remaining blocks there were and when the subject responded. The program was also able to 383 

terminate one or both of the difficulty levels if it received a signal indicating the relevant areas 384 

in the fMRI data were sufficiently classified across voxels. The software is freely available from 385 

the Bitbucket repository: https://bitbucket.org/tatsuoka-lab/fmri-presentation. 386 
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 387 

Real-time image transfer was achieved by XTC (eXTernal Control). This is a program integrated 388 

into the Philips scanner software and enabled by a research clinical science key. XTC 389 

communicates with the reconstruction and scanner processes on the scanner computer and 390 

interfaces to a network Client application using a minimalistic CORBA (Common Object Request 391 

Broker Architecture) (39) interface which uses TCP/IP as the transport layer. CORBA is platform 392 

independent, reliable, and has the ability to process large amounts of data with minimum 393 

overhead. Each CORBA message consisted of a hierarchical attribute collection identified with 394 

UUIDs (universally unique identifiers) (40). Messages carried reconstructed image data and 395 

meta-data containing details of scan protocols. Due to hospital network security protocols the 396 

reconstructed images were placed in a folder on the scanner computer and then pushed across 397 

to a Linux computer. To achieve necessary image transfer speeds to the scanner computer 398 

folder a modification to XTC was installed on the scanner to disable two-way communications 399 

as only one-way image transfer functionality was required. However, XTC does support two-400 

way communication between the scanner and the Client.  401 

 402 

The Linux computer was a custom-built server equipped with a solid state hard drive and two 8-403 

core Intel Xeon E5-2687W processors running at 3.1 GHz and providing 40 MB L3 cache. It was 404 

installed with Centos 7.4 operating system. As the scans were received, custom written Python 405 

and Bash scripts implemented the analysis using core-based parallelization to preprocess the 406 

data and perform the SPRT statistical analysis. Preprocessing was performed using standard 407 

modules from AFNI (Analysis of Functional NeuroImages, https://afni.nimh.nih.gov) and FSL 408 

(FMRIB’s Software Library, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). The analysis sequence is 409 

detailed in the following section. The setup is shown in Figure 2. 410 

 411 

3.5 MRI preprocessing  412 

 413 

At the beginning of the scanning session a single fMRI scan (3 seconds) was acquired and used 414 

for coregistration (motion correction) purposes. In preparation, the skull was removed using 415 

FSL’s Brain Extraction Tool (BET) (41) and a mask of the full brain was created. During the real-416 

time adaptive fMRI scan session, new scans arrived every 3 seconds and were dumped in a 417 

folder on the Linux workstation where the following actions were applied to each one. AFNI’s 418 

‘dcm2niix_afni’ command was used to convert the .par/.rec files to nifti. Motion correction was 419 

performed using coregistration techniques. Every fMRI scan was realigned to the initial scan 420 

that was acquired before the task began, and AFNI’s ‘3dvolreg’ command was used. Spatial 421 

smoothing was also applied using an 8 mm kernel with AFNI’s ‘3dmerge’ command. The full 422 

brain mask created at the beginning of the session was applied using FSL’s ‘fslmaths’ command 423 

to remove noisy voxels outside the brain (voxels of no interest). The resulting images were then 424 

converted to ascii format for statistical analysis with SPRT. 425 

 426 

3.6 fMRI SPRT analysis 427 

 428 

The SPRT analysis was applied using highly-optimized C++ program that used Intel Cilk Plus 429 

library for multicore and vector processing of data. BLAS routines from Intel MKL were used to 430 
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enable instruction-based acceleration for matrix computation. They are available from the 431 

Bitbucket repository at https://bitbucket.org/tatsuoka-lab. The design matrix was created prior 432 

to the scan session using AFNI’s ‘3dDeconvolve’ command to model the stimulus and HRF. It is 433 

possible to include the temporal derivatives of the HRF or other regressors in the design matrix 434 

where applicable in studies. Temporal derivatives were not included here due to the long 435 

durations of the block design used to present the task. Statistical analysis included the modeling 436 

of low frequency physiological noise and the associated removal of serial correlation using 437 

discrete cosine transforms. Motion parameters are also frequently used as regressors to 438 

remove correlated activations produced by movement. Here motion parameter regressors 439 

were not included with the estimation of the discrete cosine transforms due to the limitations 440 

of the computational resources.  441 

 442 

We also tested 2 scenarios using either 2-blocks or 4-blocks of easy and hard stimuli first stage 443 

administration before allowing early stopping to occur. Where 2-blocks per difficulty level of 444 

stimulus administration were used before allowing early stopping, the first 78 scans were used 445 

for the first stage of experimentation. Where 4-blocks were used, 154 scans were used for the 446 

first stage. Recall, a full-length task protocol comprised 238 scans and lasted 11 minutes and 54 447 

seconds.  448 

 449 

The automatic determination of when to terminate the scanning is based on the Type I and 450 

Type II errors, αE and βE, as described above. Typical values used in the literature were used to 451 

test stopping time performance, with αE = 0.001, βE = 0.1 (42, 43). We also considered αE = 452 

0.0001, βE = 0.1 and αE = 0.001, βE = 0.01 combinations as well. A percentage of voxels that 453 

must be classified before termination was also specified during the setup, such as 80%. We also 454 

evaluate 70% and 90% threshold levels.  455 

 456 

This 1-back arithmetic task involves not only number sense and mathematical calculations but 457 

also general cognitive skills involving working memory and sustained attention. The brain 458 

networks involved with each of these has been well characterized in the literature and lends 459 

itself to the evaluation of this real-time analysis method. There is a large amount of overlap for 460 

the active brain areas that control each of these functions and they appear as a frontoparietal 461 

network (44-46). The areas of the brain we expect to see activate in response to the 462 

experimental task are: the intraparietal sulcus, supramarginal gyrus, premotor cortex, 463 

dorsal/ventral lateral prefrontal cortex, parietal lobe, Broca’s area, occipital lobe, fusiform 464 

gyrus, precuneus, cingulate gyrus, anterior insula and frontal eye fields. Assessment of the 465 

location and extent of activations within this network will be used as additional criteria for 466 

judging appropriate stopping times, in addition to the statistical information determined 467 

through the SPRT analysis. This will include how well the cluster peaks coincide with the 468 

anatomical locations as well as their extent.  469 

 470 

3.7 Group analysis 471 

 472 

There are many possible applications in the research setting where individual level results may 473 

be the focus. A possible clinical application may be in clinical assessments for presurgical 474 
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evaluation for brain surgery in patients with brain cancer or epilepsy. Still, group analyses are 475 

commonly conducted and an essential aspect of fMRI analyses. The outputted results files from 476 

the SPRT analysis can be used directly to perform a group analysis using AFNI’s 3dMEMA 477 

command (Mixed Effects Meta Analysis tool) (47). However, a group analysis was carried out 478 

using FSL which instead merges all subject data to conduct a combined mixed models analysis. 479 

We demonstrate that the data collected in real-time can still be used in a typical post-hoc 480 

analysis. Raw data was preprocessed with FSL FEAT (48). Motion correction was performed 481 

using a rigid body transform, spatial smoothing with a full-width-at-half-maximum Gaussian 482 

kernel of 6 mm was applied, high pass temporal filtering of 90 s was carried out and 483 

coregistration to (MNI) standard space was done before performing a first level individual GLM 484 

analysis. The statistical output from these were used to perform the higher level group statistics 485 

using FLAME 1 (FMRIB's Local Analysis of Mixed Effects, (49)). 486 

 487 

4.0  Results 488 

4.1 Individual Subject Results of SPRT 489 

 490 

The median control subject response time across both difficulty levels was 1.44 sec (SD 0.51 491 

sec), and median task accuracy was 90.8 % (SD 20.2 %). When these are broken down by 492 

difficulty level, the easy level median task accuracy was 86.1 % (SD 22.6 %) with median 493 

response time of 1.28 sec (SD 0.54 sec); and the hard level median task accuracy was 90.0 % (SD 494 

18.4 %) with median response time of 1.56 sec (SD 0.51 sec). EPT subjects had a slightly longer 495 

overall median response time of 1.91 sec (SD 0.48 sec) and overall median task accuracy was 496 

lower at 65.8 % (SD 21.2 %). For the easy level, the median accuracy was 72.2 % (SD 24.2 %) and 497 

median response time was 1.63 sec (SD 0.49 sec). For the hard level the median accuracy was 498 

70.0 % (SD 19.8 %) with a median response time of 2.10 sec (SD 0.54 sec). Note that there are 499 

statistically significant differences in same subject differences in speed to completion by 500 

difficulty level (Wilcoxon signed rank test, two-sided p < 0.001). Comparing correctness 501 

percentages per subject across birth status groups, there are significant differences with the 502 

hard level (Mann Whitney two-sided p = 0.037), but not with the easy one (two-sided p = 503 

0.401). These results indicate that the difficulty levels have different psychometric properties, 504 

and affect the groups differently. We also see this in activation patterns, as discussed in Section 505 

4.2 and reflected in the group analysis results.  506 

 507 

Real-time transfer speeds between the scanner and the Linux computer were consistently fast, 508 

with individual scan files taking less than 150 milliseconds to transfer. All subject scans were 509 

processed within the 3 second TR period. Offline testing showed that the subject with the 510 

largest number of voxels (subject 21 with 135,379 voxels) was processed in just 5 minutes and 511 

45 seconds, or 1.45 seconds per scan. The subject with the fewest number of voxels (subject 14 512 

with 77,359 voxels) was processed in 5 minutes and 2 seconds, or 1.27 seconds per scan. 513 

Therefore, for the subject with the largest number of voxels, the maximum time to process 1 514 

scan in real-time would be 1.6 sec (1.45 processing time + 0.150 transfer time). Thus, it is 515 

feasible for a TR of 2 seconds or faster to be used with the software, depending on transfer 516 

speeds and the number of voxels in the brain.  517 

 518 
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Inspection of the z-score maps for each subject showed that generally, across subjects, the 519 

largest activations were centered bilaterally around the inferior and superior parietal areas, 520 

taking in the intraparietal sulcus, a region highly associated with mathematical functioning. 521 

Further activations were seen in the cuneus. These are most likely correlated with the visual 522 

processing associated with the task. Additional activations were seen in the precuneus, bilateral 523 

areas in the medial frontal gyrus, anterior cingulate, insula and inferior frontal gyrus. These 524 

areas are often associated with attention and memory systems (44, 50). 525 

 526 

The stopping times for the 2- and 4-block first stage lengths are reported in Table 2. First, as we 527 

see for instance in Figure 3, error variance estimate is not stable after a 2-block first stage. It is 528 

important to “wait” until this happens, as it plays a central role in inference and on test statistic 529 

values. The 4-block first stage is more attractive in this way. Table 3 shows how early stopping is 530 

affected by the SPRT Type I and Type II error threshold values. Note that early stopping does 531 

not occur for Type II error levels of 0.01 and is less affected by the Type I error specification.   532 

 533 

Stopping was reached at 80% of voxels classified as either active or non-active in around 54% of 534 

cases in both scenarios for both difficulty levels. At 80% classification for control subjects, 7/12 535 

subjects stopped early for the easy level with both the 2-block and 4-block first stages. For the 536 

hard level, 7/12 subjects with 2-blocks and 5/12 with 4-blocks stopped early. For EPT subjects,  537 

6/11 subjects stopped early for the easy level for both 2- and 4-block first stage conditions. For 538 

the hard level, 5/11 subjects using 4-blocks as a minimum still stopped early and 7/12 subjects 539 

using 2-blocks as a minimum stopped early. The median stopping duration for both difficulty 540 

levels for control subjects was 3 blocks of easy and 2 blocks of hard stimulus administration for 541 

2-blocks first stage. For 4-blocks first stage, the median stopping time was 5 easy, 4 hard for the 542 

easy level and 4 easy, 4 hard for the hard level. In EPT subjects, the median stopping time for 2-543 

block first stage was 2 easy and 2 hard blocks of stimuli. For 4-blocks first stage, the median 544 

stopping time was 4 easy and 4 hard for both difficulty levels. Depending on the number of first 545 

stage blocks, time savings of 1/3 to 2/3 (4 to 8 minutes on a 12 minute scan) can be achieved.  546 

 547 

An early stopping rule based on a classification rate of at least 70% or 90% was also tested. 548 

Results reported in Table 4. At 70% classification most subjects stopped early. For the 2-block 549 

first stage - easy level, only 3 out of 23 subjects did not stop early and for the hard level, 1 550 

subject did not stop early. Median stopping scan number was 79 for both the easy and hard 551 

levels. For the 4-block first stage – easy level, 5/23 subjects did not stop early and 4/23 subjects 552 

did not stop early for the hard level. Median stopping scan was 155 for both difficulty levels. At 553 

90% classification, there were very few instances when early stopping occurred. For the 2-554 

blocks first stage condition, 3 subjects stopped early for the easy level and 1 subject for the 555 

hard level. Only 1 subject stopped early under the 4-blocks first stage condition for the easy 556 

level. A visual comparison of the activation maps for 70% and 80% voxel classification (see 557 

Table S1 in Supplemental Information) shows that in many instances there is little difference 558 

between the two stopping points.  When analysing counts of voxels classified as active or non-559 

active between these rules, the 80% thresholds lead to more non-active classifications, but the 560 

difference in active voxels is less systematic.  Given that early stopping occurs almost invariably 561 

with the 70% rule, this criterion should also be considered. Table S2 provides plots of the 562 
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percentage of voxels that are respectively classified as active and non-active over the course of 563 

the full scanning duration. A general trend is that the percentage of non-active voxels gradually 564 

decreases while that of active voxels increases. Longer scan durations also may allow for some 565 

adjustment of z-score activation thresholds in post-hoc analyses, and may have some potential 566 

advantages for group analysis, as discussed below. Hence, we present results for the more 567 

conservative 80% rule, which leads to relatively longer durations even when early stopping 568 

occurs.  569 

 570 

The activation maps under the different conditions are shown in Figure 4 for a sample subject 571 

(subject 9). For the 2-block first stage, this subject terminated after 2 blocks of easy and hard 572 

administration for the easy level (scan 79) and after 3 blocks of easy and 2 blocks of hard 573 

administration for the hard level (scan 97). For the 4-block minimum, this subject terminated at 574 

scan 155, equal to 4 blocks of easy and hard stimulus administration, for both difficulty levels. 575 

The images show that at scan 79 there is very little activity present and the majority of the 576 

voxel classifications are non-active. By scan 155, there is much more activity which has a similar 577 

pattern to the final scan. The extent is not quite as large as the final scan, however the foci of 578 

the clusters do overlap between the two time points. As mentioned, this is likely due to the 579 

alternative hypothesis threshold ��� value corresponding to relatively lower z-score values as 580 

the number of scans increase. This pattern of ‘growing’ activations for given alternative 581 

hypothesis ��� over scan duration is thus typical of our early stopping data, particularly for the 582 

2-block initial stage. Visual inspection of the z-score maps at the stopping scan for other 583 

subjects revealed similar patterns. In most instances, the additional active voxels at full 584 

duration were around the edges of existing clusters at the early stopping scans. Further images 585 

of other subjects are presented in Table S1 in the Supplementary Information document. Plots 586 

of the percentage of active and non-active voxels classified at each scan are given in Table S2 of 587 

the same document. The overlaps between early stopping and full duration maps are also 588 

explored further in Table 2 where we show the number of active voxels in common spatially 589 

between the two durations. Although some of these show less than 50% overlap with the final 590 

scan, it can be seen that this is due to the smaller cluster sizes with early stopping. The median 591 

spatial overlap where early stopping occurs for control subjects was 27.9% (SD 30.2%) for the 592 

easy level, 2-blocks and 68.5% (SD 15.4%) for the easy level, 4-blocks. For the hard level, there 593 

was 26.0% (SD 19.9%) and 44.6% (SD 21.3%) for the 2-block and 4-block first stages, 594 

respectively. For EPT subjects the median overlap was 34.2% (SD 34.0%) and 33.5% (SD 34.3%) 595 

for the easy level, 2- and 4-block first stages, respectively. For the hard level, the median 596 

overlap values were 14.6% (SD 9.4%) and 77.6% (SD 25.2%) for 2-block and 4-block first stages.  597 

 598 

This phenomenon is basically driven by the estimation variance of the GLM parameters steadily 599 

decreasing as more scans are accrued, while at the same time the alternative hypothesis z-600 

score threshold is being held the same. Given that estimated beta and error variance values 601 

essentially become stable in most cases, voxel-level z-scores will increase. This leads to 602 

increasingly larger number of voxels being classified as active. We assessed a sample of the 603 

error variance estimates over scan duration, as in Figure 3. We illustrate similarities in 604 

activation patterns with early stopping and full duration if the z-score threshold increases as the 605 

scan durations increase. Assuming no serial correlation as an approximation, note that the 606 
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variance of ��  is ����������� where X is the known design matrix. ������� is thus known as 607 

well for all scans, and it decreases as scan duration increases. Stopping early at a given 608 

threshold can thus be similar to stopping later with a stricter threshold for activation, provided 609 

error variance and beta parameter estimates stabilize, which we assess for with the first stage. 610 

A z-score of 3.1 for 154 scans approximately corresponds to a z-score of 4.0 for the final scan 611 

(228 scans). At 78 scans, a z-score of 3.1 corresponds to a z-score of approximately 8.37 and 612 

5.92 for the easy and hard task parameter respectively, so there will be even less overlap, even 613 

if the z-score threshold is 4.0 at full duration. See Table S1 in the Supplement for images 614 

resulting from different stop rules and first stage durations. In Table S2, the trends in 615 

percentage of voxels classified as active and non-active reflect this phenomenon, at least for 616 

some of the subjects. 617 

 618 

Importantly, the issue of whether early stopping or full duration provide better activation maps 619 

is best answered neuroscientifically, through the support of literature and hypotheses. In the 620 

Supplement, we add plots for early stopping versus full duration for each subject for which 621 

early stopping was invoked. Comparing these plots, we see that in many instances that the 622 

cluster peaks are located in the expected anatomical locations. However, at full duration 623 

results, numerous voxels with lower z-scores appear around the edges of the clusters and 624 

extend well beyond the anatomical boundaries of the gyri indicating areas of activation in white 625 

matter and cerebrospinal fluid. This suggests that these lower z-score voxels are more likely to 626 

be false positives as scan duration increases, as argued above, and indicates that scanning for 627 

full duration doesn’t necessarily improve the results.  628 

 629 

In summary, although there are similar rates of early termination between the 2-block and 4-630 

block first stage cases, the detected activation patterns suggest that using 4-blocks of stimulus 631 

administration is more suited to determining active voxels. In Figure 3, to illustrate the rate of 632 

decrease of the estimated σ�
� values, we present a plot of ��
  values for one subject across a set 633 

of voxels over the duration of the experiment. These values give an indication that stopping 634 

based on the θ-values at the end of the 2-block first stage may be too early for correspondence 635 

with full duration scans, as the estimated standard deviations are relatively larger. This implies 636 

that the alternative hypotheses can have much larger θ-values early on compared to full 637 

duration, while this difference in θ-values is less after 4-blocks. Note that in some subjects 638 

there is some volatility due to subject movement. Below, we consider full duration z-score 639 

thresholds of 4.0 versus early stopping results with a threshold of 3.1, so that activation 640 

magnitudes considered as active are more comparable. See also, Table 5 comparing the overlap 641 

in cluster locations and extent from full duration z = 4.0 with early stop scan z = 3.1.  642 

 643 

In all but three EPT subjects the active voxel count increases with scan duration. Subjects 13, 15 644 

and 17 are the exception. Subject 13 demonstrates very few active voxels at all and there is 645 

almost no consistency in location. Further investigation shows large relative framewise 646 

displacement occurs frequently throughout the scan and many of the responses have been 647 

missed or have relatively long response times, 60.5% correct overall and 2.08 s (SD 0.97 s) 648 

average response time (see plots for subject 13 in Table S3 of Supplementary Information 649 

document). Taken together these suggest that either the task level may not have been aimed at 650 
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the right level and/or the subject may have been uncomfortable and distracted in the scanner 651 

thereby attending to the task less than required for robust activations to occur. Subject 15 652 

demonstrates cluster sizes that decrease over time. Framewise displacement shows very little 653 

motion, particularly from scan 180 onwards. The response plots (in Table S3 of Supplementary 654 

Information) show the subject is paying attention and responding appropriately. Subject 17 has 655 

a similar pattern of decreasing cluster sizes. The framewise displacement plots indicate a 656 

moderate amount of motion throughout. Although the subject has missed many of the task 657 

questions (65.8% correct), the pattern of responding indicates they are awake and attending to 658 

the task. In general, EPT subjects demonstrated more motion. The median number of scans 659 

with framewise displacement above a threshold of 0.9 mm, threshold determined from (51), 660 

was 5 scans (SD 43 scans) for EPT subjects and 2.5 scans (SD 8 scans) for control subjects. One 661 

EPT subject passed the threshold a total of 124 scans out of 238 scans. In contrast, the control 662 

subject with the maximum number of threshold passes was 30/238 scans. This is further 663 

demonstrated in Figure 5 where we show subject counts for each scan when the threshold has 664 

been passed. For both EPT and control subjects, it is clear that subjects are moving more 665 

frequently in the second half of the scans and supports stopping early to reduce motion 666 

artifacts and noise in the data. Formally, we see statistically significant differences when 667 

comparing counts of motion events with framewise displacement greater than 0.9mm in the 668 

first versus second half of scanning (p= 0.003, two-sided signed rank test).  EPT group also has 669 

significantly more movement in the first half of scanning (p= 0.035, two-sided Mann-Whitney 670 

test), indicating a group-level proclivity for more motion events. 671 

 672 

4.2 Group Analysis Results 673 

 674 

The results for the 1-back easy and hard contrasts for the 2- and 4-block first stage conditions 675 

for EPT and control subjects are shown in Figure 6. Location of activity is listed in Table S4 of the 676 

Supplementary Information. The group results of full scan durations are compared to the group 677 

results using only the scans up to the early stopping point for each subject for each difficulty 678 

level and number of blocks completed before early stopping was allowed. We examined within 679 

group differences as well as between group differences. The EPT > control and control > EPT 680 

contrasts did not show any differences with the full duration and early stopped scans, which 681 

could in part be due to sample size limitations and the within group heterogeneity of the EPT 682 

group. The focus for the results here are within group for the easy and hard levels.  683 

 684 

The control subjects show strong activations in the anterior cingulate and bilateral parietal 685 

regions, see Tables 6 and S4, and Figure 6. The easy and hard 4-block first stage scans appear 686 

similar to the final scans. There is less correspondence between the 2-block first stage scans 687 

and the final scans, reflecting the individual results reported above. The EPT group easy level 688 

scans are consistent across all stages but there is more variability in the activations across the 689 

hard level. Across all EPT scans, there is more right sided activity compared to controls. This is 690 

discussed below.  691 

 692 

5.0 Discussion  693 
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 694 

Based on analysis of a training sample, we have presented a workflow for the implementation 695 

of an adaptive real-time fMRI system that allows for statistically-driven dynamic adjustment of 696 

experimentation based on voxel-level SPRT.  We show that this dynamic and adaptive statistical 697 

approach is generally comparable to corresponding fixed experimental designs in terms of 698 

detected activation, particularly when adjusting for stricter z-score thresholds for full scan to 699 

account for reduced estimation variance. At the same time, time savings in experiment 700 

durations can be substantial. Moreover, with respect to individual data, as scans increased, we 701 

observed that more and more of the newly classified active voxels were located around the 702 

edges of clusters in many subjects. For some, clusters would even merge into one larger cluster 703 

across the brain that would consist of 10,000’s of voxels. This effect was addressed by the work 704 

of Saad et al. (2003) who investigated the effect of the number of time points on the extent of 705 

brain activations. They observed a similar effect that longer scanning potentially increases the 706 

detection of false positives but not the detection of true positives (52). 707 

 708 

We explored imposing two different first stage lengths before early stopping is considered 709 

using either 2- or 4-blocks each of easy and hard stimulus administration. The 4-block first stage 710 

is justified over the 2-block because of the comparative stability of the estimation of error 711 

variances and other GLM parameters. In contrast, for the 2-block first stage, parameter 712 

estimation can be more variable. Also, correspondence in early-stop activation patterns to full 713 

scan duration requires very high z-score threshold adjustments, which may be too stringent to 714 

detect important activations. The 2-block first stage often led to most voxels being classified as 715 

non-active. See Table S2. While the 4-block first stage provides less opportunity for efficiency 716 

gains, as the window for early stopping is narrower, but it is more prudent given the need for 717 

parameter estimates to stabilize. It is possible that a 3-block initial stage could provide 718 

comparable results as the 4-block initial stage, but this was not explored here. 719 

 720 

In the SPRT framework, other αE, βE- pairs were considered as well, to test how different 721 

combinations impact activity detection and early stopping. For instance, given selection of αE = 722 

0.001 and βE = 0.01, overall stopping did not occur. In this case, the more stringent choice of βE 723 

makes it more difficult to cross either of the SPRT thresholds. We also saw that for either αE = 724 

0.001 or αE = 0.0001 being paired with βE = 0.1, early stopping occurred for both of the 725 

experimental conditions, with somewhat faster early stopping for the less stringent αE. 726 

 727 

In terms of the global stop rule threshold, we observed that for the cases under consideration, 728 

stopping when 80% of voxels in the full brain (or smaller ROI) respectively satisfy their SPRT-729 

based stopping criterion generally leads to early stopping of stimulus administration, while also 730 

leading to comparable activation classification as with the full protocol, after z-test score 731 

threshold adjustment for scan duration. The stricter 90% criterion was infrequently satisfied, 732 

and did not often lead to early stopping of experimentation. Recall that when GLM parameter 733 

values are “in-between” the null and alternative hypothesis values, SPRT-based stopping is less 734 

likely at the voxel level. A 100% stopping rule is thus not feasible, as are values relatively close 735 

to 100%. This phenomenon becomes less of an issue with more scans, since θ�, the alternative 736 
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hypothesis threshold for ���, decreases in value as more scans are accrued, given the z-score 737 

threshold of 3.10 is held constant. Fewer voxels are then “in-between”. The 80% rule seems 738 

conservative in that not all participants are stopped early, but there are high levels of 739 

correspondence in individual and group level activation maps with full durations, particularly 740 

when the first stage is comprised of 4 blocks, and the full scan z-score is adjusted. The 70% rule 741 

is more aggressive, and early stopping is invoked at a much higher rate. Given that the resultant 742 

images from early stopping in many cases appear similar across these two rules, the 70% rule 743 

should be considered as well.   744 

 745 

The SPRT approach was effective at detecting brain activity at the individual level with early 746 

stopping in both the control and EPT groups. Note the individual variability among subjects in 747 

early stopping performance. Factors that can affect stopping times include the magnitudes of 748 

activation, variability in task performance, sustained attention levels, motion, and the noise 749 

levels in the BOLD signal. Those born EPT also can have structural abnormalities of the brain 750 

which can affect fMRI results and 2 subjects reported here had clear abnormalities that were 751 

obvious even in this low resolution data. Less obvious abnormalities may have been present in 752 

some of the other subjects. 753 

 754 

The EPT group data demonstrated more right sided activity and smaller cluster sizes by 755 

comparison to control group data across all stopping points. In order to understand this result it 756 

is necessary to consider neuropsychological skills and structural and functional brain changes 757 

within the group. Working memory is a key skill required for both mathematics and this 758 

numerical 1-back task. Recall the lower accuracy and longer response times in the EPT group. 759 

fMRI studies on dyscalculia (difficulty in learning and performing mathematics) suggest that 760 

there is greater heterogeneity in activations with a more diffuse pattern being apparent (53, 761 

54). Additionally, there is overlap in structural differences in white matter integrity, as 762 

measured from diffusion weighted imaging studies, between those born EPT and those with 763 

dyscalculia including inferior fronto-occipital fasciculus and the inferior and superior 764 

longitudinal fasciculi (55-58). These connect crucial areas associated with mathematics and 765 

working memory. A more diffuse and variable pattern of functional activity, perhaps partly due 766 

to structural differences, may confound a group analysis in this instance. More data points from 767 

individuals do seem to improve the results, perhaps allowing the variability to dampen 768 

somewhat. This is supported by the change in variance for the group between early stopping 769 

with 2- and 4-block first stages and full duration analyses, see right-hand column of Table 6. The 770 

control group variances are relatively much lower throughout, as the extremely pre-mature 771 

birth group was neurologically and cognitively more heterogeneous. If group-level analysis is a 772 

main objective, it is possible that groups could be treated differently in how early stopping is 773 

approached based on within-group heterogeneity and the need for more scan data to help 774 

overcome this. This issue needs further investigation. 775 

 776 

With this data, a group analysis was feasible using the early stopping data in controls. A 777 

possible limitation was discovered in performing a group analysis of the EPT group, as these 778 

subjects demonstrated greater variability in location at the individual level. While it is feasible 779 

to apply our approach for patient group studies, consideration should be given to the particular 780 
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patient groups of interest and the likely within group differences in brain activity when making 781 

the decision to stop early. We conjecture that larger sample sizes or stricter early stopping 782 

criteria may help overcome larger variability. 783 

 784 

In the future, it is possible that the first stage length can be tailored at the voxel level, once it is 785 

clear error variance and other GLM parameter estimates are relatively stable, which is expected 786 

at some point due to the convergence properties of the estimators. This may facilitate earlier 787 

stopping. Alternatively, if local computational resources are limited, note that stopping can be 788 

assessed on an interval basis, and not necessarily after every scan. Although not considered 789 

here, these BOLD signal-based early stopping rules could also possibly be enriched by 790 

incorporating individual motion displacement patterns, as well as behavioural measures such as 791 

correctness rates in experimentation. 792 

 793 

Here we demonstrated full brain analytics with parallelization using MKL Intel libraries for 794 

matrix computation with two Xeon E5-2687W 8-core processors. It is also feasible to consider 795 

only partial brain volumes where experiments demand more consideration of a particular area. 796 

Future directions for the study are to implement the SPRT and Bayesian sequential estimation 797 

methods using distributed computing approaches to increase processing speed allowing full 798 

brain real-time analyses and advance stopping rule methods in shorter scan times.  799 

 800 

6.0   Conclusion 801 

 802 

We introduce a systematic, statistically-based approach to dynamic experimentation with real-803 

time fMRI. Saving in scan time and accurate voxel activation detection can be achieved, while 804 

redundant experimentation in block design is reduced. We investigate different aspects of how 805 

to determine early stopping rules. These analyses can be viewed as intended on a training 806 

sample to guide implementation of early stopping in future studies involving the same 807 

experiments and study populations. These methods lay a foundation for future dynamic 808 

experimentation approaches and early stopping rules with real-time fMRI, including for resting 809 

state and neural feedback. Use of high performance computing will enable the advent of more 810 

sophisticated real-time experimental designs and dynamically determined early stopping rules.   811 
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 1005 

Figure 1: A) Sample 1-back protocols demonstrating the two difficulty levels. B) Block design 1006 

and timings of each difficulty level.  1007 

 1008 
 1009 

Figure 2: Schematic of the experimental setup of the dynamic real-time fMRI process. The 1010 

equations were presented to the subject while the scans were acquired using a dedicated 1011 

computer. FMRI scans were exported in real-time from the scanner computer to the Linux 1012 

workstation using the Philips XTC program and CORBA interface. Scans were preprocessed on 1013 

the Linux workstation and SPRT statistics were calculated. The results were relayed back to the 1014 

stimulus presentation program with an instruction to either continue or terminate the stimulus.  1015 
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 1016 
 1017 

Figure 3: Estimated standard deviations for ��β.�   Plots for 3 sample active (bottom) and non-1018 

active (top) voxels from a control subject (subject 3) showing how the estimates decrease over 1019 

time (scan number). 1020 

 1021 
 1022 

 1023 
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Figure 4: Full brain activation maps showing the overlapping voxels between the different 1024 

stopping points (using 2-blocks first stage, 4-blocks first stage and final scan). Top row shows 1025 

the easy level and bottom row shows the hard level for 1 subject (number 9). The active voxels 1026 

that are active only at full duration are shown in blue. Those only active after 2-blocks or 4-1027 

blocks of stimulus administration are in red. Yellow shows the overlap between full duration 1028 

and 2-block first stage early stopping scans. Green shows the overlap between full duration and 1029 

4-block first stage stopping scans. P ≤ 0.001 uncorrected, z > 3.1. Right hand images show the 1030 

comparison of 4-blocks early stopping with z > 3.1 with full duration that has been thresholded 1031 

at z > 4.0. Light blue indicates overlapping voxels. Results overlaid on MNI template, slice z = 56 1032 

shown. R = right, A = anterior. 1033 

 1034 
 1035 

Figure 5: Plots showing the number of subjects that pass the framewise displacement threshold 1036 

of 0.9 mm for each scan. Top: EPT subjects, bottom: control subjects. 1037 
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 1038 
 1039 

Figure 6: Group results for the 1-back task. Analysis performed for controls and EPT subjects 1040 

using FSL. Early stopping with 2- and 4-blocks being initially administered is compared to full 1041 

duration. Activations are overlaid on the MNI template brain. Red (A) = easy level results, Blue 1042 

(B) hard level results. P < 0.001 uncorrected. Slices z = 58 is shown. R = right, L = left, A = 1043 

anterior, P = posterior.  1044 

 1045 
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 1046 
Table 1: The scan number when each stimulus block is completed. 1047 

Block Easy level 

 

Hard level 

1 21 40 

2 59 78 

3 97 116 

4 135 154 

5 173 192 

6 211 230 

 1048 

Table 2: Subject results of the 1-back task using SPRT to analyse the data. Analysis reported 1049 

here uses αE = 0.001, βE = 0.1 and thresholded at p < 0.001. A) Easy level: 2-block, B) Hard level: 1050 

2-block, C) Easy level: 4-block and D) Hard level: 4-block. After each subject’s last administered 1051 

block, the number of active voxels that spatially overlap between early stopping and full 1052 

duration are given. The percentage of voxels-in-common is also given relative to the total 1053 

number of active voxels at the full duration scan. Maximum number of possible scans is 238, 1054 

minimum is 78 scans for 2 blocks first stage of easy and hard stimulus administration or 154 1055 

scans for 4 blocks first stage of easy and hard. Median values are calculated with those who 1056 

stopped early only. Information given for the point where 80% of voxels have been classified as 1057 

either active or non-active. N/A = not applicable. 1058 

A) Easy level – 2 block first stage 1059 

Subject Scan when 

80% Reached 

% 

overlap 

No of 

Voxels 

Classified 

Active at 

80% 

No of 

Voxels 

Classified 

Active at 

Final Scan 

Voxels in 

Scan at 

Early 

Stopping 

but not 

Final Scan 

Voxels in 

Final Scan 

but not 

Scan at 

Early 

Stopping 

No of 

Voxels in 

ROI (full 

brain) 
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Control        

1 Not reached 100 3,556 3,556 N/A N/A 115,062 

2 Not reached 100 12,803 12,803 N/A N/A 113,564 

3 3E/3H 39.2 5,379 13,472 96 8,189 77,359 

4 Not reached 100 13,680 13,680 N/A N/A 103,591 

5 5E/5H 69.4 7,482 10,540 170 3,228 114,260 

6 2E/2H 9.2 979 4,674 547 4,242 121,353 

7 3E/3H 27.9 1,394 4,115 246 2,967 107,406 

8 5E/5H 81.3 7,068 7,124 1,278 1,334 106,267 

9 2E/2H 1.0 349 9,329 257 9,237 121,195 

10 Not reached 100 7,340 7,340 N/A N/A 96,565 

11 3E/2H 19.4 1,597 6,357 363 5,123 107,016 

12 Not reached 100 12,429 12,429 N/A N/A 96,936 

EPT        

13 2E/2H 0.0 59 49 59 49 94,623 

14 6E/6H 95.2 15,556 15,866 445 755 94,905 

15 4E/4H 36.1 1,014 750 743 479 98,799 

16 Not reached 100 13,484 13,484 N/A N/A 118,098 

17 2E/2H 34.2 4,723 3,487 3,531 2,295 124,749 

18 2E/2H 8.8 717 3,925 373 3,581 97,437 

19 Not reached 100 7,402 7,402 N/A N/A 135,379 

20 2E/2H 16.3 1,361 8,093 39 6,771 89,609 

21 Not reached 100 10,039 10,039 N/A N/A 104,584 

22 Not reached 100 13,817 13,817 N/A N/A 114,201 

23 Not reached 100 6,715 6,715 N/A N/A 86,177 

 1060 

B) Hard level – 2 blocks first stage 1061 

Subject Scan when 

80% Reached 

% 

overlap 

No of 

Voxels 

Classified 

Active at 

80% 

No of 

Voxels 

Classified 

Active at 

Final Scan 

Voxels in 

Scan at 

Early 

Stopping 

but not 

Final Scan  

Voxels in 

Final Scan 

but not 

Scan at 

Early 

Stopping 

Scan 

No of 

Voxels in 

ROI (full 

brain) 

Control       

1 Not reached 100 23,351 23,351 N/A N/A 115,062 

2 Not reached 100 20,749 20,749 N/A N/A 113,564 

3 2E/2H 23.1 3,478 14,976 18 11,516 77,359 

4 3E/2H 43.1 5,986 9,874 1,735 5,623 103,591 

5 2E/2H 24.2 3,743 14,939 135 11,331 114,260 

6 4E/3H 71.6 6,129 7,829 527 2,227 121,353 

7 3E/2H 9.6 330 2,494 91 2,255 107,406 

8 Not reached 100 14,634 14,634 N/A N/A 106,267 

9 3E/2H 31.9 3,253 8,898 412 6,057 121,195 
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10 3E/2H 26.0 4,948 10,921 2,114 8,087 96,565 

11 Not reached 100 11,355 11,355 N/A N/A 107,016 

12 Not reached 100 29,279 29,279 N/A N/A 96,936 

EPT        

13 79 0.0 133 860 133 860 94,623 

14 2E/2H 33.8 7,676 21,074 546 13,944 94,905 

15 3E/2H 12.3 892 1,696 684 1,488 98,799 

16 Not reached 100 14,984 14,984 N/A N/A 118,098 

17 2E/2H 20.3 1,796 4,335 918 3,457 124,749 

18 Not reached 100 10,967 10,967 N/A N/A 97,437 

19 2E/2H 6.7 1,274 7,609 761 7,096 135,379 

20 2E/2H 16.9 1,535 8,754 53 7,272 89,609 

21 2E/2H 12.3 2,415 10,038 1,181 8,638 104,584 

22 Not reached 100 15,374 15,374 N/A N/A 114,201 

23 Not reached 100 8,088 8,088 N/A N/A 86,177 

 1062 

C) Easy level – 4 blocks first stage 1063 

Subject No of 

Easy/Hard 

blocks when 

80% Reached 

% 

overlap 

No of 

Voxels 

Classified 

Active at 

80% 

No of 

Voxels 

Classified 

Active at 

Final Scan 

Voxels in 

Scan at 

Early 

Stopping 

but not 

Final Scan 

Voxels in 

Final Scan 

but not 

Scan at 

Early 

Stopping 

No of 

Voxels in 

ROI (full 

brain) 

Control        

1 Not reached 100 3,556 3,556 N/A N/A 115,062 

2 Not reached 100 12,803 12,803 N/A N/A 113,564 

3 5E/4H 77.6 10,921 13,472 471 3,022 77,359 

4 Not reached 100 13,680 13,680 N/A N/A 103,591 

5 5E/5H 69.4 7482 10,540 170 3228 114,260 

6 5E/5H 68.5 3,806 4,674 603 1,471 121,353 

7 5E/4H 50.9 2,195 4,115 99 2,019 107,406 

8 5E/5H 81.3 7,068 7,124 1,278 1,334 106,267 

9 4E/4H 42.2 4,065 9,329 127 5,391 121,195 

10 Not reached 100 7,340 7,340 N/A N/A 96,565 

11 5E/5H 47.9 3,088 6,357 40 3,309 107,016 

12 Not reached 100 12,429 12,429 N/A N/A 96,936 

EPT        

13 4E/4H 95.2 139 49 136 46 94,623 

14 6E/6H 33.5 15,556 15,866 445 755 94,905 

15 4E/4H 100 899 750 648 499 98,799 

16 Not reached 77.7 13,484 13,484 N/A N/A 118,098 

17 6E/6H 31.1 3,908 3,487 1,199 778 124,749 

18 4E/4H 100 1,302 3,925 80 2,703 97,437 

19 Not reached 14.3 7,402 7,402 N/A N/A 135,379 
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20 4E/4H 100 1,302 8,093 148 2,898 89,609 

21 Not reached 100 10,039 10,039 N/A N/A 104,584 

22 Not reached 100 13,817 13,817 N/A N/A 114,201 

23 Not reached 100 6,715 6,715 N/A N/A 86,177 

 1064 

D) Hard level – 4 blocks first stage 1065 

Subject Scan when 

80% Reached 

% 

overlap 

No of 

Voxels 

Classified 

Active at 

80% 

No of 

Voxels 

Classified 

Active at 

Final Scan 

Voxels in 

Scan at 

Early 

Stopping 

but not 

Final Scan 

Voxels in 

Final Scan 

but not 

Scan at 

Early 

Stopping 

No of 

Voxels in 

ROI (full 

brain) 

Control       

1 Not reached 100 23,351 23,351 N/A N/A 115,062 

2 Not reached 100 20,749 20,749 N/A N/A 113,564 

3 6E/5H 87.4 13,160 14,976 67 1,883 77,359 

4 Not reached 100 9,874 9,874 N/A N/A 103,591 

5 Not reached 100 14,939 14,939 N/A N/A 114,260 

6 5E/4H 71.6 6,129 7,829 527 2,227 121,353 

7 4E/4H 40.6 1,214 2,494 202 1,482 107,406 

8 Not reached 100 14,634 14,634 N/A N/A 106,267 

9 4E/4H 44.6 4,313 8,898 343 4,928 121,195 

10 4E/4H 40.8 5,360 10,921 908 6,469 96,565 

11 Not reached 100 11,355 11,355 N/A N/A 107,016 

12 Not reached 100 29,279 29,279 N/A N/A 96,936 

EPT        

13 4E/4H 45.0 1,919 860 1,532 473 94,623 

14 4E/4H 84.8 20,638 21,074 2,774 3,210 94,905 

15 Not reached 100 1,696 1,696 N/A N/A 98,799 

16 Not reached 100 14,984 14,984 N/A N/A 118,098 

17 6E/6H 78.0 4,482 4,335 1,101 954 124,749 

18 Not reached 100 10,967 10,967 N/A N/A 97,437 

19 4E/4H 26.9 3,397 7,609 1,353 5,565 135,379 

20 4E/4H 77.6 8,107 8,754 1,312 1,959 89,609 

21 Not reached 100 10,038 10,038 N/A N/A 104,584 

22 Not reached 100 15,374 15,374 N/A N/A 114,201 

23 Not reached 100 8,088 8,088 N/A N/A 86,177 

 1066 

Table 3: Comparison of stopping times using αE = 0.001 and αE = 0.0001. Based on 80% of 1067 

voxels being classified. Both 2-block and 4-block first stage conditions are presented. A) Easy 1068 

and hard level: 2-block, B) Easy and hard level: 4-block. 1069 

A) 2-block first stage 1070 

 Easy  Hard  
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Subject αE = 0.001, βE 

= 0.1, 

αE = 0.0001, 

βE = 0.1, 

αE = 0.001, βE 

= 0.1, 

αE = 0.0001, 

βE = 0.1, 

Control    

1 Not reached  Not reached Not reached  Not reached 

2 Not reached Not reached Not reached  Not reached 

3 104 215 79 79 

4 Not reached Not reached 89 99 

5 178 Not reached 79 79 

6 79 79 166 196 

7 112 138 95 95 

8 177 181 Not reached Not reached 

9 79 79 86 86 

10 Not reached Not reached 98 101 

11 89 89 Not reached Not reached 

12 Not reached Not reached Not reached Not reached 

     

EPT     

13 79 79 79 79 

14 230 Not reached 79 Not reached 

15 154 154 87 87 

16 Not reached Not reached Not reached Not reached 

17 79 79 79 79 

18 79 79 Not reached Not reached 

19 Not reached Not reached 79 79 

20 79 79 79 79 

21 Not reached Not reached 79 80 

22 Not reached Not reached Not reached Not reached 

23 Not reached Not reached Not reached Not reached 

 1071 

B) 4-block first stage 1072 

 Easy  Hard  

Subject αE = 0.001 βE 

= 0.01 

αE = 0.0001, 

βE = 0.1, 

αE = 0.001 βE 

= 0.01 

αE = 0.0001, 

βE = 0.1, 

Control    

1 Not reached Not reached Not reached Not reached 

2 Not reached Not reached Not reached Not reached 

3 171 215 200 Not reached 

4 Not reached Not reached Not reached Not reached 

5 178 Not reached Not reached Not reached 

6 180 202 166 196 

7 164 164 155 155 

8 177 181 Not reached Not reached 

9 155 155 155 155 
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10 Not reached Not reached 155 Not reached 

11 186 197 Not reached Not reached 

12 Not reached Not reached Not reached Not reached 

     

EPT     

13 155 155 155 155 

14 230 Not reached 155 Not reached 

15 155 155 Not reached Not reached 

16 Not reached Not reached Not reached Not reached 

17 216 216 218 224 

18 155 155 Not reached Not reached 

19 Not reached Not reached 155 155 

20 155 155 155 160 

21 Not reached Not reached Not reached Not reached 

22 Not reached Not reached Not reached Not reached 

23 Not reached Not reached Not reached Not reached 

 1073 

Table 4: A comparison of the early stopping times at 70%, 80% and 90% of voxels classified as 1074 

either active or non-active. Conducted using αE = 0.001, βE = 0.1. Both 2-block and 4-block first 1075 

stage conditions are presented. A) Easy and hard level: 2-block, B) Easy and hard level: 4-block. 1076 

A) 2-block first stage 1077 

 Easy   Hard   

Subject Scan when 

70% reached 

Scan when 

80% reached 

Scan when 

90% reached 

Scan when 

70% reached 

Scan when 

80% Reached 

Scan when 

90% reached 

Control      

1 147  Not reached Not reached 79 Not reached Not reached 

2 79 Not reached Not reached 80 Not reached Not reached 

3 89 104 Not reached 79 79 Not reached 

4 144 Not reached Not reached 79 89 Not reached 

5 79 132 Not reached 79 79 Not reached 

6 79 79 79 86 166 Not reached 

7 79 112 Not reached 80 95 Not reached 

8 140 177 Not reached 98 Not reached Not reached 

9 79 79 79 79 86 Not reached 

10 79 Not reached Not reached 79 98 Not reached 

11 79 89 Not reached Not reached Not reached Not reached 

12 79 Not reached Not reached 79 Not reached Not reached 

       

EPT       

13 79 79 111 79 79 79 

14 84 230 Not reached 79 79 Not reached 

15 107 154 Not reached 79 87 Not reached 

16 Not reached Not reached Not reached 109 Not reached Not reached 

17 79 79 Not reached 79 79 Not reached 
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18 79 79 Not reached 197 Not reached Not reached 

19 79 Not reached Not reached 79 79 Not reached 

20 79 79 Not reached 79 79 Not reached 

21 Not reached Not reached Not reached 79 79 Not reached 

22 Not reached Not reached Not reached 79 Not reached Not reached 

23 203 Not reached Not reached 79 Not reached Not reached 

       

     1078 

B) 4-block first stage 1079 

 Easy   Hard   

Subject Scan when 

70% reached 

Scan when 

80% reached 

Scan when 

90% reached 

Scan when 

70% reached 

Scan when 

80% Reached 

Scan when 

90% reached 

Control      

1 155  Not reached Not reached 161 Not reached Not reached 

2 Not reached Not reached Not reached 155 Not reached Not reached 

3 155 171 Not reached 155 200 Not reached 

4 155 Not reached Not reached 155 Not reached Not reached 

5 155 177 Not reached 155 Not reached Not reached 

6 155 180 Not reached 158 166 Not reached 

7 155 164 Not reached 155 155 Not reached 

8 155 177 Not reached 155 Not reached Not reached 

9 155 155 Not reached 155 Not reached Not reached 

10 155 Not reached Not reached 155 155 Not reached 

11 155 186 Not reached Not reached Not reached Not reached 

12 Not reached Not reached Not reached Not reached Not reached Not reached 

       

EPT       

13 155 155 178 155 158 Not reached 

14 155 230 Not reached 155 Not reached Not reached 

15 155 155 Not reached 155 Not reached Not reached 

16 Not reached Not reached Not reached 155 Not reached Not reached 

17 155 216 Not reached 155 218 Not reached 

18 155 155 Not reached 197 Not reached Not reached 

19 155 Not reached Not reached 155 155 Not reached 

20 155 155 Not reached 155 159 Not reached 

21 Not reached Not reached Not reached Not reached Not reached Not reached 

22 Not reached Not reached Not reached Not reached Not reached Not reached 

23 203 Not reached Not reached 155 Not reached Not reached 

       

  1080 

Table 5: Overlap with full duration scan threshold of z = 4.0. The 2- and 4-block first stage 1081 

results are thresholded at z = 3.1. The percentage of voxels-in-common is also given relative to 1082 

the total number of active voxels at the full duration scan. Median values are calculated with 1083 

those who stopped early only. N/A = not applicable. 1084 
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A) Easy level 1085 

 2-Blocks   4-Blocks    

Subject % 

overlap 

Voxels in 

Scan at 

Early 

Stopping 

but not 

Final Scan 

Voxels in 

Final Scan 

but not 

Scan at 

Early 

Stopping 

% 

overlap 

Voxels in 

Final Scan 

but not 

Scan at 

Early 

Stopping  

Voxels in 

Scan at 

Early 

Stopping 

but not 

Final Scan 

No of 

Voxels 

Classified 

Active at 

Final Scan 

Control        

1 100 N/A N/A 100 N/A N/A 1,099 

2 100 N/A N/A 100 N/A N/A 8,166 

3 47.6 229 5,668 88.0 1,297 1,400 10,818 

4 100 N/A N/A 100 N/A N/A 8,535 

5 93.7 1,178 426 93.7 426 1,178 6,730 

6 14.2 610 2,229 87.7 319 1,527 2,598 

7 42.1 420 1,339 75.4 569 451 2,313 

8 95.1 3,232 199 95.1 199 3,232 4,035 

9 0.9 297 5,784 62.8 2,172 401 5,836 

10 100 N/A N/A 100 N/A N/A 4,077 

11 25.1 721 2,611 78.7 742 343 3,487 

12 100 N/A N/A 100 N/A N/A 7,413 

        

EPT        

13 0 59 0 0 0 139 0 

14 74.9 3,502 0 74.9 0 3,502 16,095 

15 80.6 927 21 81.5 20 811 108 

16 100 N/A N/A 100 N/A N/A 7,887 

17 44.6 4,119 749 97.9 28 2,583 1,353 

18 12.2 480 1,706 56.8 839 198 1,943 

19 100 N/A N/A 100 N/A N/A 3,582 

20 20.7 79 4,920 13.6 1,315 456 6,202 

21 100 N/A N/A 100 N/A N/A 2,816 

22 100 N/A N/A 100 N/A N/A 8,102 

23 100 N/A N/A 100 N/A N/A 4,654 

 1086 

B) Hard level 1087 

 2-Blocks   4-Blocks    

Subject % 

overlap 

Voxels in 

Scan at 

Early 

Stopping 

but not 

Final Scan 

Voxels in 

Final Scan 

but not 

Scan at 

Early 

Stopping 

% overlap Voxels in 

Final Scan 

but not 

Scan at 

Early 

Stopping 

Voxels in 

Scan at 

Early 

Stopping 

but not 

Final Scan 

No of 

Voxels 

Classified 

Active at 

Final Scan 

Control        
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1 100 N/A N/A  100 N/A  N/A 15,071 

2 100 N/A N/A  100 N/A  N/A 13,253 

3 28.0 68 8,787 98.9 138 1,101 12,197 

4 51.4 2,613 3,193 100 N/A  N/A 6,566 

5 33.1 314 6,938 100 N/A N/A 10,367 

6 88.1 1,609 611 88.1 611 1,609 5,131 

7 15.4 146 1,009 71.0 346 367 1,193 

8 100 N/A N/A 100 N/A N/A 9,802 

9 44.5 590 3,321 60.8 2,344 673 5,984 

10 34.5 2,828 4,027 59.8 2,473 1,686 6,147 

11 100 N/A N/A 100 N/A N/A 6,331 

12 100 N/A N/A 100 N/A N/A 20,299 

        

EPT        

13 0 133 191 65.4 66 1,794 191 

14 40.7 1,120 9,539 93.8 995 5,538 16,095 

15 27.1 748 388 100 N/A N/A 532 

16 100 N/A N/A 100 N/A N/A 11,257 

17 30.9 1,207 1,317 98.9 21 2,597 1,906 

18 100 N/A N/A 100 N/A N/A 5,975 

19 9.6 980 2,777 45.2 1,682 2,008 3,071 

20 21.5 79 5,331 87.6 844 2,164 6,787 

21 18.3 1,503 4,075 100 N/A N/A 4,987 

22 100 N/A N/A 100 N/A N/A 9,937 

23 100 N/A N/A 100 N/A N/A 5,744 

 1088 

Table 6: The number of active voxels that spatially overlap between early stopping and full 1089 

duration group analyses are listed. Images thresholded at p < 0.001. The percentage of voxels-1090 

in-common is given relative to the total number of active voxels detected at full duration. 1091 

Stopping based on 80% classification at the individual level. 1092 

 1093 

 No of 

Active 

Voxels 

Voxels in Scan 

at Early 

Stopping but 

not Final Scan 

Voxels in Final 

Scan but not 

in Scan at 

Early Stopping  

% of Common 

Voxels with 

Final Scan 

Standard Deviation

Values 

EPT - Easy      

2-Blocks 743 478 263 50.2 2,183 

4-Blocks 839 466 155 70.6 1,385 

Full duration 528    1,135 

      

EPT - Hard      

2-Blocks 633 377 930 21.6 2,209 

4-Blocks 1,002 225 155 65.5 1,170 

Full duration 1,186    1,054 
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Controls - Easy      

2-Blocks 2,065 730 941 58.7 640 

4-Blocks 2,882 1,150 409 76.1 857 

Full duration 2,276    469 

      

Controls – Hard      

2-Blocks 2,691 1,535 1,364 45.9 1,008 

4-Blocks 2,433 789 876 65.2 743 

Full duration 2,520    685 

 1094 

 1095 

 1096 

 1097 
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