
Early Validation of Computational Thinking Pattern
Analysis

Kyu Han Koh
Department of Computer Science

University of Colorado at Boulder

Boulder, CO 80309

+1 303 492 1349

kohkh@colorado.edu

Hilarie Nickerson
Department of Computer Science

University of Colorado at Boulder

Boulder, CO 80309

+1 303 492 1349

hnickerson@colorado.edu

Alexander Repenning
Department of Computer Science

University of Colorado at Boulder

Boulder, CO 80309

+1 303 492 1349

ralex@cs.colorado.edu

Ashok Basawapatna
Department of Computer Science

University of Colorado at Boulder

Boulder, CO 80309

+1 303 492 1349

Ashok.basawapatna@colorado.

edu

ABSTRACT

End-user game design affords teachers a unique opportunity to

integrate computational thinking concepts into their classrooms.
However, it is not always apparent in game and simulation
projects what computational thinking-related skills students have
acquired. Computational Thinking Pattern Analysis (CTPA)
enables teachers to visualize which of nine specific skills students
have mastered in game design that can then be used to create
simulations. CTPA has the potential to automatically recognize
and calculate student computational thinking skills, as well as to

map students’ computational thinking skill progression, as they
proceed through the curriculum. The current research furthers
knowledge of CTPA by exploring its validity based on how its
performance correlates to human grading of student games. Initial
data from this validation study indicates that CTPA correlates
well with human grading and that it can even be used to predict
students’ future achievement levels given their current skill
progression, making CTPA a potentially invaluable computational

thinking evaluation tool for teachers.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computers and Information
Science Education

General Terms

Measurement, Performance, Design, Experimentation

Keywords

Computational Thinking, Computational Thinking Assessment,
Computational Thinking Pattern Analysis, Cyberlearning
Infrastructure, End User Programming

1. INTRODUCTION
Since the 1990s there have been multiple efforts to fix the broken
pipeline at the K-12 level in computer science education [1, 2, 3],
and most of those efforts have focused on student motivation. The
results indicate that these efforts have successfully increased
student motivation in computer science. However, it is often not
clear what educational benefits, if any, students receive from these

motivational interventions. Part of the problem may stem from a
lack of a proper instrument for measuring the knowledge students
acquire through their activities in a class. Learning may be
measured with existing tools such as grading rubrics, but these
tools are extremely time consuming and have limited functionality
with respect to assessing learning progress and providing ongoing
feedback to students and teachers.

In this paper we present our early efforts to validate a method that

we have developed for measuring concept learning in real time.
Our technique is inspired by Latent Sematic Analysis (LSA) [4],
in which calculations can be used to analyze the semantic
meanings of a given context based on predefined subjects or
phenomena. Theoretically, this idea can be applied to any domain
in which low-level components are combined to form higher-level
constructs, supporting analyses such as natural language
processing and the examination of computer programs.

Constrained environments, including those that make use of visual
end-user programming, are especially suited to this kind of
analysis. Therefore, this idea can be employed to build a learning
assessment tool for computer science (CS) and/or computational
thinking (CT) [5] education, where visual programming
environments such as AgentSheets [6], Scratch [7], and Alice [8]
are widely adopted.

The computer programming context used in our research is the
construction of video games and science simulations. At the

University of Colorado – Boulder we have four years of data from
more than 20,000 students who created games and simulations
using AgentSheets and its subsequent 3D version, AgentCubes
[9]. Our analytical method, Computational Thinking Pattern
Analysis (CTPA), examines the programmed rules of these
student-created artifacts to unearth evidence of higher-level
patterns that are found in such projects, which typically involve
object interactions [10]. Computational Thinking Patterns (CTPs)

are constructs students initially learn in game design that can be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ITICSE '14, June 21–25, 2014, Uppsala, Sweden

Copyright 2014 ACM 978-1-4503-2833-3/14/06…$15.00.
http://dx.doi.org/10.1145/2591708.2591724

applied to creating simulations. Examples of CTPs include one
agent tracking another agent, one agent absorbing another agent,
and one agent creating another agent [11]. The presence of these
semantically meaningful patterns indicates that students have
grasped the concepts being taught and that they also have the

ability to operationalize the concepts by creating programs.
Therefore, CTPA can serve as a concept and skill learning
assessment tool for CS/CT education.

The outcomes of CTPA can be used to provide valid and useful
feedback to educators and learners in CS/CT education by
measuring and tracking student learning outcomes. Student-
created artifacts from educational programs around the United
States and in several other countries have been analyzed by

CTPA. These results have shown promising potential in providing
educational feedback in the areas of learning transfer [12],
learning trajectories [13], and programming divergence [14]. This
kind of assessment in CS/CT education should be able to provide
better individual feedback and faster learning assessments to
students and teachers by measuring student skills and analyzing
learning at the semantic level.

Overall, this research offers a partially-validated method to assess

student learning skills and compute student learning outcomes.
This type of method can be used to create authentic cyberlearning
systems that will help large numbers of teachers and students to
learn computational thinking. We envision that other investigators
will be able to repurpose our calculation method for use in their
own educational research contexts.

2. METHODOLOGY
Methodology for this research incorporates rubric-based grading
of student projects from multiple classes, the Computational
Thinking Pattern Analysis of these submissions, and skill
progression calculation to measure learning performance.

2.1 Class Descriptions
The University of Colorado – Boulder Educational Game Design
class is a course teaching undergraduate and graduate students to
prototype and test educational games. The course has a fairly
aggressive programming schedule in which each student builds a

playable game every week. The course has three parts. In the first
part students learn about computational thinking patterns [10] in
the context of making four prescribed games ranging from simple
1980 arcade games such as Frogger to more contemporary games
such as the Sims. The design and creation of a Sims-like game
exposes students to computational thinking [5] concepts related to
artificial intelligence such as collaborative diffusion [15] as well
as psychological models such as Maslow’s hierarchy of needs. In

the second part students design four of their own games, but these
games have to be educational. Evaluation includes peer
assessment of engagement and the educational value of games. In
the last part students work on their final educational game,
receiving three weeks time to include more evaluation iterations.
Students conduct game testing at a local middle school where they
collect empirical evidence from game testers who have not been
exposed to their designs.

The validation study presented here focuses on the prescribed
games from the first part of the course. The validation process
correlates scores produced by a human grader using a rubric with
scores produced by Computational Thinking Pattern Analysis. We
have correlated the human and machine scoring for individual
games as well as for game clusters. This paper presents the
correlation between CTPA-measured skills and human-graded

scores from the 2012 and 2013 classes graded by two different
individuals. Additionally, the paper presents the inter-grader
agreement for the 2012 class graded by two different human
graders.

2.2 Computational Thinking Pattern Analysis
Computational Thinking Pattern Analysis (CTPA) is designed to
evaluate the semantic meaning of the students’ submitted games

and simulations. The Latent Semantic Analysis [4] approach as
applied in CTPA detects which computational thinking patterns
(CTPs) are implemented in a given submission. CTPA looks for
nine pre-defined canonical computational thinking patterns within
a given game/simulation: user control, generation, absorption,
collision, transportation, push, pull, diffusion, and hill climbing.
These particular nine patterns are commonly found in video
games and science simulations. In the future we could include

more CT patterns in CTPA, but to date our research has focused
on these nine.

2.2.1 Computational Thinking Patterns (CTP)
Computational thinking is a high-level concept that experts have
still not been able to clearly define in a single sentence. We
therefore conceptualized Computational Thinking Patterns within
the game design context to help students and teachers understand
how computational thinking can be practically utilized [10]. A
Computational Thinking Pattern (CTP) is an abstract

representation that can be easily found in game and simulation
programming. For example, the Absorption CTP represents one
agent removing another agent (e.g., big fish eats small fish in an
ecosystem). In this way, each CTP represents one complete
phenomenon or behavioral concept in a game or science
simulation design.

Because Computational Thinking Patterns are high-level
programming concepts, each pattern requires multiple rules and/or

programming primitives to be implemented. For example, the
following figure illustrates how the Absorption pattern is
programmed using a single rule that contains one condition and
one action.

Figure 1. The Absorption pattern implementation

To perform CTPA, a given AgentSheets project is converted such
that the degree to which each CTP is present is expressed as a
vector component. An AgentSheets project vector is calculated
with the equation below, similar to that used in Latent Semantic

Analysis [4] to describe semantic meaning [12].

Equation 1. Computational Thinking Pattern Analysis

In this equation, m is the number of computational thinking

patterns that are sought (currently nine). The calculated result of
CTPA—CTPA (1) to CTPA (m)—can thus be represented as an
m length vector. Also, n is the total number of different primitives
(conditions and actions) that could possibly appear in any

game/simulation (currently 39). Vectors u and v, both of length n,
respectively describe the primitives that actually appear in a given
game/simulation and in a canonical project that implements one of
the m CT patterns.

2.2.2 Computational Thinking Pattern Analysis

Graph
The Computational Thinking Pattern Analysis (CTPA) graph
visualizes the semantic meaning and computational thinking
patterns of the submitted games represented by the nine-

dimensional vector calculated through CTPA. The computational
thinking patterns implemented in each given game are depicted
through this graphic (Figure 2).

This research implementation uses regular class curriculum and is
assessed using official game tutorials provided by the Scalable
Game Design project researchers and educators. In the case of
Figure 2, the student CTPA (Brown in Figure 2) is overlaid with a
graph of the tutorial CTPA (Green in Figure 2). Each CT pattern

axis is aligned according its implementation difficulty level and
its significance to the relationship between adjacent axes. For
example, Generation, Absorption, and Collision usually happen in
sequence or are highly relevant to each other.

This graphic analysis can work as a self-assessment tool and/or a
learning path indicator through a semantic comparison of the
submitted project to that specific submission’s tutorial standard.
In the absence of a comparative tutorial, standardized information

can be programmed into the graphic analysis tool to serve as an
appropriate comparison.

Figure 2. Computational Thinking Pattern Analysis Graph

2.3 Computational Thinking Skill Progression
While the semantic information from individual
games/simulations provides useful insight into student learning
development, the semantic analysis of individually created games
or simulations could also provide an indication of a student’s
overall skill progress. Representing semantic meaning in
measureable units to visually demonstrate student learning trends
can benefit students and teachers directly. This approach could

also indicate possible curriculum failings at a fundamental level.

The value of each axis on the CTPA Graph translates as the
amount of implemented knowledge for a given computational
thinking pattern within a game/simulation. The sum or average of
these values is interpreted as the student’s skill in designing the
game/simulation. That is, the nine computational thinking patterns

are target-learning categories. The score of each CT pattern in a
tutorial represents that pattern’s target-learning goal. Thus, the
CTPA Graph illustrates how well students meet the target-
learning goal in each assignment or group of assignments. Within
the CTPA, a one-time assignment analysis is referred to as a
Demonstrated Skill Score. Learning that takes place over time
through several assignments is referred to as a Comprehensive
Skill Score. Both Demonstrated and Comprehensive Skill Scores

are calculated from the length (norm) of a vector of the nine
computational thinking patterns reduced to one dimension (unit).

The Demonstrated and Comprehensive Skill Scores are calculated
using the following equations.

Equation 2. Demonstrated Skill Score

Equation 3. Comprehensive Skill Score

In these equations, P is a computational thinking pattern, n is the
number of computational thinking patterns on the CTPA Graph,
and m is the number of submitted assignments. The equations are
derived from the formula for the length of a vector.

The Demonstrated Skill Score shows a student’s programming
skill as of when the game was submitted, while the
Comprehensive Skill Score shows a student’s progressed skill
acquisition over time. Each Skill Score is the normalized size of

the value on each axis of the CTPA Graph. For the
Comprehensive Skill Score calculation, we make the following
assumption to track students’ skill progression: if there is a skill
that a student has learned and demonstrated accurately at least
once, then that skill is available for the student to use for the entire
duration of the course even if it is not used again. In other words,
a maximum value of any given game represents its creator’s best
achieved level in CT pattern implementation. Consequently the
maximum value is selected in this equation.

3. RESULTS: ASSESSMENT VALIDATION
To gauge the value of CTPA as a Computational Thinking

assessment tool, we conducted the early stages of concurrent
validity and predictive validity evaluation using data from
undergraduate and graduate students who took an Educational
Game Design class in 2012 and 2013. For concurrent validity we
compared student grades with CTPA-measured skills for four
basic games: Frogger, Sokoban, Centipede, and the Sims. To
assess predictive validity we computed students’ comprehensive
skill scores based on the four basic games and compared them to

the demonstrated skill scores of their final projects.

3.1 2012 Class Concurrent Validity Results
For the 2012 class (19 students), we hired two graders for this

research who were asked to provide grades based on the official
grading rubric for each game. We also used CTPA to calculate a
demonstrated skill score for each game.

Table 1. Four Basic Games and Spearman Rank Correlation

Charts for the 2012 Class

Game Spearman’s Rank Correlation

Coefficients

Frogger

0.246 (Spearman Correlation Coefficient)

Sokoban

0.705 (Spearman Correlation Coefficient)

Centipede

0.535(Spearman Correlation Coefficient)

Sims

0.821 (Spearman Correlation Coefficient)

The human grades and the demonstrated skill scores are not
normally distributed. Instead, they are skewed negatively.
Therefore, we calculated Spearman’s rank correlation coefficient
to measure the statistical dependence between the CTPA-
measured skills of students and the grades that they actually

received.

3.1.1 Demonstrated Skill for Individual Games
As Table 1 shows, the Spearman rank correlation coefficients for
three of the four basic games are high enough to demonstrate a
correlation between human graded scores and CTPA-measured
skills. These results indicate that CTPA is capable of measuring
students’ skills, and its measured results connect well with the
human grades.

Although the originality and the design of the game were part of

human grading, CTPA measures only programming skills. So for
the tied scores, the person who received a higher grade in
programming is ranked higher than the person who got a higher
grade in originality and design. For example, there are two
students who received 100 points where student A received 90
points for basic programming and 10 points for advanced design
and student B received 80 points for basic programming and 20
points for advanced design. In this case, student A is ranked
higher than student B. If students received exactly same scores for

basic and advanced programming, then they are ranked based on
their programming completeness (i.e., avoiding undeclared
variables/methods or unnecessary programming components).

3.1.2 Comprehensive Skill Across Several Games
We also calculated students’ comprehensive skill scores to reflect
the correlation between the average student grades and CTPA-
measured skill scores when students finished making all four
basic games.

The Spearman rank correlation coefficient value between

students’ grades and their CTPA-measured skill scores is 0.415
(Figure 3). This number indicates a moderate level of positive
correlation between students’ grades and their CTPA-measured
skill scores. Due to the small sample size, we verified its
significance with critical values for the Spearman rank correlation
coefficient. The critical value for N=19 with a significance level
of 0.05 is 0.391, which is lower than the calculated correlation
coefficient, 0.415. This calculation indicates that there is a 95%

chance of the correlation being truly significant. This result offers
another positive indication of the CTPA’s validity as a
programming assessment tool, suggesting that it would be usable
in a real classroom situation.

Figure 3. Spearman Rank Correlation Chart from 2012 Class

3.1.3 Inter-Rater Agreement
To check the inter-rater agreement between the two graders, we

converted the original 1 to 100 scale scores to a letter grades from
A to F. In a 1 to 100 scale score, there are 100 options for grades,
and it was difficult to get high inter-rater agreement percentages
since there were so many close scores but not exactly the same
score (i.e. 93 vs. 95). We converted the scores above 90 to A, the
scores above 80 to B, the scores above 70 to C, the scores above
60 to D, and the scores below 60 to F.

The inter-rater agreement percentage between the two graders was

95% on average for the four basic game grades.

Figure 4. Spearman Rank Correlation Chart from 2013 Class

3.2 2013 Class Concurrent Validity Results
For the 2013 class (20 students), we hired one of the two graders

who graded the 2012 class. The same rubric was provided for
grading consistency. As for the 2012 class, the students’
comprehensive skill scores were calculated as the basis for
determining the correlation between average student grades and
CTPA-measured skill scores when students finished making four
basic games.

The Spearman’s rank correlation coefficient value between
students’ grades and their CTPA-measured skills is 0.476 (Figure
4). This number indicates a moderate level of positive correlation
between students’ grades and their CTPA-measured skill scores.
Due to the small sample size, we again verified its significance

with critical values for the Spearman rank correlation coefficient.
The critical value for N=20 with a significance level of 0.025 is
0.447, which is lower than the calculated correlation coefficient,
0.476. This calculation indicates that there is a 97.5% chance of
the correlation being truly significant. This result illustrates
CTPA-measured skill’s reliability over two consecutive classes.

3.3 Predictive Validity Results
We then performed a predictive validity test to confirm CTPA’s
validity as a programming assessment tool. In contrast to the four
basic games, the final project was graded based on originality,

educational facts, engagement, and student presentation skills
rather than programming skills. Thus, for predictive validity, it
was not adequate to compare CTPA-measured student skills and
student grades.

However, it is possible to use a pure programming comparison to
predict students’ future achievements based on their previous
skills. In other words, if a student has shown high achievement
through previous assignments, then s/he is expected to show high
achievement in the final project, too. We therefore computed

student CTPA-measured skills to show their correlation between
pre-final projects and the final project. As Figure 5 illustrates,
those who showed better performance through pre-final
assignments tended to show better performance in the final project
also. For the 2012 class, the Pearson correlation coefficient value
between pre-final projects and the final project is 0.676, and there
is a 99.5% chance of this correlation being truly significant. For a
better correlation calculation, we excluded two students who

missed more than three assignments and one student who didn’t
submit his final project.

Figure 5. Predictive Validity Evaluation from 2012 Class

This high correlation between Skill scores from pre-final projects
and the final project implies that CTPA is able to predict a

student’s future learning performance and skill trajectory. This
capability of CTPA can be applied to build a cyberlearning
infrastructure, including automated tutoring systems. For
example, right now we are working on a system called REACT
(Real time Evaluation and Assessment of Computational

Thinking) that provides the teacher with a dashboard to see what
students are programming in real time using CTPA graphs and
other visualizations. REACT provides teachers with a useful
representation of class and individual progress, allowing them to
make effective instructional decisions. The REACT system’s

feedback is based on CTPA-measured skill.

4. DISCUSSION
In this initial foray into CTPA validation, we found satisfactorily
strong positive correlations between scores given by human
graders and students’ comprehensive skill scores calculated by

CTPA, giving us confidence about proceeding with further
validation activities. Several factors suggest that the correlations
described here are lower than those we might expect to find
during additional validation, including the small size of the
samples. The current human grader scoring rubric includes both
programming skill items, which are closely related to the
characteristics examined through CTPA, and other, less related
items. For example, the graders checked for the presence of

expected computational thinking pattern implementation, and also
looked for what users should experience while the game is played.
Therefore, human graders are evaluating game design skill along
with programming skill. A revised rubric with greater emphasis
on programming would be expected to lead to higher correlations.
Additionally, these samples include a large percentage of high-
performing students, and we believe that we would see more
accurate correlations using students having a greater range of skill

levels. Overall, the early validation results for the CTPA are
promising, though further exploration with a larger data set is
warranted. Beyond demonstrating that CTPA and human grader
performance are well correlated when assessing foundational
games, we showed the predictive value of this analysis tool for
assessing students’ skill in designing their own games. We
anticipate that it will be possible to use CTPA in the future to
provide trustworthy educational feedback, especially given the
consistency of the findings using data from two consecutive years.

5. ACKNOWLEDGMENTS
This work is supported by the National Science Foundation under
Grant Numbers DLR-0833612 IIP-1345523, and IIP-0848962.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foundation.

6. REFERENCES
[1] Werner, L., Campe, S., Denner. J., Children learning

computer science concepts via Alice game-programming.
In Proceedings of the 43rd ACM technical symposium on

Computer Science Education (SIGCSE '12). ACM, New
York, NY, USA

[2] Koh, K. H., Repenning, A., Nickerson, H., Endo, Y., Motter,

P., Will it stick? exploring the sustainability of computational
thinking education through game design. InProceeding of the

44th ACM technical symposium on Computer science

education (SIGCSE '13). ACM, New York, NY, USA, 597-
602.

[3] Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., Rusk,
M., Programming by choice: urban youth learning

programming with scratch. SIGCSE Bull. 40, 1 (March
2008), 367-371.

[4] Landauer, T. K., Foltz, P. W., Laham, D. Introduction to
Latent Semantic Analysis. Discourse Processes, 25, 1998,
259-284

[5] Wing, J. M. 2006. Computational Thinking.
Communications of the ACM, 49(3), pp. 33-35, March 2006.

[6] Repenning, A. 2000. AgentSheets®: an Interactive
Simulation Environment with End-User Programmable
Agents. In Proceedings of Interaction 2000, Tokyo, Japan,
2000.

[7] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N.,
Eastmond, E., Brennan, K., Millner, A, Rosenbaum, E.,
Silver, J., Silverman, B., and Kafai, Y. 2009. Scratch:
programming for all. Commun. ACM 52, 11 (November
2009), 60-67.

[8] Werner, L., Denner, J., Bliesner, M., and Rex, P. 2009. Can
middle-schoolers use Storytelling Alice to make games?

results of a pilot study. In Proceedings of the 4th

International Conference on Foundations of Digital Games
(FDG '09). ACM, New York, NY, USA, 207-214.

[9] Ioannidou, A., Repenning, A., Webb. D., AgentCubes:
Incremental 3D end-user development. J. Vis. Lang.
Comput. 20, 4 (August 2009), 236-251

[10] Ioannidou, A., Bennett, V., Repenning, A., Koh, K.,
Basawapatna, A. 2011. Computational Thinking Patterns. In

Proceedings of 2011 Annual Meeting of the American

Educational Research Association (AERA) in the symposium

“Merging Human Creativity and the Power of Technology:

Computational Thinking in the K-12 Classroom”. New
Orleans, April 8-12, 2011

[11] Basawapatna, A., Koh, K. H., Repenning, A., Using Scalable

Game Design To Teach Computer Science From Middle

School to Graduate School, ITiCSE '10: Annual Conference

on Innovation and Technology in Computer Science
Education, Ankara, Turkey June 26-30, 2010.

[12] Koh, K. H., Basawapatna, A.,Bennett, V., Repenning, A.
2010. Towards the Automatic Recognition of Computational
Thinking. In Proceedings of IEEE International Symposium

on Visual Languages and Human-Centric Computing 2010,
Leganés-Madrid, Spain, September 21-25, 2010

[13] Bennett, V., Koh, K. H., Repenning, A. Computing learning
acquisition?, IEEE International Symposium on Visual

Languages and Human-Centric Computing 2011, Pittsburgh,
PA, USA, September 18-22, 2011

[14] Bennett, V., Koh, K. H., Repenning, A., Computing
Creativity: Divergence in Computational Thinking, ACM

Special Interest Group on Computer Science Education

Conference, (SIGCSE 2013), March 6-9, 2013, Denver,
Colorado, USA

[15] Repenning, A., Excuse me, I need better AI! Employing
Collaborative Diffusion to make Game AI Child's Play. in

Proceedings of the ACM SIGGRAPH Video Game
Symposium, (Boston, MA, 2006), ACM Press.

