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ABSTRACT 

End-user game design affords teachers a unique opportunity to 

integrate computational thinking concepts into their classrooms. 
However, it is not always apparent in game and simulation 
projects what computational thinking-related skills students have 
acquired. Computational Thinking Pattern Analysis (CTPA) 
enables teachers to visualize which of nine specific skills students 
have mastered in game design that can then be used to create 
simulations. CTPA has the potential to automatically recognize 
and calculate student computational thinking skills, as well as to 

map students’ computational thinking skill progression, as they 
proceed through the curriculum. The current research furthers 
knowledge of CTPA by exploring its validity based on how its 
performance correlates to human grading of student games. Initial 
data from this validation study indicates that CTPA correlates 
well with human grading and that it can even be used to predict 
students’ future achievement levels given their current skill 
progression, making CTPA a potentially invaluable computational 

thinking evaluation tool for teachers. 

Categories and Subject Descriptors 

K.3.2 [Computers and Education]: Computers and Information 
Science Education 

General Terms 

Measurement, Performance, Design, Experimentation 

Keywords 

Computational Thinking, Computational Thinking Assessment, 
Computational Thinking Pattern Analysis, Cyberlearning 
Infrastructure, End User Programming 

1. INTRODUCTION 
Since the 1990s there have been multiple efforts to fix the broken 
pipeline at the K-12 level in computer science education [1, 2, 3], 
and most of those efforts have focused on student motivation. The 
results indicate that these efforts have successfully increased 
student motivation in computer science. However, it is often not 
clear what educational benefits, if any, students receive from these 

motivational interventions. Part of the problem may stem from a 
lack of a proper instrument for measuring the knowledge students 
acquire through their activities in a class. Learning may be 
measured with existing tools such as grading rubrics, but these 
tools are extremely time consuming and have limited functionality 
with respect to assessing learning progress and providing ongoing 
feedback to students and teachers.  

In this paper we present our early efforts to validate a method that 

we have developed for measuring concept learning in real time. 
Our technique is inspired by Latent Sematic Analysis (LSA) [4], 
in which calculations can be used to analyze the semantic 
meanings of a given context based on predefined subjects or 
phenomena. Theoretically, this idea can be applied to any domain 
in which low-level components are combined to form higher-level 
constructs, supporting analyses such as natural language 
processing and the examination of computer programs. 

Constrained environments, including those that make use of visual 
end-user programming, are especially suited to this kind of 
analysis. Therefore, this idea can be employed to build a learning 
assessment tool for computer science (CS) and/or computational 
thinking (CT) [5] education, where visual programming 
environments such as AgentSheets [6], Scratch [7], and Alice [8] 
are widely adopted.  

The computer programming context used in our research is the 
construction of video games and science simulations. At the 

University of Colorado – Boulder we have four years of data from 
more than 20,000 students who created games and simulations 
using AgentSheets and its subsequent 3D version, AgentCubes 
[9]. Our analytical method, Computational Thinking Pattern 
Analysis (CTPA), examines the programmed rules of these 
student-created artifacts to unearth evidence of higher-level 
patterns that are found in such projects, which typically involve 
object interactions [10]. Computational Thinking Patterns (CTPs) 

are constructs students initially learn in game design that can be 
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applied to creating simulations. Examples of CTPs include one 
agent tracking another agent, one agent absorbing another agent, 
and one agent creating another agent [11]. The presence of these 
semantically meaningful patterns indicates that students have 
grasped the concepts being taught and that they also have the 

ability to operationalize the concepts by creating programs. 
Therefore, CTPA can serve as a concept and skill learning 
assessment tool for CS/CT education.  

The outcomes of CTPA can be used to provide valid and useful 
feedback to educators and learners in CS/CT education by 
measuring and tracking student learning outcomes. Student-
created artifacts from educational programs around the United 
States and in several other countries have been analyzed by 

CTPA. These results have shown promising potential in providing 
educational feedback in the areas of learning transfer [12], 
learning trajectories [13], and programming divergence [14]. This 
kind of assessment in CS/CT education should be able to provide 
better individual feedback and faster learning assessments to 
students and teachers by measuring student skills and analyzing 
learning at the semantic level.  

Overall, this research offers a partially-validated method to assess 

student learning skills and compute student learning outcomes. 
This type of method can be used to create authentic cyberlearning 
systems that will help large numbers of teachers and students to 
learn computational thinking. We envision that other investigators 
will be able to repurpose our calculation method for use in their 
own educational research contexts. 

2. METHODOLOGY 
Methodology for this research incorporates rubric-based grading 
of student projects from multiple classes, the Computational 
Thinking Pattern Analysis of these submissions, and skill 
progression calculation to measure learning performance. 

2.1 Class Descriptions 
The University of Colorado – Boulder Educational Game Design 
class is a course teaching undergraduate and graduate students to 
prototype and test educational games. The course has a fairly 
aggressive programming schedule in which each student builds a 

playable game every week. The course has three parts. In the first 
part students learn about computational thinking patterns [10] in 
the context of making four prescribed games ranging from simple 
1980 arcade games such as Frogger to more contemporary games 
such as the Sims. The design and creation of a Sims-like game 
exposes students to computational thinking [5] concepts related to 
artificial intelligence such as collaborative diffusion [15] as well 
as psychological models such as Maslow’s hierarchy of needs. In 

the second part students design four of their own games, but these 
games have to be educational. Evaluation includes peer 
assessment of engagement and the educational value of games. In 
the last part students work on their final educational game, 
receiving three weeks time to include more evaluation iterations. 
Students conduct game testing at a local middle school where they 
collect empirical evidence from game testers who have not been 
exposed to their designs.  

The validation study presented here focuses on the prescribed 
games from the first part of the course. The validation process 
correlates scores produced by a human grader using a rubric with 
scores produced by Computational Thinking Pattern Analysis. We 
have correlated the human and machine scoring for individual 
games as well as for game clusters. This paper presents the 
correlation between CTPA-measured skills and human-graded 

scores from the 2012 and 2013 classes graded by two different 
individuals. Additionally, the paper presents the inter-grader 
agreement for the 2012 class graded by two different human 
graders.  

2.2 Computational Thinking Pattern Analysis 
Computational Thinking Pattern Analysis (CTPA) is designed to 
evaluate the semantic meaning of the students’ submitted games 

and simulations. The Latent Semantic Analysis [4] approach as 
applied in CTPA detects which computational thinking patterns 
(CTPs) are implemented in a given submission. CTPA looks for 
nine pre-defined canonical computational thinking patterns within 
a given game/simulation: user control, generation, absorption, 
collision, transportation, push, pull, diffusion, and hill climbing. 
These particular nine patterns are commonly found in video 
games and science simulations. In the future we could include 

more CT patterns in CTPA, but to date our research has focused 
on these nine.  

2.2.1 Computational Thinking Patterns (CTP) 
Computational thinking is a high-level concept that experts have 
still not been able to clearly define in a single sentence. We 
therefore conceptualized Computational Thinking Patterns within 
the game design context to help students and teachers understand 
how computational thinking can be practically utilized [10]. A 
Computational Thinking Pattern (CTP) is an abstract 

representation that can be easily found in game and simulation 
programming. For example, the Absorption CTP represents one 
agent removing another agent (e.g., big fish eats small fish in an 
ecosystem). In this way, each CTP represents one complete 
phenomenon or behavioral concept in a game or science 
simulation design. 

Because Computational Thinking Patterns are high-level 
programming concepts, each pattern requires multiple rules and/or 

programming primitives to be implemented. For example, the 
following figure illustrates how the Absorption pattern is 
programmed using a single rule that contains one condition and 
one action. 

 

Figure 1. The Absorption pattern implementation 

To perform CTPA, a given AgentSheets project is converted such 
that the degree to which each CTP is present is expressed as a 
vector component. An AgentSheets project vector is calculated 
with the equation below, similar to that used in Latent Semantic 

Analysis [4] to describe semantic meaning [12].  

 

Equation 1. Computational Thinking Pattern Analysis 

In this equation, m is the number of computational thinking 

patterns that are sought (currently nine). The calculated result of 
CTPA—CTPA (1) to CTPA (m)—can thus be represented as an 
m length vector. Also, n is the total number of different primitives 
(conditions and actions) that could possibly appear in any 



game/simulation (currently 39). Vectors u and v, both of length n, 
respectively describe the primitives that actually appear in a given 
game/simulation and in a canonical project that implements one of 
the m CT patterns. 

2.2.2 Computational Thinking Pattern Analysis 

Graph 
The Computational Thinking Pattern Analysis (CTPA) graph 
visualizes the semantic meaning and computational thinking 
patterns of the submitted games represented by the nine-

dimensional vector calculated through CTPA. The computational 
thinking patterns implemented in each given game are depicted 
through this graphic (Figure 2).  

This research implementation uses regular class curriculum and is 
assessed using official game tutorials provided by the Scalable 
Game Design project researchers and educators. In the case of 
Figure 2, the student CTPA (Brown in Figure 2) is overlaid with a 
graph of the tutorial CTPA (Green in Figure 2). Each CT pattern 

axis is aligned according its implementation difficulty level and 
its significance to the relationship between adjacent axes. For 
example, Generation, Absorption, and Collision usually happen in 
sequence or are highly relevant to each other. 

This graphic analysis can work as a self-assessment tool and/or a 
learning path indicator through a semantic comparison of the 
submitted project to that specific submission’s tutorial standard. 
In the absence of a comparative tutorial, standardized information 

can be programmed into the graphic analysis tool to serve as an 
appropriate comparison.  

 

Figure 2. Computational Thinking Pattern Analysis Graph 

2.3 Computational Thinking Skill Progression 
While the semantic information from individual 
games/simulations provides useful insight into student learning 
development, the semantic analysis of individually created games 
or simulations could also provide an indication of a student’s 
overall skill progress. Representing semantic meaning in 
measureable units to visually demonstrate student learning trends 
can benefit students and teachers directly. This approach could 

also indicate possible curriculum failings at a fundamental level. 

The value of each axis on the CTPA Graph translates as the 
amount of implemented knowledge for a given computational 
thinking pattern within a game/simulation. The sum or average of 
these values is interpreted as the student’s skill in designing the 
game/simulation. That is, the nine computational thinking patterns 

are target-learning categories. The score of each CT pattern in a 
tutorial represents that pattern’s target-learning goal. Thus, the 
CTPA Graph illustrates how well students meet the target-
learning goal in each assignment or group of assignments. Within 
the CTPA, a one-time assignment analysis is referred to as a 
Demonstrated Skill Score. Learning that takes place over time 
through several assignments is referred to as a Comprehensive 
Skill Score. Both Demonstrated and Comprehensive Skill Scores 

are calculated from the length (norm) of a vector of the nine 
computational thinking patterns reduced to one dimension (unit).  

The Demonstrated and Comprehensive Skill Scores are calculated 
using the following equations. 

 

Equation 2. Demonstrated Skill Score 

 

 

Equation 3. Comprehensive Skill Score 

In these equations, P is a computational thinking pattern, n is the 
number of computational thinking patterns on the CTPA Graph, 
and m is the number of submitted assignments. The equations are 
derived from the formula for the length of a vector.  

The Demonstrated Skill Score shows a student’s programming 
skill as of when the game was submitted, while the 
Comprehensive Skill Score shows a student’s progressed skill 
acquisition over time. Each Skill Score is the normalized size of 

the value on each axis of the CTPA Graph. For the 
Comprehensive Skill Score calculation, we make the following 
assumption to track students’ skill progression: if there is a skill 
that a student has learned and demonstrated accurately at least 
once, then that skill is available for the student to use for the entire 
duration of the course even if it is not used again. In other words, 
a maximum value of any given game represents its creator’s best 
achieved level in CT pattern implementation. Consequently the 
maximum value is selected in this equation.  

3. RESULTS: ASSESSMENT VALIDATION 
To gauge the value of CTPA as a Computational Thinking 

assessment tool, we conducted the early stages of concurrent 
validity and predictive validity evaluation using data from 
undergraduate and graduate students who took an Educational 
Game Design class in 2012 and 2013. For concurrent validity we 
compared student grades with CTPA-measured skills for four 
basic games: Frogger, Sokoban, Centipede, and the Sims. To 
assess predictive validity we computed students’ comprehensive 
skill scores based on the four basic games and compared them to 

the demonstrated skill scores of their final projects.   



3.1 2012 Class Concurrent Validity Results 
For the 2012 class (19 students), we hired two graders for this 

research who were asked to provide grades based on the official 
grading rubric for each game. We also used CTPA to calculate a 
demonstrated skill score for each game. 

Table 1. Four Basic Games and Spearman Rank Correlation 

Charts for the 2012 Class 

Game Spearman’s Rank Correlation 

Coefficients 

Frogger 

 

0.246 (Spearman Correlation Coefficient) 

 

Sokoban 

 

0.705 (Spearman Correlation Coefficient) 

 

Centipede 

 

0.535(Spearman Correlation Coefficient) 

 

Sims 

 

0.821 (Spearman Correlation Coefficient) 

 

 

The human grades and the demonstrated skill scores are not 
normally distributed. Instead, they are skewed negatively. 
Therefore, we calculated Spearman’s rank correlation coefficient 
to measure the statistical dependence between the CTPA-
measured skills of students and the grades that they actually 

received.  

3.1.1 Demonstrated Skill for Individual Games 
As Table 1 shows, the Spearman rank correlation coefficients for 
three of the four basic games are high enough to demonstrate a 
correlation between human graded scores and CTPA-measured 
skills. These results indicate that CTPA is capable of measuring 
students’ skills, and its measured results connect well with the 
human grades.  

Although the originality and the design of the game were part of 

human grading, CTPA measures only programming skills. So for 
the tied scores, the person who received a higher grade in 
programming is ranked higher than the person who got a higher 
grade in originality and design. For example, there are two 
students who received 100 points where student A received 90 
points for basic programming and 10 points for advanced design 
and student B received 80 points for basic programming and 20 
points for advanced design. In this case, student A is ranked 
higher than student B. If students received exactly same scores for 

basic and advanced programming, then they are ranked based on 
their programming completeness (i.e., avoiding undeclared 
variables/methods or unnecessary programming components).  

3.1.2 Comprehensive Skill Across Several Games 
We also calculated students’ comprehensive skill scores to reflect 
the correlation between the average student grades and CTPA-
measured skill scores when students finished making all four 
basic games. 

The Spearman rank correlation coefficient value between 

students’ grades and their CTPA-measured skill scores is 0.415 
(Figure 3). This number indicates a moderate level of positive 
correlation between students’ grades and their CTPA-measured 
skill scores. Due to the small sample size, we verified its 
significance with critical values for the Spearman rank correlation 
coefficient. The critical value for N=19 with a significance level 
of 0.05 is 0.391, which is lower than the calculated correlation 
coefficient, 0.415. This calculation indicates that there is a 95% 

chance of the correlation being truly significant. This result offers 
another positive indication of the CTPA’s validity as a 
programming assessment tool, suggesting that it would be usable 
in a real classroom situation.  

 



 

Figure 3. Spearman Rank Correlation Chart from 2012 Class 

3.1.3 Inter-Rater Agreement 
To check the inter-rater agreement between the two graders, we 

converted the original 1 to 100 scale scores to a letter grades from 
A to F. In a 1 to 100 scale score, there are 100 options for grades, 
and it was difficult to get high inter-rater agreement percentages 
since there were so many close scores but not exactly the same 
score (i.e. 93 vs. 95). We converted the scores above 90 to A, the 
scores above 80 to B, the scores above 70 to C, the scores above 
60 to D, and the scores below 60 to F.  

The inter-rater agreement percentage between the two graders was 

95% on average for the four basic game grades. 

 

Figure 4. Spearman Rank Correlation Chart from 2013 Class 

3.2 2013 Class Concurrent Validity Results 
For the 2013 class (20 students), we hired one of the two graders 

who graded the 2012 class. The same rubric was provided for 
grading consistency. As for the 2012 class, the students’ 
comprehensive skill scores were calculated as the basis for 
determining the correlation between average student grades and 
CTPA-measured skill scores when students finished making four 
basic games. 

The Spearman’s rank correlation coefficient value between 
students’ grades and their CTPA-measured skills is 0.476 (Figure 
4). This number indicates a moderate level of positive correlation 
between students’ grades and their CTPA-measured skill scores. 
Due to the small sample size, we again verified its significance 

with critical values for the Spearman rank correlation coefficient. 
The critical value for N=20 with a significance level of 0.025 is 
0.447, which is lower than the calculated correlation coefficient, 
0.476. This calculation indicates that there is a 97.5% chance of 
the correlation being truly significant. This result illustrates 
CTPA-measured skill’s reliability over two consecutive classes.  

3.3 Predictive Validity Results 
We then performed a predictive validity test to confirm CTPA’s 
validity as a programming assessment tool. In contrast to the four 
basic games, the final project was graded based on originality, 

educational facts, engagement, and student presentation skills 
rather than programming skills. Thus, for predictive validity, it 
was not adequate to compare CTPA-measured student skills and 
student grades.  

However, it is possible to use a pure programming comparison to 
predict students’ future achievements based on their previous 
skills.  In other words, if a student has shown high achievement 
through previous assignments, then s/he is expected to show high 
achievement in the final project, too. We therefore computed 

student CTPA-measured skills to show their correlation between 
pre-final projects and the final project. As Figure 5 illustrates, 
those who showed better performance through pre-final 
assignments tended to show better performance in the final project 
also. For the 2012 class, the Pearson correlation coefficient value 
between pre-final projects and the final project is 0.676, and there 
is a 99.5% chance of this correlation being truly significant. For a 
better correlation calculation, we excluded two students who 

missed more than three assignments and one student who didn’t 
submit his final project.  

 

Figure 5. Predictive Validity Evaluation from 2012 Class 

This high correlation between Skill scores from pre-final projects 
and the final project implies that CTPA is able to predict a 

student’s future learning performance and skill trajectory. This 
capability of CTPA can be applied to build a cyberlearning 
infrastructure, including automated tutoring systems. For 
example, right now we are working on a system called REACT 
(Real time Evaluation and Assessment of Computational 



Thinking) that provides the teacher with a dashboard to see what 
students are programming in real time using CTPA graphs and 
other visualizations. REACT provides teachers with a useful 
representation of class and individual progress, allowing them to 
make effective instructional decisions. The REACT system’s 

feedback is based on CTPA-measured skill.  

4. DISCUSSION 
In this initial foray into CTPA validation, we found satisfactorily 
strong positive correlations between scores given by human 
graders and students’ comprehensive skill scores calculated by 

CTPA, giving us confidence about proceeding with further 
validation activities. Several factors suggest that the correlations 
described here are lower than those we might expect to find 
during additional validation, including the small size of the 
samples. The current human grader scoring rubric includes both 
programming skill items, which are closely related to the 
characteristics examined through CTPA, and other, less related 
items. For example, the graders checked for the presence of 

expected computational thinking pattern implementation, and also 
looked for what users should experience while the game is played. 
Therefore, human graders are evaluating game design skill along 
with programming skill. A revised rubric with greater emphasis 
on programming would be expected to lead to higher correlations. 
Additionally, these samples include a large percentage of high-
performing students, and we believe that we would see more 
accurate correlations using students having a greater range of skill 

levels. Overall, the early validation results for the CTPA are 
promising, though further exploration with a larger data set is 
warranted. Beyond demonstrating that CTPA and human grader 
performance are well correlated when assessing foundational 
games, we showed the predictive value of this analysis tool for 
assessing students’ skill in designing their own games. We 
anticipate that it will be possible to use CTPA in the future to 
provide trustworthy educational feedback, especially given the 
consistency of the findings using data from two consecutive years. 

5. ACKNOWLEDGMENTS 
This work is supported by the National Science Foundation under 
Grant Numbers DLR-0833612 IIP-1345523, and IIP-0848962. 
Any opinions, findings, and conclusions or recommendations 
expressed in this material are those of the authors and do not 

necessarily reflect the views of the National Science Foundation. 

6. REFERENCES 
[1] Werner, L., Campe, S., Denner. J., Children learning 

computer science concepts via Alice game-programming. 
In Proceedings of the 43rd ACM technical symposium on 

Computer Science Education (SIGCSE '12). ACM, New 
York, NY, USA 

[2] Koh, K. H., Repenning, A., Nickerson, H., Endo, Y., Motter, 

P., Will it stick? exploring the sustainability of computational 
thinking education through game design. InProceeding of the 

44th ACM technical symposium on Computer science 

education (SIGCSE '13). ACM, New York, NY, USA, 597-
602. 

[3] Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., Rusk, 
M., Programming by choice: urban youth learning 

programming with scratch. SIGCSE Bull. 40, 1 (March 
2008), 367-371. 

[4] Landauer, T. K., Foltz, P. W., Laham, D. Introduction to 
Latent Semantic Analysis. Discourse Processes, 25, 1998, 
259-284 

[5] Wing, J. M. 2006. Computational Thinking. 
Communications of the ACM, 49(3), pp. 33-35, March 2006. 

[6] Repenning, A. 2000. AgentSheets®: an Interactive 
Simulation Environment with End-User Programmable 
Agents. In Proceedings of Interaction 2000, Tokyo, Japan, 
2000. 

[7] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., 
Eastmond, E., Brennan, K., Millner, A, Rosenbaum, E., 
Silver, J., Silverman, B., and Kafai, Y. 2009. Scratch: 
programming for all. Commun. ACM 52, 11 (November 
2009), 60-67. 

[8] Werner, L., Denner, J., Bliesner, M., and Rex, P. 2009. Can 
middle-schoolers use Storytelling Alice to make games? 

results of a pilot study. In Proceedings of the 4th 

International Conference on Foundations of Digital Games 
(FDG '09). ACM, New York, NY, USA, 207-214. 

[9] Ioannidou, A., Repenning, A., Webb. D., AgentCubes: 
Incremental 3D end-user development. J. Vis. Lang. 
Comput. 20, 4 (August 2009), 236-251 

[10] Ioannidou, A., Bennett, V., Repenning, A., Koh, K., 
Basawapatna, A. 2011. Computational Thinking Patterns. In 

Proceedings of 2011 Annual Meeting of the American 

Educational Research Association (AERA) in the symposium 

“Merging Human Creativity and the Power of Technology: 

Computational Thinking in the K-12 Classroom”. New 
Orleans, April 8-12, 2011 

[11] Basawapatna, A., Koh, K. H., Repenning, A., Using Scalable 

Game Design To Teach Computer Science From Middle 

School to Graduate School, ITiCSE '10: Annual Conference 

on Innovation and Technology in Computer Science 
Education, Ankara, Turkey June 26-30, 2010.  

[12] Koh, K. H., Basawapatna, A.,Bennett, V., Repenning, A. 
2010. Towards the Automatic Recognition of Computational 
Thinking. In Proceedings of IEEE International Symposium 

on Visual Languages and Human-Centric Computing 2010, 
Leganés-Madrid, Spain, September 21-25, 2010 

[13] Bennett, V., Koh, K. H., Repenning, A. Computing learning 
acquisition?, IEEE International Symposium on Visual 

Languages and Human-Centric Computing 2011, Pittsburgh, 
PA, USA, September 18-22, 2011 

[14] Bennett, V., Koh, K. H., Repenning, A., Computing 
Creativity: Divergence in Computational Thinking, ACM 

Special Interest Group on Computer Science Education 

Conference, (SIGCSE 2013), March 6-9, 2013, Denver, 
Colorado, USA  

[15] Repenning, A., Excuse me, I need better AI! Employing 
Collaborative Diffusion to make Game AI Child's Play. in 

Proceedings of the ACM SIGGRAPH Video Game 
Symposium, (Boston, MA, 2006), ACM Press.

 


