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Abstract

Background: One of the many gene families that expanded in early vertebrate evolution is the

neuropeptide (NPY) receptor family of G-protein coupled receptors. Earlier work by our lab

suggested that several of the NPY receptor genes found in extant vertebrates resulted from two

genome duplications before the origin of jawed vertebrates (gnathostomes) and one additional

genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing

several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families

with members close to the NPY receptor genes in the compact genomes of the teleost fishes

Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5,

8 and 10.

Results: Chromosome regions with conserved synteny were identified and confirmed by

phylogenetic analyses in H. sapiens, M. musculus, D. rerio, T. rubripes and T. nigroviridis. 26 gene

families, including the NPY receptor genes, (plus 3 described recently by other labs) showed a tree

topology consistent with duplications in early vertebrate evolution and in the actinopterygian

lineage, thereby supporting expansion through block duplications. Eight gene families had

complications that precluded analysis (such as short sequence length or variable number of

repeated domains) and another eight families did not support block duplications (because the

paralogs in these families seem to have originated in another time window than the proposed

genome duplication events). RT-PCR carried out with several tissues in T. rubripes revealed that all

five NPY receptors were expressed in the brain and subtypes Y2, Y4 and Y8 were also expressed

in peripheral organs.

Conclusion: We conclude that the phylogenetic analyses and chromosomal locations of these

gene families support duplications of large blocks of genes or even entire chromosomes. Thus,

these results are consistent with two early vertebrate tetraploidizations forming a paralogon

comprising human chromosomes 4, 5, 8 and 10 and one teleost tetraploidization. The combination

of positional and phylogenetic data further strengthens the identification of orthologs and paralogs

in the NPY receptor family.
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Background
The evolutionary relationships of the NPY-receptor family
receptors in vertebrates have been difficult to resolve due
to uneven evolutionary rates and because some subtypes
are missing in some classes of vertebrates. By using infor-
mation on chromosomal location, initially in pig and
human [1,2], we suggested that chromosome duplica-
tions could account for the origin of several new family
members. However, the relationships of the bony fish
receptors called Y8a and Y8b, discovered in zebrafish and
initially named Yc and Yb [3,4], respectively, remained
speculative [5] because they seemed to lack mammalian
and bird orthologs.

Gene duplication by tetraploidization in the chordate lin-
eage was proposed by Susumu Ohno in 1970 [6], based
upon chromosome numbers and DNA content in differ-
ent lineages. The first gene mapping data supporting a
tetraploidization scenario emerged in 1987 when two
human Hox clusters were mapped to human chromo-
somes Hsa7 and Hsa17 (Hsa for Homo sapiens) which
resembled one another also with regard to other gene
families [7]. Lundin described similarities in the other two
Hox-bearing chromosomes, thereby identifying a quartet
of related regions [8,9]. The Hox chromosomes are now
known to have involved duplication of more than 50 gene
families [10-12].

In addition to the Hox-chromosome similarities, Lundin
also reported resemblance within three other groups of
human chromosomes. One group consisted of Hsa4 and
Hsa5 [9], later found to contain NPY receptor genes [1]
and extended to include Hsa8 and Hsa10 [13,14]. Rela-
tionships between other chromosomes have been
described by several authors, see for instance [11,15-21].
Such groups of related, or paralogous, chromosome
regions are called paralogons [22]. In tetrapod vertebrates,
the paralogons are often comprised of quartets, consistent
with a double tetraploidization scenario, called 2R for two
rounds of genome doubling, before the origin of gnathos-
tomes (jawed vertebrates) [23] although it is difficult to
ascertain that the complete genome was quadrupled.
Indeed, some regions do not have any paralogous coun-
terparts [24]. More recently, a third tetraploidization has
been identified in euteleost fish [25-28]. Several addi-
tional tetraploidizations have been described in specific
lineages of for example fish and amphibians [29-32].

The sizes of the quadrupled paralogous gene regions have
been difficult to determine because of numerous chromo-
somal rearrangements during the approximately 500 Myr
since the tetraploidizations. Several vertebrate genome
projects have recently been reported or are in progress, but
due to incomplete assembly of the sequences into contigs
or scaffolds, let alone chromosomes, these cannot always

be used to analyze conserved synteny or paralogous gene
regions. Another complicating factor has been the uneven
divergence rates in some of the daughter genes after the
duplications [10,33-35] thereby aggravating the dating of
the duplications. Indeed, inconsistent gene family phyl-
ogenies have been used as an argument against the tetra-
ploidization hypothesis [36], although this can be seen as
a natural consequence of uneven selection pressures or
uneven re-diploidization rates after the two tetraploidiza-
tions, particularly as these may have taken place very close
in time [10,35,37,38].

Our laboratory has previously reported that the genes
encoding NPY (neuropeptide Y)-family receptors, which
belong to the superfamily of rhodopsin-like G-protein-
coupled receptors (GPCRs), are located in the paralogon
comprised of the human chromosomes Hsa4, 5 and 10
[1]. The fourth original chromosome member was shown
to be partially represented by Hsa8 and Hsa2 [1,14],
although neither of the latter two chromosomes harbors
NPY receptor genes. Our observation was based on a com-
parison of the human, mouse and pig chromosome
regions [1] and has subsequently been supported by our
analysis of the chicken NPY receptor genes [39]. However,
neither the organization of NPY receptor genes in the
recently reported euteleost fish genomes nor the extent of
the chromosome regions comprising this paralogon or
the phylogenetic relationships of the gene families
involved, have been analyzed in detail.

We report here studies of 45 gene families whose mem-
bers are located on Hsa 4, 5, 8/2/7 and 10. We have inves-
tigated conservation of synteny in human, mouse and
three euteleost fishes, starting with the compact genomes
of Tetraodon. nigroviridis and Takifugu. rubripes, and per-
formed phylogenetic analyses of these gene families. This
approach has been named "transitive homology" [40,41]
and allows for the identification of paralogous chromo-
somal segments despite the frequent loss of genes or rear-
rangement of gene order along chromosomes. The
combined results of phylogenetic analyses and chromo-
somal locations reveal duplications of large chromosomal
regions and are consistent with two basal vertebrate tetra-
ploidizations, as well as the third tetraploidization in
euteleosts. This analysis helps to clarify the evolutionary
history of the chromosomal regions harboring the verte-
brate NPY receptor genes and also further facilitates
orthology/paralogy assignments of genes in the NPY
receptor gene family.

Results
NPY receptors in Takifugu rubripes and Tetraodon 

nigroviridis

Both the T. nigroviridis genome and the T. rubripes genome
was confirmed to harbor five NPY receptor genes previ-
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ously found in D. rerio namely Y4 (Ya) [42], Y8a (Yc) [3]
and Y8b (Yb) [4] belonging to the Y1 subfamily of recep-
tors and Y2 and Y7 belonging to the Y2 subfamily. In D.
rerio a Y1 receptor has been found recently that is not rep-
resented in the pufferfish genome databases [43]. So far
no Y5 gene has been found in any of these three well-stud-
ied teleost fish species. The phylogenetic tree used to
assign subfamily membership is shown in Fig. 1.

RT-PCR and annotation of pufferfish genes

The RT-PCR carried out on eleven tissues in T. rubripes
(Fig. 2) showed expression in brain and eye for all five
receptors. Y8b was expressed in all eleven tissues while the
other four receptors showed a more narrow expression
pattern. Y8b also showed two distinct bands in some tis-
sues because of alternative splicing. Interestingly, Y7
showed expression in several tissues in contrast to the very
narrow expression observed for chicken Y7 [39].

The sequenced RT-PCR products revealed that the Y4
sequence contained an extended second extracellular loop
in T. rubripes (Fig. 3A). This extension was also seen in the
T. nigroviridis Y4 sequence obtained from the database. In
addition, Y8a in T. rubripes has three novel introns. One
intron comprising 102 bp is located in the end of the first
extracellular loop. A second intron of 2.5 kb is present in
the region encoding the middle of extracellular loop 2,
and this intron contains an additional short (63 bp) exon
that accounts for the extension of extracellular loop 2. A
third 182 bp intron has been inserted in the region encod-
ing intracellular loop 3 (Fig. 3B). Comparison with the T.
nigroviridis Y8a sequence showed it to have the same over-
all organization (the zebrafish Y8a gene lacks introns in
the coding region). The total length of Y8a is 450 aa in T.
nigroviridis and 452 aa in T. rubripes. The T. rubripes Y8b
gene lacks introns in the coding region apart from a cryp-
tic intron spliced in some tissues (see Fig. 2 and 3C). The
T. rubripes receptor sequences have been deposited to
GenBank with the following accession numbers: [Gen-
Bank:EU104001 (Y2), GenBank:EU104002 (Y4), Gen-
Bank:EU104003 (Y7), GenBank:EU104004 (Y8a) and
GenBank:EU104005 (Y8b)].

Conserved synteny and paralogous regions

A total of 35 gene families were found with members in
three or four of the regions harboring the T. nigroviridis
NPY receptor genes. In addition to these, another 9 fami-
lies were included due to linkage to the NPY receptors in
T. rubripes. Phylogenetic analysis of these 45 families
(including the NPY receptor family) confirmed 26 to be
compatible with an expansion in vertebrate evolution
before the origin of gnathostomes. Neighbor-joining trees
are shown in Fig. 4A–F and 5A–F for twelve of these fam-
ilies. The full set of NJ and ML-trees are available as Addi-
tional files 1 and 2, respectively. The total number of

genes located in the investigated regions linked to the NPY
receptor genes in T. nigroviridis was 556 (Y4), 310 (Y8a),
375 (Y8b), 487 (Y2) and 370 (Y7) according to the 34.1d
version of the Ensembl database. This number of genes
(2098) represents approximately 7.5% of the total gene
number in the T. nigroviridis genome (total gene number
estimated to be 28005 in this release of the database). The
corresponding human orthologs situated on chromo-
somes 4, 5, 8/2/7 and 10 are dispersed over a large portion
of these chromosomes. The synteny group associated with
T. nigroviridis Y8a/Y8b seems to have been broken up in
the human genome because some families are located on
chromosome 8 and a few are on chromosomes 2 and 7. In
addition to the 35 gene families with at least three mem-
bers on the T. nigroviridis chromosomes, 127 gene families
were identified that are represented on two of the chromo-
somes [see Additional file 3]. The conservation of synteny
for the four chromosomes in human and mouse and eight
chromosomes in the three fish species is illustrated in Fig.
6, 7, 8, 9. A schematic view of the evolution of 16 of the
investigated gene families and the NPY receptor family is
shown in Fig. 10.

Statistical testing of paralogous regions

The statistical test of the investigated paralogous regions
based on a binomial test as used previously by Vienne et
al. [14] shows that their positions are different from a ran-
dom distribution (P << 0.05) in both the genomes of T.
nigroviridis (98 paralogs in total with 26 outside the inves-
tigated regions) and human (74 paralogs with 5 paralogs
outside of the investigated regions). These results are in
agreement with previous results investigating other genes
present on Hsa 4, 5, 8 and 10 [14].

Summary of gene families analyzed in this study

Descriptions of the 25 subfamilies linked to the NPY
receptor genes investigated in detail in this study are given
below, i.e., the families that have members on 3 or 4 of
the paralogous chromosomal regions in T. nigroviridis and
families known to be linked to the NPY receptor genes in
the T. rubripes genome. Three families that also support
block or chromosome duplications were recently ana-
lyzed by other groups and are therefore not described
here, namely two subfamilies of adrenergic receptors and
the ADAM family of metzincins [44,45].

Eight families with members on these chromosomes
showed a tree topology seemingly inconsistent with
expansion in early vertebrate evolution i.e. with several
outgroup sequences dispersed among the vertebrate
sequences, suggesting earlier origin of these paralogs. In
addition to these families, eight families had to be left out
of the analysis because of short sequence length, high con-
servation and therefore uninformative alignments or dif-
ficulties to generate reasonable alignments due to varying

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU104001
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU104002
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU104003
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU104004
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU104005
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Phylogenetic neighbor-joining tree of NPY receptors and closely related GPCRsFigure 1
Phylogenetic neighbor-joining tree of NPY receptors and closely related GPCRs. Numbers below branches show 
percent bootstrap support for each node. Nodes with values below 50 have been collapsed. Human bradykinin receptor B1 
was used to root the tree.



BMC Evolutionary Biology 2008, 8:184 http://www.biomedcentral.com/1471-2148/8/184

Page 5 of 22

(page number not for citation purposes)

numbers of repeated domains. For a complete list of all
families in the regions investigated (including the 127
families with only 2 members in T. nigroviridis and fami-
lies studied due to members being present on the NPY
receptor scaffolds in T. rubripes) see Additional file 3. For
several of the analyzed families the number of fish
sequences predicted to be part of the family according to
the Ensembl database is higher than the number in our
final trees. This is because we had to exclude some family
members that lack one or several domains in order to
obtain alignments of sufficient quality for phylogenetic
analysis. Thus the number of fish paralogs in some of the
families analyzed is a conservative representation of the
actual number. We believe that this will be improved with
more refined versions of the fish genomes (especially the
Danio rerio genome) as well as comparison with addi-
tional genomes not available at the onset of this study.

ABLIM

The actin-binding LIM family has four members in the
human genome. They are characterized by the presence of
4 LIM-domains and one villin domain. These proteins
have been implicated in modulation of cell shape and cell
differentiation through interaction with the actin
cytoskeleton [46,47]. The orthologous protein found in C.
elegans has also been shown to interact with actin and has
been shown to mediate axon guidance [48]. Expression of
the different members of this protein family has been
observed in distinct areas of the nervous system for exam-

ple retina (ABLIM-1) [46], caudate/putamen (ABLIM-2),
olfactory bulb (ABLIM-3), hippocampus (ABLIM-2 and
ABLIM-3) and cerebellum (ABLIM-2 and ABLIM-3) [47].
The topology of the tree is in agreement with expansion of
this gene family in the vertebrate lineage.

ADAMTS

The ADAMTS protein family (a disintegrin-like and metal-
loprotease protein with trombospondin motifs) includes
proteins with a metalloprotease domain, disintegrin and
spacer domains and a number of trombospondin repeats.
Members of this protein family have been implicated in
several diseases [49]. The human genome has so far been
shown to contain more than 20 members of this gene
family. The initial phylogenetic analysis identified a sub-
family with members on human chromosomes 4
(ADAMTS3), 5 (ADAMTS2) and 10 (ADAMTS14), also
identified in other studies [49]. The final analysis of this
subfamily is in agreement with an expansion of this gene
family in the vertebrate lineage before the divergence of
actinopterygians and sarcopterygians.

Ankyrin (ANK)

The ankyrin gene family is one of the families earlier
found to be part of a paralogon [1,14] with members on
human chromosomes 4, 8 and 10. We recovered a similar
topology to previous studies with high bootstrap support.
In addition the tree showed a topology consistent with
extra duplication events in the teleost lineage, i.e. two fish

RT-PCR in Takifugu rubripesFigure 2
RT-PCR in Takifugu rubripes. Agarose gel showing the expression of the five Takifugu rubripes receptor genes in eleven dif-
ferent tissues. Actin was used as control to verify quality and content of samples.
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Schematic picture of Takifugu rubripes NPY receptorsFigure 3
Schematic picture of Takifugu rubripes NPY receptors. Picture depicting the Y4 (panel A), Y8a (panel B) and Y8b (panel 
C) receptors in Takifugu rubripes, indicating the extended second extracellular loop in Y4, the three extra introns present in 
the Y8a receptor gene and the alternative splicing of Y8b.
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A-F – Phylogenetic analysis of neighboring gene familiesFigure 4
A-F – Phylogenetic analysis of neighboring gene families. Examples of the phylogenetic relationship for six neighboring 
gene families A (ABLIM), B (ADAMTS), C (AP3), D (ZIMP), E (HNRNP) and F (LGI). The trees were constructed using the 
neighbor-joining method as implemented in MEGA 3.1 with pair-wise deletion of gaps and poisson-corrected distances [117] 
All datasets were bootstrapped 1000 times (percent bootstrap support are indicated below each node). Species abbreviations 
are: Dme (Drosophila melanogaster), Cel (Caenorhabditis elegans), Cin (Ciona intestinalis), Csa (Ciona savignyi), Tru (Takifugu 
rubripes), Tni (Tetraodon nigroviridis), Dre (Danio rerio), Mmu (Mus musculus), Hsa (Homo sapiens). Numbers refers to chromo-
some number or scaffold number (ScXX), letters after chromosomal/scaffold number was arbitrarily assigned to family mem-
bers located on the same chromosome to tell them apart. The scale below every tree indicates numbers of substitutions/site.
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A-F – Phylogenetic analysis of neighboring gene familiesFigure 5
A-F – Phylogenetic analysis of neighboring gene families. A-F. Examples of the phylogenetic relationship for six addi-
tional neighboring gene families A (MAX), B (NKR), C (OGDH), D (PX19), E (SORB) and F (TSPAN). Trees were constructed 
and visualized in the same way as in Fig. 4.
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genes corresponding to one tetrapod gene. The 33 aa
ankyrin repeat is one of the most common protein
domains in the pfam database.

Annexin (ANX)

A core domain consisting of four repeated units, each
about 70 amino acids long, characterizes the annexin fam-
ily. Each repeat unit contains 5 alpha helices that usually
contain a "type 2" motif for binding of Ca2+ ions [50]. The

phylogenetic analysis recovered a topology expected by
expansion in the early vertebrate lineage and also evi-
dence for local duplications before the origin of verte-
brates as well as additional fish specific and a few tetrapod
specific duplications. In addition, the positions of the
genes investigated in this study agree with block duplica-
tions of the chromosomal regions harboring these genes.

Conserved synteny among vertebrate species compared to human chromosome 4Figure 6
Conserved synteny among vertebrate species compared to human chromosome 4. Conservation of synteny for 
genes investigated in this study residing on human chromosome 4 compared to mouse, T. rubripes, T. nigroviridis and D. rerio. 
Numbers above boxes denotes chromosome numbers or scaffold names. Position of the genes (Mega base pairs) is given 
below each box. Genes are ordered according to their positions on the human chromosome. Genes linked in the other spe-
cies are indicated with lines above boxes. Species name abbreviations are: Hsa (Homo sapiens), Mmu (Mus musculus), Tni 
(Tetraodon nigroviridis), Tru (Takifugu rubripes) and Dre (Danio rerio). The NPY receptors are indicated in darker color while loss 
of NPY receptor genes are indicated with striped boxes. White boxes indicate genes where the phylogenetic analysis is incon-
clusive but where position indicates orthology.
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AP3

This family contains two members in the human genome
(AP3M1 and AP3M2) on Hsa8 and Hsa10 consistent with
early vertebrate block duplication. They are members of a
larger family of proteins called adaptins that are impor-
tant for vesicular transport common to all eukaryotes
[51,52]. The mammalian AP-3 complex has been demon-
strated to interact with clathrin and has been implicated
in lysosomal membrane protein trafficking, sorting of
melanosomal proteins and neurotransmitter/synaptic
vesicle formation [51].

CNNM

The CNNM protein family (also referred to as ACDP) con-
tains four members in both the human and the mouse
genomes [53,54]. These genes share one highly conserved
domain, the ACD domain, which is present in a large

number of species. The functions of these proteins are
largely unknown. Immunofluorescence studies showed
all four members to be localized to the nucleus and it has
been speculated that these genes are probably involved in
cell cycle regulation due to their similarity to cyclins [53].
The topology of the tree indicates a local duplication
before the split of actinopterygians and sarcopterygians
followed by block duplications and also some additional
local duplicates in the fish lineage.

DUSP

The dual specificity phosphatases (or MAP kinase phos-
phatases) are evolutionarily conserved enzymes that are
important in the regulation of apoptosis, cell proliferation
and cell differentiation. They exert their effects by dephos-
phorylating and thereby inactivating MAP kinases [55].
The recovered topology in this study is in agreement with

Conserved synteny among vertebrate species compared to human chromosome 5Figure 7
Conserved synteny among vertebrate species compared to human chromosome 5. Conservation of synteny for 
genes investigated in this study residing on human chromosome 5 compared to mouse, T. rubripes, T. nigroviridis and D. rerio. 
Chromosomes, scaffolds, gene positions, gene order and species abbreviations are given in the same way as in Fig. 6.
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an expansion of this gene family in the vertebrate lineage.
However the relationship of the different paralogs was not
similar to that proposed earlier [14] possibly due to inclu-
sion of other species in this analysis. Based on our analysis
it is unlikely that the mouse gene named Dusp13 is the
ortholog of human DUSP13.

Fibroblast growth factor receptor (FGFR)

The fibroblast growth factor receptors comprise one of the
families already described as being a part of this paralo-
gon [1,14]. The topology of the phylogenetic tree is con-
sistent with an expansion in the vertebrate lineage
followed by further expansion in the teleost lineage. Inter-
estingly, one of the families included in our initial list of
gene families linked to the NPY receptor genes in T. nigro-
viridis is a subfamily of the fibroblast growth factors

(FGFs) suggesting that both ligands and receptors were
duplicated in the same time window. Hurst and Lercher
observed that many ligand genes are linked to their recep-
tor genes (including several of the FGFs and FGFRs) and
that this could be due to block duplication that would
keep the ratio of gene products at the same level as before
duplication [56]. Our analysis of the FGF family was
inconclusive in assigning orthology for the different mem-
bers due to the rather short length of the sequences
(~120aa). For detailed overviews of FGF and FGFR evolu-
tion with discussion about the role of gene and genome
duplication see [57-59].

HNRNP

The HNRNP family is a family of proteins that contain
two RBD or RRM domains. These proteins are known to

Conserved synteny among vertebrate species compared to human chromosomes 8, 2 and 7Figure 8
Conserved synteny among vertebrate species compared to human chromosomes 8, 2 and 7. Conservation of 
synteny for genes investigated in this study residing on human chromosome 8, 2 and 7 compared to mouse, T. rubripes, T. nigro-
viridis and D. rerio. Chromosomes, scaffolds, gene positions, gene order and species abbreviations are given in the same way as 
in Fig. 6.
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interact with telomeric repeats d(TTAGGG) and to 3'splice
sites r(UUAG/G) and have also been proposed to have a
role in the regulation of mRNA stability. One of the
human members, HNRPD has previously been mapped
to Hsa 4q21 and been shown to have a highly conserved
ortholog in the mouse genome [60]. Our present analysis
recovered a subfamily with two members on Hsa4 and
one member on Hsa5. The relationship of the fish
sequences included was not resolved by this analysis, pos-
sibly due to loss of family members in human and mouse.

LGI

The gene LGI1 (leucine-rich gene – glioma inactivated)
was discovered by positional cloning in 1998 and found
to be mainly expressed in neural tissues, particularly in the
brain. The gene is localized to human chromosome
10q24, a region found to be rearranged or deleted in sev-

eral types of malignant brain tumors. Because of this LGI1
was proposed to be a tumor suppressor gene [61]. Three
additional genes with similarity to LGI1 were found in the
human genome and it was shown that these four genes
constitute a subfamily of leucine rich repeat (LRR) genes
[62]. The topology of the tree is consistent with duplica-
tions before the sarcopterygian-actinopterygian split, but
one of the genes is located on Hsa19 rather than Hsa5.

MAPK

A subfamily of the large superfamily of mitogen-activated
protein kinases (MAPK) was identified as being part of
this paralogon. This subfamily contains the human mem-
bers MAPK8, MAPK9 and MAPK10 (JNK1, JNK2 and
JNK3). These proteins are involved in a wide variety of cel-
lular processes like cell growth, proliferation, differentia-
tion, immunity and development [63]. For a recent review

Conserved synteny among vertebrate species compared to human chromosome 10Figure 9
Conserved synteny among vertebrate species compared to human chromosome 10. Conservation of synteny for 
genes investigated in this study residing on human chromosome 10 compared to mouse, T. rubripes, T. nigroviridis and D. rerio. 
Chromosomes, scaffolds, gene positions, gene order and species abbreviations are given in the same way as in Fig. 6.
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of their role in vertebrate development see [64]. The gene
duplications agree well with the block duplications prior
to the sarcopterygian-actinopterygian divergence.

MXD

The MXD protein family has four members in the human
genome. These proteins are characterized by a common
basic-helix-loop-helix leucine zipper domain necessary
for the formation of heterodimers with other proteins,
such as Myc and Max [65]. The function of these proteins
as regulators of Myc and Max activity with implications
for tumour formation has recently been reviewed [66].
The topology of the phylogenetic tree and the positional
information strongly supports the paralogy of the studied
regions. It does not contain any extra fish specific dupli-
cates.

NEF (Intermediate filaments/neurofilaments)

All intermediate filaments have a similar structural organ-
ization with a central alpha-helical rod domain that
begins and ends with highly conserved aa-motifs neces-

sary for correct assembly. Intermediate filament proteins
have earlier been viewed as scaffolding structural proteins
but more and more data suggest much more dynamic
roles for these proteins [67]. The phylogeny of this protein
family supports expansion in the vertebrate lineage. Inter-
estingly, it seems like one subfamily in this gene family
belongs to the HOX paralogon (with members on Hsa 2,
7, 12 and 17), which also contains the NPY peptide fam-
ily. The tree also indicates a local duplication before the
divergence of actinopterygians and sarcopterygians and
additional fish specific duplications.

NKR

The tachykinin receptors are GPCRs that bind the ami-
dated neuropeptides substance P, neurokinin A and neu-
rokinin B as well as some other related peptides [68]. In
vertebrates, three different tachykinin receptors have been
described so far [68]. Our phylogenetic analysis of this
receptor family shows a topology consistent with an
expansion in the vertebrate lineage in agreement with the
previous hypothesis [2], as well as an additional expan-

Proposed evolutionary scenario for the NPY receptor gene chromosomesFigure 10
Proposed evolutionary scenario for the NPY receptor gene chromosomes. Schematic picture showing the proposed 
evolutionary history for 16 gene families located on the same chromosomes as the NPY receptor genes in T. nigroviridis and 
human. Note that position of genes is shuffled to simplify the picture. Striped boxes indicate gene losses. Position for genes on 
Hsa2 and Hsa7 is indicated in the boxes.
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sion consistent with block duplication in the teleost line-
age.

OGDH

Oxoglutarate dehydrogenase (OGDH also designated E1k
or lipoamide) makes up a part of the enzyme complex
responsible for conversion of α-ketoglutarate to succinyl
coenzyme A in the Krebs cycle [69]. The gene for OGDH
and one related sequence (OGDHL) have previously been
mapped to Hsa 7 and Hsa 10 respectively [70]. Both of the
pufferfish species have an ortholog of OGDH and a pre-
sumed 3R co-ortholog (Fig. 8) and an OGDHL ortholog
(Fig. 9). Oxoglutarate dehydrogenase has previously been
shown to be involved in the production of reactive oxygen
species in the brain of mice and thereby has been ascribed
a role in neuronal cell death [71]. Apart from this, little is
known about the function and evolution of this protein
family.

PDLIM

The PDZ and LIM domain-containing family is a multi
domain protein family characterized by the presence of
one PDZ and one or several LIM domains. Both the
ABLIM family described above and the PDLIM family
described here belong to the same superfamily [72]. Our
analysis uncovered a topology in accordance with expan-
sion in the vertebrate lineage. This family contains a full
quartet in the human genome as expected by 2R without
loss of genes, although it does not display an (A,B)(C,D)-
topology, presumably due to unequal evolutionary rates
after duplication.

PX19

This family contains a conserved domain named MSF
(after the protein MSF1 found in the yeast Saccaromyces
cerevisiae). This family contains three closely related mem-
bers of duplicated genes in the human lineage clearly
duplicated after 2R but the two fish genes support the par-
alogon described here. The function of these proteins is
unknown but they are thought to be involved in intra-
mitochondrial protein sorting. One of the human genes is
present on Hsa5 and earlier observed to be linked to one
member of the MXD family (see above) [73].

SAMD8

The SAMD8 family (here named after one of its members)
contains three different genes in the human genome:
SAMD8 (referred to as sphingomyelin synthase-related
protein 1 or sterile alpha motif domain-containing 8),
TMEM23 or Mob (referred to as transmembrane protein
23, sphingomyelin synthase 1 or protein mob) and SMS2
(Sphingomyelin synthase 2). Proteins in this family all
contain a SAM domain and 4–6 transmembrane domains
and constitute a subset of a larger family of spingomyelin
synthases [74]. Our analysis was indicative of an early

local duplication event before the divergence between
actinopterygians and sarcopterygians, with two genes still
present on Hsa10 and one on Hsa4.

SFRP

The secreted frizzled related proteins (SFRP, also referred
to as secreted apoptosis related proteins, SARPS) have five
members in the human genome, three of which are
located in the regions analyzed here. The SFRP family is
characterized by a frizzled domain and a C-terminal
netrin domain. Proteins of the SFRP family have been
implicated in regulating Wnt-frizzled signalling either by
interacting with Wnts or the frizzled receptors [75,76].
Our phylogenetic analysis defines these three genes as a
subgroup that has expanded during the evolution of ver-
tebrates. Rattner et al. described this family in the mouse
and showed that the members of this family was linked to
some of the genes investigated in this study [77]. Of the
fishes included here, only Danio rerio is indicative of any
extra duplication.

SORB

The SORB or vinexin family has three members in the
human genome namely vinexin, CAP (c-Cbl associated
protein)/ponsin and ArgBP2 (Arg-binding protein 2).
Common for all these proteins is that they contain a
sorbin homology domain (pfamID PF02208) and three
SH3 domains [78]. Members of this family have been
implicated in the regulation of cell adhesion, and
cytoskeletal organization and also growth factor signal-
ling by functioning as adaptor proteins, connecting vari-
ous other proteins [78]. This family supports an
expansion in the proposed time window but does not
show any evidence for a fish-specific duplication.

TIA

The two RNA binding proteins TIA1 (RNA-binding pro-
tein TIA-1) [79] and TIAR (TIA-1-related protein) [80] are
the sole human members of a protein family that has been
implicated in induction of apoptosis in certain cell types.
Although the gene family only contains two members in
the genomes of human and mouse, the phylogenetic and
positional information support the conserved synteny of
these chromosomes in this study. In the fishes this family
supports the block duplication hypothesis for the chro-
mosomes harboring the NPY8a and NPY8b receptors
despite the failure to determine clear orthology relation-
ships.

TSPAN

Tetraspanins are a large family of membrane proteins with
four transmembrane domains (hence the name). These
proteins are present in a wide variety of organisms and it
has been proposed that the tetraspanin-like proteins
present in plants share a common origin with tetraspanins
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in animals [81]. Tetraspanins are generally expressed in all
cell types and usually several types are co-expressed. Their
functions include various types of cell-cell and matrix-cell
interactions and they have been implied in forming mem-
brane microdomain structures and thereby working as
"molecular facilitators" [82] or "molecular organizers"
[81]. A total of 33 tetraspanins has previously been
reported in human and 47 in bony fishes [81]. We identi-
fied a subfamily comprised of several vertebrate sequences
as well as invertebrate outgroup sequences that support
the block duplication hypothesis.

UNC5

The transmembrane protein UNC-5 was first character-
ized in C. elegans and implicated in regulation of netrin
signalling since mutation of unc-5 causes neural migra-
tion defects while ectopic expression of unc-5 causes
netrin-dependent redirection of axon growth in some
neurons. Four different paralogs of UNC-5-like proteins
have been found in vertebrates. These proteins contain
two extracellular immunoglobulin-like domains and two
extracellular trombospondin type 1 (TSP_1) domains
[83] and three intracellular domains (ZU-5, DB and DD)
[84]. The neuron guidance functions of this receptor fam-
ily in response to netrins and possible interaction partners
is reviewed in [84]. The topology of the tree is compatible
with the 2R hypothesis and also shows some fish-specific
duplicates. The fact that one rarely sees the perfect
(A,B)(C,D)-topology for quartets of genes could be
explained by unequal evolutionary rates following dupli-
cation (see also PDLIM above). However, when phyloge-
nies and positional information are taken together the
block duplication hypothesis is supported.

ZIMP

The ZIMP family of proteins contains a conserved SP-
Ring/Miz domain, which they share with other PIAS pro-
teins (protein inhibitors of activated STATS). In human,
this family contains two members on Hsa7 and Hsa10
[85]. Both these proteins have been shown to regulate
androgen receptor activity [86,87]. Zimp10 has also been
described to have a role in TGF-β/Smad signaling [88].
The phylogenetic analysis and position of the fish genes
support the block duplication of the chromosomal seg-
ment harboring the Y8a and Y8b receptors.

ZINK

The ZINK family contains two proteins (zink finger pro-
tein 703 and zink finger protein 503) in the human
genome. Not much is known about the functions of these
proteins. They both contain a classical C2H2 zinc finger
domain (pfam ID PF00096). The positional and phyloge-
netic information for these two genes are in agreement
with block duplication before the actinopterygian-sarcop-
terygian split. The T. nigroviridis genome has two addi-

tional members resulting from the teleost fish
tertaploidization on Tni2 and Tni Unr.

Discussion
The aim of the present study was to analyze in detail the
phylogeny of gene families neighboring the NPY receptor
genes to see if their evolutionary history was consistent
with block/chromosome duplications [1,2,5]. We
approached this by analyzing gene families on either side
of the NPY-receptor family genes in the T. nigroviridis and
T. rubripes genomes. We also used the information from
the analyses of neighboring gene families to assign orthol-
ogy and paralogy of the NPY receptor genes. The present
study identified the receptors Y2, Y4, Y7, Y8a and Y8b in
the two pufferfish genomes (Fig. 1). The chromosomal
locations of the Y8a and Y8b genes show that they reside
on two related fish chromosomes that most likely arose in
the teleost tetraploidization (3R). Furthermore, the gene
neighbors on these chromosomes strongly suggest that
the corresponding ancestral teleost chromosome belongs
to a quartet of ancestral gnathostome chromosomes that
most likely arose in the proposed basal vertebrate tetra-
ploidizations (Fig. 6, 7, 8, 9). The zebrafish Y8a gene is
located on chromosome 17 according to the database ver-
sion used in this study but has previously been mapped to
chromosome 10 [42] (see Fig. 8). Thus, we can confirm
and extend the proposed gene duplication scheme [5] so
that it accounts for all of the NPY-family receptors in
mammalian and teleost genomes (Fig. 10): an ancestral
local triplication was followed by the basal vertebrate
tetraploidizations whereupon several genes were proba-
bly lost, resulting in an ancestral gnathostome repertoire
of seven NPY receptor genes.

In the tetrapod lineage, Y7 and Y8 are present in the frog
Xenopus tropicalis (unpublished data) and Y7 is still
present in chicken [39] while both the Y7 and Y8 genes
seem to have been lost in the lineage leading to mammals.
In the actinopterygian lineage leading to euteleosts, one
additional copy arose in the teleost 3R tetraploidization,
while two genes seem to have been lost in euteleosts, Y5
and Y6. We recently discovered the Y1 gene in the
zebrafish genome but it has so far not been found in the
genomes of pufferfishes, medaka or stickleback and may
have been lost. For a description of the NPY receptor rep-
ertoire in basal teleosts see Salaneck et al. [43]. Finally,
also the prolactin releasing hormone receptor gene shares
the same degree of identity with the NPY-family receptors
as the Y1–Y2–Y5 subfamilies display to one another [89],
but the preferred ligand is not NPY and therefore we have
not included it in the duplication scheme.

Our characterization of the five T. rubripes genes revealed
that both Y4 and Y8a have received insertions in the cod-
ing region after divergence from the lineage leading to
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zebrafish, as seen for the melanocortin receptor genes
MC2R and MC5R in pufferfish [90], despite the intron
and general genome compaction of these genomes [91].
In the case of Y4 the insertion extends extracellular loop 2
with 74 amino acids (Fig. 3A). The Y8a gene has under-
gone no less than three insertions of introns whose posi-
tions are projected onto the protein structure shown in
Fig. 3B. The presence of the insertion in Y4 mRNA and the
removal of the three Y8a introns were confirmed by RACE
and PCR in T. rubripes. The largest of the Y8a introns is 2.5
kb and carries a small exon that extends extracellular loop
2 with 21 amino acids. In the Y8b gene one cryptic intron
is spliced and this shortened splice variant is present in a
minor proportion of the mRNAs and presumably leads to
a nonfunctional partial receptor protein. This cryptic
intron splice site is also present in the medaka gene found
in the genome database. We suggest that the Y4 insertion
was also probably a reinserted intron that subsequently
lost its splice signals, but thanks to its small size and the
maintained reading frame it could be tolerated as a pro-
tein expansion in extracellular loop 2. Functional expres-
sion of the receptors will be necessary to see if the
extensions of loop 2 in Y4 and Y8a affect the ligand-bind-
ing properties of the receptors. Studies of the anatomical
distribution of the mRNAs for the five NPY receptors in T.
rubripes, as detected by RT-PCR, show that all five are
present in the brain and eye. Interestingly, Y8a and Y8b
differ greatly in their distribution in that Y8b is expressed
in all organs investigated whereas Y8a shows the narrow-
est distribution of all receptors, although Y8a and Y8b are
most closely related to each other having originated in 3R.
Functional information is still missing for many fish NPY-
family receptors. The pufferfish NPY system is more com-
plicated than in most other vertebrates because there are
four peptide ligands due to 3R duplicates of both NPY and
its relative PYY [92].

Several authors have discussed what criteria one should
have for identifying paralogous regions and to safely infer
that block duplications or chromosome duplications have
occurred [93-96]. We argue that as many species as possi-
ble, with divergencies close in time to the proposed chro-
mosome duplication events, should be included in the
analyses to be able to date duplications and to reveal fluc-
tuations of evolutionary rates among gene duplicates and
across lineages. This also helps identify translocations and
inversions as well as lineage-specific duplications and
deletions. Due to high frequency of chromosomal rear-
rangements, inter- as well as intra-chromosomal, the gene
content of chromosomal blocks can be considered suffi-
cient to identify duplications on these time scales (several
hundred million years). Given the high rate of deletion
after duplication we want to emphasize the importance of
combining map-based and phylogenetic approaches in
order to understand the evolution of genomic regions. In

this way, gene families with only two members (as
opposed to the expected 4 as predicted by 2R) still give
important information.

It has been suggested that the observed patterns of paral-
ogy within genomes, often interpreted to be the remnants
of large-scale duplications, could be the result of conver-
gent evolution [97]. We believe this alternative explana-
tion to be unlikely not only because polyploidization has
been shown to be common in many lineages but mainly
because reconstructions of ancestral chromosomal
regions based on comparisons of vertebrate genomes
shows that these paralogous regions span large genomic
regions in many species [21]. If many small independent
events produced the observed patterns of chromosomal
similarity, one would need to infer that these events
occurred in a relatively short period of time before the ver-
tebrate radiation, otherwise one has to invoke several
independent but identical duplication and translocation
events giving the same chromosomal organization in dif-
ferent lineages. To our knowledge, no mechanism has
been described in metazoans that could support such a
scenario.

Among the gene neighbors of the NPY receptor genes, we
analyzed 44 gene families with members on the chromo-
somes bearing NPY-receptor genes. In fact, chromosomes
orthologous to three of the four human chromosomes
were all found to be present in duplicate in the fish
genomes, consistent with the 3R teleost tetraploidization
(see Fig. 7, 8 and 9). This pattern has been referred to as
"doubly conserved synteny" [26]. The phylogenetic rela-
tionships of 25 of these gene families are consistent with
concomitant block or chromosome duplications. Another
three gene families included in the initial table [see Addi-
tional file 3], have earlier been proposed to be part of this
paralogon and recently been studied in detail by others
(two subfamilies of adrenergic receptors [44,98] and
members of the large gene superfamily of metzincins
other than the ADAMTS family included in our analysis
[45]).

Eight gene families had to be excluded from analysis
because they had too many family members to achieve a
reasonably clear picture of their evolutionary relation-
ships or problems in analyzing them due to too high
sequence conservation to be informative or varying
number of protein domains making it hard to obtain une-
quivocal alignments. More thorough analysis using diag-
nostic positions and comparisons of intron-exon structure
could be used to clarify the relation of the different para-
logs of these families. Thus, our study provides a minimal
estimate of the number of gene families that expanded
simultaneously with the NPY receptor genes.
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Out of the 44 gene families a total of 26+3 support block/
chromosome duplications whereas eight gene families are
unsupportive of the block duplication scheme with inver-
tebrate sequences located between the vertebrate paralogs.
The reasons for this may be earlier expansions of these
families, uneven evolutionary rates among the daughter
genes, gene conversion between family members or sim-
ply translocation of distant family members to the chro-
mosomes in this study.

We uncovered evidence for extra fish duplicates, in agree-
ment with 3R, for 18 of these 26 gene families. However,
because we were forced to exclude several gene family
members as they lacked one or a few protein domains,
this is certainly an underestimate of the true number (see
above). It has been pointed out earlier that the number of
genes retained after 3R is rather low as compared to after
1R and 2R [99]. One good example of this is the well stud-
ied Hox clusters that have lost many duplicates [100].

The fact that there are 127 gene families with members on
two of the investigated T. nigroviridis chromosomes may
further corroborate the conserved synteny between the
chromosomal regions in this study, although they need to
be analyzed phylogenetically as well. Among these 127
pairs of paralogs, all ten possible combinations of the five
T. nigroviridis chromosomes are represented. The lack of
sequence data from several important species is still a lim-
iting factor in investigation of the early vertebrate chro-
mosome duplications. In particular, sequences from the
cephalochordate Branchiostoma floridae (first draft version
of assembly recently released but with limited data on
gene linkage) and representatives of the jawless and carti-
laginous fishes will help to date the block/chromosome
duplication events when more extensive gene contigs have
been generated.

One interesting observation is that members of some of
the gene families studied here have been reported to inter-
act with each other in signaling networks or possess
domains that commonly interact with each other. This
opens for the possibility that blocks of genes that were
duplicated simultaneously can co-evolve and therefore
one might detect subfunctionalization of entire gene net-
works and not only of different paralogs within one fam-
ily. Examples of such families according to the BioGRID
database of protein interactions [101,102] are the MAPK
and the DUSP families, the ABLIM and NEF families, the
ANX and NEF families, the CNNM and HNRNP families,
the PDLIM and NEF families, the SAMD8 and ADAMTS
families and the SAMD8 and the HNRNP families. How-
ever, these families contain many members and are
known to have a diverse set of interaction partners and
therefore functional experiments are needed to specifi-
cally test the interaction of the paralogs analyzed in this

study. This observation also leads to speculation about
differential retention of gene family members after dupli-
cation because of their different functions or involvement
in signaling networks. A higher retention rate after dupli-
cation of genes and specialization of different paralogs
that are tied up in signaling networks has been proposed
earlier [103]. This also has been shown for genetic net-
works in yeast (Saccharomyces cerevisiae) duplicated by
tetraploidization around 100 million years ago [104] as
well as for duplicates in Arabidopsis thaliana produced by
the most recent polyploidizations in this species that took
place 20 to 60 million years ago [105,106]. These proc-
esses are also linked to the predictions regarding gene fate
after duplication deduced from models of subfunctional-
ization [107-110] stating that paralogs could be fixed in
the genome by a partitioning of ancestral functions, some-
thing that would lead to a higher retention of gene dupli-
cates that could subsequently evolve new functions
[111,112].

In earlier analyses of these paralogous regions using sev-
eral other gene families, the order of duplication events
has been inferred based on the phylogenetic trees giving
highest support for the (Hsa8, Hsa10), (Hsa4, Hsa5)
topology [14]. In our dataset this is also the most frequent
relationship observed for the human chromosomes, pos-
sibly reflecting the order of duplication events.

Conclusion
In summary, we have characterized the NPY receptor rep-
ertoire in the two pufferfishes T. rubripes and T. nigroviridis
and compared the chromosomal regions where the recep-
tor genes are located in one additional fish and two mam-
malian species. The conserved synteny shows that many
of the gene families were located together in the same
chromosome regions of the common ancestor of gnathos-
tomes more than 400 Myr ago [113] (for a summary see
Fig. 10). Our results are in line with the tetraploidizations
in early vertebrate evolution as well as an additional tetra-
ploidization in teleosts. Although gene losses are frequent
after duplication it is possible to infer paralogy and
orthology in this way by analyzing both phylogentic and
positional information simultaneously. This "transitive
homology" approach [40,41] in combination with dating
of duplication events in relation to speciation events is in
our opinion, as shown by the present study, a more relia-
ble way to unravel the evolutionary history of gene fami-
lies in cases where phylogenetic analyses alone are not
fully informative.

Methods
Identification and analysis of NPY receptor genes in 

Tetraodon nigroviridis and Takifugu rubripes

BLAST searches were carried out on the Ensembl database
version 35.1d [114] using human and zebrafish NPY
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receptor sequences in order to identify all NPY receptor
sequences in the genomes of the two pufferfishes T.
rubripes and T. nigroviridis. The sequences found were
aligned with previously known NPY receptor sequences
and closely related peptide binding receptors using the
Windows version of ClustalX 1.81 [115,116]. The align-
ment was manually edited to remove poorly aligned resi-
dues. Thereafter an initial phylogenetic analysis was
performed using the neighbor-joining method in
MEGA3.1 [117] with standard settings in order to assign
which sub-families of receptors that were represented in
the pufferfish genomes. In addition to the NJ-tree a quar-
tet-puzzling tree was constructed with Treepuzzle 5.2
[118] using the same alignment. This tree was made with
the following settings: 9 categories of sites (8 gamma + 1
invariant, parameters estimated from the dataset using the
"exact-slow" option) with 10000 puzzling steps using the
JTT substitution matrix (tree not shown).

The NJ-tree was bootstrapped 1000 times. Several closely
related human sequences were included in the analyses
(see Fig. 1). Human bradykinin B1 receptor was used to
root the tree and nodes with bootstrap support values
below 50% were collapsed (see Fig. 1).

RT-PCR in Takifugu rubripes

Total RNA was isolated from eleven T. rubripes tissues
using TRIzol reagent (Invitrogen, USA) according to man-
ufacturer's protocol. Purified total RNA was reverse tran-
scribed and single-strand 5'RACE-ready cDNA was
prepared using SMART RACE cDNA Amplification Kit
(Clontech, USA). Primers used for the receptors as well as
an internal actin control are listed in Table 1. The PCR was
carried out according to the following protocol: a denatur-
ation step at 95°C for 2 min, 35 cycles of 95°C 30 sec,
55°C for 1 min, 72°C for 1 min followed by a final elon-
gation step at 72°C for 5 min. Identity of representative
RT-PCR products were confirmed by sequencing on an
Applied Biosystems 3700 DNA Analyzer using dye-termi-
nator chemistry.

Phylogenetic analysis of neighboring genes

Starting from the confirmed receptor genes in the T. nigro-
viridis genome, all Ensembl Gene IDs for genes positioned
four megabases on each side of the receptor genes were

downloaded and saved in an Excel file. In addition to
Ensembl Gene IDs the file contained information on
Ensembl Family ID and family description as well as
information about chromosomal position and human
orthologs. This list was sorted based on Ensembl Family
ID and all multiple entries for the same gene due to mul-
tiple transcripts were removed. The gene families contain-
ing members close to three or more of the T. nigroviridis
NPY receptor genes were used for phylogenetic analysis.
In addition to gene families found in this way, several
families with members on the NPY receptor gene harbor-
ing scaffolds in T. rubripes were included [see Additional
file 3]. All amino acid sequences of members included in
the Ensembl families were downloaded from T. nigro-
viridis, T. rubripes, Danio rerio, Homo sapiens and Mus mus-
culus. Invertebrate sequences representing at least one
outgroup species were included in order to root the trees.
For the main part of the trees both Drosophila melanogaster
and Ciona intestinalis was used as outgroups. In cases
where no clear orthologs could be found in these two spe-
cies we used sequences from other invertebrate genomes
available in the Ensembl database [114] (see figure leg-
ends and additional files for complete description of out-
groups). Sequences for each family were aligned using
MEGA 3.1 with default settings. All alignments were man-
ually inspected and short and poorly aligned sequences
were removed. Sequence alignments were further adjusted
with the aid of the pfam database [119] for prediction of
protein domains. Relevant literature describing the fami-
lies was also used to find description of the domains.
Thereafter the cut sequences were realigned and neighbor-
joining trees was constructed using MEGA 3.1 for each
family with pairwise deletion of gaps, 1000 bootstrap rep-
licates and poisson-corrected distances. Alignments for
the 26 families analyzed in detail are available [see Addi-
tional file 4].

Initial phylogenetic trees were inspected for topologies
consistent with an expansion of the family in vertebrate
evolution i.e. the outgroup sequence/sequences rooting
several of the sequences residing on the particular chro-
mosomes under study (for example Hsa 4, 5, 8 and 10).
In cases where a large number of sequences were included
in the Ensembl family, the initial phylogenetic tree was
used to find relevant sub families represented by multiple

Table 1: Primers used for RT-PCR on eleven Takifugu rubripes tissues.

Gene Forward primer Reverse primer Size of fragment

Y2 5'-ACTCTCATCTACACGCTGTACGG-3' 5'-CATCAGCAACCATCTTGGTGGTCTT-3' 484

Y4 5'-TCATGGACCATTGGGTGTTTGGCTC-3' 5'-GCCATGCGCTGGCACTCTGGA-3' 601

Y7 5'-CACTCTGGTTTACACTCTGCTGGAT-3' 5'-TCGTTGCGAGTGGATGGGCTGA-3' 453

Y8a 5'-ACCGCTGGGTGCTGGGAGAG-3' 5'-CGTCGTTTCAGGCGAAGGAAGAT-3' 481

Y8b 5'-GACCGCTGGATCCTGGGCGAT-3' 5'-TGTTTCTCTTCTGGGCGCCGT-3' 460 (267)

Actin 5'-AACTGGGAYGACATGGAGAA-3' 5'-TTGAAGGTCTCAAACATGAT-3' 130
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vertebrate sequences and at least one outgroup sequence.
The identified sub families were realigned and subjected
to neighbor-joining analysis as described above. In addi-
tion to gene families represented on three or more of the
T. nigroviridis chromosomes all families with members on
two of the chromosomes were saved in a table [see Addi-
tional file 3]. Phylogenetic trees with a topology consist-
ent with expansion in vertebrate evolution before the
origin of gnathostomes using the NJ-method were exam-
ined using the Quartet-puzzling method in the Windows
version of Treepuzzle 5.2 [118] to further support the
result. The settings used for each analysis was the same as
mentioned above for the NPY receptor family but with
varying number of puzzling steps (1000–25000) depend-
ing on the size of the family.

Statistical testing of paralogous regions

The position of paralogs were statistically tested for ran-
dom distribution in both the human and T. nigroviridis
genomes using the binomial test as described earlier by
Vienne et al. [14]. Genes belonging to the same family
residing close to each other on the same chromosome that
grouped together in the phylogenetic trees were counted
as one member because they are most probably the result
of recent lineage specific local duplications and thereby
not of interest in our analysis. The chromosomes tested
for random distribution were the ones shown by phyloge-
netic analysis to contain several paralogs (i.e human chro-
mosomes 4, 5, 8/2/7 and 10). For details on statistical
analysis: [see Additional file 5].
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