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Introduction

The task of providing leading indicators of catastrophic regime shifts in ecosystems is fundamen-
tal in order to design management protocols for those systems. Here we address the problem
of lake eutrophication (that is, nutrient enrichment leading to algal blooms) using a simple
spatial lake model. We discuss and compare different spatial and temporal early warning sig-
nals announcing the catastrophic transition of an oligotrophic lake to eutrophic conditions. In
particular, we consider the spatial variance and its associated patchiness of eutrophic water
regions. We found that spatial variance increases as the lake approaches the point of transi-
tion to a eutrophic state. We also analyze the spatial and temporal early warnings in terms of
the amount of information required by each and their respective forewarning times. From the
consideration of different remedial procedures that can be followed after these early signals we
conclude that some of these indicators are not early enough to avert the undesired impending
shift.
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to a regime shift the statistical properties of the

The problem of providing early warning signals of
catastrophic shifts in ecosystems has been recently
addressed by different methods. Minimal models of
lake eutrophication [Carpenter & Brock, 2006; Gut-
tal & Jayaprakash, 2008], lake pollution [Brock &
Carpenter, 2006] and lake turbidity [van Nes &
Scheffer, 2007] have been used to show that prior
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time series produced by the models change mono-
tonically. Temporal variance increases [Carpen-
ter & Brock, 2006] and the skewness of the time
series probability distribution changes [Guttal &
Jayaprakash, 2008]. Similarly, van Nes and Schef-
fer [2007] showed that the return rates in response
to disturbance decrease before the regime shift;
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an effect that can be quantified as an increase in
autocorrelation of the time series of the observed
system variables [Kleinen et al., 2003; Dakos et al.,
2008]. In parallel lines, Kéfi et al. [2007] studied the
transition to desertification in arid ecosystems by
analyzing how vegetation patchiness changes with
different grazing pressure using a cellular automa-
ton model. The conclusion of their work was that
changes in patch-size distributions may be a warn-
ing signal for the onset of desertification. Guttal and
Jayaprakash [2009] showed that increase variance
and a peak in skewness may be regarded as lead-
ing indicators of regime shift in spatial ecologies. In
all cases, no specific knowledge of the mechanisms
underlying the regime shifts is needed to construct
the indicators.

Water quality of lakes and reservoirs provide a
well-studied example of systems that shift between
alternative stable states [Scheffer, 1998; Carpenter
et al., 1999; Ludwig et al., 2003; Carpenter, 2003].
We use here a similar example to provide qualita-
tive tools both to anticipate catastrophic changes
and to help design management protocols for sim-
ilar systems. We discuss different proposed spatial
and temporal early warning signals of abrupt tran-
sitions and we show the link between both kinds of
indicators.

In Sec. 2, we describe the model we employ
to study early warnings of abrupt changes in the
ecological quality of a lake ecosystem. The results
obtained with this model are discussed in Sec. 3,
where a detailed comparison between spatial and
temporal indicators is performed. Finally in Sec. 4,
we present our conclusions and suggestions for other
ecosystems where these signals could be used to
anticipate dramatic changes.

2. The Model

We consider the spatial version of the mean field
model of a lake [Carpenter et al., 1999], describ-
ing the change over time of some property, s, that
characterizes the state of the lake (for example, the
water phosphorus concentration). We represent the
lake by a square lattice of L x L sites identified
by their coordinates (x,y); in our case 100 x 100.
Obviously lakes of arbitrary shape can be studied
by embedding them into a square lattice like the
one above, with appropriate boundary conditions.
Similarly, we could generalize the problem to the
case where several variables determine the status
of the lake by considering that s is a vector. In

what follows, for simplicity, we consider the simple
schematic square shape and that a single variable s
is sufficient to represent the lake status. The evolu-
tion equation for the quantity s is then given by:

% = a(z,y;t) = bs(z,y;1)

+rfls(a, y; t)] + DV2s(2,y:t), (1)

where a(x,y;t) represents an environmental factor
that promotes s, for instance, the phosphorus load-
ing rate, varying both from point to point and in
time, b represents the rate at which s decays, i.e.
the nutrient removal rate, r is the rate at which s
recovers, i.e. by recycling from the sediment, and f
is a Hill function: f(s) = s7/(s?+ h?). We have also
included a diffusion term as in [van Nes & Scheffer,
2005] with diffusion coefficient D.

We have taken the same parameter value set
as in [van Ness & Scheffer, 2005], namely: b = r =
h = 1, the only difference being that, instead of
q = 4 we take ¢ = 8, as in [Carpenter, 2005]. For the
diffusion coefficient, we consider the value D = 0.1.
We consider that at each time ¢, nutrient loading
rate a(z,y;t) fluctuates around an average value
a(t) in the interval [a(t) — A,a(t) + A], where A
represents the effect of mechanical stirring of the
lake (i.e. wind, currents, animals). We have taken
A = 0.125 and have checked that the results do
not depend much on this value. Furthermore, we
have assumed that a(t) varies in steps of da = 0.001
per time step. This value of da was estimated from
[Carpenter, 2005] to represent approximately one
year in the evolution of nutrient loading in Lake
Mendota, in Wisconsin, USA.

In order to make quantitative comparisons
between the different signals, we calculate the fol-
lowing quantities from the time series produced by
the model:

(1) The spatial variance of s(x,y;t), o2, defined as:

0f = (s%) = (s)?

2

L2 ’
(2)

where (s) stands for the spatial average of the
variable s. Note that this quantity requires
knowledge of the status of the lake at all points
in a grid covering it.



(2) Similarly to nonspatial models, the temporal
variance o2, at an arbitrary point, say (z,y) =
(0,0), is defined as:

af = (s(0,0;1)*) — (s(0,0,1))

t t 2
> s(0,0;t) - ( > S(O,O;t’)>

t'=t—1 t'=t—r

Y

(3)

for temporal bins of size 7 as a(t) is varied. In
this case, the information required is restricted
to only one place in the lake, but taken over a
period of time. A typical value of the bin size is
7 = 20 years.

(3) The patchiness or cluster structure, which helps
to understand the behavior of o4. Clusters of
high (low) s are defined as those connected
regions of sites (z,y) such that

T

3(%3/) > Scrit) (8($,y> < 3Crit)7

where sqit is a predefined critical value of s,
which, in our case, lies around sq.i; = 1.

(4) Spatial correlation, in particular the two-point
correlation function of the values of s for pairs
of cells at (x1,y1) and (x2,y2), separated by a
distance d, which is given by

Ca(d) = (s(z1,y1)s(2,y2))
— (s(@1,91))(s(22,92)) (4)

which requires knowledge of the value of the

measured quantity at several pairs of points in
the lake.

In the following section, we look at the results
obtained using this model, in particular, at the evo-
lution of the measured observable (s(t)) and at the
four quantities defined above.

3. Results

In accordance with previous studies [van Nes &
Scheffer, 2005], we have found that, as a(t) goes
over a critical value, which lies around acit ~ 0.63
for our set of parameters, there is a sharp transi-
tion in the spatial average of the nutrient concen-
tration, (s(t)), as seen in Fig. 1. Once the system has
undergone the transition, it is difficult to return to
its original, oligotrophic state. Instead, a backward
transition is achieved through a hysteresis loop, at
a much lower nutrient input rate a(t) (Fig. 1). We
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Fig. 1. Average value of the measured observable, (s(t)),
as a function of the average nutrient input rate, a(t). The
evolution when the input rate is increasing is shown in black,
and, when it is decreasing, in red.

note that the value sq; = 1 approximately divides
the hysteresis loop in two equal parts.

In the case of nonspatial models, it has been
shown that such transitions are accompanied by an
increase in the temporal variance of s,0? [Brock &
Carpenter, 2006; Carpenter & Brock, 2006]. Given
that such increase in variance may be used as an
indicator of an oligotrophic lake shifting to eutroph-
ication, one may wonder to what extent similar
changes in variance occur in the spatial analog of
the model.

Figure 2 is a plot of both the spatial mean nutri-
ent concentration (s(t)), and its spatial variance o2.
It shows that the spatial variance o2 can also be
used as an early warning signal: it starts increasing
significantly when the nutrient load a(t) is approx-
imately 0.615 until the point when the transition
starts to occur (a(t) ~ 0.63). This almost 20-fold
increase in spatial variance corresponds to a fore-
warning of approximately 15 years, since da is 0.001
per year. After this critical point, spatial variance
keeps increasing till it peaks at a(t) = 0.644. During
this period the lake is in a mixed state, there are
cells that are undergoing the transition, before the
system as a whole reaches the alternative state at
a(t) =~ 0.66.

If an increase in spatial variance provides an
early warning for transitions in the state of the
ecosystem, it is worth checking whether managerial
responses based upon such signals may be effec-
tive in averting systemic transitions. In Fig. 3 we
consider two alternative remedial actions for our
lake model. In the first case, when the increase in
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Fig. 2. (s(t)) (blue) and o5 (green), as a function of the aver-
age nutrient input rate, a(t). We note that the spatial stan-
dard deviation provides an earlier warning than the change
in the average.

nutrient loading rate a(t) was stopped immediately,
the growth in (s(t)) nonetheless continued and the
lake shifted to the alternative eutrophic state. In
the second case, when a much more drastic action
is taken, that is reducing nutrient loading a(t)
at the same rate as it was previously increasing,
the average nutrient concentration (s(t)) decreased.
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Fig. 3. (s(t)) for two remedial actions: decrease the average

nutrient input rate, a(t) after reaching the load that fires the
early warning (red) or keep it constant (black).
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Fig. 4. o5 computed for different lattice sizes. Even for a
small grid of only nine points there is a clear signal.

However, the average nutrient concentration (s(t))
was slightly higher compared to the average concen-
tration when nutrient loading was increasing. This
means that the lake remained in a mixed state for
a long time even under reduced nutrient loading
rates. This implies that an even more drastic course
of action might be needed to ensure that the lake
as a whole remains in its clear oligotrophic state.
We also assessed the practical difficulty of esti-
mating the spatial variance o2. In a lattice of 100 x
100 gridcells, the amount of information needed to
estimate the spatial variance is very high. There-
fore, we performed calculations over smaller grid
sizes (i.e. of 3 x 3 and 5 x 5 cells, Fig. 4). We found
that the signal does not depend qualitatively on the
number of points on the grid that are considered in

order to estimate the increase in spatial variance o2.
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Fig. 5. Spatial (red) and temporal (blue) standard devia-
tions. See text for more details.
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Fig. 6. Values of s(z,y;t) at times ¢t = 219 ie. a(219) =

0.594 (upper panel), t = 269 i.e. a(269) = 0.644 (middle),

t = 319 ie. a(319) = 0.694 (lower panel), in a color scale
ranging from blue (s = 0.35) to red (s = 1.8).
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In Fig. 5, we compare the spatial variance o2 to
the temporal oZ. To do this, we tracked in time a
random individual cell in the lattice and estimated
the temporal variance over a sliding window of past
values. We found that spatial variance rises earlier
than temporal variance and as such it provides a
better warning signal for the upcoming transition
in s(t). The reason for this is clear: when estimating
the temporal variance one must consider past values
in the time series, which correspond to situations
where the lake is far from undergoing a transition.
The spatial variance considers only present values,
so if a signal announcing a change is present, it is
not obscured by averaging it with data where these
indications are absent.

Visualizing the spatial distributions of nutri-
ent concentrations in our lattice offers the basis
for understanding why spatial variance rises in our
model. As the nutrient load approaches its criti-
cal value, nutrient concentrations at individual cells
s(z,y;t) start fluctuating spatially (Fig. 6). These
increasing fluctuations, which lead to an increase
in spatial variance, are caused by two forces. On
one hand, each individual cell “slows down” and
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Fig. 7. Two point correlation function Cy(d) for the same
number of times as for Fig. 5 and the exponential fit
exp(—d/v) with a correlation length ¢ = 1.6 for t = 269
(dashed line) versus the distance d in lattice units.

319



320 R. Donangelo et al.

10

10° .
w
g
s
4
10' .
|$I'n: i
"'n 1 1
i
W |
lﬁl: PHI" '
RN
J'I [T
0 al gl oy
10
0 1 2
10 10 10
area
Fig. 8. Cluster size distribution corresponding to a = 0.624

(blue), and @ = 0.644 (green). This last value corresponds to
the maximum of both o5 and o¢.

drifts wildly around its deterministic equilibrium
as it approaches its bifurcation point [Wissel, 1984;
van Nes & Scheffer, 2007]. On the other hand, the
heterogeneity introduced by the disturbances on
the nutrient loading rate causes cells to achieve a
wider distribution of equilibrium values as the crit-
ical nutrient load is approached.

Interestingly, as the spatial fluctuations inc-
rease, diffusion between cells leads to cluster forma-
tion. Clustering creates spatial heterogeneity in the
nutrient concentration distribution of the individual
cells and can be quantified in terms of spatial corre-
lation. Indeed, when we plotted the two point cor-
relation function Cy(d) (Fig. 7) for the same times
considered in Fig. 6, we found that there was no
correlation at a(t) = 0.594, the correlation achieves
a maximum value for a(t) ~ 0.644, at the maxi-
mum of the spatial variance, and disappears again
for a(t) = 0.694.

The distribution of clusters in the transition
region follows a power law, as illustrated in Fig. 8,
for the value a = 0.644, i.e. at the peak of both
os and o;. Such a cluster distribution is similar to
the usual one found in a second order phase tran-
sition at the critical point. It is remarkable that

the one presented here is for a system which is not
described in statistical mechanics terms, in particu-
lar, where no particular Hamiltonian, partition fun-
cion or ensemble are given. Before the maximum,
for @ = 0.624, when o; has not changed and oy
has increased around one quarter of its way to the
maximum, the distribution is not a power law, but
resembles an exponential.

4. Conclusions

In this paper we have studied the application of
early warning signals for catastrophic transitions in
space. For this, we have used the spatial explicit
version of a simple lake eutrophication model
that shifts locally from an oligotrophic state to a
eutrophic state. We have followed the evolution of
the spatial variance o2 by measuring nutrient con-
centration s on a lattice of points that represented
a lake. We found that an increase in spatial vari-
ance could serve as an early warning signal of a lake
shifting from oligotrophic to eutrophic conditions.
Interestingly, sampling even smaller grids, contain-
ing fewer points than the whole lattice, proved to be
sufficient for observing a similar increase in spatial
variance. Additionally, when we compared spatial
variance measured at snapshots in time to tempo-
ral variance measured locally in one point, we found
that spatial variance was a better indicator of the
upcoming transition.

The rise in spatial variance is related to the app-
earance of spatial patterns, in the form of patches
of clear (=oligotrophic) and turbid (= eutrophic)
water. The identification of such patches of clear
and turbid water, for example, by aerial or satellite
imaging of a lake surface, and their quantification
in terms of spatial 2-point correlation may serve as
an alternative way of recognizing a transition from
oligotrophic to eutrophic conditions.

However, it seems that the early warning signals
considered in our study may not be early enough.
The reason is that they do not provide a timely
warning of the upcoming change in the lake status
which could be avoided by employing simple reme-
dial measures. Instead, it turns out that, in general,
when the increase in spatial variance is identified,
the lake is already in a partially mixed state where
only very drastic actions may be able to avoid a
shift to the alternative eutrophic conditions. Such
uncertainty will be fundamental for a decision to
implement a water quality management program,
due to potentially high costs, and shows that there



is still a lot of research needed in order to identify
the applicability of early warning signals in ecosys-
tem management [Biggs et al., 2009].

It is worth to remark that the qualitative
behavior of our results do not depend strongly on
parameter values employed in our model. However
the quantitative details of our conclusions depend
on the choice of those values. For instance, the value
of the diffusion parameter D affects the visual pat-
tern of the patches of clear and turbid water at the
transition between the oligotrophic and eutrophic
conditions. Furthermore, our model is a simple
description of lake water quality. In reality, other
variables next to nutrient concentration (i.e. Phos-
phorus) may also be used to describe the state of a
water body, like turbidity, phytoplankton biomass,
vegetation cover [Scheffer, 1998]. Nevertheless, our
main conclusions should hold even in the more com-
plex case: spatial variance of uni- or multivariate
observable quantities could serve as an early warn-
ing signal for catastrophic shifts in spatial ecologies
outperforming temporal variance.
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