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Abstract

This paper uses option prices to learn about the uncertainty surrounding firm

fundamentals. When firms announce earnings every quarter, they reveal current fun-

damentals (earnings, cash flows, sales, taxes, etc.) which were, to varying extents,

unknown to investors prior to the announcement. This information revelation is why

stock prices often react violently after earnings announcements. This paper devel-

ops estimators of the uncertainty associated with information revealed in earnings

announcements and investigates. On the theoretical side, we develop no-arbitrage

option pricing models in the presence of earnings announcements; and we develop

and justify estimators of the earnings uncertainty using option prices. Empirically,

we first nonparametrically test for the importance of earnings announcements on op-

tion prices and then implement the estimators. We analyze their time series behavior

and test for the presence of risk premia. Finally, we quantify the impact that earnings

annoucements have on formal option pricing models.
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1 Introduction

When firms announce earnings every quarter, they reveal current fundamentals (earnings,

cash flows, sales, taxes, etc.) which were, to varying extents, unknown to investors prior to

the announcement. This revelation is why stock prices often react violently after earnings

announcements. While it is often possible to obtain measures of investor’s expectations

of fundamentals prior to announcements (from, for example, analysts forecasts, etc), it is

far more difficult to obtain ex-ante estimates of the uncertainty of fundamentals. This

uncertainty over fundamentals plays a prominent role in many asset pricing models (see

Pastor and Veronesi (2003, 2005)), although little is known about it.

This paper uses option prices to learn about the uncertainty surrounding firm funda-

mentals. Since Patell and Wolfson (1979, 1981), it is well know that option prices embed

ex-ante information about earnings announcements. The uncertainty associated with the

stock price response to the release of earnings generates a distinctive time series pattern in

implied volatilities, as implied volatility increases prior to and decreases subsequent to an

earnings announcement. Figure 1 displays a graphical view of the phenomenon for Intel

Corporation, using data from 1996 to 2003.1

The goal of this paper is to quantify the uncertainty associated with earnings announce-

ments using option prices. This is distinct from documenting that option prices contain in-

formation about earnings announcements. To do this, we first develop formal no-arbitrage

models incorporating announcements on prescheduled earnings dates. In the context of

these models, we develop estimators of the earnings uncertainty, analyze the robustness

of these estimators, investigate the informational content of these estimates, and quantify

the importance of accounting for earnings announcements using standard option pricing

models.

We model earnings announcements as a jump or path discontinuity at the time of an

earnings release. In our model, the distribution of price jump sizes functions as a reduced

1It is common to see these implications reported in the popular press. For example, see the following
quote taken from the Options Report in the Wall Street Journal on June 27, 2005: “Option buyers ran
with athletic footwear and apparel giant Nike ahead of the company’s fourth-quarter report today. The
volatility implied by the Beaverton, Ore., company’s short-term options rose to about 29% from 22% a
week ago[...]. Today brings the potential stock catalyst of earnings, which likely accounts for the rise in
Nike’s expected stock volatility.” (Scheiber, 2005).

2



Jan96 Jan97 Jan98 Jan99 Jan00 Jan01 Jan02
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Intel Implied Volatility 1996−2002

Time

Implied Vol
Earnings Days

Figure 1: Black-Scholes implied volatility for the nearest maturity at-the-money call option

for Intel Corporation from January 1996 to December 2002. The circles represent days on

which earnings announcements were released.

form model, translating shocks to firm fundamentals into shocks in equity prices. The ab-

sence of arbitrage implies that the risk-neutral jump size has mean zero, and therefore the

central parameter of interest in our model is the risk-neutral earnings price jump volatil-

ity. This parameter is one measure of informational uncertainty, capturing anticipated

uncertainty in firm fundamentals.

We model earnings announcements as a jump or path discontinuity at the time of an

earnings release. In our model, the distribution of price jump sizes functions as a reduced

form model, translating shocks to current and future expected earnings into shocks in

equity prices. The absence of arbitrage implies that the risk-neutral jump size has mean

zero, and therefore the central parameter of interest in our model is σQj , the risk-neutral

volatility of price jumps due to earnings announcements. This parameter is one measure
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of informational uncertainty, capturing the anticipated uncertainty for the equity price

embedded in an earnings announcements.2

Our main contribution is to develop and implement estimators of this parameter using

option prices. We introduce two main estimators, one based on the time series of implied

volatilities, the other based on the term structure of implied volatilities. Both estimators

are easy to compute, as they only require Black-Scholes implied volatilities on different

dates or for different maturities. The first, the term structure estimator, is based on ex-

ante information contained in two ATM options of different maturities. The second, the

time series estimator, is based on changes in IVs around earnings announcements.

In theory, the two estimators will perform very differently in the presence of stochastic

volatility or microstructure noise. The time series estimator, as it depends on implied

volatilities on multiple dates, will generally be a noisier estimator than the term structure

estimator. Because of this, we primarily focus rely on the term structure estimator but are

careful to compare the two estimators where appropriate.

For our empirical work, we use a sample of 20 firms with the most actively traded options

from 1996 to 2002 and choose low dividend firms, as we expect them to have relatively high-

earnings uncertainty. Based on this sample, we have a number of empirical results. First,

we provide nonparametric tests to document the importance of earnings anounncements

on option prices. We use test statistics related to those in Patell and Wolfson (1979,

1981) and also test an additional implication that is important for the term structure

estimator. These tests are important because our model and estimators requires that

earnings announcements have a strong impact on implied volatilities. While casual data

observation such as Figure 1 are re-assuring, formal tests are required. Using nonparametric

tests, we find overwhelmingly strong evidence for all of the tested implications.

Next, we implement our estimators of the earnings uncertainty, σQj , for each firm and

earnings cycle using the term structure and time series estimators. Across firms and time,

the average jump volatility estimate using the term structure (time series) estimator is 11.31

(9.11) percent, which is both statistically and economically significant. The estimates are

highly correlated: the correlation of firm means for the two estimators is about 80 percent

and the pooled correlation of the two estimates for all of the earnings events is 71 percent.

2Pastor and Veronesi (2003, 2005), Jiang, Lee and Zhang (2004) or Zhang (2005) use alternative, indirect
proxies for fundamental uncertainty using variables such as firm age, return volatility, firm size, analyst

coverage, or the dispersion in analyst earnings forecasts.
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Together, this points to a very large and consistent effect. As we discuss in greater detail

below, large symmetric or positively skewed shocks in volatility would result in the time

series estimator being biased slightly downwards, generating the lower average estimates

when compared to the term structure estimator.

We document that the jump volatilities vary across firms and time. For some firm/quarter

combinations, estimates of σQj are quite large, around 20 percent. These large sizes are not

inconsistent with stock price movements, as prices often react violently to announced earn-

ings. The estimates also vary over time: earnings uncertainty increases in 2000 and 2001

during the recession and bursting of the dot-com bubble.

With the estimates of σQj , we can use historical returns to investigate the informational

content of earnings jump volatility, risk premia, and the abnormality of returns around

earnings dates. The first issue is informativeness, which is the extent to which a high

estimate of σQj forecasts a subsequent large movement in the stock prices. We find that the

correlation across firm averages are positive and above 50 percent. This implies that our

estimator is informative about futures movements.

Regarding risk premia, we cannot reject that realized standardized returns on earnings

dates are mean zero, which implies there is no evidence for a mean jump risk premium.

We do find evidence for a jump volatility risk premium: the volatility of jumps sizes under

Q is greater than the observed volatility under P, consistent with evidence from index

options. On the one hand, this result is surprising given that there is little evidence for an

overall volatility/jump risk premium embedded in individual equity options based on the

differences between realized and implied volatilities (see, e.g., Carr and Wu 2005; Driessen,

Maenhout, and Vilkov 2005; and Battalio and Schultz 2004). On the other hand, a risk

premium is plausible given that it is not possible to hedge continuously distributed jumps

with a finite number of instruments. We also find that standardized returns appear to be

normally distributed, consistent with our model.

To quantify the importance of announting for earnings announcements when pricing in-

dividual equity announcements, we estimate stochastic volatility model with and without

jumps on earnings dates. We find that adding jumps on earnings dates provides a sub-

stantial improvement in model performance as dollar pricing errors on short-dated options

fall by about 50 percent. Firms with high earnings uncertainty naturally have a greater

improvement by incorporating jumps on earnings dates. To frame our results, Bakshi and

Cao (2004) find no pricing improvement for ATM options when adding randomly-timed
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jumps in prices or volatility.

Finally, we discuss the implications of our results for empirical option pricing research.

Most papers do not account for earnings announcements, and we document

2 Pricing options on individual equities

Compared to index options, the extant literature on pricing individual options is quite

small. For index options, there is a reasonable agreement on a general class of models

that provide an accurate fit to both the time series of index returns and the cross-section

of option prices.3 The results indicate that factors such as stochastic volatility, jumps in

prices, and jumps in volatility are present. The main debate focuses over the magnitude

and causes of risk premia.4

The literature on pricing individual equity options is less advanced. Most of the work

analyzes the behavior of the IV smile and term structure vis-à-vis the index option literature

(see, e.g., Dennis and Mayhew 2002; Bakshi, Kapadia, andMadan 2003; Bollen andWhaley

2004; Dennis, Mayhew, and Stivers 2005). The main conclusions are that IV curves are

flatter for individual equities than for index options and that gap between realized and IV is

smaller for individual equities (Carr and Wu 2005; Driessen, Maenhout, and Vilkov 2005;

Battalio and Schultz 2004). To our knowledge, the only paper analyzing formal pricing

models for individual equities is Bakshi and Cao (2004).

The first step in pricing options on individual equities is modeling earnings announce-

ments. Huang (1985a) provides an intuitive way to motivate model specification via

continuous-time information structures. Huang (1985a) argues that a “continuous” in-

formation structure, such as those generated by Brownian motions, is one in which “no

events can take us by surprise” (p. 61). Under mild regularity on preferences, prices with

“continuous” information structures will have continuous sample paths.

Events such as macroeconomic or earnings announcements are canonical examples of

3See, e.g., Bates (2000), Andersen, Benzoni, and Lund (2001), Pan (2002), Chernov, Ghysels, Gallant,
and Tauchen (2003), Eraker, Johannes, and Polson (2003), Eraker (2004) and Broadie, Chernov, and

Johannes (2005).
4Bollen and Whaley (2004) and Garleanu, Pedersen, and Poteshman (2005) provide evidence that

demand based pressures contribute to the risk premium embedded in options.

6



events that take market participants by surprise, thus information structures are not con-

tinuous in the sense of Huang (1985a). These informational discontinuities immediately

translate, under mild regularity on preferences, into discontinuities in the sample path of

prices at the points in time when the information is released. Thus prices are necessarily

discontinuous with announcements.5

To formally model earnings announcements, we assume there is a deterministic count-

ing process, Nd
t , counting the number of predictable events occurring prior to time t:

Nd
t =

P
j 1[τj≤t] where the τj’s are an increasing sequence of predictable stopping times.

6

Intuitively, a predictable stopping time is a phenomenon that “Cannot take us by surprise:

we are forewarned, by a succession of precursory signs, of the exact time the phenomenon

will occur” (Dellacherie and Meyer 1978, 128). An inaccessible or random stopping time is

just the opposite: there are no precursory signs and thus the arrival is a complete surprise.

The assumption of a discontinuity in the sample path is consistent with existing work

analyzing announcement effects (Beber and Brandt 2004 and Piazzesi 2005), and with

statistical evidence identifying announcements as jumps in the context of jump-diffusion

models (Johannes 2004 and Barndorff-Nielson and Shephard 2006), and is intuitively ap-

pealing. Since earnings announcements occur either after market close (AMC) or before

market open (BMO), earnings announcements will generate a visible discontinuity in eco-

nomic or trading time: the market open the following morning is often drastically different

than the market close before the announcement.7 Further evidence consistent with a jump

is in Patell and Wolfson (1984), who find that for earnings announced during trading hours

in the late 1970s, the bulk of the response occurs within the first few minutes. We provide

a test of this implication in Section 3 using close-to-open returns.

We augment Heston’s (1993) SV model with randomly-sized jumps at earnings an-

nouncements. The advantage of the square-root specification is that option prices are easy

to compute using standard numerical integration routines. Prices and volatility jointly

5We generally ignore dividends, which naturally introduce a discontinuity on lump-sum ex-dividend
dates, see, Huang (1985b).

6Piazzesi (2000) introduced deterministic jumps on macroeconomic announcement dates in the context
of bond pricing and we extend her approach to pricing equity and equity options with deterministic jumps.

7There is a limited after hours market for trading stock, although the characteristics of the market are
not well known (see Barclay and Henderschott 2004). Anecdotally, volume is low and bid-ask spreads are
much larger than during trading hours. It is important to note that there is no after-hours trading of
individual equity options; trading ends at 4:02 p.m. EST.

7



solve the following stochastic differential equations

dSt = (rt + ηsVt)Stdt+
p
VtStdW

s
t + d

µXNd
t

j=1
Sτj−

£
eZj − 1

¤¶
(1)

dVt = κv (θv − Vt) dt+ σv
p
VtdW

v
t ,

where all random variables are defined on the probability measure P, log
¡
Sτj/Sτj−

¢
=

Zτj , Zτj |Fτj− ∼ π
¡
Zτj , τj−

¢
, cov (W s

t ,W
v
t ) = ρt, and Nd

t counts the number of earn-

ings announcements.8 The variable Zj is the jump in prices due to “earning surprises.”

Throughout, we assume the interest rate is constant and that the Feller condition holds

(θvκv > σ2v/2), and we ignore dividends for notational simplicity. Appendix B derives the

characteristic function and discusses numerical option pricing in the stochastic volatility

model with jumps on earnings dates.

The jump distribution π (Zj, τj−) serves as a reduced form, earnings-based asset pricing
model. On EADs, firms reveal the current quarter’s earnings per share Eτj and also provide

forward-looking information. The jump size Zj is a shock translating this fundamental

information into equity prices and is similar to the common approach in accounting and

finance of computing the “earnings response coefficient” (Ball and Brown 1968). Here,

stock price changes are regressed on current quarter earnings’ surprises:

Zj = log

µ
Stj
Sτj−

¶
= α+ β

³
Eτj −Ef

τj−

´
+ ετj

where ’f ’ stands for a forecast, based either on analysts or a statistical model of earnings.

This approach assumes that all of the reaction in the stock prices is due to learning

about current earnings, Eτj , ignoring the forward-looking information. Ang and Zhang

(2005) find that forward-looking statements are as important, if not more so, than current

earnings in explaining stock price movements after earnings. Our focus is on pricing options,

and we are especially interested in the behavior under the pricing measure Q, although our
approach does not rule out predictable components under P. For option pricing, the central
parameter of interest is the volatility, or uncertainty, of Zj.

Our specification is intentionally chosen to be parsimonious, as we do not include other

potential factors such as randomly-timed jumps in prices or in volatility. We do this for

8We do not consider other predictable events such as mid-quarter earnings updates, stock splits, or
mergers and acquisitions although these do have implications for option prices.
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two reasons. First, we are primarily interested in the impact of earnings announcements on

option prices and, as we show below, the first-order effects of deterministically-timed jumps

are on the term structure of ATM implied volatility. ATM options are not particularly

sensitive to randomly-timed jumps (see Broadie, Chernov, and Johannes 2005 for index

options or Bakshi and Cao 2004 for individual stocks). Second, unlike equity indices, there

is little prima facie evidence for the importance of randomly-timed jumps based on either

option prices or the time series of returns. The existing option pricing literature (cited

above) documents that IV curves (for a fixed maturity) are much flatter for individual

equities, implying that jumps in returns are not likely to be very important for individual

equities. The time series of individual equity returns provides similar intuition: unlike

indices, which have strong evidence for conditional non-normalities (for the S&P 500 index,

around 50 and minus three), we show that the individual equities we consider have no

noticeable negative skewness and only a modest amount of kurtosis (with the exception of

one firm in our sample).

Before proceeding, we briefly review the existing literature that deals with the impact

of earnings announcements on equity and equity option prices.

2.1 Comparison to existing literature

Our paper relates to a number of different literatures in accounting and finance. First, a

number of papers use time series data to analyze how scheduled announcements affect the

level and volatility of asset prices. For individual firms, Ball and Brown (1968), Foster

(1977), Morse (1981), Kim and Verrecchia (1991), Patell and Wolfson (1984), Penman

(1984), and Ball and Kothari (1991) analyze the response of equity prices to earnings or

dividend announcements, focusing on the speed and efficiency with which new information

is incorporated into prices. Patell and Wolfson (1984) is of particular interest. They study

the response of individual equity prices to earnings announcements using transaction data

and find that most of the price response occurs in the first fewminutes after the release. This

is important because we argue that earnings announcements can be reasonably modeled

by a discontinuous component in the price process.

In terms of descriptive time series analysis, there is little relevant work on earnings

announcements and equity price volatility. The one paper, to our knowledge, that deals

with these issues is Maheu andMcCurdy (2004), who analyze discrete-time GARCHmodels
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with state-dependent jumps. They find that many of the jumps they statistically identify

occurred on EADs. For example, they report that 23% of the jumps for Intel Corporation

occurred on earnings dates. They introduce a model with randomly-timed jumps and

assume the jump intensity increases on earnings dates.

Our paper is primarily motivated by Patell and Wolfson (1979, 1981), who provide

early descriptive work on the time series behavior of IV around EADs. They develop a

model without jumps that uses a specification with deterministically changing volatility.

They nonparametrically test that volatility increases prior, and decreases subsequent, to

earnings announcements. Patell and Wolfson (1979) find mixed evidence using a sample of

annual earnings announcements from 1974 to 1978, while Patell and Wolfson (1981) find

relatively stronger evidence using a sample of quarterly earnings announcements from 1976

to 1977. Donders and Vorst (1996), Donders, Kouwenberg, and Vorst (2000), and Isakov

and Pérignon (2001) apply Patell and Wolfson’s approach to European options markets.

Whaley and Cheung (1982) argue that the informational content of earnings announcements

is rapidly incorporated into option prices.

Our theoretical and empirical work is quite different from Patell and Wolfson’s. The

main overlap is the nonparametric tests for the importance of earnings announcements.

There are at least four important differences. First, we model earnings announcements

as jumps, introducing a discontinuity into the sample path. We provide empirical evi-

dence, based on close-to-open returns, consistent with a jump in economic time. Patell and

Wolfson’s model has a continuous sample path, which has major implications for market

completeness, risk premia, hedging, and pricing. Second, we analyze additional implica-

tions, most notably the downward-sloping term structure of implied volatility, and test for

its presence. Third, and most importantly, we develop and implement estimators of σQj .

Fourth, we analyze the evidence for risk premia, informativeness, and quantify the pricing

impact in the context of formal option pricing models.

Ederington and Lee (1996) and Beber and Brandt (2004) analyze announcement effects

in the options on Treasury bond futures market. Ederington and Lee document that

IV falls after announcements. Brandt and Beber analyze the implied pricing density in

options around announcements and find that, in addition to IV falling, the skewness and

kurtosis change after announcements. In the context of our model, this implies that the

risk-neutral jump distribution in the Treasury market is asymmetric with fat tails. Beber

and Brandt (2004) relate these changes to news about the economy and argue that this
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effect is consistent by time-varying risk aversion.

Our paper is closely related, at least on an intuitive level, to a growing literature using

accounting-variable-based asset pricing models. The original models in Ohlson (1995) and

Feltham and Ohlson (1995) assume that the current equity prices are a linear function of

accounting variables such as abnormal current income. Ang and Liu (2001) extend these

models to general discrete-time affine processes, while Pastor and Veronesi (2003, 2005)

build continuous-time models assuming log-normal (as opposed to linear) growth in the

accounting variables. The uncertainty over firm fundamentals (earnings, profitability, etc.)

impacts prices and is important for valuation (see Pastor and Veronesi 2005). Pastor and

Veronesi (2003) use firm age as a proxy for the uncertainty in profitability while Jiang,

Lee and Zhang (2004) and Zhang (2005) use variables such as firm age, return volatility,

firm size, analyst coverage, or the dispersion in analyst earnings forecasts. Our empirical

work below extracts a market-based estimate of the uncertainty at earnings announcements,

thus providing an alternative source of information about the uncertainty regarding a firm’s

fundamentals.

2.2 Equivalent martingale measures

To price options, we construct an equivalent martingale measure, which implies the absence

of arbitrage. The pricing approach extends Piazzesi (2000) to equities and equity options.

We ignore dividends for simplicity.

Under the equivalent martingale measure, Q, discounted prices are a martingale, which
requires that they be a martingale between jump times and that the pre-jump expected

value of the post-jump stock price is equal to the pre-jump stock price. Between jump

times, this requires that the drift of St under Q is equal to rtSt. At a jump time, interest
rate accruals do not matter.9 For prices at jump times to be a Q−martingale, we require
that EQ £Sτj |Fτj−

¤
= Sτj−, which implies that there can be no expected capital gains at

a deterministic jump time, EQ £∆Sτj |Fτj−
¤
= 0. Given the jump specification above, this

requires that EQ £eZj |Fτj−
¤
= 1.

9If βt = exp
³R t

0
rsds

´
, then by the definition of the integral, βt = βt− even if interest rates are a

discontinuous function of time. This implies that EQ
h
Sτj
βτj
|Fτdj −

i
=

Sτj−

βτj−
is equivalent to EQ

£
Sτj |Fτj−

¤
=

Sτj−.
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To construct the measure, we define dQ
dP = ξT and assume the density process, ξt, is

given by the stochastic exponential

ξt = ξ0 exp

µ
−1
2

Z t

0

ϕs · ϕsds−
Z t

0

ϕsdWs

¶YNd
t

j=1
Xξ

τj
,

where ξ0 = 1, ϕt = (ϕ
s
t , ϕ

v
t ) are the prices of W

s
t and W v

t risk, ∆ξτj = ξτj − ξτj− = ξτj−J
ξ
τj
,

and ξτj = ξτj−X
ξ
τj
is the jump in the pricing density. To ensure that ξt is a P−martingale, ϕ

andXξ must satisfy mild regularity conditions. For the diffusive components, we assume es-

sentially affine risk premia of the form ϕs
t = ηsVt and ϕv

t = − (1− ρ2)
−1/2

³
ρηs
√
Vt +

μQt −μPt
σv
√
Vt

´
where μQt = κQv

¡
θQv − Vt

¢
and μPt = κv (θv − Vt). A sufficient condition for this to be a valid

change of measure is that the Feller condition holds under both measures (see, Collin-

Dufresne, Goldstein, and Jones 2005 or Cheridito, Filipovic, and Kimmel 2004).

To guarantee that ξt is positive and a P−martingale at jump times we require that
Xξ

τj
> 0 and EP £ξτj |Fτj−

¤
= ξτj− or E

P
h
Xξ

τj
|Fτj−

i
= 1, respectively. These conditions are

satisfied assuming

Xξ
τj
=

πQ
¡
Zτj , τj−

¢
πP
¡
Zτj , τj−

¢ .
This intuitive condition is extremely mild, requiring only that the jump densities have

common support, since πP and πQ are both positive.

The change of measure for jump sizes occurring at deterministic times is extremely

flexible. Unlike diffusion models, where only the drift can change (subject to regularity

conditions), in a jump model there are virtually no constraints other than common support.

This implies that, for example, certain state variables could appear under one measure that

do not appear under the other measure or the functional form of the distribution could

change. Throughout, we assume for simplicity that the jump sizes are state independent

and normally distributed under Q : Zj ∼ πQ = N
³
−1
2

¡
σQj
¢2
,
¡
σQj
¢2´
. This implies that

there is a single parameter indexing the jump distribution and estimating σQj is the primary

focus of the paper. We make no assumptions about the behavior of πP, which, in particular,

implies that the volatility of jump sizes under P could be different.

Under Q,

dSt = rtStdt+
p
VtStdW

s
t (Q) + d

µXNd
t

j=1
Sτj−

£
eZj − 1

¤¶
dVt = κQv

¡
θQv − Vt

¢
dt+ σv

p
VtdW

v
t (Q) .
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For pricing ATM options, the total, annualized, expected risk-neutral variance of continu-

ously compounded returns is important and it is given by

1

T
EQ
0

∙Z T

0

Vsds

¸
+

var
³PNd

T
j=1Zj

´
T

= θQv +
V0 − θQv
κQv T

³
e−κ

Q
vT − 1

´
+

PNd
T

j=1

¡
σQj
¢2

T
. (2)

Our model is incomplete, as jumps cannot be hedged with a finite number of securities.

In general, to perfectly hedge jumps, one requires as many hedging instruments as the

cardinality of the jump size distribution. Due to this incompleteness, the measure Q is not
unique. In order to identify a measure consistent with the absence of arbitrage, we index

the measure by the risk-neutral parameters of the process and then use option prices to

estimate the parameters. This is the common approach in models with jumps.

2.3 Black-Scholes with deterministic jumps

Consider next an extension of the Black-Scholes model incorporating deterministically-

timed jumps:

ST = S0 exp

∙µ
r − 1

2
σ2
¶
T + σWT (Q) +

XNd
T

j=1
Zj

¸
, (3)

where Zj = −12
¡
σQj
¢2
+ σQj ε and ε ∼ N (0, 1). Under these assumptions, discounted

prices are martingales. SinceWT (Q) and
PNd

T
j=1 Zj are normally distributed (a non-random

mixture of normal random variables is normal), log returns are exactly normally distributed.

This allows us to derive exact, closed-form prices.

The price of a European call option struck at K, expiring at Ti, assuming a constant

interest rate is given by:

BS
¡
x, σ2T , r, Ti, K

¢
= EQ £e−rTi (ST −K)+ |S0 = x

¤
= xΦ (z)−Ke−rTiΦ

³
z − σT

p
Ti
´
,

where BS is the usual Black-Scholes pricing formula,

z =
log (x/K) + rTi + σ2TiTi/2

σT
√
Ti

, (4)

and the Black-Scholes IV is σ20,Ti = σ2 + T−1i

PNd
Ti

j=1

¡
σQj
¢2
.10 The results in Hull and White

(1987) indicate that if there is stochastic volatility, then under certain conditions σ2Ti is

10For simplicity, we often refer to implied variance and implied volatility as IV.
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the expected variance to maturity. In the case of square-root stochastic volatility, σ2 is

replaced by

T−1i EQ
0

∙Z Ti

0

Vsds

¸
= θQv +

V0 − θQv
κQv Ti

³
e−κ

Q
vTi − 1

´
.

Since we use Black-Scholes IV to estimate σQj (see Section 3.2.1), we will discuss the im-

plications of stochastic volatility in greater detail below. This extension of Black-Scholes,

despite its simplicity, provides a number of time series and option pricing implications that

differ from traditional models.

Deterministic jumps introduce a strong predictability in implied volatility. To see this,

assume that there is a single announcement at time, τj, t < τj < t + Ti. The Black-

Scholes IV is σ2t,Ti = σ2 + T−1i

³
σQ
j

´2
, which generates three testable implications. First,

the moment before an earnings release, annualized IV is σ2τj−,Ti = σ2 + T−1i

¡
σQj
¢2
, and

after the announcement it is σ2τj ,Ti = σ2. This implies there is a discontinuous decrease

in IV immediately following the earnings release. Second, IV increases leading into an

announcement at rate T−1i as the maturity decreases. Third, holding the number of jumps

constant, the term structure of Black-Scholes IV decreases as the maturity of the option

increases. We use these three implications to nonparametrically test for the presence of an

earnings announcement effect in option prices and as a basis to estimate σQj .

At this point, it is important to contrast our model to the model in Patell and Wolfson

(1979, 1981). Their model relies on an observation in Merton (1973) that the Black-

Scholes model can handle deterministically changing diffusive volatility. Instead of assum-

ing volatility is constant, they instead assume that volatility, σ (t) , is a non-stochastic

function of time. The Black-Scholes IV at time zero of an option expiring at time T is¡
σBSTi

¢2
= T−1i

R T
0
σ2 (s) ds = σ2 + T−1i σ2E. Clearly, this delivers the result that annualized

volatility increases prior to, and decreases after, an earnings release.

Despite the fact that Patell and Wolfson’s model generates similar implications in a

simple extension of the Black-Scholes model, there are crucial differences. Patell and Wolf-

son model asset prices as continuous functions of time with increased volatility around

earnings announcements, whereas in our model, there is a discontinuity. Since earnings

announcements are released after the market’s close, it is clear that these movements will

often lead to a jump in trading time. It also implies that Patell and Wolfson’s model is a

complete market, where options can be perfectly hedged by trading in only the underlying

equity and a money market account. These implications are clearly counterfactual given
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the large differences observed between market close and open prices subsequent to earnings

announcements. Moreover, Patell and Wolfson’s (1979, 1981) model is in contrast to the

findings in Patell and Wolfson (1984), who document the rapid reaction of the stock prices

to earning announcements.

Unlike Patell andWolfson’s model, it is straightforward to incorporate stochastic volatil-

ity into our model. An extension of Patell and Wolfson incorporating stochastic volatility

requires deterministically-timed jumps in stochastic volatility with deterministic sizes, and

it is far more difficult to price options in this model as the characteristic function must be

computed recursively, as opposed to our model which possesses a closed-form characteristic

function. Finally, Patell and Wolfson’s model does not allow σE to change across measures

(as it is in the diffusion coefficient). Our jump-based model allows for flexible risk premium

specifications, as the absence of arbitrage places few constraints on the jump distributions.

Next, consider the distributional features of returns under P. Assuming mean zero and
normally-distributed jumps, the distribution of the log-returns conditional on the parame-

ters is normal, because a sum of normal random variables is normal. Clearly, deterministic

jumps generate predictable heteroscedasticity. Also, since the earnings-driven jump volatil-

ity can vary over time (σj 6= σi), this implies that, in the words of Piazzesi (2000), time

matters. This time-inhomogeneity contrasts with typical models which imply that the

distribution of returns, conditional on current Vt is always the same shape.

Finally, unlike models with jumps based on compound Poisson processes, the determin-

istic jump component does not necessarily generate conditional, distributional asymmetries

or fat tails. For example, in Merton’s (1976) model, the distribution of returns is a discrete

mixture of normals, where the mixing weights are determined by the Poisson probabilities.

Naturally, if the earning’s jump volatility parameter were unknown or if the jump sizes

were non-normal, then the distributions would generally be non-normal. For example, Be-

ber and Brandt (2005) find that the distributional shape changes after announcements,

which implies in the context of our model there is an asymmetric jump distribution in the

T-bond futures market.

2.4 Earnings jump estimators

In this section, we develop two estimators motivated by the extension of the Black-Scholes

model in the previous section: an ex-ante measure based on the term structure of implied
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volatilities and an ex-post measure based on the time series changes of implied volatility.

The term structure estimator uses the differential information in the implied volatilities

of two maturities expiring after a quarterly earnings announcement. With a single earnings

announcement prior to maturity, the Black-Scholes IV of an ATM option at time t, with

Ti days to maturity (measured in annualized units) is
¡
σBSt,Ti

¢2
= σ2 + T−1i

¡
σQ
¢2
, and for

T1 < T2, we have that
¡
σBSt,T1

¢2
>
¡
σBSt,T2

¢2
. Provided the term structure is downward sloping,

we can solve for σQ, ¡
σQterm

¢2
=

¡
σBSt,T1

¢2 − ¡σBSt,T2

¢2
T−11 − T−12

,

which we label the term structure estimator. We also report
q
T−11

¡
σQterm

¢2
/
¡
σBSt,T1

¢2
as a

measure of the proportion of total volatility due to the earnings release.

The time series estimator uses changes in IV around the EADs. If there is a single

earnings announcement after the close on date t (or before the open on date t + 1), then

the IV the day after the announcement is σ2, provided there are no other announcements

prior to option maturity. Solving for σQ, we define the time series estimator,¡
σQtime

¢2
= Ti

³¡
σBSt,Ti

¢2 − ¡σBSt+1,Ti−1
¢2´

.

We report estimation results for one day time differences, but we have also computed time

series estimators for greater lengths, (two, three and five days). The results are similar,

although there is far more noise in the estimates for longer time-intervals. We also report

the proportion of total volatility based on this estimate.

In order to understand the estimators, we revisit the Intel example from the introduc-

tion. On April 18, 2000, Intel released earnings AMC. The first two options expired in

0.0159 and 0.0952, years (roughly four and 24 days) and the Black-Scholes implied volatil-

ities were 95.80% and 65.89%, respectively. In this example, we use the July and August

expirations. The term structure estimator is 9.60%. The IV of the short-dated option falls

to 55.31% the day after the announcement and the time series estimator is therefore 9.86%.

This example is common with both estimators pointing to a common effect, even though

the term structure estimator uses only ex-ante information, while the time series estimator

uses both ex-ante and ex-post information.

Both of these estimators are technically correct only our model in (3) holds. Under

certain conditions on stochastic volatility, the results of Hull and White (1987) and Bates
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(1995) indicate that
¡
σBSt,Ti

¢2
= T−1i EQ

t

hR Ti
t

Vsds
i
+ T−1i

¡
σQ
¢2
, which implies that the

estimator is robust to stochastic volatility.11 The Hull andWhite (1987) procedure formally

requires that the shocks to the volatility process are independent of those to prices, that

is, it rules out leverage effects. Recent research has shown (Jones 2003 and Chernov 2005)

that the impact of correlation on the validity of the Hull and White procedure is negligible,

at least for index options. Since index options have a much larger leverage effect than

individual stocks (about five times as large, see Dennis, Mayhew, and Stivers 2005), this

implies that any bias from using Black-Scholes IV as a proxy for expected variance due to

correlation is negligible.12

In Appendix C, we provide a detailed discussion of the performance of the two estima-

tors in the presence of square-root stochastic volatility. We argue that the term structure

estimator is more robust as it is an ex-ante measure, relying only on expectations of future

average variance. For example, in the context of the stochastic volatility model above, σv
or the realized Brownian shocks have no impact on the term structure estimator. The time

series estimator relies also on the shock realizations over the next day. Large Brownian

shocks or jumps in volatility could introduce a significant amount of noise into the time

series estimator. Moreover, the time series estimator also has a strong directional asym-

metry: increases in IV downward-bias estimates more than decreases in IV upward-bias

estimates. Although we report both, we expect the time series estimator to be quite noisy.

For both estimators, there are occasionally days for which the estimate is negative, as

either the term structure was not decreasing or IV did not fall. We report how often this

occurs, and we discuss this issue in greater detail below.

11As noted by Merton (1976) and Bates (1995), Black-Scholes implied volatility also provided expected
total volatility in the presence of jumps, provided that the mean jump size is small. This implies that for
an ATM option, ¡

σBSt,Ti

¢2
= σ2 + λσ2J + T−1i

¡
σQ
¢2

where σ2J is the variance of jump sizes. This indicates that randomly timed jumps will not adversely impact
the estimators. Dubinsky and Johannes (2005) find that randomly-timed jump means for individual stocks
are quite small.
12Our procedure also relies on the difference between two implied variances. If the Hull-White procedure

introduced a level bias, it would not affect our estimators as it would be differenced out.
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3 Empirical Evidence

We obtained closing option prices from Ivy DB OptionMetrics for the period beginning in

1996 and ending in 2002. OptionMetrics records the best closing bid and offer price for

each equity option contract traded on all U.S. exchanges. One disadvantage of this data

source is that it relies on close prices instead of transaction prices. Unfortunately, this is the

only widely-available source of option price data. Since the close of the Berkeley Options

Database in 1996, the CBOE time and sales data is not available and we have to settle for

daily data. OptionMetrics is now the common data source for research on individual equity

options and has been used in a number of recent papers (e.g., Ni, Pearson, and Poteshman

2005, Carr and Wu 2005, Driessen, Maenhout, and Vilkov 2005).

Out of all possible firms, we use the following criterion to select 20 firms for analysis. For

the period from 1996 to 2002, we found the initial 50 firms with the highest dollar volume

which traded in every year. Next, we eliminated firms with an average dividend rate of

more than 0.35 percent. The focus on low dividend stocks provides a number of benefits:

it minimizes any American early-exercise premium and avoids problems associated with

pricing options on high-dividend stocks. Unlike equity indices, whose dividend payments

are usually modeled as continuous, dividends on individual equities are “lumpy,” resulting

in jumps. For these remaining firms, we computed the average dollar volume of these

remaining firms and took the twenty highest remaining firms.13

The selection criteria result in the following firms, with their ticker symbols in parenthe-

ses: Apple Computer Inc. (AAPL), Adobe Systems Inc. (ADBE), Altera Corp. (ALTR),

Applied Materials Inc. (AMAT), Amgen Inc. (AMGN), Cisco Systems Inc. (CSCO), Dell

Computer Corp. (DELL), E.M.C. Corp. (EMC), Intel Corp. (INTC), KLA Tencor Corp.

(KLAC), Microsoft Corp. (MSFT), Micron Technology Inc. (MU), Maxim Integrated

Products Inc. (MXIM), Novellus Systems Inc. (NVLS), Oracle Corp. (ORCL), PMC

Sierra Inc (PMCS), Peoplesoft Inc (PSFT), Qualcomm Inc. (QCOM), Sun Microsystems

(SUNW), and Xilinx (XLNX). With the exception of AMGN which is a pharmaceutical

company, all of the firms are in technology related industries. Apple, Dell, and Sun are

computer makers; Adobe, Microsoft, Oracle and PeopleSoft are software companies; and

13One of the firms in the top 20, AOL, was discarded. AOL had major merger and acquisition activity
over the sample which has a prominent effect on implied volatilities, see Subramanian (2004). To avoid

jointly modeling mergers and earnings announcements, we discarded AOL from the sample.
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Altera, Applied Materials, Intel, KLA Tencor, Micron, Maxim, Novellus, PMC Sierra, and

Xilinx are semiconductor companies. The fact that the high volume, low-dividend stocks

are all technology stocks is not surprising.

We apply the following filters to the individual firm option files. We remove option

strikes for which there is no volume; for which the bid price is zero; or for which Option-

Metrics reports a ’NaN’ or cannot compute an implied volatility. We then remove options

with less than three days to maturity to avert potential issues arising in the final days of the

options contract. OptionMetrics obtains closing midpoints for options and then converts

these prices (using a binomial tree to correct for early exercise and dividend payments) into

Black-Scholes implied volatilities using midpoints of the bid-ask spread. Broadie, Chernov,

and Johannes (2005) provide evidence that the procedure of converting to European prices

by using Black-Scholes implied volatilities adjusted for early exercise provides an accurate

correction for the American feature in models with jumps and stochastic volatility. We

consider only call options because calls on individual equities are more heavily traded than

puts, and American calls have no early exercise premium for stocks without dividends.

Dividends are a minor concern, as only three firms in our sample (ADBE, INTC, MU,

and MXIM) had dividends over the sample period, and these were extremely small (the

maximum dividend payout was less than 0.2 percent).

Earnings dates from Compustat were obtained as was the exact timing of the release

from First Call. Because we found an alarmingly high percentage of date errors in Compu-

stat (with respect to earnings dates) and timing errors in First Call (AMC versus BMO),

all of the earnings dates and times were hand-checked using Factiva to confirm the exact

timing of the announcement.14 The earnings date is defined as the last closing date before

earnings are announced. Most of the announcements were AMC instead of BMO.

Earnings dates tend to occur in a very predictable pattern. For example, Intel announces

earnings on the second Tuesday of month following the end of the calendar quarter. Cisco’s

quarters end one month later than most firms, and they typically announce on Tuesday

of the second week following the end of the quarter. Based on our data, it is not possible

to generically confirm that the actual earnings dates correspond to the exact dates that

were ex-ante expected. However, there are three factors that lead us to believe this is

not an issue. First, Bagnoli, Kross, and Watts (2002) find that from 1995 to 1998, there

14We thank James Knight of Citadel Asset Management for pointing out that common databases have
incorrectly dated earnings announcements.
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was an increase in the number of firms announcing on time. Moreover, large firms with

active analyst coverage tend to miss their expected announcement date less than smaller

firms. Second, we searched Factiva for each earnings announcement for possible evidence

of missed dates yet did not find any evidence of missed anticipated earnings dates. Given

both the short sample and the large size of the firms in the sample, this is not surprising.

Third, as discussed in Appendix C, the exact timing is immaterial if there is uncertainty

regarding the date, provided the distribution of jump sizes does not change.

The options expire on the third Friday of every month. For all firms, the majority

of options traded are in the shortest maturity expiration cycle, until a few days prior

to expiration, when traders commonly “roll” to the next maturity cycle. Since firms’

quarterly earnings announcements are dispersed over a three to four week interval, the

time-to-maturity of the options on the EAD varies across firms. In principle, one could

create a composite, constant-maturity observation by interpolating between different strikes

and maturities. This cannot be done in our setting because interpolation is problematic

in sharply-sloped term structure of IV environments as it requires an arbitrary weighing

of each observation. This would severely blur the impact of earnings announcements, as it

would average out the precise differences in IV across maturities we seek to explain.

Table 1 provides basic summary statistics for the firms in our sample. The first thing

to notice is the high historical volatilities, which are not surprising because firms with high

volatility (high earnings uncertainty) would also have high trading volume in options. The

column labeled ‘earnings’ lists the proportion of total variance that occurs on the quarterly

EADs. To frame these values, there are four EADs, which, if there was not increased

volatility on EADs, would results in 4/252 ≈ 1.6 percent of total volatility. Thus, earnings
announcements explain a large, disproportionate share of volatility.

As mentioned earlier, we only consider pure stochastic volatility models and do not

consider models with randomly-timed jumps in returns. Prima facie evidence for jumps

in returns is often a strong asymmetry or excess kurtosis in the distribution of equity

returns. For example, it is common for broad equity indices such as the S&P 500 to have

significant negative skewness and positive kurtosis, indicative of rare jumps that are very

negative. Table 1 indicates that there are not strong unconditional non-normalities in the

stocks in our sample, with the possible exception of Apple. This should not be surprising.

The average daily volatility across firms is about four percent, which implies that a three

standard deviation confidence band is ±12 percent. Normal time-variation in volatility
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could explain most of the large moves without requiring jumps. This is in strong contrast

to equity indices, which have relatively low daily volatility (for the S&P 500, less than one

percent) but have very large moves relative to this volatility (i.e., the crash of 1987). This

is consistent with the observation in Bakshi, Kapadia, and Madan (2003), that IV curves

for individual equities are quite flat across strikes compared to those for aggregate indices.

Finally, Appendix A provides an intuitive test analyzing the assumption that earnings

announcements induce a jump or discontinuity in economic trading time. Intuitively, jumps

are outliers, or rare movements. Utilizing close-to-open and open-to-close returns, we

find that the standard deviation of close-to-open returns on earnings days is more than

three times higher than on non-earnings days, indicative of outliers or “abnormally” large

movements on earnings days. The standard deviation of open-to-close returns is only

slightly higher for earnings days. This is consistent with the presence of jumps induced by

earnings announcements and largely inconsistent with the continuous sample path model

in Patell and Wolfson (1979, 1981).

3.1 Nonparametric tests

In this section, we provide nonparametric tests of three main implications of earnings jumps:

IV should increase prior to an earnings announcement, the term structure of IV should be

downward sloping prior to the announcement, and IV should decrease subsequent to the

earnings announcement date. The statistical tests we use are the Fisher sign test and

Wilcoxon signed rank test, which test whether or not a series of observations are positive

or negative (see, e.g., Hollander and Wolfe 1999 for the details of the test). We apply the

tests to the changes in IV leading up to an earnings announcement, to the difference in the

IV of two options straddling the maturity date (the term structure implication) and to the

change in IV subsequent to the announcement.

Under the null of no difference in IV (earnings announcements have no impact) the

Wilcoxon signed-rank test assumes the distribution is symmetric around zero, while the

Fisher test assumes the median is zero. The tests are nonparametric in that they place no

other restrictions on the distribution other than independent observations and the symme-

try/median restriction. For example the shape (normal versus t-distribution) and variance

could change from observation to observation. We naturally use the one sided tests to

examine whether volatility increases or decreases, depending on the implication. Following
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Min Max Std. Dev. Earnings Skew Kurt Volume Rank

AAPL -73.12 28.69 65.60 7.44 -2.83 60.77 10.5 12

ADBE -35.32 21.49 66.40 5.17 -0.59 9.96 3.9 16

ALTR -31.56 22.46 77.38 5.06 -0.09 5.07 3.5 17

AMAT -15.10 22.82 66.86 3.78 0.27 4.12 17.2 10

AMGN -14.40 12.95 46.82 6.32 0.06 4.84 11.1 11

CSCO -14.54 21.82 57.32 5.59 0.13 5.91 69.1 3

DELL -21.00 16.37 58.19 6.57 -0.22 4.82 51.7 4

EMC -32.95 22.20 66.43 5.52 -0.35 7.59 19.1 9

INTC -24.89 18.33 52.96 7.90 -0.38 7.41 85.5 1

KLAC -18.62 22.39 76.87 3.22 0.25 4.05 3.1 18

MSFT -16.96 17.87 41.07 11.17 -0.11 7.00 82.5 2

MU -26.19 21.72 75.61 5.47 0.01 4.50 29.1 7

MXIM -30.31 20.89 69.32 4.83 0.10 4.98 1.5 20

NVLS -35.05 28.77 77.93 8.58 0.22 6.11 3.0 19

ORCL -34.46 27.07 65.44 14.14 -0.18 9.12 31.6 5

PMCS -25.90 29.61 93.89 7.04 0.23 4.97 4.8 15

PSFT -39.56 22.92 77.96 9.17 -0.28 8.28 5.5 13

QCOM -18.45 32.72 70.14 8.45 0.37 6.46 24.3 8

SUNW -31.09 26.03 65.34 6.42 -0.13 6.51 31.3 6

XLNX -23.69 16.61 74.37 3.80 -0.12 4.19 5.1 14

Pooled -28.16 22.69 67.30 6.78 -0.18 8.83 24.7

Table 1: Summary statistics for the underlying returns for the firms in our sample for the

period 1996 to 2002. The minimum and maximum returns are in continuously-compounded

percentages and the standard deviations are annualized and in percentages. The skewness

and kurtosis statistics are raw statistics (not excess skewness or excess kurtosis). The

volume column gives total option volume over the entire sample, in millions of contracts

(each contract is on 100 shares of the underlying equity). The rank is the within sample

rank based on option volume. The pooled numbers are the averages of the statistics across

firms. 22



Patell and Wolfson (1979, 1981), who also use the Fisher and Wilcoxon tests, we implement

the tests with differences in variance. Patell and Wolfson (1979, 1981) examine the time

series implications (increase prior to and decrease subsequent to earnings), but not the

term structure implication.

It is important to understand how the presence of stochastic volatility could affect

these tests. Stochastic volatility models assume that Vt moves around independently of

earnings announcements, mean-reverting with random shocks. Thus, even if earnings an-

nouncements are important, normal time-variation in volatility could result in a decrease

in volatility prior to an EAD, a decreasing term structure of IV at an EAD, or an increase

in IV subsequent to an EAD. Thus, stochastic volatility would introduce additional noise,

biasing our tests toward not rejecting, increasing the chances of Type II errors (not reject-

ing a false null). This is especially true in our sample over which market volatility changed

rapidly.

To implement the tests, we take the two closest-to-the-money call options and average

their implied volatilities. If only one strike is available, we use that implied volatility.

Calls on individual stocks generally have a higher trading volume and we average the IV to

reduce any microstructure noise (e.g., stale quotes). This practice is common (e.g., the VIX

index averages various strikes, see Whaley 2000). As noted in Bakshi, Kapadia, and Madan

(2003), IV smiles for individual firms are very flat so the averaging of close-to-the-money

strikes just reduces any noise in the option data. To test the increase prior to earnings

we use a two week change in ATM IV and for the decrease after earnings we use the one

day change. For the term structure tests, we use ATM options for the first two available

maturities.

Table 2 reports the p−values of the Fisher and Wilcoxon tests for the three hypotheses.
The tests reject all of the hypotheses at conventional levels of significance, with the only

exceptions being for the first test, the increase in IV prior to earnings, for two firms, MXIM

and QCOM. All other firms for all of the other tests reject the each of the null hypotheses.

Such strong rejections are surprising given our relatively small sample size (28 earnings

dates). The first test is the most likely to be noisy due to stochastic volatility as the

standard deviation of two week changes is quite large.15 We place little weight on the lack

of rejection for MXIM and QCOM for the prior increase tests for a number of reasons:

15Even for these firms, volatility still tends to increase: it increases for 18 (16) of 28 announcements for
QCOM (MXIM).
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MXIM had the lowest volume in our sample; (although not reported) MXIM and QCOM

had the highest bid-ask spread around earnings announcements over the sample, and the

other two tests overwhelmingly reject the null hypothesis.

Overall, the results provide extremely strong statistical evidence that earnings an-

nouncements impact option prices. Option IV increases leading into earnings announce-

ments, the term structure declines for the first two maturities, and IV decreases subsequent

to the earnings announcement.

One potential concern is that, for the increase in IV and declining term structure of IV

prior to earnings, as time-to-maturity decreases, option IV tends to increase. Patell and

Wolfson (1981) find that this occurs in their sample, although the effect is largest in the

final days of the option’s life, but it is important to recall that their sample was from the

1970s. There are four reasons this is not a major concern. First, and most importantly, if

the time-to-maturity effect is in the data, it would have a mixed impact on our tests. While

it would bias the pre-earnings increase and term structure test towards rejection, it would

have the opposite effect on the time series test subsequent to earnings, as the maturity bias

would increase IV rather than decrease it. The fact that the time series test rejects for

every single firm implies that this is not a particularly important feature.

Second, none of our conclusions change if you remove all options with a maturity of

less than one week. For both individual firms and for the pooled data, the tests still

overwhelmingly reject the null of no effect. Third, many of the firms with the lowest average

time-to-maturity (INTC, MSFT, SUNW) are those with the highest volume implying that

any liquidity effects (which could explain the Patell and Wolfson finding) in short-dated

options will be minimal. Finally, the impact is the strongest in some firms like CSCO that

have a relatively long time-to-maturity (nine days). Thus, time-to-maturity biases could

not explain our results.

It is difficult to imagine an alternative to our explanation for the strong predictability

in implied volatility. One potential explanation is Mahani and Poteshman (2005), who

document that retail investors increase holdings of growth stocks prior to earnings dates.

If supply is not perfectly elastic, increases in investor demand translate into increases in

prices and IV (see also Garleanu, Pedersen, and Poteshman 2005). If, for some reason, retail

investors were to sell their entire positions the following day (and there is no evidence for

this), prices would similarly fall subsequent to the earnings announcement. Could the

demand of retail investors generate the magnitudes observed in the data? For example, in
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Increase Prior to EAD Term Structure at EAD Decrease after EAD

Wilcoxon Fisher Wilcoxon Fisher Wilcoxon Fisher

AAPL 4.5E-06 1.4E-05 2.1E-06 1.1E-07 1.9E-06 3.7E-09

ADBE 1.8E-06 5.6E-08 1.4E-06 5.6E-08 1.8E-06 8.1E-07

ALTR 2.1E-04 1.4E-05 3.6E-06 1.1E-07 2.9E-06 1.1E-07

AMAT 2.6E-06 1.1E-07 1.9E-06 3.7E-09 2.1E-06 1.1E-07

AMGN 0.0057 0.0436 1.9E-06 3.7E-09 4.1E-05 1.4E-05

CSCO 2.5E-05 2.8E-06 2.8E-06 7.5E-09 1.9E-06 3.7E-09

DELL 5.2E-04 9.0E-05 2.1E-06 1.1E-07 2.9E-06 1.1E-07

EMC 0.0034 0.0020 5.0E-05 7.6E-04 3.2E-04 4.6E-04

INTC 1.9E-06 3.7E-09 1.9E-06 3.7E-09 2.5E-05 1.1E-07

KLAC 0.0084 0.0436 4.5E-05 4.6E-04 0.0191 0.0063

MSFT 8.9E-05 2.5E-05 1.9E-06 3.7E-09 3.4E-05 1.4E-05

MU 0.0011 0.0019 1.5E-05 1.4E-05 8.4E-04 0.0019

MXIM 0.1997 0.2858 1.3E-05 9.0E-05 4.1E-04 9.0E-05

NVLS 3.8E-04 4.6E-04 3.3E-06 1.5E-06 3.8E-04 0.0019

ORCL 2.6E-05 4.0E-07 1.9E-06 3.7E-09 3.2E-04 4.6E-04

PMCS 0.0014 7.6E-04 2.8E-06 7.5E-09 4.4E-04 4.6E-04

PSFT 0.0017 4.6E-04 6.8E-06 1.5E-06 8.4E-06 1.4E-05

QCOM 0.0390 0.2122 6.6E-06 5.2E-06 5.0E-06 1.5E-06

SUNW 4.7E-06 4.0E-07 4.7E-06 4.0E-07 0.0012 7.6E-04

XLNX 2.5E-04 9.0E-05 2.6E-06 1.1E-07 9.4E-05 4.6E-04

Pooled 7.0E-56 2.4E-61 1.1E-87 3.5E-119 3.9E-67 3.3E-83

Table 2: Wilcoxon and Fisher nonparametric test p-values testing the increase in implied

volatility in the two weeks prior to an earnings announcement, the decreasing term structure

of implied volatility prior to the earnings announcements, and the decreases in implied

volatility after the earnings announcement. The column labeled days gives the average

number of days that our short dated option is from maturity.

25



the Intel example, could retail investor behavior generate the pattern in implied volatilities

in the introduction, whereby the first two implied volatilities were 95 percent and 65 percent

and the short-dated volatility falls to 55 percent?

We find it implausible that retail investors have this great of an impact for three reasons.

First, returns on EADs are far more volatile than returns on other dates. This naturally

leads to an increase in implied volatility. Second, retail investors make up a small portion

of option market volume (about 10-15 percent according to Mahani and Poteshman 2005).

Third, while net demand factors are statistically important, it is unlikely that they could

explain the large movements in IV around earnings dates. The results in Bollen andWhaley

(2004) indicate that net buying pressure of calls and puts significantly impacts changes in

implied volatility, but Garleanu, Pedersen, and Poteshman (2005) find that the magnitude

of the effect to be quite small. For the S&P 500 index, doubling open interest in a day

increases IV by 1.8 percent, which is within bid-ask spreads and they find the impact is

smaller for individual stocks.

3.2 Estimates from a Black-Scholes analysis

The previous section found that uncertainty surrounding earnings announcements had a

statistically significant impact on IV and found support for the three main implications of

jumps on EADs. In this section, we are interested in quantifying the uncertainty present

in earnings by estimating σQj across time and across firms.

3.2.1 Jump volatility estimates

Tables 3 and Table 4 summarize the earnings jump volatility estimates for the term struc-

ture and time series estimators using the same data that was used in the previous section.

For each firm, we report summary statistics of the estimates for each company over time

(mean, median, quantiles, and fraction of total volatility explained). All numbers are

in volatility units which is conservative due to Jensen’s inequality.16 We also report the

16In our setting, Jensen’s inequality implies that the average of the standard deviations is less than the
square root of the average variances since⎛⎝N−1

NX
j=1

σj

⎞⎠2

< N−1
NX
j=1

σ2j .
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number of dates on which the term structure or time series estimator was negative.

For the term structure estimator, Table 3 indicates that σQj is large, economically and

statistically, consistent with the earlier nonparametric tests. The average jump volatility is

11.31 percent and the estimates indicate that the expected jump volatility can be very large:

a jump volatility of 15 percent implies that an expected 3 standard deviation confidence

band is ±45 percent. One intuitive way to interpret the estimates is to compare them to

the average daily volatility/variance (from Table 1) and compute the number of days of

volatility/variance that the jump on an EADs generates. The jump generates, on average,

about 3 days worth of volatility with a minimum of 2.2 for QCOM, KLAC and NVLS and

a 3.6 for ADBE. The effect is drastically understated due to Jensen’s inequality: in terms

of variances, the results are more striking as earnings announcements generate 7.8 days

worth of variance on average, with a low of 4.8 days for QCOM, NVLS and KLAC and a

high of 13 days for ADBE. There are very few problematic dates on which we could not

compute the term structure estimator: across firms and on average, about 1.5 out of 28

announcements did not have a declining term structure. Large, actively traded firms had

fewer problem dates (DELL, INTC, CSCO, and ORCL had none). We will discuss the

problem dates in greater detail below.

The large estimates of earnings jump volatility can easily explain the spikes in Figure 1.

Consider the following example. Assume the annualized diffusive volatility is 60 percent,

which implies the daily diffusive volatility is about 3.8 percent (0.60/
√
252). If the jump

is 15 percent and there is an option expiring in one week, the annualized IV of the short-

dated option is about 124 percent prior to the announcement and subsequently falls to

60 percent. In terms of option prices, consider an ATM call and straddle position with

one-week to maturity (τ = 1/52), an interest rate of five percent and St = 25. Prior to the

announcement, the call and straddle were worth about $1.72 and $3.42, respectively, and,

assuming the stock price did not change the following day, the prices after the announcement

fell to $0.84 and $1.66, a 50 percent decrease due to the drop in implied volatility. If,

however, the stock price fell 20 percent, then the ex-post prices would be $0.0 and $4.98,

which shows the large and severe risks associated with writing options around EADs.

Table 4 provides the results for the time series estimator. Overall, the times series results

are similar to the term structure results, although the time series estimator has a lower

average and more problematic dates, which is consistent with the arguments in Appendix C.
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Term # Neg Mean Median Std. Error 25% 75% Av. Fraction

AAPL 1 12.44 11.66 0.72 9.80 14.11 79.86

ADBE 1 14.78 13.64 0.97 11.64 16.84 85.40

ALTR 1 12.41 10.81 0.97 10.26 12.85 72.12

AMAT 0 12.13 11.42 0.84 9.43 13.99 79.19

AMGN 0 7.15 6.80 0.45 5.55 8.37 57.23

CSCO 0 9.37 7.97 0.82 6.17 12.70 67.52

DELL 1 9.76 9.78 0.59 7.82 11.16 74.61

EMC 5 11.27 10.06 1.34 7.26 14.11 62.02

INTC 0 10.17 9.62 0.56 8.01 11.23 88.38

KLAC 5 10.53 10.09 0.88 7.03 12.99 63.05

MSFT 0 7.44 7.15 0.60 5.85 8.79 72.90

MU 3 13.88 11.77 1.32 8.24 18.13 65.98

MXIM 4 10.23 9.78 0.73 8.30 11.09 61.10

NVLS 2 10.41 8.99 1.06 7.57 14.00 59.31

ORCL 0 12.73 12.15 1.12 8.38 16.50 76.11

PMCS 0 14.57 14.46 1.12 11.23 16.64 66.85

PSFT 2 13.68 12.14 1.01 9.45 17.50 59.18

QCOM 2 9.30 9.92 0.81 6.61 12.20 51.65

SUNW 1 12.06 11.68 0.67 9.44 14.60 82.29

XLNX 1 11.85 11.74 0.92 8.31 15.01 70.56

Average 1.45 11.31 10.58 0.20 8.32 13.64 69.77

Table 3: Estimates of the jump volatility generated by earnings announcements using the

term structure approach. The columns provide (from left to right), the mean estimates

volatility across earnings dates, the median estimate, the standard error of the mean, the

25 percentile, the 75 percentile, and the average fraction of total volatility.
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Time # Neg Mean Median Std. Error 25% 75% Av. Fraction

AAPL 0 9.25 8.91 0.74 6.40 11.31 50.61

ADBE 2 11.31 10.15 0.80 9.04 13.15 55.31

ALTR 1 8.90 9.48 0.89 5.64 11.05 50.28

AMAT 1 11.00 10.32 0.83 8.54 13.09 67.90

AMGN 3 6.41 5.58 0.66 4.62 7.76 48.37

CSCO 0 8.47 8.24 0.61 6.31 9.62 62.03

DELL 1 8.60 8.66 0.56 7.70 10.07 58.82

EMC 5 10.20 9.66 1.27 5.54 12.65 55.74

INTC 1 7.96 7.87 0.56 6.30 9.46 67.73

KLAC 7 7.10 6.12 0.86 3.91 9.83 37.49

MSFT 3 6.66 5.84 0.52 4.99 7.86 51.19

MU 6 10.75 9.34 1.36 8.16 12.78 47.29

MXIM 6 6.78 5.88 0.86 5.00 7.12 38.43

NVLS 6 8.46 7.53 0.98 5.80 11.47 44.24

ORCL 6 10.83 10.36 0.79 8.53 13.99 58.44

PMCS 5 10.09 10.28 0.99 5.84 14.32 39.05

PSFT 3 12.10 11.38 0.90 9.00 14.98 51.61

QCOM 2 9.47 8.64 0.83 6.59 12.66 48.44

SUNW 5 8.54 7.93 0.70 6.16 11.10 48.43

XLNX 5 9.07 9.61 0.81 6.12 11.11 44.62

Pooled 3.25 9.10 8.63 0.19 5.96 11.37 51.79

Table 4: Estimates of the volatility of the jump generated by earnings announcements

based on the time series of implied volatilities. The columns provide (from left to right),

the mean volatility across time, the median volatility, the standard error of the mean, the

25 percentile, the 75 percentile, and the average fraction of total volatility.
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Despite the additional noise in the time series estimator, the results are remarkably similar

even though one uses ex-ante information and the other ex-post. The correlation between

the mean estimates is 80.42 percent across firms and the correlation between the pooled

observations is 71.69 percent. The high correlations indicate that both of the methods are

capturing the same common effect.

For both metrics, we are occasionally unable to estimate the jump volatility as the term

structure is not upward sloping or the IV increases after the announcement. Tables 3 and 4

indicate that, across firms, this occurs 1.45 and 3.25 times out of 28 announcements for the

term structure and time series estimators, respectively. As mentioned above and discussed

in Appendix C, we anticipate that the term structure estimator is more robust than the

time series estimator and the relatively higher likelihood of problematic dates for the time

series estimator is consistent with that argument.

We do not find these problem dates particularly surprising. To understand the source

of this problem, we compiled some facts about the conditions when they occur. First, the

problem occurred disproportionately when there was not an option available under one

month and long-dated options were used. For example, for the term structure estimator,

we were more than twice as likely to have a problematic date for maturities of more than

one month as with options maturing in less than one month. Second, the vast majority of

the problem dates occur for small, low volume, high volatility firms. For example, for the

term structure estimator there was only one problem date for the five largest firms (CSCO,

DELL, INTC, MSFT, and ORCL) while there were 17 (out of a total of 29) for just four

firms (EMC, KLAC, MU, and MXIM) all of which are low volume, high volatility firms.

The time series estimator has a similar pattern. To quantify this, the rank correlation (to

take into account the discreteness of the problem dates) is about 0.5 (-0.5) between the

rank of the number of problem dates and volatility (option volume).

Third, for the term structure estimator the volatility of close-to-close returns was 50

percent higher on days on which we could estimate σQ (8.83 versus 5.84 percent), implying

that there was less earnings news on these days. This is particularly surprising given that

the majority of the problem dates occurred for high volatility firms (e.g., KLAC, MU,

NVLS). There was no overriding pattern for the time series estimator.

We have been able to identify a number of potential causes for the problem dates, some

of which are not mutually exclusive. The most likely cause is that OptionMetrics uses close-

price data, and close prices could suffer well-known problems such as stale quotes or non-
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synchronous pricing. Battalio and Schultz (2004) document that virtually all of the put-call

parity violations found in Ofek, Richardson, andWhitelaw (2004) using OptionMetrics data

were apparently due to these factors. Using intradaily data, Battalio and Schultz (2004)

find virtually no violations of put-call parity. Put-call parity implies that Black-Scholes

implied volatilities should be equal and large differences in implied volatilities of same-

strike options implies that there is an arbitrage. Anecdotally, we have some evidence that

this is a significant source of the problematic dates.17 Moreover, these data issues would

likely be exacerbated for small, low volume, high volatility firms and for long-dated options.

Next, consistent with the arguments in the Appendix C, the time series estimator has

more problems with highly volatile firms, as the shocks to Vt are larger. This is especially

true for long-dated options. The time series estimator also relies on two dates worth of

data, which could introduces additional sources of noise. For the term structure estimator,

the problem dates tend to occur with longer maturity options and when subsequent returns

were less volatile. If σQ was even slightly smaller on these days, the combination of close

price issues, small firms (less liquid, larger spreads) and long-dated options could easily

explain the problematic dates.

Finally, general model misspecification is another potential source. There are numer-

ous other factors, outside of our model, that could have an important impact on implied

volatility: stocks splits, mergers and acquisitions, mid-quarter updates, earnings warnings,

or industry effects (correlation across firms). Many firms in the sample had multiple stock

splits (DELL split six times) which results in spikes in IV (see Sheikh 1989). We do not

have data on when the splits were announced so we are not able to account for this. Many

17The following example highlights the problem. On August 8, before market open, KLAC announced
earnings and for this EAD, we were not able to compute either the term structure or time series estimator.

KLAC closed at 22.875 the previous day and the closing implied volatilities (in percent) for the near-the-
money strikes (in parentheses) were as follows: for the August expiration, the call implied volatilities were
48.21 (22.5) and 63.57 (25) and the put implied volatilities 83.54 (20) and 72.73 (22.5); for the September
expiration, the call implied volatilities were 58.15 (22.5) and 54.99 (25) and the puts were 65.06 (20); 65.75
(22.5). The 22.5 call implied volatilities appear anomalous as they are much significantly lower than any
of the other implied volatilities and generates a substantial violation of put-call parity. The term structure
estimator, in this case, works fine with the 25 calls, the 22.5 puts, or the 25 puts. Moreover, the following
day the implied volatility of the 22.5 August call increased, although the implied volatility of the 20 and
22.5 puts decreased, to 61.27 and 55.22, respectively, as expected (the 25 strikes didn’t trade the following
day). The bid-ask spread of the potentially problematic call option was also very large, more than 20

percent of the bid-price.
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firms were also involved in major mergers and acquisitions which generate predictable be-

havior in IV (see Jayaraman, Mandelker, and Shastri 1991 and Subramanian 2004). If

earnings are especially good or bad, firms will often pre-warn a couple of weeks prior to

the earnings date. This eliminates much of the uncertainty and can easily result in either

very small or negative jump variance estimates. Unfortunately, we have not been able to

find a reliable source of data on pre-scheduled mid-quarter updates or earnings warnings.

Similarly, since many of the firms are in similar industries (semi-conductors, computers,

software, etc.), there is occasionally an industry effect. For example, an industry leader

such as Intel announces poor earnings and the IV of other semi-conductor companies in

our sample (ALTR, MXIM, NVLS, KLAC, AMAT, PMCS, and/or XLNX) moves. This,

not surprisingly, indicates that there is a strong industry common component in earnings.

3.2.2 Case study: Cisco

In order to better understand the estimators, we provide a brief case study of CSCO,

one of the largest firms which had no problem dates for either the term structure or time

series estimator. This is due to the high liquidity of CSCO and the fact that CSCO always

announced earnings two weeks prior to option exercise. A case study allows us to highlights

the levels and movements in IV around earnings dates.

Tables 5 provides implied volatilities and jump estimates for CSCO: the first two

columns contain IV for the first two available maturities; the third column contains the

term structure estimator, the fourth contains IV of the short-dated option one day after

earnings were announced, and final column contains the time series estimates. On August

4th, 1998, OptionMetrics did not report implied volatilities for options maturing in Sep-

tember or later, which explains why we were not able to provide a term structure estimator,

thus the ’NaN’.18

The first notable result is that the estimators are highly correlated, over 80 percent.

For more than half of the dates, the difference is less than 1.5 percent. For example, the

largest estimated jump volatility was in August 2002 where the term structure estimate

was 20.48 percent compared to the time series estimate of 19.53 percent. Many of the

18This situation, where there were no long-dated option implied volatilities, happened only seven times
in our sample. In many cases, however, a single maturity had no reported option implied, which causes us
to move to longer-dated contracts.
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EAD IV1 (t) IV2 (t) Term IV1 (t+ 1) Time Series

02/08/1996 59.74 50.74 6.04 41.39 7.18

05/09/1996 56.98 40.58 7.15 27.85 8.29

08/15/1996 47.46 44.84 10.22 45.25 4.69

11/05/1996 56.33 43.10 7.47 40.74 7.35

02/04/1997 61.27 48.32 10.23 57.44 5.03

05/06/1997 77.99 51.11 12.25 58.26 9.80

08/05/1997 55.06 44.74 6.07 38.07 7.52

11/04/1997 46.06 40.82 5.98 35.75 6.84

02/03/1998 46.98 38.96 6.97 38.32 6.41

05/05/1998 45.43 39.08 5.14 31.31 6.22

08/04/1998 50.83 NaN NaN 41.99 6.75

11/04/1998 43.62 42.82 3.69 36.16 5.54

02/02/1999 63.41 59.86 4.88 49.95 9.21

05/11/1999 50.33 49.08 2.41 42.12 5.21

08/10/1999 59.96 49.46 6.71 39.38 8.54

11/09/1999 57.45 42.62 7.97 36.00 8.46

02/08/2000 54.04 44.95 6.46 47.30 4.94

05/09/2000 90.78 66.28 12.85 79.77 8.19

08/08/2000 66.34 54.02 8.24 46.85 8.88

11/06/2000 89.53 63.73 14.21 62.37 12.79

02/06/2001 89.42 64.40 13.78 77.00 8.59

05/08/2001 98.07 76.25 13.32 81.61 10.28

08/07/2001 80.37 61.75 11.07 62.06 9.65

11/05/2001 81.39 63.60 11.29 65.60 9.60

02/06/2002 67.34 53.23 7.73 60.53 5.26

05/07/2002 88.37 58.45 13.47 57.62 12.66

08/06/2002 120.08 72.85 20.48 61.12 19.53

11/06/2002 68.13 62.30 16.83 56.40 13.83

Table 5: Cisco earnings announcement jump estimates. The first two columns provide the

implied volatility of the two shortest maturity option contracts, the third provides the term

structure estimator of σQj , the fourth provides the implied volatility of the shortest dated

option the day following earnings, and the final the time series estimator of σQj .33



largest differentials occurred when the term structure estimate was rather small (February,

May, and August 1999) which is consistent with the arguments in Appendix C.

These estimates are even more reasonable once bid-ask spreads and stochastic volatility

are taken into account. In terms of bid-ask spreads, average bid-ask spreads for the short-

dated CSCO option around earnings dates were about $0.10 for the short—dated option

and $0.15 to $0.20 for the second and third maturity cycles. This translates into about

five percent in terms of Black-Scholes IV and increasing or decreasing Black-Scholes IV in

this amount alters the estimates of σQj by roughly 1.5 percent. Thus the estimates are in

many cases within bid-ask spread differentials. If, in addition, we take into account the

impact of stochastic volatility (Appendix C), it would not be unreasonable to see time

series estimates of σQj be one or two percent below the term structure estimates. Overall,

the results point to a very strong and consistent impact.

3.2.3 Risk premia, time variation, and specification

Given the estimates of σQj , we can investigate a number of interesting implications regarding

jumps on EADs. In this section, we examine the evidence regarding risk premia, time-

variation in the jump volatilities, the informational content of the jump-volatility estimates,

and model specification.

First, we use the ex-ante estimated jump volatilities, combined with the realized returns

to examine risk premia attached to jump means and jump variances. Our model assumes

that jumps to continuous-compounded returns under the Q-measure are normally distrib-
uted with a volatility of σQj , but does not place any restrictions on the behavior under

the objective measure. If we assume that the functional form of the distribution remains

normal under P, then a mean jump risk premia would imply that the mean sizes of the
jumps under P are positive. Similarly, if there is risk premium attached the volatility of

jump sizes, we would expect that σQj > σPj .

To analyze these issues, we use equity returns for the day after the earnings announce-

ment. Table 4 show that the observed returns can be quite large, as measured by the mini-

mum and maximum, and are very volatile (the column ‘P-vol’ gives the realized volatility).

We first examine the issue of a mean-jump risk premia. Unlike a jump-mean risk premium

for randomly-timed jumps, which appears in the form of a negative risk-neutral mean jump

sizes, the risk-neutral mean jump sizes are constrained under Q. Therefore, to analyze a
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Min Max Q-vol P-vol Ratio Skew Kurt. t-stat K-S J-B

AAPL -18.84 21.27 12.95 9.05 1.43 0.44 2.90 0.18 0.65 0.84

ADBE -14.29 14.01 15.23 7.63 2.00 -0.88 3.31 1.63 0.03 0.35

ALTR -22.47 16.79 13.11 8.47 1.55 -0.32 4.60 0.20 0.85 0.88

AMAT -9.78 18.82 12.74 6.51 1.96 0.70 4.01 1.99 0.21 0.52

AMGN -14.40 12.29 7.68 5.88 1.30 -0.66 2.57 1.15 0.24 0.41

CSCO -14.05 21.82 9.91 6.90 1.44 0.23 2.75 1.20 0.25 0.16

DELL -21.00 10.98 10.28 7.56 1.36 0.09 1.84 -0.51 0.23 0.63

EMC -18.22 15.51 11.90 8.52 1.40 0.30 3.31 1.20 0.14 0.60

INTC -19.89 18.33 10.49 7.43 1.41 0.32 2.99 -0.04 0.65 0.68

KLAC -18.62 13.18 11.49 7.23 1.59 -0.23 2.24 0.25 0.69 0.65

MSFT -16.96 17.87 7.86 6.86 1.15 -1.36 5.97 -0.38 0.92 0.87

MU -26.19 13.15 14.55 9.05 1.61 -0.17 2.21 -2.74∗ 0.18 0.70

MXIM -30.31 10.60 10.93 7.69 1.42 -1.36 7.04 -1.73 0.06 0.00

NVLS -35.05 23.98 11.47 11.21 1.02 -1.41 6.22 -0.06 0.61 0.02

ORCL -34.46 27.07 13.21 12.29 1.08 -2.37 10.44 -0.70 0.49 0.25

PMCS -25.90 21.13 15.46 11.52 1.34 -0.72 3.29 2.10∗ 0.02 0.29

PSFT -26.53 22.92 14.43 12.24 1.18 -1.62 6.77 -0.13 0.58 0.72

QCOM -17.34 32.72 10.12 10.21 0.99 1.07 5.11 1.25 0.33 0.17

SUNW -31.09 9.49 12.52 8.53 1.47 -0.87 3.16 -0.82 0.49 0.00

XLNX -13.67 12.77 12.63 7.37 1.71 -0.01 2.01 -1.40 0.38 0.47

Pooled -21.45 17.74 11.95 8.61 1.34 -0.44 4.14 0.13 0.40 0.46

Table 6: Summary statistics (minimum, maximum, standard deviation, skewness, and

kurtosis) of returns on the day after an earnings announcement. The first two columns are

raw statistics, and the other columns are for returns scaled by ex-ante predicted volatility.

The minimum, maximum, and volatilities are in percentage values. The last three columns

provide the t-statistic for a zero mean and p-values for the Kolmogorov-Smirnov and Jarque-

Bera tests for normality, respectively. A ‘∗’ indicates significance at the five percent. For

the t−test, we use the exact t-distribution to obtain critical values.
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mean-jump risk premium, we have to estimate the mean under the objective measure. The

column labeled ‘t−stat’ provide the t-statistics for the return means and there is little evi-
dence for any premia in average returns, in the sense that one cannot reject the hypothesis

that the mean return the day after the announcement is zero.19 Ten firms have positive

means, ten firms have negative means and there are two firms (MU and PMCS) for which

there is some evidence of a non-zero mean. For these firms, the statistic is only marginally

significant (just under the five percent level) and the mean estimates are of different signs.

Since we are using small samples of noisy return data, it would be difficult to statistically

identify a jump-mean risk premium even if it were present. Overall, we conclude there is

no evidence for jump-mean risk premia.

Next, to analyze the evidence for a jump-volatility risk premium, we can compare the

observed variability of returns under P with the ex-ante expected volatility of returns under
Q. To do this, we compute the expected volatility under Q (denoted as ‘Q-vol’) from the

options data and the realized volatility under P (‘P-vol’) from returns. To formally analyze
this, we perform a one-sided test of the hypothesis that σQj = σPj against the alternative

that σQj > σPj . We can reject the null of equality for the pooled data and all firms except

for MSFT, NVLS, ORCL, PSFT, and QCOM. For these firms, the differences between

Q-volatility and P-volatility are still positive (except for QCOM), but not statistically
different. In no case can we reject the null that σQj > σPj . The magnitudes can be quite

large as Q-volatility is much greater than the P-volatility for many firms: for CSCO,
DELL, and INTC, Q-volatility is around 40 percent higher than P-volatility. This implies
that there is evidence for a jump-volatility risk premium. Broadie, Chernov, and Johannes

(2005) find evidence for a jump-volatility risk premium in S&P 500 index options.

To place some economic significance on the jump-volatility risk premium, consider op-

tion prices on an underlying stock with σ = 0.50, St = 25, and σPj = 0.10. The dollar

value of a one-week ATM call option and straddle position assuming σQj = 0.10 is 1.22 and

2.42, respectively. If we assume that σQj = 1.25σ
P
j , then the value of the call and straddle

increase to 1.44 and 2.85, respectively, increases of about 17 percent. Clearly, this is an

economically significant risk premium.20

19Since we have at most 28 earnings announcements, we use critical values from the exact, finite-sample
t-distribution to measure statistical significance.
20This large premium is even more surprising given the fact that there does not appear to be a large jump

or volatility risk premium embedded in individual equity options as measured by the difference between
implied and realized volatility across longer periods of time, see, e.g., Carr and Wu (2005) or Driessen,
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As a comparison, consider the risk premiums embedded in S&P 500 options. For ex-

ample, typical estimates of the objective measure mean
¡
μP
¢
and volatility

¡
σP
¢
of jump

sizes are around minus two to minus four percent and three to five percent (see, Andersen,

Benzoni, and Lund 2001 or Eraker, Johannes, and Polson 2003), based on the time series

of returns. Broadie, Chernov and Johannes (2005) estimate that μQ ≈ −5 percent and
σQ ≈ 9 percent. Viewed in this light, the risk premiums associated with σQj do not appear

to be particularly large. This may be due to the fact that there is no timing risk in earnings

announcements.

It is important to note that while we can estimate σQj accurately from options, the

average return volatility is based on a relatively small time series sample. Our results

indicate that options market participants expected very large movements, which were not

fully realized. This raises the potential for Peso-type problems, whereby the lack of large

observed return moves is in part due to the small sample. Future earnings announcements

may generate very large movements, and it is important to recognize that this could be

partially responsible for the large risk premia that we find.

Given that caveat, there are a number of economic mechanisms that could generate a

significant jump-volatility risk premium. First, if an individual firm’s earnings contain a

systematic component, then the risk embedded in this systematic component could com-

mand a premium. It is certainly true that the earnings of many of the larger firms in our

sample (for example, INTC, MSFT, and DELL) are highly correlated with overall economic

activity. Second, in our model, jumps cannot be perfectly hedged and the risk premium

could compensate option writers for their inability to hedge the earnings announcement

jump. The demand-based arguments in Bollen and Whaley (2004) or Garleanu, Pedersen,

and Poteshman (2005) indicate that a combination of demand pressure and unhedgeable

risks could create excess option-implied volatility. One factor mitigating both of these ex-

planations is the potential for option writers to diversify this risk away, by writing options

across many different firms.

The previous results indicate that Q-volatility is greater than the P-volatility. Another
related issue is whether there is any predictive content to the information contained in

options. For example, if σQj is larger than usual, does this imply that we should expect a

large movement in the actual returns? It is difficult to analyze this in a time series context

because σPj can change from announcement to announcement and it is not possible to

Maenhout, and Vilkov (2005).
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estimate σPj based on a single observation occurring after an earnings announcement.
21 We

focus on a cross-sectional analysis. If there is a predictive component in the options, we

should see that firms with higher σQj ’s have higher realized volatilities on earnings dates.

The across-firm correlation between the average σQj and the subsequent realized volatility

(the correlation of columns labeled Q-vol and P-vol) is about 54 percent, which is strongly

statistically different from zero, despite the very low number of observations (20). This

provides evidence that the options data is informative about realized movements.

Next, we investigate some general specification issues. If we let rτj+1 = log
¡
Sτj+1/Sτj−

¢
be the return on the day after the announcement, then the standardized returns,

Jτj+1 =
rτj+1q¡

σQj
¢2
+ σ2/252

,

should be normally distributed. Both σQj and σ are estimated from options. Due to the

jump-volatility risk premium, the Jτj+1 ’s may not be unit variance. To investigate non-

normalities, we report the skewness and kurtosis statistics, as well as the p-values for the

Kolmogorov-Smirnov and Jarque-Bera tests. The first two columns indicate that while

earnings announcements result in very large movements, there is little evidence of non-

normalities. The skewness and excess kurtosis statistics indicate that any departures from

normality are modest. As formal tests of non-normalities, we consider the Kolmogorov-

Smirnov and Jarque-Bera tests. The Kolmogorov-Smirnov and Jarque-Bera tests find sig-

nificant departures from normality for one and three firms, respectively, but interestingly,

there is no overlap of the firms they identify. This is likely due to the relatively short time

series sample for which option price data is available. This evidence is reassuring as there

is no statistical evidence that the jumps come from a non-normal distribution.

Finally, we note that there is an interesting time-variation in the jump volatilities.

Table 3 provides a year-by-year summary of the estimates using the term structure method

for each firm in our sample. Across firms, we find that the expected, ex-ante uncertainty

associated with earnings announcements was highest in 2000 and 2001 and was somewhat

lower in 1996, 1997, 1998, 1999, and 2002. The magnitude of the effect is substantial: 2000

and 2001 are about 25 percent higher than the other years. 2000 and 2001 were clearly

years of high earnings uncertainty.

21The pooled correlation between absolute returns and σQj is around 22%, indicating at least a positive
relationship.
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Year 1996 1997 1998 1999 2000 2001 2002

AAPL 11.07 11.82 12.57 10.73 16.21 13.67 11.35

ADBE 15.37 14.61 12.90 14.52 17.92 16.61 11.69

ALTR 11.21 10.34 11.05 13.40 15.32 14.11 11.26

AMAT 15.10 14.51 9.98 11.72 14.31 10.76 8.54

AMGN 8.54 5.91 5.66 7.44 9.87 6.58 6.07

CSCO 7.72 8.63 5.26 5.49 10.44 12.37 14.63

DELL 9.92 8.85 9.59 12.11 10.11 9.83 7.88

EMC 10.70 18.09 8.54 6.32 7.48 13.24 12.73

INTC 9.41 9.30 8.21 9.93 10.61 12.00 11.71

KLAC 8.39 8.28 14.16 9.74 11.14 10.29 11.56

MSFT 7.84 6.81 5.80 5.77 8.35 7.83 9.72

MU 13.98 10.75 11.16 11.74 24.99 10.68 15.41

MXIM 13.70 7.12 9.70 9.72 9.89 10.21 9.47

NVLS 10.91 7.75 7.14 6.08 13.45 14.34 11.27

ORCL 7.28 6.89 12.53 14.37 16.48 17.33 14.24

PMCS 15.78 13.35 12.57 13.23 14.11 20.67 11.52

PSFT 10.83 13.38 7.94 12.90 15.16 18.20 16.45

QCOM 6.15 8.66 6.85 8.77 15.94 9.49 10.99

SUNW 10.31 14.44 9.38 9.78 12.15 14.86 14.14

XLNX 8.79 13.41 8.63 11.53 9.81 15.56 14.44

Pooled Av 10.76 10.72 9.46 10.39 13.00 12.90 11.72

Pooled Std 0.50 0.53 0.46 0.44 0.74 0.57 0.53

Table 7: Estimates of the volatility of the jump generated by earnings announcements

based on the term structure across time for each firm. Each year, we average the earnings

announcement jump size for each firm.
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This time-variation is related to work of Pastor and Veronesi (2005). They argue that

the uncertainty regarding firm profitability was much higher during 2000 than in other

periods and argue that this can rationalize observed valuations. In a time series analysis

of the NASDAQ Composite index, they find that the implied uncertainty is an order of

magnitude higher in 1999, 2000, and 2001 (see, e.g., their Figure 8). We also find that

uncertainty over fundamentals, as measured by σQj , was higher during these years, although

the magnitude was smaller than the magnitude found in Pastor and Veronesi (2005).

3.3 Stochastic volatility models with deterministic jumps

The results in the previous section assume that diffusive volatility is constant. In order

to develop a better benchmark and to account for time-varying volatility, we consider the

stochastic volatility model developed in Section 3.2 and estimate versions with and without

deterministically-timed jumps. A stochastic volatility model (with constant parameters)

allows us to impose a consistent model across dates, strikes, and time-to-maturity. Implic-

itly, in the analysis based on our extension of Black-Scholes, we placed no constraints on

the speed of mean-reversion or the long-run level of Vt.

Our primary interest in estimating stochastic volatility models is quantifying the pricing

improvements from incorporating jumps on earnings dates.22 Intuitively, a pure SV model

will have difficulty in fitting short and long-dated options around earnings. The data imply

that short-dated options have a very high volatility, while the long-dated options have much

lower implied volatility. This suggests that the SV model will have difficulty matching this

with essentially one degree of freedom, Vt, and will instead underprice short-dated options

and overprice long-dated options. Jumps on EADs will release this tension.

We use the entire time series of ATM call options from 1996 through 2002 to estimate

the model. We use multiple maturities and the closest to-the-money call option for each

maturity. In a stochastic volatility model, a short maturity ATM option provides informa-

tion on Vt and the long-dated options provide information on the risk-neutral parameters.

22Although common in the literature, we do not perform an out-of-sample pricing exercise. As noted in
Bates (2003), these tests, in general, are not particularly useful for analyzing model specification: “Perhaps
the one test that does not appear to be especially informative is short-horizon “out-of-sample” option pricing
tests...” (p. 396). In our setting, out-of-sample exercises are more difficult due to the time-heterogeneity:
since σQj varies across earnings dates, an out-of-sample test would require estimating this parameter in
addition to Vt.
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This procedure imposes that the model parameters are constant from 1996 to 2002, in con-

trast to the usual calibration approach which re-estimates parameters every time period

(daily, weekly, etc.). We estimate the parameters and volatility by minimizing scaled option

pricing errors.23 Ideally, one would estimate the model using, in addition to option prices,

the time series of returns. Existing approaches include EMM (Chernov and Ghysels 2000),

implied-state GMM (Pan 2002), MCMC (Eraker 2004), or the approximate MLE approach

of Aït-Sahalia and Kimmel (2005). These approaches are in principle statistically efficient,

however the computational demands of iteratively pricing options for each simulated latent

volatility path and parameter vector lead to implementations with short data samples and

few options contracts (typically one per day).

To describe our approach, let C
¡
St, Vt,Θ

Q, σQτn, τn,Kn

¢
denote the model implied price

of a call option struck at Kn and maturing in τn days, where ΘQ =
¡
κQ, θQ, σv, ρ

¢
and

σQτn =
©
σQj : t < j < t+ τn

ª
. We maximize the objective function

log
£
L
¡
ΘQ, σQτn , Vt

¢¤
=

− TN

2
log
¡
σ2ε
¢
− 1
2

TX
t=1

NX
n=1

"
CMar (t, τn,Kn)− C

¡
St, Vt,Θ

Q, σQτn , τn,Kn

¢
σεSt

#2
where CMar (t, τn,Kn) is the market price of an option at time t, struck atKn, and maturing

at time τn. Since we use a long time series of option prices, normalizing by the stock price

is important to impose stationarity. Without this constraint, the objective function would

be concentrated on option values during periods when the stock price is relatively high.

Our objective function weighs long-dated options more than short-dated options, as

long-dated options are more expensive. If this has an effect on our results, it tends to reduce

the importance of earnings announcement jumps as the objective function is tilted toward

long-dated options. Alternatives would include minimizing IV deviations or percentage

pricing errors. We experimented with percentage pricing errors and found the differences

were generally small.

We initially tried to estimate ρ, however, it is not possible to identify this parameter

23We initially tried to follow Bates (2000) and impose time series consistency on the volatility process,
by including a term in the likelihood incorporating the transition density of variance increments. This
additional term penalizes the estimates if the volatility process is not consistent with its square-root
dynamics. However, it was not possible to obtain reliable estimates due to the computational burdens
involved in the optimization problem.
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based on ATM options as it does not have a significant impact on option prices.24 It can be

identified primarily from out-of-the-money options and from the joint time series of returns

and volatility increments. We imposed the constraint that ρ = 0 throughout.

We require daily data in order to track the performance of the models around EADs.

This, along with the requirement that the parameters be constant through the sample,

makes the optimization problem computationally burdensome. For robustness, we start

the optimization from numerous different starting values on multiple machines and ran-

domly perturb the variance and parameters in order to ensure that the algorithm efficiently

searches. Due to these computational burdens, we only consider five companies, APPL,

AMGN, CSCO, INTC, and MSFT. The three largest and most actively traded companies

are CSCO, INTC and MSFT and then we chose one company with small average jump

sizes (AMGN) and one with large average jump sizes (AAPL).

3.4 Estimation Results

Estimation results for the five companies are in Tables 8, 9, and 10. Table 8 provides para-

meter estimates, standard errors based on a normal likelihood function, and log-likelihood

function values for the SV model and the extension with jumps on earnings dates (SVEJ).

Although not reported, a likelihood ratio test overwhelmingly rejects the restrictions that

the jump volatilities are zero.

All of the parameter estimates are plausible, although even with a relatively long time

series, it is difficult to identify some of the parameters. For all models and firms, the Feller

condition holds under Q, which implies that risk-neutral volatility is well behaved.25 For
both models, the estimates of κQv are similar, in the range of two to three. While these

values are low relative to those obtained for index options, which implies that individual

24To see this, consider two option maturities, one and three months, and assume κv = 1, θ = 0.302,
σv = 0.20, and V0 = 0.302. This implies that the current and long run mean of volatility is 30%. The price
of a one month, at-the-money option if ρ = −0.50, 0, or +0.50 is 3.320, 3.321, and 3.323, respectively, and
the Black-Scholes implied volatilities are 29.95, 29.96 and 29.97. For the three month option, the prices
and implied volatilities are 5.563, 5.567, and 5.574 and 29.86, 29.88, and 29.92. Clearly, the effect is very

small and, moreover, in an estimation procedure in which other parameters and volatility are estimated,
it is not identified based on at-the-money options.
25For certain models, Pan (2002) and Jones (2003) find evidence for explosive risk-neutral volatility for

equity indices.
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κQv θQv
√
θv σv σe σQ L(Θ, Vt)/NT

SV 2.4633 0.2694 0.5190 0.1131 0.0047 – 3.9420

AAPL 0.0456 0.0168 0.0162 1.5002 0.0018 –

SVEJ 1.7422 0.2401 0.4900 0.0773 0.0037 0.0848 4.1919

0.0477 0.0286 0.0292 2.7094 0.0023 0.0023

SV 2.0358 0.1302 0.3608 0.0314 0.0031 – 4.3645

AMGN 0.0310 0.0194 0.0268 5.0163 0.0018 –

SVEJ 2.0697 0.1304 0.3611 0.0623 0.0030 0.0423 4.4035

0.0299 0.0037 0.0052 0.5592 0.0019 0.0112

SV 3.3760 0.2122 0.4606 0.1152 0.0034 – 4.2652

CSCO 0.0355 0.0110 0.0120 1.4775 0.0021 –

SVEJ 3.1316 0.2025 0.4500 0.1015 0.0028 0.0708 4.4575

0.0322 0.0094 0.0104 1.3540 0.0020 0.0036

SV 2.7635 0.1240 0.3522 0.0953 0.0032 – 4.3266

INTC 0.0360 0.0164 0.0233 1.9713 0.0011

SVEJ 2.2625 0.1042 0.3228 0.1322 0.0026 0.0599 4.5356

0.0335 0.0139 0.0216 1.0560 0.0014 0.0016

SV 3.2897 0.1268 0.3560 0.0260 0.0025 4.5787

MSFT 0.0421 0.0062 0.0087 3.5977 0.0008

SVEJ 2.9954 .1225 0.2500 0.0710 0.0022 0.0391 4.6949

0.0389 0.0056 0.0081 1.0973 0.0013 0.0041

Table 8: Parameter estimates and standard errors for Apple, Amgen, Cisco, Intel and

Microsoft. For each firm and model, the first row contains the parameter estimate and the

second row the estimated standard error. The standard errors for σε are multiplied by 100.
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stock volatility is more persistent, this could be strongly influenced by the sample period

(our sample does not include the Crash of 1987). The estimates of θQv imply plausible values

for the long-run mean of volatility,
p
θQv (we report standard errors via the delta method).

The long-run volatility tends to falls in the SVEJ model. The standard errors imply that

the objective function is very informative about these risk-neutral drift parameters.

In contrast to the risk-neutral drift parameters, σv is not well-identified: the standard

errors are an order of magnitude larger than the estimate. This is not surprising as we only

use near-the-money options and do not incorporate the time series of volatilities. ATM

option prices are driven primarily by expected future volatility and from (2) it is clear that

this parameter does not affect expected future volatility. The parameter σv can most easily

be identified by the time series of implied volatilities and to a some extent from out-of-the-

money options. A priori, it is not clear if σv would increase or decrease with deterministic

jumps. On the one hand, one would think that Vt would become less volatile, which would

imply that it would fall. However, since the volatility of variance increments is σv
√
Vt, and

Vt falls in the deterministic jump model, the effect is unclear.

The sixth column of Table 8 provides the average estimate of σQj , denoted σQ, for each

firm with the average standard error reported below. To frame the results, recall that the

average jump volatility for AAPL, AMGN, CSCO, INTC and MSFT based on the term

structure estimator was 8.48, 4.23, 7.08, 5.99 and 3.91, respectively, compared to 12.44,

7.15, 9.37, 10.17, and 7.44 percent for the same firms. The results are similar, although

the jump sizes based on the full estimation are lower. For AMGN, a biotech company, it is

not surprising they have low uncertainty in earnings as their earnings are driven by drugs

whose sales and regulatory status are typically announced outside of earnings.

There are three reasons why the estimates of σQj differ. First, in the Black-Scholes

model, a number of earnings dates result in zero jump volatility estimates. In the stochastic

volatility model, this does not happen for any of the earnings dates, although some are quite

small. Thus, a direct comparison based on average estimates of σQj is not strictly valid.

Second, the time series and term structure estimators of the previous section use one and

two options, respectively, whereas the full estimation results use information contained in

all options that are affected by earnings announcement jumps. This means that on each

day at least three options are affected and an earnings announcement will have a significant

impact on options for at least a month prior to the announcement. Third, the stochastic

volatility model imposes that the parameters in the model are constant through time,
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whereas the term structure and time series estimators allow expected volatility to differ at

each announcement. Due to this, the estimates based on the extension of the Black-Scholes

model are less constrained and are less subject to potential misspecification.

Table 10 provides the dollar pricing errors for the days surrounding an earnings an-

nouncement. For each model, we report pricing errors for short maturity options (five to

15 days), medium maturity options (15 to 35 days), and for long term options (more than

35 days). The columns indicate the days relative to the earnings announcement. For ex-

ample, ‘+1’ is the day after the announcement for AMC announcements (and the day of

the announcement for BMO announcements). For a number of days and firms, there are

fewer than five total option prices available in the short maturity category for any earnings

announcements and we denote these days by a ‘–’. This lack of data is due to the timing

of the earnings announcements and the expiration calendar.

For all of the firms, there is a significant pricing difference between the SV and SVEJ

models, especially for short-dated options. In the week leading up to the earnings an-

nouncement, the reduction in pricing errors is on the order of 50 percent. The effect is

largest for CSCO and INTC and smallest for AMGN and MSFT, which have relatively

small jump sizes. As an example, the mean-absolute pricing errors for short-dated CSCO

options fall in the three days leading up to the earnings announcement from 0.2759, 0.4301

and 0.3776 in the SV model to 0.0934, 0.1902, and 0.1642 in the SVEJ model. For most

firms and days, there is also a noticeable improvement in the pricing of the long-dated

options.

The SV model cannot fit the short, medium and long-dated options with only Vt, and

so it generally underprices the short-dated options and overprices the long-dated options.

To price the short-dated options around earnings dates, the SV model requires a very high

Vt, but this results in a drastic overpricing of the longer maturities. The SV model cannot

simultaneously fit both of these features. By introducing jumps on earnings announcements,

the SVEJ model allows σQj to capture the behavior of the short-dated options and then Vt

can jointly fit the other options with greater accuracy. The SV and SVEJ models perform

similarly for the day after the announcement, although again there is a modest improvement

in the SVEJ model.

Table 10 provides mean and mean absolute pricing errors for the entire sample. There

is clearly a substantial pricing improvement for all of the firms and for all of the maturities,

with the exception of Amgen. Also note that the mean errors are generally positive for
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-5 -4 -3 -2 -1 0 +1

Short SV 0.3574 0.3986 0.3385 0.4729 0.6198 1.0768 –

SVEJ 0.1225 0.1573 0.1713 0.1897 0.1588 0.4536 –

AAPL Med SV 0.3249 0.3140 0.3094 0.3264 0.3152 0.3375 0.1597

SVEJ 0.1085 0.0855 0.1063 0.1113 0.0952 0.1094 0.1068

Long SV 0.2706 0.3014 0.2786 0.2734 0.2643 0.2872 0.2862

SVEJ 0.0811 0.0893 0.0683 0.0967 0.0815 0.1144 0.0762

Short SV 0.2041 0.2244 0.2357 0.2442 0.5397 0.7788 –

SVEJ 0.1978 0.1546 0.1474 0.1262 0.3297 0.5875 –

AMGN Med SV 0.1187 0.1051 0.1330 0.1427 0.1348 0.1525 0.1160

SVEJ 0.1310 0.1219 0.1590 0.1617 0.1533 0.1655 0.1349

Long SV 0.1065 0.0948 0.1188 0.1004 0.1135 0.1128 0.0906

SVEJ 0.0955 0.0856 0.1170 0.1043 0.1153 0.1209 0.1214

Short SV 0.2504 0.2826 0.3200 0.2759 0.4301 0.3776 0.1197

SVEJ 0.1070 0.1061 0.1009 0.0934 0.1902 0.1642 0.1345

CSCO Med SV 0.0946 0.0988 0.0944 0.0955 0.0721 0.0612 0.0561

SVEJ 0.0887 0.0784 0.0755 0.0728 0.0557 0.0546 0.1020

Long SV 0.1003 0.1107 0.1027 0.1125 0.1814 0.1737 0.0866

SVEJ 0.0703 0.0700 0.0496 0.0576 0.0820 0.0787 0.1841

Short SV 0.3683 0.4001 0.4057 0.4343 0.8153 1.1573 0.3123

SVEJ 0.1468 0.1905 0.1705 0.1973 0.4234 0.6847 0.3731

INTC Med SV 0.0715 0.0816 0.1031 0.0955 0.1152 0.1036 0.0992

SVEJ 0.0699 0.0680 0.0991 0.0837 0.1041 0.0966 0.1867

Long SV 0.1602 0.1797 0.1926 0.1774 0.2655 0.3389 0.1017

SVEJ 0.0775 0.1043 0.1039 0.0993 0.1495 0.1974 0.0929

Short SV 0.2223 0.2161 0.4711 0.6386 1.0440 – –

SVEJ 0.1997 0.2037 0.2706 0.3397 0.6696 – –

MSFT Med SV 0.1031 0.1222 0.1150 0.1373 0.1758 0.2344 0.1597

SVEJ 0.1103 0.1213 0.1217 0.1320 0.1558 0.1943 0.1858

Long SV 0.1415 0.1523 0.1836 0.1806 0.2444 0.1578 0.1099

SVEJ 0.0958 0.1115 0.1258 0.1269 0.1900 0.1357 0.1415

Table 9: Absolute pricing errors around earnings announcements. The columns are indexed

relative to the earnings date (e.g., −2 indicates two days prior to an earnings announce-
ment). The maturities are short (5 to 15 days to maturity), medium (16 to 35 days), and

long (more than 35 days).

46



Maturity 3 < τ < 15 16 < τ < 35 τ > 35

MAE ME MAE ME MAE ME

AAPL SV 0.1826 0.0217 0.1051 -0.0186 0.0952 0.0082

SVEJ 0.1334 -0.0009 0.0922 0.0088 0.0769 -0.0026

AMGN SV 0.1717 0.0138 0.1373 -0.0014 0.1202 -0.0001

SVEJ 0.1680 0.0321 0.1333 0.0006 0.1175 0.0029

CSCO SV 0.1751 0.0296 0.1293 0.0233 0.1118 -0.0179

SVEJ 0.1375 0.0264 0.1093 0.0132 0.0968 -0.0050

INTC SV 0.2380 0.1153 0.1218 -0.0304 0.1221 -0.0045

SVEJ 0.1872 0.0837 0.1037 -0.0001 0.0948 -0.0126

MSFT SV 0.2171 -0.0143 0.1401 -0.0143 0.1338 0.0030

SVEJ 0.1938 -0.0033 0.1386 -0.0033 0.1251 0.0008

Table 10: Overall mean absolute pricing errors broken down by firm and maturity.

short-dated options and negative for long-dated options, which indicates the SV model

underprices short-dated options and over-pricing of long-dated options. These large im-

provements are somewhat surprising given that earnings announcements occur only four

times per year. This pricing reduction is in contrast to Bakshi and Cao (2004) who find

that jumps in returns, jumps in volatility, and stochastic interest rates have no noticeable

pricing impact on ATM options across the maturity spectrum.

4 Conclusions

In this paper, we develop models incorporating earnings announcements for pricing options

and for learning about the uncertainty embedded in an individual firm’s earnings announce-

ment. We take seriously the timing of earnings announcements and develop a model and

pricing approach incorporating jumps on EADs. Jumps on EADs are straightforward to

incorporate into standard option pricing models. Based on these models, we introduce

estimators of the uncertainty surrounding earnings announcements and discuss the general

properties of models with deterministically-timed jumps.
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Empirically, based on a sample of 20 firms, we find that earnings announcements are

important components of option prices, we investigate risk premiums, and we analyze the

underlying assumptions of the model. To quantify the impact on option prices, we calibrate

a stochastic volatility model and find that accounting for jumps on EADs is extremely

important for pricing options. Models without jumps on EADs have large and systematic

pricing errors around earnings dates. A stochastic volatility model incorporating earnings

jumps drastically lowers the pricing errors and reduces misspecification in the volatility

process.

There are a number of interesting extensions First, we are interested in the empirical

content of σQj in comparison to other measures of earnings uncertainty such as firm age,

analyst dispersion, or analyst coverage. Our measure provides a market-based alternative

to these existing measures. Second, we are interested in understanding the ex-ante in-

formation in macroeconomic announcements. Ederington and Lee (1996) and Beber and

Brandt (2004) document a strong decrease in IV subsequent to major macroeconomic an-

nouncements, which is the same effect we document for earnings announcements. It would

be interesting to estimate the bond-market jump uncertainty ex-ante, and understand how

it varies over the business cycle. We leave these issues for future research.
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A Close/open and open/close behavior

We assume that an earnings announcement results in a discontinuity in the sample path of

stock prices when the earnings are released. An alternative assumption is that the diffusion

coefficient increases on days following earnings announcements, as in Patell and Wolfson

(1979, 1981). Thus, the main difference between our model and Patell and Wolfson’s model

is the discontinuity of the sample path. In theory, prices are observed continuously and

jumps are observed at ∆St = St − St−. With discretely sampled prices, it is impossible to

identify when jumps occurred with certainty and it is common to use statistical methods

(see, e.g., Johannes 2004, Barndorff-Nielson and Shephard 2006, or Huang and Tauchen

2005). Identifying jumps on EADs is even more difficult in our setting as earnings are

announced outside of normal trading hours.26

Since it is impossible to ascertain with discretely sampled prices whether or not there

is a jump, we consider the following intuitive metric. Strictly speaking, there will almost

always be a “jump” from close-to-open, as the opening price is rarely equal to the close

price. For example, there are many events that could cause relatively minor overnight

movements in equity prices and result in a non-zero close-to-open movement: movements of

related equity and bond markets (e.g., Europe and Japan), macroeconomic announcements

such employment or inflation (typically announced at 8:30 a.m. EST, an hour before the

formal market open), or earnings announcements of related firms to name a few. The

main difference, however, is that if our assumption of a jump on earnings dates is true,

the magnitude of the moves should be much bigger for earnings dates versus non-earnings

dates. Statistically, the movements should appear as outliers.

To analyze this issue, we compare the standard deviation of close-to-open to returns

on announcement and non-announcement days over our sample. Table (11) provides the

standard deviation of close-to-open and open-to-close returns for earnings and non-earnings

dates and the ratios comparing earnings and non-earnings dates. Note first that the results

indicate that the close-to-open returns on earnings dates are, on average, about 3.3 times

more volatile. An F -test for equal variances is rejected against the one-sided alternative in

every case at the one-percent critical level. For example, average volatility of close-to-open

26There is relatively little known about the behavior of after-hour prices. Barclay and Hendershott (2003,
2004) argue that, relative to normal trading hours, prices are less efficient as bid-ask spreads are much
larger, there are more frequent price reversals, and generally noisier in post close or pre-open trading.
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returns on earnings days was 6.55 percent compared to 1.98 percent on non-earnings dates.

Since we usually identify outliers as movements greater than three standard deviations,

this is clear evidence of abnormal or jump behavior. The effect is strongest for the largest

firms: if we consider the five largest firms in terms of option volume, the standard deviation

of close-to-open returns is over 7.1 percent on earnings days compared to 1.7 percent for

non-earnings days, for a ratio of greater than four.

Second, note that open-to-close returns are slightly more volatile on earnings dates than

non-earnings dates, on average 4.8 percent compared to 3.7 percent which indicates that

returns are slightly more volatile during the day following earnings. However, if you look

at the five largest firms, the difference is much smaller: the volatility during the day is 3.22

(2.96) percent on earnings (non-earnings) dates, indicating the volatility is quite similar

(ratio of about 1.1). In contrast, the smallest firms are relatively more volatile during the

day, 6.0 percent compared to 4.32 percent for a ratio of 1.4. The obvious explanation for

the difference between the higher and lower-volume companies is liquidity, which could be

exacerbated by opening features on the NASDAQmarket. Barclay, Hendershott, and Jones

(2004) argue that the Nasdaq opening procedure introduces more noise than the opening

procedure on the NYSE.

Overall, the results are consistent with our assumption that the response of the stock

price to an earnings announcement is (a) an abnormally large movement and (b) largely

captured by the close-to-open returns as close-to-open returns are more than three times

more volatile on earnings compared to non-earnings days.

B Transform analysis

This appendix provides the details of computing the option transforms. First, to price

options, we need to evaluate the conditional transform of log (ST ). By the affine structure

of the problem, we have that for a complex valued c,

ψ (c, St, Vt, t, T ) = EQ
t [exp (−r (T − t)) exp (c · log (ST ))]

= exp (α (c, t, T ) + β (c, t, T )Vt + c · log (St))
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EAD Non-EAD EAD Non-Ead
Close/open Close/open Ratio Open/Close Open/Close Ratio

AAPL 7.68% 2.33% 3.29 3.58% 3.31% 1.08

ADBE 6.43% 2.12% 3.04 3.20% 3.58% 0.89

ALTR 6.76% 2.34% 2.89 5.89% 4.29% 1.37

AMAT 4.25% 1.98% 2.14 4.58% 3.78% 1.21

AMGN 4.75% 1.38% 3.43 2.98% 2.63% 1.13

CSCO 5.33% 1.78% 2.99 2.82% 3.18% 0.88

DELL 6.79% 1.82% 3.73 2.78% 3.21% 0.86

EMC 4.79% 2.20% 2.17 5.55% 3.56% 1.56

INTC 6.20% 1.82% 3.41 3.89% 2.73% 1.43

KLAC 3.71% 1.93% 1.92 6.63% 4.38% 1.51

MSFT 5.29% 1.17% 4.51 2.73% 2.20% 1.24

MU 5.28% 2.17% 2.43 6.08% 4.06% 1.50

MXIM 5.02% 1.51% 3.33 5.04% 4.04% 1.25

NVLS 6.86% 2.02% 3.40 7.55% 4.34% 1.74

ORCL 11.88% 1.99% 5.96 3.87% 3.49% 1.11

PMCS 11.17% 2.59% 4.31 7.71% 5.27% 1.46

PSFT 9.35% 2.22% 4.20 7.56% 4.11% 1.84

QCOM 8.12% 2.07% 3.92 5.16% 3.82% 1.35

SUNW 5.93% 1.99% 2.98 3.90% 3.53% 1.10

XLNX 5.49% 2.13% 2.58 5.59% 4.25% 1.31

Average 6.55% 1.98% 3.33 4.85% 3.68% 1.29

Table 11: Comparisons of close-to-open and open-to-close returns on earnings (EAD) and

non-earnings (non-EAD) announcements dates.
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where β (c, t, T ) and α (c, t, T ) are given by:

βv (c, t, T ) =
c (1− c)

£
1− eγv(T−t)

¤
2γv −

¡
αv − κQv

¢
[1− eγv(T−t)]

α (c, t, T ) = α∗ (c, t, T )−
Nd
TX

j=Nd
t +1

c

2

¡
σQj
¢2
+

c2

2

¡
σQj
¢2

where

α∗ (c, t, T ) = rτ (c− 1) + −κ
Q
v θ

Q
v

σ2v

∙¡
αv − κQv

¢
τ + 2 ln

µ
1− αv − κQv

2γv
(1− eγvτ )

¶¸
,

τ = T − t, γv =
£¡
σvρc− κQv

¢
+ c (1− c)σ2v

¤1/2
, and αv = γv + σvρc.

The transform of log(St) with deterministic jumps has a particularly simple structure

under our assumptions. To see this, note that

log (ST ) = log (St) +

Z T

t

µ
r − 1

2
Vs

¶
ds+

Z T

t

p
VtdW

s
t +

Nd
TX

j=Nd
t +1

Zj

= log
³eST´+ Nd

TX
j=Nd

t +1

Zj

where log
³eST´ is the traditional affine component. If we assume that the deterministic

jumps are conditionally independent of the affine state variables, then the transform of

log (ST ) is just the product of the traditional affine transform and the transform of the

deterministic jumps:

EQ
t [exp (−r (T − t)) exp (c · log (ST ))]

=EQ
t

h
exp (−r (T − t)) exp

³
c · log

³eST´´iEQ
t

⎡⎣exp
⎛⎝c

Nd
TX

j=Nd
t +1

Zj

⎞⎠⎤⎦
=exp [α∗ (t) + β (t) · Vt + c · log (St)] exp

¡
αd (t)

¢
where EQ

t

h
exp

³
c
PNd

T

j=Nd
t +1

Zj

´i
= exp

¡
αd (t)

¢
for some state-independent function αd ,

α∗ (t) = α∗ (c, t, T ), and β (t) = β (c, t, T ). This implies that only the constant term in the

exponential is adjusted. Thus, option pricing with earnings announcements requires only

minor modifications of existing approaches.
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This pricing model has an additional implication of note. Since only the total number

of jumps over the life of the contract matter, the exact timing of the jumps does not,

provided that the distribution of jump sizes does not change. It is not hard to show

that if, for example, there is a probability p that the firm announces on a given date and

(1− p) that they announce the following day, the transform is unchanged provided the

jump distribution does not change.

The discounted log stock transform below is the key piece in transform based option

pricing methods. In a two-factor stock price model in an affine setting we know the form

includes two loading functions for each of the factors.

ψ(c, St, Vt, t, T, r) = exp (−r(T − t) + α(c, t, T ) + β(c, t, T )Vt + c · logSt)

where c is complex-valued. Duffie, Pan, Singleton (2000) and Pan (2002) price call options

by breaking up the claims into two components, the all-or-nothing option minus the binary

option. Pan (2002) describes methods of bounding the truncation and sampling errors

involved with numerical inversion of transform integrals for these claims. Instead, we follow

Carr-Madan (1999) and Lee (2004) and compute the Fourier transform of the call option.

This reduces the problem to one numerical inversion and improves the characteristics of

the integrand thus reducing sources for error and computational demands.

We now briefly describe Carr-Madan’s results. If we let C(k) be the call option with

a log strike k. We introduce the dampened call price, c(k) with a dampening coefficient

α > 0 which forces the square integrability of the call price transform. We also require

E[Sα+1] <∞, which can be verified with the log stock price transform We find that α = 2

performs well. If we let the dampened call price be given by c(k) ≡ exp(αk)C(k), the

Fourier transform of c(k) is defined by

ψc(v) =

Z ∞

−∞
exp (iαv) c(k)dk. (5)

The Fourier transform of c(k) is given by

ψc(v) =
ψ(v − i(α+ 1), St, Vt, t, T, r)

α2 + α− v2 + i(2α+ 1)v
, (6)

where some of the arguments are suppressed on the left hand side for notational simplicity.

To invert the dampened call price to get the call price, we use the inversion formula,
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C(k) =
exp(−αk)

π

Z ∞

0

Re[exp(−iαk)ψc(v)]dv. (7)

Obviously, in practice, we must truncate this indefinite integral and the log stock price

transform can be used again to find an appropriate upper limit. Carr and Madan (1999)

show the following the inequalities:

|ψc(v)|2 ≤
E[Sα+1]

(α2 + α− v2)2 + (2α+ 1)2v2
≤ A

v4
(8)

and |ψc(v)| ≤
√
Av−2. The integral tail can be bounded by the right hand side which is

Z ∞

a

|ψc(v)|dv <
√
A

a
. (9)

If we set A = E[Sα+1] the upper limit a can be selected for a general ε truncation bound,

a >
exp(−αk)

√
A

πε
. (10)

Once an upper limit is selected, any numerical integration method can be used. We use

an adaptive quadrature algorithm that uses Simpson’s Rule, with one step of Richardson

extrapolation. The integral grid is iteratively changed until the value converges where the

improvements are less than a specified value, which controls the error. We find that this

provides accurate prices and is computationally attractive.

C Black-Scholes and stochastic volatility

This appendix analyzes the impact of stochastic volatility on the earning announcement

jump estimators. Standard stochastic volatility models imply that volatility has predictable

components with the potential for large and asymmetric shocks. The time series and term

structure estimators formally assumed a constant expected diffusive volatility and this

assumption could create problems.

Stochastic volatility raises two issues: 1) how to interpret Black-Scholes IV when volatil-

ity is time-varying and 2) how would time-varying volatility affect our estimators based on

Black-Scholes IV? The first concern is largely addressed using Hull and White (1987) and
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Bates (1995), who argue that Black-Scholes IV is approximately equal to the risk-neutral

expected variance over the life of the contract. Secondly, time-varying volatility introduces

predictable time series variation in IV and various term structure of IV shapes, in contrast

to the constant volatility assumption in our extension of Black-Scholes. This could affect

our time series and term structure based estimators.

To understand these issues, assume that there are two ATM options available at two

maturities, T1 and T2, and there is one earnings announcement between time r and T2 > T1.

The Hull and White (1987) approximation states that¡
σBSt,Ti

¢2
= T−1i EQ

t

∙Z t+Ti

t

Vsds

¸
+ T−1i

¡
σQ
¢2

(11)

is an accurate approximation if the shocks to Vt are independent of those to prices (see,

e.g., Hull and White 1987 and Bates 1995). Bates (1995) argues that the error in implied

volatilities is typically less than 0.5% (p. 38), which is within the bid-ask spread.27 The

approximation is better for short-dated options and our sample is dominated by very short-

dated options. Chernov (2005) and Jones (2003) (in a more general stochastic volatility

model) show that the approximation error is negligible in the context of index options where

ρ ≈ −0.50. As mentioned earlier, individual equity options have a smaller leverage effect
than indices (about 1/5 as large, see Dennis, Mayhew and Stivers 2004) which implies the

impact is smaller. Second, since all of our estimators rely on the difference between Black-

Scholes implied variances, factors that introduce a fixed level bias in ATM IV are differenced

out. This implies that the impact of jumps in prices driven by a Poisson process on the

Black-Scholes implied variance would be similar for two different maturities and would be

differenced out.

To frame the issues, consider a square-root stochastic volatility model augmented with

randomly-timed jumps in the variance:

dVt = κQv
¡
θQv − Vt

¢
dt+ σv

p
VtdW

v
t + d

³PNt

j=1Z
v
j

´
,

where the shocks are all independent, Zv
j > 0 with mean μQv , Nt is Poisson with intensity

λQv , and all random variables are defined under Q. It is important to note we have little
27As noted by Merton (1976) and Bates (1995), randomly timed jumps in returns do not introduce any

problems as
¡
σBSt,Ti

¢2
= σ2+λσ2J , provided the jumps in log-returns are mean zero. If asymmetric jumps are

present, it would introduce a level bias (provided the intensity and jump distribution are not time-varying)
which would be differenced out in our estimators.
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evidence that the variance for individual equities jumps, however, we include it here for

completeness to understand its potential impact.

Both the term structure and time series estimators rely on differences between the

implied variances of two option maturities. To understand how stochastic volatility affects

these estimators, we need to compute EQ
t

hR t+Ti
t

Vsds
i
and study its variation over time

and maturity. Re-writing,

Vs = Vt +

Z s

t

κQv
¡
θQv − Vr

¢
dr +

Z s

t

σv
p
VrdW

v
r +

PNs

j=Nt+1
Zv
j

= eVs + NsP
j=Nt+1

Zv
j ,

and by Fubini’s theorem we have that
³eθQv = λμQv + θQv

´
EIVt,τi = T−1i EQ

t

∙Z t+Ti

t

Vsds

¸
= T−1i

Z t+Ti

t
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t [Vs] ds (12)

= T−1i

Z t+Ti

t

EQ
t

heVsi ds+ λQv μ
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v (13)
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1− e−κ

Q
vTi

´
κQv Ti

³
Vt − eθQv ´ . (14)

Both the term structure and time series estimators are based on the difference in implied

variance between options or expiration dates. The accuracy of these estimators depends

on how variable EIVt,τi is as a function of Ti (for the term structure estimator) and t (for

the time series estimator).

The term structure estimator relies on the difference between Black-Scholes implied

variances,
¡
σBSt,T1

¢2− ¡σBSt,T2

¢2
. Since jumps in volatility merely only alter the long-run mean

in EIV t,τi, they don’t have any impact of the term structure estimator above and beyond

the mean-reversion term, so from now on we assume they are not present. Time-varying

volatility can have an impact because EIV t,τ1 6= EIV t,τ2.

In our setting, this implies that there is a predictable difference in expected volatility

over, for example, two weeks and six weeks. Independent of any model, we have some

evidence that this difference is minor. Since volatility is very persistent, there will be very

little difference in forecasts of volatility over the relatively short horizons we deal with.

Moreover, the term structure of IV is very flat for both index options (Broadie, Chernov,
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and Johannes 2005) and individual stocks, which implies that the variation in expected

variance over short horizons is rather small.

In the context of the model above, Vt − θQv , κ
Q
v , and Ti could each potentially impact

the term structure estimator, while jumps in volatility, σv, and Brownian paths have no

impact. In each of these cases, intuition implies the impact will be minor. For example,

unless there are large volatility risk premia (for which there is no evidence for individual

stocks), θQv ≈ θPv which implies that, on average Vt ≈ θQ. This further implies that the

errors will be small, at least on average. Since the IV term structure is very flat, even in

periods of very high volatility and especially over the first two contracts, implying that

Vt is close to θQv . Finally, volatility is highly persistent and we use short-dated options,

implying that κQv and Ti are small and thus the predictable difference in implied variance

over various maturities is rather small.

To get a sense of the size of the errors, consider the following reasonable stochastic

volatility parameters: θQv = (0.3)
2, κQv = 2.5, and σQτj = 0.10 (long-run, annualized diffu-

sive volatility of 30 percent). Computing the term structure based estimator for
√
Vt =

(0.20, 0.40.0.50), assuming the short-dated option matures in one week (1/52), two weeks

(2/52), or three weeks (3/52) and assuming the second option matures one-month later, we

have that bσQ = (0.0995, 0.1007, 0.1017), (0.0988, 0.1017, 0.1038), or (0.0979, 0.1029, 0.1064),
respectively. The reason the effect is relatively small is that volatility is persistent and

that option maturities are relatively small, implying that
³
1− e−κ

Q
vTi

´
/κQv Ti does not vary

wildly across maturities. Most of our firms announce earnings in the two weeks prior to

expiration, so it is clear that the term structure estimator is robust to stochastic volatility

and to randomly-timed jumps in volatility.

Next, consider the time series estimator. The time series estimator in the presence of

stochastic volatility is given by¡
σBSt,Ti

¢2 − ¡σBSt+1,Ti−1
¢2
= EIVt,Ti − EIVt+1,Ti−1 + T−1i

³
σQτj

´2
,

where it is important to note that EIV t,Ti is a function of Vt while EIV t+1,Ti−1 is a

function of Vt+1. If Vt ≈ Vt+1, then the estimator is quite accurate as the effect of mean-

reversion over one-day is negligible. Using the parameters from above, the estimates for

three weeks (relatively the worst of the three are) bσQ = (0.10006, 0.09990, 0.09979).
If volatility increases or decreases substantially, the performance of the time series

estimator deteriorates quickly, EIV t,Ti and EIV t+1,Ti−1 are quite different. Changes
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in Vt are driven in the specification above by σv, the Brownian paths, and Zv
j . For the

firms in our sample, the volatility of daily changes in volatility is around three to five

percent, which implies that normal variation could result in reasonably large movements

in volatility. To gauge their potential impact, suppose that current spot volatility is 30

percent and we consider a range of changes in volatility on the following day, Vt+1 =

(0.1, 0.2, 0.25, 0.35, 0.40, 0.50). While it is very unlikely that volatility would decrease this

much in one day (as jumps in volatility are typically assumed to be positive), we include the

lower volatilities to understand the potential impact. For options maturing in three weeks

and the same parameters as above, bσQ = (0.1197, 0.1127, 0.1072, 0.0908, 0.0789, 0.0369).

The potential impact is much larger and, more importantly, is asymmetric: if volatility

increases from 30% to 50%, the estimate is biased down by 6.31% while if volatility were

to decrease from 30% to 10%, the estimate is biased upward only by 1.97%.

The effect increases with maturity, so that the bias is greater when long-dated options

required. Intuitively, diffusive volatility is more important for long-dated options, magni-

fying the impact of the shocks. In the text, we noted that for more than 60 percent of

the times when we could not calculate the time estimator (the difference was negative),

there was no short-dated option available. For example, if σQ = 0.05, the shortest-dated

option has 6 weeks to maturity, and Vt increases from 30% to 35%,
¡
σBSt,Ti

¢2 − ¡σBSt+1,Ti−1
¢2

is negative. Long-dated options, combined with close-price issues are, in our opinion, the

major cause of the problematic dates for the time series estimator.

Our conclusions are as follows. First, the term structure and time series estimators will

generally be reliable estimators of σQ, even in the presence of stochastic volatility and/or

jumps. Second, the ability of the term structure estimator to estimate σQ depends on Vt,

θQv , and κQv and for reasonable parameters, the impact is quite small. The performance

of the time series estimator depends additionally on σv and on the shocks driving the

volatility process. Because of this, the time series estimator will be noisier and less reliable

than the term structure estimator. Third, for the time series estimator, the magnitudes

in the bias are large enough to generate problem dates. Finally, because increases in Vt

result in a larger bias downward in estimates of σQτj than decreases in Vt (holding the size of

increase/decrease constant), we expect that the time series estimator will have a downward

bias if the variance is time-varying or if there are positive jumps in the variance.
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