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Abstract: Electromagnetic interference calculations in the case of overhead lines and underground
insulated conductors require the determination of the self and mutual impedances of all conductors
in the arrangement. For the calculation of these impedances in nonhomogeneous soils, the use of
the finite-element method is suggested. However, this is generally a complicated and time-
consuming task. Analytic expressions for these impedances are derived by a solution of the
electromagnetic field equations for the case of n-layer soil. The infinite integrals involved are
evaluated using a numerically stable and efficient integration scheme. A typical transmission line/
underground insulated pipeline arrangement is examined for various two-layer earth models and
over a wide frequency range. The validity of the proposed methodology is justified by a proper
finite-element method formulation. The inclusion of earth stratification leads to substantially
different results for the calculated impedances. These differences affect significantly the levels of
voltages and currents induced on the pipeline, even for power frequencies, justifying the need for a
more detailed earth model representation.

1 Introduction

A research topic that has received significant attention from
researchers during recent decades is the electromagnetic
interference between overhead power transmission lines and
electric traction lines or underground insulated conductors.
The result of this interference is the induction of voltages
and currents on the underground insulated conductors,
which may cause electric shocks, deterioration of coating,
damage of equipment connected to the underground
insulated conductor and corrosion. The various approaches
used to calculate the levels of the induced voltages and
currents are described in [1–5]. All these approaches are
based on the solution of equivalent circuits describing the
system of the transmission line and the underground
conductor and require the calculation of the per-unit-length
self and mutual impedances between all conductors of the
arrangement.

The impedances of the system are strongly influenced by
the presence of the lossy earth. For the case of overhead
lines, the earth return impedances are calculated using the
widely accepted Carson’s formulas [6]. Pollaczek [7] has
proposed similar formulas applicable to cases of under-
ground conductors and to combinations of underground
and overhead conductors. In both approaches the earth
is assumed to be homogeneous and semi-infinite. These
expressions contain complex, highly oscillatory, semi-
infinite integrals, which are difficult to evaluate numerically.
Several approaches have been proposed for the practical
calculation of the earth correction terms, either in the form

of approximate formulas [8], or in the form of algorithmic
approximations [9].

A further complication is due to the fact that the earth is
composed of several layers of different electromagnetic
properties. Solutions for overhead conductors above multi-
layer earth have been proposed early enough [10, 11], but
these solutions do not apply to the case of underground
insulated conductors. The research in this area did not
proceed, possibly due to the lack of accurate data for proper
earth modelling. In some recent publications however
[12–15], several numerical techniques are proposed, offering
reliable estimations of the multilayered earth parameters,
based on actual earth surface resistivity measurements.

A very efficient approach in nonhomogeneous earth
treatment is the use of the finite-element method (FEM) for
the calculation of the impedances of various conductor
arrangements. The FEM is a numerical method used for
the solution of electromagnetic field equations in a region,
regardless of its geometric complexity. In a recent extension
[16] the FEM is applied for the calculation of the
impedances of transmission lines over nonhomogeneous
earth structures. A similar methodology is used in [17, 18]
for the calculation of the impedances between overhead
transmission lines and underground insulated metal pipe-
lines, as the first step of a hybrid method for the calculation
of the induced voltages and currents on pipelines. A major
drawback is the complexity in the application of the FEM,
which is usually a time-consuming task, requiring access to
proper software.

The scope of this paper is to present analytic expressions
for the calculation of the per-unit-length self and mutual
earth return impedances of an overhead–underground
conductor system for the generalised case of a n-layer
earth. These expressions are derived by a general solution of
the electromagnetic field equations, using a methodology
based on the hertzian vector approach. This methodology,
initially presented in [19] for underground cables in a two-
layer earth, is extended for the combination of overhead
and underground conductors and is generalised for a
n-layer earth case.E-mail: grigoris@eng.auth.gr
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The resulting expressions are similar in form to the
corresponding proposed by Pollaczek [7] and Sunde [10],
containing complex semi-infinite integral terms. These terms
are evaluated using a new numerical integration scheme
[20]. This scheme is based on proper combinations of
numerical integration methods, to overcome efficiently the
problems due to the highly oscillatory form of the infinite
integrals. The scheme has been applied in several cases of
cable impedance calculations in both homogeneous and
multilayered earth structures [19, 20] and proved to be
numerically stable and efficient in all examined cases.

The accuracy of the results obtained by the new
methodology is checked using a proper FEM formulation
in a test system, consisting of a typical single-circuit
overhead transmission line and an insulated pipeline buried
in different two-layer earth structures. The earth parameters
for each structure have been estimated from actual ground
resistivity measurements [12]. The comparison with the
results obtained by the FEM verifies the validity of the
proposed expressions and the accuracy of the numerical
integration scheme.

The impedances calculated for the two-layer earth model
differ greatly from those calculated considering a homo-
geneous earth. These differences lead to significant diver-
gence in the level of the induced voltages and currents on
the pipeline, showing that a more accurate model than the
simple homogeneous earth model should be used in the
electromagnetic interference calculations.

2 Problem formulation and solution

2.1 Electromagnetic field equations
The general layout of a system consisting of an overhead
and an underground insulated conductor in a n-layer earth
structure is shown in Fig. 1. The underground insulated
conductor is buried in the mth layer of the n-layer earth.
The vertical distance of the underground insulated con-
ductor from the upper boundary of the layer is h1. The
vertical distance of the overhead conductor from the earth
surface is h2. The horizontal separation distance between

the two conductors is yik. The ith layer has permeability
mi, permittivity ei and conductivity si. The air has a con-
ductivity s0 equal to zero, permeability m0 and permittivity
e0 equal to those of the free space. The nth layer is con-
sidered to be of infinite depth.

The mutual impedances between the two conductors may
be derived by integrating the field due to the conductor
dipoles. The field intensities and potentials can be expressed

in terms of a single vector functionP, usually referred to as

the hertzian vector [10]. The P function has been adopted
for the solution of the electromagnetic field equations in this
paper. Assuming a quasi-TEM propagation mode, follow-
ing assumptions apply.

First a filamentary current source of infinite length is
assumed to be located at the conductor centre. In the case
of self impedances, the unequal current density on the
conductor surface due to the skin effect is taken into
account by means of proper internal impedance terms.
These terms are calculated by the well-known skin effect
formulas [21, 22] using modified Bessel functions [23] and
can be added to the self-impedance terms.

The second assumption is that the thickness of the
insulation of the underground insulated conductor is
negligible compared to its diameter. The impedance of the
insulation can be calculated using a simple formula [21] and
can be also added to the corresponding impedances.

Finally the conductors are assumed to be uniform and of
infinite length, thus the end effects can be neglected and

therefore only the x-components of the hertzian vector P
are used in the analysis.

Assuming a horizontal dipole with a moment Ids in the
place of the overhead conductor in Fig. 1, the x-compo-

nents of the P function in the air and in the several earth

layers are defined as P
0
0x,P

0
1x,P

0
2x,y,P

0
mx,y,P

0
nx. The

equation that describes P
0
0x at any point in the air with

co-ordinates ðx; y; zÞ is [11]

P
0
0x ¼

Z 1
0

C
u
a0

e�a0jz�ðd1þd2þ���þdmþh2Þj þ g00ðuÞe�a0z

� �

� J0ðruÞdu; z � d1 þ d2 þ � � � þ dm

ð1Þ
and

P
0
1x ¼

Z 1
0

f
0
1ðuÞea1z þ g01ðuÞe�a1z

h i
J0ðruÞdu;

d2 þ � � � þ dm � z � d1 þ d2 þ � � � þ dm

ð2Þ

P
0
mx¼

Z 1
0

f
0
mðuÞeamz þ g0mðuÞe�amz

h i
J0ðruÞdu; 0� z� dm

ð3Þ
and

P
0
nx ¼

Z 1
0

f
0
nðuÞeanzJ0ðruÞdu; z � �ðdmþ1 þ � � � þ dn�1Þ

ð4Þ

where C ¼ jom0Ids=4pg20. In these relations, J0( ) is
the Bessel function of the first kind of zero order,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ g2i

q
, g2i ¼ jomiðsi þ joeiÞ,

where i ¼ 0; 1; 2; . . . ; n, j is the imaginary unit and o ¼
2pf is the angular velocity. Equations (1)–(4) are used in
[11] to derive the per-unit-length impedance expressions of
the overhead conductors only. Thus the aim in this paper
is to derive the mutual impedance expression between the
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Fig. 1 Geometric configuration of system comprising of overhead
and underground insulated conductor in n-layered earth

292 IEE Proc.-Gener. Transm. Distrib., Vol. 153, No. 3, May 2006



overhead and the underground insulated conductor and the
self impedance of the underground insulated conductor.

2.2 Determination of per-unit-length
mutual impedance
The boundary conditions are [11]

g2k�1P
0
ðk�1Þx ¼ g2kP

0
kx ð5Þ

1

mk�1
g2k�1

@P
0
ðk�1Þx
@z

¼ 1

mk
g2k
@P
0
kx

@z
ð6Þ

where k ¼ 1; 2; . . . ; n. Substituting (1) and (2) in (5) and (6),

(7) and (8) are produced. Substituting the remaining P
functions in (5) and (6), 2n� 2 similar equations are derived

g20 C
u
a0

e�a0h2 þ g0oe�a0ðd1þd2þ���þdmÞ
� �
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0
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Solving the system of the 2n equations, f
0
m and g0m are

obtained. The general form of the 2n� 2 equations and the

exact form of the f
0
m and g0m functions are shown in the

Appendix (Section 8.1). Thus the P function in the mth

layerP
0
mx is completely defined. The per-unit-length mutual

impedance between the overhead conductor k and the
underground insulated conductor i can then be derived by

integratingP
0
mx along the infinite conductor k, i.e. along the

x-axis [10]

Z
0
ik ¼

Z 1
�1

g2m
P
0
mxðz¼dm�h1;y¼yikÞ

IdS

" #
dx ð9Þ

By replacingP
0
mx from (3), Z

0
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q
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cosðuyikÞdu
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where DT rec ¼ DTDmeam dm�h1ð Þ þ DTNme�am dm�h1ð Þ and

the term products are defined as
Qm

1 e�aidi ¼ e�a1d1

e�a2d2 � � � e�amdm ,
Qm�1

1 ai ¼ a1 � � � am�1 and
Qm

0 mi ¼ m0 m1
m2 � � �mm. The terms DTDm, DTN m and DTD0 are calcula-
ted recursively by the formulas given in the Appendix
(Section 8.1).

The general form of (10b) can be simplified considering
that, since most soil types are nonmagnetic, the relative

magnetic permeability of all earth layers can be considered
to be equal to unity. Furthermore, for frequencies less than

1MHz, the propagation constants g2i ¼ jomiðsi þ joeiÞ
� jomisi, where i ¼ 0; 1; 2; . . . ; n. Therefore the ai terms in

(10b) can be expressed as ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ jomisi

p
.

2.3 Determination of per-unit-length self
impedance of underground insulated
conductor
To determine the per-unit-length self impedance of the
underground insulated conductor, the electromagnetic field
derived by the underground insulated conductor must be
obtained. Thus, assuming a horizontal dipole with moment
equal to IdS in the place of the underground insulated
conductor i, (11)–(14) become the equations which describe
the problem [19]. Considering the origin of the co-ordinate
system to be located directly under the insulated conductor
i, along the boundary of the regions m and m+1, the

following relation is derived. For P0x:

P0x ¼
Z 1
0

f 0ðuÞe�a0zJ0ðruÞdu; z � d1 þ d2 þ � � � þ dm

ð11Þ

For d2 þ � � � þ dm � z � d1 þ d2 þ � � � þ dm, P1x is de-
scribed by the following equation:

P1x ¼
Z 1
0

f 1ðuÞe�a1z þ g1ðuÞea1z

 �

J0ðruÞdu ð12Þ

In the mth layer

Pmx ¼
Z 1
0

f m1ðuÞe�amz þ gm1ðuÞeamz

 �

J0ðruÞdu;

z � ðdm � h1Þ ð13aÞ

and

Pmx ¼
Z 1
0

f m2ðuÞe�amz þ gm2ðuÞeamz

 �

J0ðruÞdu;

z � ðdm � h1Þ ð13bÞ

Finally Pnx is given by

Pnx ¼
Z 1
0

f nðuÞeanzJ0ðruÞdu ð14Þ

The P functions in (11)–(14) can be determined using the
reciprocity theorem [24]. According to this, an equation
similar to (10b) can be also obtained if the excitation current
is imposed on the underground insulated conductor i,
instead of the overhead conductor k. Therefore the per-unit-

length mutual impedance Z
0
ik is also given by

Z
0
ik ¼

Z 1
�1

g20
P0xðz¼dmþdm�1þ���þd2þd1þh2;y¼�yikÞ

IdS

" #
dx ð15Þ

Replacing the expression of P0x from (11) in (15) and

equalising (15) with (10b), P0x can be fully determined.
Finally, applying the boundary conditions given in [11] at

the boundaries of the earth layers, Pmx can be completely
defined. The exact procedure for the determination of the
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underground dipole P functions is shown in the Appendix
(Section 8.2).

The per-unit-length self impedance of the underground

insulated conductor i Z
0
ii is then found by integrating Pmx

along the x-axis

Z
0
ii ¼

Z 1
�1

g2m
Pmxðz¼dm�h1;y¼riiÞ

IdS

" #
dx ð16Þ

In (16) rii is the insulation outer radius. The final form of Z
0
ii

results as (17)

Z
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du

ð17Þ

The terms TDDm�1, TDN m�1 are calculated by the recursive
formulas given in the Appendix (Section 8.2). In (17) the
geometrical configuration and the influence of the earth
have been taken into account. Proper internal impedance
terms [21, 22] must be added in (17) to account for the skin
effect.

3 Remarks on new expressions

A closer examination of the expressions for the per-unit-
length mutual and self impedance, as given by (10b) and
(17), respectively, reveals the following.

Beginning with (10b), the DTDmeam dm�h1ð Þ þ DTNm



e�am dm�h1ð Þ� term contains the electromagnetic and geome-
trical characteristics of the earth layers between the nth and
the mth layer, where the insulated conductor i is buried.
This term also contains the vertical co-ordinate of the
insulated conductor i. The rest of the terms in the
numerator of the integral represent the geometrical and
electromagnetic characteristics of the air and the earth
layers between the first and the mth layer. Finally, the
denominator term DTD0 includes the electromagnetic and
geometrical properties of all the areas between the air and
the nth layer.

Assuming that the electromagnetic properties of all earth
layers are equal, the existing formula [7] for the calculation
of the mutual impedance between overhead and under-
ground insulated conductors for the homogeneous earth
case is derived from (10b). Furthermore, (10b) is also
transformed into the well-known Carson formula for the
impedances of overhead lines above homogeneous earth.

The expression for the per-unit-length self impedance
essentially consists of the following terms.

The first term in the square brackets contains the
electromagnetic and geometrical characteristics of the earth
layers between the nth and the mth layers. The second term
in the square brackets contains the electromagnetic and
geometrical characteristics of the areas between the air and
the mth layer. The denominator term DTD0 includes all the
electromagnetic and geometrical properties of the areas
between the air and the nth layer. A simplification of (10b)
and (17) for a two-layer earth case allows a better analysis
of the contribution of each individual term involved in the
expressions. Assuming the configuration of Fig. 2 and after
setting a0 equal to u, as in [10], (10b) and (17) are simplified

to (18) and (19), respectively,

Z
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p
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3
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s10s21 þ s10d21e�2a1 d�h1ð Þ

þ d10s21e�2a1h1 þ d10d21e�2a1d

s10s21 � d10d21e�2a1d

2
664

3
775du ð19Þ

where

s10 ¼ m0a1 þ m1uð Þ; s21 ¼ m2a1 þ m1a2ð Þ and

d21 ¼ m2a1 � m1a2ð Þ; d10 ¼ m0a1 � m1uð Þ
Further observation of (18) reveals that it essentially
consists of two terms. The first and dominant one contains
two exponential functions that represent the influence of the
vertical distance between the underground and the overhead
conductor. These exponential functions have as a factor the
sum of the electromagnetic properties of the two earth
layers. The second term depends on the vertical distance
between the overhead conductor and the image of the
underground insulated conductor with respect to the two
earth layers limit. This term is multiplied with a term
corresponding to the difference between the electromagnetic
properties of the two earth layers. Thus when the resistivity,
permeability and permittivity values of the two earth layers
are equal, this term vanishes together with the boundary of
the two layers.

On the other hand, observation of (19) shows that it
essentially consists of four terms. The first and dominant
one contains two terms denoted with the symbol s to
indicate the sum of the electromagnetic properties of the
three different areas: the air, and the first and second earth
layers.

The second term depends on the vertical distance between
the underground insulated conductor and its image with
respect to the limiting surface between the two earth layers.

One factor of this term is represented by the symbol d21 to
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z
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Fig. 2 Geometric configuration of overhead and underground
insulated conductor in two-layer earth
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indicate the difference between the electromagnetic proper-
ties of the two earth layers. Thus when the resistivity,
permeability and permittivity values of the two earth layers
are equal, this term is set to zero.

The third term refers to the vertical distance between the
insulated conductor and its image with respect to the air–
earth boundary. One of the factors of the last-mentioned

term is d10, indicating the difference between the electro-
magnetic properties of the air and the first earth layer.

Finally the fourth term contains an exponential function
which depends on the distance between the two images of
the insulated conductor with respect to the two boundaries
of Fig. 2. As expected, this term has as factors only
variables representing differences in the electromagnetic
properties of the regions and it vanishes whenever one of
the two boundaries diminishes.

4 Numerical integration of impedance formulas

Direct numerical integration is used for the calculation of
the semi-infinite integrals in (10b) and in (17)–(19). The
implementation of a single numerical integration method
proved to be inadequate, due to the specific characteristics
of the integrals. The presence of the function cos( ) requires
the use of a proper numerical method, best suited to follow
the oscillations of the integrands. On the other hand, the
initial steep descent of the integrands suggests the use of a
different numerical integration method in the interval
between zero and the first root of the function cos( ).
Finally, the exponential functions, which appear in the
integrands, lead to the adoption of a method capable of
dealing with the effects of such terms.

Following this reasoning, a complex integration scheme
is implemented. The 20-point Lobatto rule [25] is applied to
the intervals between the subsequent roots of the function
cos( ), while the 16-point shifted Gauss–Legendre method
[26] is used to calculate the integral between zero and the
first root of cos( ). Finally the 35-point shifted Gauss–
Laguerre method [26] is also applied, since it is properly
fitted for the calculation of semi-infinite integrals with
exponential weight functions. Amore extensive presentation
of the proposed numerical integration scheme can be found
in the Appendix (Section 8.3).

This novel integration scheme has been applied success-
fully to the calculation of the earth return impedances of
cables in cases of two-layer and homogeneous earth [19, 20].
In all cases examined the new method proved to be
remarkably efficient and numerically stable.

5 Numerical results

The new expressions for the n-layered earth model are used
to calculate the per-unit-length impedances of the system in
Fig. 3. The system consists of a typical single-circuit
overhead transmission line with two ground wires. The
ground and phase wires are considered to be solid
cylindrical conductors with radius 0.004 and 0.0109m,
respectively. The ground wires have a conductivity equal to
3.522� 106S/m and a relative permeability equal to 250.
The corresponding values for the phase conductors are
3.652� 107S/m and 1. The underground insulated metal
pipeline has an inner radius equal to 0.195m and an outer
radius of 0.2m, whereas the insulation thickness is 0.1m.
The conductivity and the relative permeability of the pipe
are the same as those of the ground wires. The relative
permeability of the insulation, of the air and the relative
permittivity of the air are all equal to unity.

Six different two-layered earth models, based on actual
ground resistivity measurements [12] are investigated. The
corresponding data for the resistivities r1 of the first and r2
of the second layer and for the depth d of the first layer are
shown in Table 1. The second layer is considered to be of
infinite depth.

5.1 Verification of accuracy of new
expressions
The complex impedances for the configuration of Fig. 3 are
calculated for the six earth models of Table 1 using the
proposed formulas of (18) and (19) for the frequency
range of 50Hz to 1MHz. The novel numerical integration
scheme proved to be numerically stable in all cases. The
computation time for the numerical integration, with a
defined tolerance of 10�8, is less than 15min for the
calculation of a set of 60 impedance matrices using an
Intel Pentium IV PC at 2.66GHz. When the tolerance is
defined at 10�7, the computational time is less than 8min
for the same set of the 60 cases.

To check the accuracy of the derived results they are
compared with those obtained by a FEM formulation for
the same test cases. The FEM package developed at the
Power Systems Laboratory of the Aristotle University of
Thessaloniki has been used. Introducing a newly developed
iteratively adaptive mesh generation technique [27], this
package can be applied for the computation of the self and
mutual impedances of the conductors of the problem, in
unbounded discretisation areas [16].

The relative percent differences between the results by the
FEM and the new expressions are calculated using (20),
with the results obtained by the FEM used as the reference.
These differences for the magnitude of the mutual

�1 �1 �1

�2 �2 �2

�0 �0 �0 = 0

25 m

1.2 m

11 m

insulated 
conductor i

d

second earth
layer

first earth layer

air

14 m
6 m 6 m

3 m

6 m

Fig. 3 Geometric configuration of single-circuit overhead line with
two ground wires and underground insulated conductor in two-layer
earth

Table 1: Two-layer earth models

Case r1 (O �m) r2 (O �m) d (m)

I 372.729 145.259 2.690

II 246.841 1058.79 2.139

III 57.344 96.714 1.651

IV 494.883 93.663 4.370

V 160.776 34.074 1.848

VI 125.526 1093.08 2.713
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impedance between the insulated pipeline and the closest
phase wire of the overhead line are shown in Fig. 4. In
Fig. 5 the differences between the new expressions and the
FEM are presented for the magnitude of the self impedance
of the underground insulated conductor.

From these diagrams it is shown that the impedance
values calculated using the new expressions show differences
less than 0.4% to those by FEM for the frequency
range under consideration. The recorded differences for
the magnitude and the phase of all impedances of the
arrangement are less than 1% justifying the accuracy of the
proposed methodology.

Relative difference ð%Þ ¼
Zapproach

�� ��� Zreference

�� ���� ��
Zreference

�� ��
� 100 ð20Þ

5.2 Comparison with homogeneous earth
case
The scope of the next test is to check the influence of earth
stratification on the impedances of the configuration. The
complex impedances of the conductors are calculated for
the configuration of Fig. 3 and the six earth models of
Table 1 using the proposed formulas. The results are
compared with the corresponding under the assumption
that the earth is homogeneous with a resistivity equal to the
resistivity of the first earth layer. The percentage differences
calculated using (20) and considering the homogeneous

earth case as reference are presented in Fig. 6 for the
magnitude of the mutual impedance between the pipeline
and the closest phase. They reach up to 80% for high
frequencies and for cases of significant divergence between
the earth-layer resistivities. Differences up to 30% appear
even at power frequency, indicating that earth stratification
can affect significantly the system impedances over the
whole frequency range.

5.3 Influence of earth stratification on
inductive interference between pipeline
and overhead line
To investigate the influence of earth stratification on the
actual voltages induced on a pipeline, the calculated
impedances were implemented in a practical case of
inductive interference calculation in the test case of Fig. 3.
More specifically, it is assumed that the power line and
the pipeline share a common right of way for 25km, as in
[18]. A single-phase to ground fault at phase A is assumed
at the end of the right of way, while the other phases remain
unloaded. The line supporting towers are located at
distances of 250m and are grounded with 20O resistances.
The pipeline has a coating resistance of 20kOm2 and is
insulated at both ends via insulating junctions.

The pipeline is assumed to be buried in each one of the
six earth stratification cases of Table 1, while the power line
operates at power frequency. Figure 7 shows a typical
induced voltage profile along the pipeline, over the value of
the fault current, for the case V of Table 1. The dotted line
represents the voltage profile for the stratified earth case,
while the continuous line corresponds to a homogeneous
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earth with a resistivity equal to that of the first layer. It can
be seen that earth stratification affects the induced voltage
significantly. Table 2 summarises the percent differences
between the homogeneous and the two-earth layer case,
calculated using (20) with the homogeneous earth results as
the reference, for all earth stratification cases of Table 1.
The first two columns record the differences at both ends of
the pipeline, where the highest induced voltages occur.
In the third column the maximum differences, which occur
along the pipeline for the length of the common right
of way, are presented. The differences are greater than
20% for the higher induced voltages, reaching more than
100% at certain points of the pipeline along the common
track.

Finally the influence of earth stratification on the induced
voltages is also checked for higher frequencies that may
occur during transient conditions. The voltages on the
pipeline at the point nearest to the faulted tower are
calculated for frequencies from 50Hz up to 1MHz and for
all cases of Table 1. The absolute percentage differences
between the voltages for homogeneous and the two-earth
layer case are summarised in Fig. 8. It can be seen that the
recorded differences more or less follow the corresponding
of the mutual impedances in Fig. 6, as the induced voltages
depend mainly on the mutual coupling, which is in turn
most significantly affected by the earth return path.

All these results show that it is important to include earth
stratification in the electromagnetic interference calculations
and this can be efficiently accomplished using the proposed
formulation.

6 Conclusions

The problem of the calculation of the complex impedances
of a system comprising of overhead and underground

insulated conductors in a multilayered earth has been
addressed. Analytic expressions for the self impedance of
the underground insulated conductor and the mutual
impedances between the underground and the overhead
conductors are derived by a solution of the electromagnetic
field equations. For the numerical evaluation of the semi-
infinite integrals involved in the derived expressions, a new
numerical integration scheme, based on proper combina-
tions of three integration methods, is used. The proposed
formulation is applied for the computation of the electrical
parameters needed for an interference computation between
a typical single circuit overhead transmission line and an
underground insulated metal pipeline, buried in the first
layer of a variable two-layer earth structure.

To check the accuracy of the results obtained by the new
analytic expressions, they are compared with the corre-
sponding obtained by a suitable FEM formulation. The
recorded differences in the self and mutual impedance
magnitudes and arguments are less than 1% over a wide
frequency range from power frequency up to 1MHz,
covering all possible transmission line operational states.
The integration scheme proved to be numerically stable and
efficient in all examined cases.

The impedances calculated by the expressions for a
two-layer earth, show significant differences compared
to those for the homogeneous earth, even at power
frequency, reaching up to 80% for the cases of great
divergence between the layer resistivities and for high
frequencies.

The calculated impedances are used in a practical
electromagnetic interference calculation. Results for the
induced voltage along a pipeline, sharing a common right of
way of 25km with an overhead power line, showed that it
may differ up to 25% in its maximum value, due to the
earth stratification, even at power frequency. This difference
is further amplified for higher frequencies, showing that
earth stratification cannot be disregarded. The proposed
formulation, together with the new numerical integration
method, offers an efficient tool for the electromagnetic
interference computations. The use of the proposed
methodology eliminates the need for complex modelling
in the estimation of the system parameters and avoids
approximations, which may lead to inaccurate results.
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8 Appendix

8.1 Field derived by overhead dipole
Substituting the exact expressions of P

0
ðk�1Þx and P

0
kx in (5)

and (6), the following general equations are derived:

g2k�1 f
0
k�1e

ak�1ðdkþdkþ1þ���þdmÞ þ g0k�1e�ak�1ðdkþdkþ1þ���þdmÞ
� �

¼ g2k f
0
keakðdkþdkþ1þ���þdmÞ þ g0ke�akðdkþdkþ1þ���þdmÞ

� �

ð21Þ

ak�1
mk�1

g2k�1 f
0
k�1eak�1ðdkþdkþ1þ���þdmÞ � g0k�1e

�ak�1ðdkþdkþ1þ���þdmÞ
� �

¼ ak

mk
g2k f

0
keakðdkþdkþ1þ���þdmÞ � g0ke�akðdkþdkþ1þ���þdmÞ

� �

ð22Þ
Starting from the last two earth layers, for k¼n, (21) and
(22) are transformed into

g2n�1 f
0
n�1ean�1½�ðdn�1þdn�2þ���þdmþ1Þ�

�

þ g0n�1e
�an�1½�ðdn�1þdn�2þ���þdmþ1Þ�

�

¼ g2n f
0
nean½�ðdn�1þdn�2þ���þdmþ1Þ�

� �
ð23Þ

an�1
mn�1

g2n�1 f
0
n�1e

an�1½�ðdn�1þdn�2þ���þdmþ1Þ�
�

�g0n�1e
�an�1½�ðdn�1þdn�2þ���þdmþ1Þ�

�

¼ an

mn
g2n f

0
nean½�ðdn�1þdn�2þ���þdmþ1Þ�

� �
ð24Þ

After multiplying (23) with the factor an=mn, the right-hand
parts of (23) and (24) become equal. Equalising the left-
hand parts of the two equations the following relation

between f
0
n�1 and g0n�1 is obtained:

g0n�1ðuÞ ¼ f
0
n�1ðuÞ

mnan�1 � mn�1anð Þ
mnan�1 þ mn�1anð Þ e

2an�1½�ðdn�1þdn�2þ���þdmþ1Þ�

ð25Þ

For k ¼ n� 1, (21) and (22) are transformed into

g2n�2 f
0
n�2e

an�2½�ðdn�2þdn�3þ���þdmþ1Þ�
�

þ g0n�2e�an�2½�ðdn�2þdn�3þ���þdmþ1Þ�
�

¼ g2n�1 f
0
n�1e

�an�1½�ðdn�1þdn�2þ���þdmþ1Þ�
� �

þ g0n�1e
an�1½�ðdn�2þdn�3þ���þdmþ1Þ�

�
ð26Þ

an�2
mn�2

g2n�2 f
0
n�2e

an�2½�ðdn�2þdn�3þ���þdmþ1Þ�
�

� g0n�2e�an�2½�ðdn�2þdn�3þ���þdmþ1Þ�
�

¼ an�1
mn�1

g2n�1 f
0
n�1e

an�1½�ðdn�2þdn�3þ���þdmþ1Þ�
�

� g0n�1e�an�1½�ðdn�2þdn�3þ���þdmþ1Þ�
�

ð27Þ

Substituting g0n�1 from (25), in (26) and (27) and eliminating

f
0
n�1 from the latter equations, a new equation is derived,

containing only the functions g0n�2 and f
0
n�2.

In a similar way the following general equation results:

g0iðuÞ ¼ f
0
iðuÞ

DTNi

DTDi
e2aiZLi ð28Þ

where i ¼ 1; 2; . . . ; n, ZLi is the z-co-ordinate of the ith
layer lower boundary and

DTN i ¼ miþ1ai � miaiþ1
� 	

DTDiþ1

þ miþ1ai þ miaiþ1
� 	

DTN iþ1e�2aiþ1diþ1 ð29Þ

DTDi ¼ miþ1ai þ miaiþ1
� 	

DTDiþ1

þ miþ1ai � miaiþ1
� 	

DTNiþ1e�2aiþ1diþ1 ð30Þ

DTNn ¼ 0 ð31Þ

DTDn ¼ 1 ð32Þ

Substituting (28) in (7) and (8) and eliminating f
0
1ðuÞ from

(7) and (8), g00ðuÞ is obtained

g00 uð Þ ¼ C
u
a0

e�a0h2ea0ðd1þd2þ���þdmÞ DTN0

DTD0

ð33Þ
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Replacing g00ðuÞ from (33) and g01ðuÞ from (28) in (7), f
0
1ðuÞ

is obtained

f
0
1ðuÞ ¼ C

u
a0

e�a0h2 g
2
0

g21

2m1a0DTD1

DTD0

e�a1ðd1þd2þ���þdmÞ ð34Þ

Finally the following general equation is derived for f
0
1ðuÞ:

f
0
iðuÞ ¼C

u
a0

e�a0h2 g
2
0

g2i

�
2i Qi

1

mj

� � Qi�1
0

aj

� � Qi�1
1

e�ajdj

� �
DTDi

DTD0

e�aiZHi

ð35Þ
where ZHi is the z-co-ordinate of the ith layer upper
boundary.

8.2 Field derived by underground dipole
Replacing the expression of P0x from (11) in (15), the per-

unit-length mutual impedance Z
0
ik between the insulated

conductor i and the overhead conductor k is

Z
0
ik ¼ g20

Z 1
0

2f 0ðuÞe�a0ðdmþ���þd2þd1þh2Þ

IdS
cosðuyikÞ

u
du ð36Þ

Equalising (36) with (10b), the resulting expression for

f 0ðuÞ is derived and shown in (37), where Cm ¼ jommIdS
4pg2m

f 0ðuÞ ¼ 2mCm
u
a0

g2m
g20

Qm�1
0

mi

� � Qm�1
0

ai

� � Qm�1
0

e�aidi

� �

DTD0

� DTDmeam dm�h1ð Þ þ DTN me�am dm�h1ð Þ
h i

ea0 d1þd2þ���þdmð Þ

¼ 2mCmu
g2m
g20

m0K1ðuÞea0 d1þd2þ���þdmð Þ

ð37Þ
Applying the boundary conditions (5) and (6) for the system
of (11)–(13a), 2m equations like the following are derived:

g20 2mCmu
g2m
g20

m0K1ðuÞ
� �

¼ g21 f 1ðuÞe�a1ðdmþ���þd2þd1Þ þ g1ðuÞea1ðdmþ���þd2þd1Þ
� �

ð38Þ

� a0
m0

g20 2mCmu
g2m
g20

m0K1ðuÞ
� �

¼ a1
m1

g21 �f 1ðuÞe�a1ðdmþ���þd2þd1Þ þ g1ðuÞea1ðdmþ���þd2þd1Þ
� �

ð39Þ

g21 f 1ðuÞe�a1ðdmþ���þd3þd2Þ þ g1ðuÞea1ðdmþ���þd3þd2Þ
� �

¼ g22 f 2ðuÞe�a2ðdmþ���þd3þd2Þ þ g2ðuÞea2ðdmþ���þd3þd2Þ
� �

ð40Þ
a1
m1

g21 �f 1ðuÞe�a1ðdmþ���þd3þd2Þ þ g1ðuÞea1ðdmþ���þd3þd2Þ
� �

¼ a2
m2

g22 �f 2ðuÞe�a2ðdmþ���þd3þd2Þ þ g2ðuÞea2ðdmþ���þd3þd2Þ
� �

ð41Þ

From the system of 2m equations, applying a similar

procedure as in Section 8.1, f lðuÞ, glðuÞ are derived, where
l ¼ 0; 1; 2; . . . ;m

glðuÞ ¼ f lðuÞ
TDN l�1

TDDl�1
e�2alðdmþdm�1þ���þdlÞ ð42Þ

f lðuÞ ¼
2m�lCmum0

Ql�1
1

eaidi

� �

Ql�1
0

mi

� � Ql
1

ai

� � g2m
g2l

� K1ðuÞTDDl�1ealðdmþdm�1þ���þdlÞ

ð43Þ

In (42) and (43)

TDD�1 ¼ 1 ð44Þ

TDN�1 ¼ 0 ð45Þ

TDDl�1 ¼ ml�1al þ mlal�1ð ÞTDDl�2

þ ml�1al � mlal�1ð ÞTDN l�2e�2al�1dl�1 ð46Þ

TDNl�1 ¼ ml�1al � mlal�1ð ÞTDDl�2

þ ml�1al þ mlal�1ð ÞTDNl�2e�2al�1dl�1 ð47Þ

When l¼m the functions f lðuÞ and glðuÞ are transformed

into f m1ðuÞ and gm1ðuÞ. Thus Pmx in (13a) is completely
defined.

8.3 Numerical integration technique
For the calculation of (10b) and (17)–(19), three numerical
integration methods are implemented as follows.

When the cosð Þ terms are not equal to one, the interval
between zero and the first root of cosðuyikÞ or cosðuriiÞ is
divided into the following subintervals:

0;
p10�6

2y

� �
;

p10�6

2y
;
p10�5

2y

� �
;

p10�5

2y
;
p10�4

2y

� �
. . . ;

0:1p
2y

;
p
2y

� �

where y is yik or rii. In each of these subintervals the
complex integrals are calculated using the shifted 16-point
Gauss–Legendre method [26]. Then, in the intervals
between the subsequent roots of cosðuyÞ, the 20-point
Lobatto rule [25] is used. The procedure stops when the
absolute value of the calculated integral between two
subsequent roots is less than a user predefined tolerance for
both the real and the imaginary part of the integral.

If the horizontal distance yik is zero, the integration
procedure is different. The shifted 16-point Gauss–Legendre
method is again applied in the same way between zero and
uo ¼ 2p. Then the shifted 35-point Gauss–Laguerre method
[25] is used for the evaluation of the rest of the integral, after

the integrand is scaled by the term ejh1�h2ju. The procedure
is repeated iteratively. In each iteration the use of the
Gauss–Legendre method is extended by 2uo intervals to
the right of uo, while the Gauss–Laguerre method is
implemented for the calculation of the rest integral until
infinity. Convergence is achieved when the absolute
difference between two succedent values of the calculated
integral is less than a user predefined tolerance.
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