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Abstract. A new derivation of the earth-flattening approximation (EF A) for 

body waves from geometric ray theory is given which results in an improved 

version of the EF A. This version agrees with the EF A, derived by Chapman 

(1973) from wave theory. Moreover, it allows absolute, not only relative, 

body-wave amplitude calculations for given source time functions. The 

choice of the density transformation of the EF A is shown, by numerical 

calculations, to be uncritical for body-wave amplitudes in the period range 

up to 30 s. An error in an earlier derivation of the EF A (Mi.iller, 1973 a) is 

corrected. This error requires a new investigation of the range of applica

bility of the EF A, which is performed for the P-wave propagation through a 

homogeneous sphere. The results are similar to those of the earlier paper: 

long-period P waves with dominant periods up to about 20s can be treated 

practically exactly, as long as they do not pass closer than about 800 km to 

the earth's center. 
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Introduction 

Earth-flattening approximations (EF As) for body waves have been derived from 

geometric ray theory (Mi.iller, 1971, 1973a) and from wave theory (Chapman, 

1973; see also Gilbert and Helmberger, 1972; Helmberger and Harkrider, 1972; 

Hill, 1972). Although the basic structure of both EF As is the same, there is a 

notable difference: according to the EF A of Mi.iller (1973a) (in the following 

called paper /) the velocity-density-depth distribution in the flat earth depends 

both on source and receiver radius whereas Chapman's EF A is independent of 

these radii. Because of the dependence on source and receiver radius the EF A of 

I requires frequency and time transformations, as long as these radii are 

different, which is not required with Chapman's EF A. The essential assumption 

in the derivation of the EF A of I, which entails its more complicated form, is 

that medium properties at the source should agree in the spherical and the flat 
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earth, such that the radiation of P and S waves is the same. This condition can 

be relaxed, and it is shown in this paper that the resulting EF A, derived from 

geometric ray theory, agrees with Chapman's EF A in its essential features. 

Moreover, it allows the calculation of absolute (not only relative) body-wave 

amplitudes for a given source time function, e.g., the moment function in the 

case of a double-couple point source. 

The density transformation of the EF A is not well determined in the case of 

P-SV waves, neither by geometric ray theory (which is not surprising) nor by 

wave theory. Therefore, numerical calculations of theoretical seismograms for 

different density transformations are desirable, and they should show whether or 

not the choice of the density transformation is critical for practical purposes. 

Results of calculations for the mantle P phase and the core reflection PcP are 

discussed in this paper. 

Another purpose of this paper is to correct an error in J, related to the 

amplitude correction factor for diffracted waves. A correct application of 

geometric ray theory gives the same (L1/sinL1) 112 factor as for other body waves 

(Ll =epicentral distance). 

Finally, a new investigation of the range of applicability of the EF A is 

performed by calculating the P-wave propagation from an explosive point 

source through a homogeneous sphere. Exact results are available in this case, 

since it corresponds to propagation through a homogeneous unbounded me

dium. This test has already been used by Helmberger (1973) for P waves 

propagating as deep as 1150 km in a sphere of the size of the earth. These 

calculations are extended here to much greater depths in order to find out for 

which wavenumber times radius products the EF A still works with sufficient 

accuracy. 

Theory 

The following is a summary of the properties of rays in a sphere and a half

space, according to geometric ray theory. Most notations are explained in 

Figure 1, and subscripts s and f refer to the spherical and the flat earth, 

respectively. The formulas are given for the simple type of ray shown in 

Figure 1, but the results derived from them are also true for other types such as 

rays with a turning point or reflected rays. 

Spherical earth: 

ro r ('2 )-1/2 
Epicentral distance: xs=f; J ...!. - 2 -f; 2 dr 

,, r V, 
( 1) 

ro r {'2 )-1/2 
ts = J -2 -2 - P;2 d r 

,, v, v, Travel time: (2) 

Ray parameter: 

Amplitude: (3) 
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Fig. 1. The spherical earth (left), the flat earth (right) and two corresponding rays from the source 

Q,.J to the receiver P,, 1 . The radiation angle is the same for both rays 

V,(r) = P or S velocity} . 

( ) d 
. at radius r 

Ps r = ens1ty 

A.0 =amplitude at a reference point 0 , on the ray with distance a 

from the source Q. 

Amplitude: 

V1(() = P or S velocity} d h v 

. at ept <, 
p 1 (() = density 

A 10 = amplitude at a reference point 0
1 

on the ray with distance a 

from the source Q1 . 

The depth and velocity transformations of G erver and Markushevich (1966), 

R 
(=Rln - , 

r 

(4) 

(5) 

(6) 

(7) 

which are independent of source and receiver radius yield, when inserted into (I) 

and (2), 

or (8) 
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and 

ts=tf. 

Here, (4) and (5) have been used. It follows that the mapping of the sphere onto 

the half-space is independent of r 1 , and that the travel times between cor

responding points in the sphere and the half-space agree for arbitrary values of 

r 0 and r1 ; in both regards the EF A derived here differs from the EF A of I. The 

constancy of ray parameter along the ray in both media yields t/Js=t/Jf. Inserting 

this and (7) and (8) into (3) one obtains, using (6): 

_ ( L1 ) 112 R (r0Ps(ro)PJ((1)) 112 Aso 
As- sinLi -;:;- r1ps(r1)pf((0) Afo Af. 

A density transformation similar to the velocity transformation, 

(9) 

where according to wave theory n depends on the wave type investigated, yields 

finally the amplitudes in the sphere in terms of the amplitudes in the half-space: 

_ ( L1 ) 112 (R)~ (r 0 )~ Aso As- -.- - 2 - 2 --AI. 
smLi r1 R Afo 

(10) 

The relation between the exponent of receiver radius r1 and the exponent n in 

the density transformation (9) is the same as with Chapman's EF A. Thus, both 

EF As agree in all essential points. 

The amplitude correction formula (10) allows the calculation of absolute 

amplitudes in the sphere, provided the ratio A sol A JO of the initial amplitudes is 

known. In the framework of geometric ray theory these amplitudes have to be 

considered as the amplitudes of the far-field term of displacement, taken close to 

the source. The simplest assumption is As 0 / A f 0 = 1; this means that the source is 

described by its (far-field) displacement-time function. There may, however, be 

cases where one prefers to describe a double-couple source by its moment 

function M(t) or an explosion by its excitation function (or reduced displace

ment potential) F(t). From the far-field displacements of these sources m a 

homogeneous unbounded medium, one derives for a double-couple 

Aso PJ((o)Vj((o) (R)n+J 
Afo = Ps(ro) V,3(ro) - ro 

and for an explosion 

Aso = Vf(( 0 ) = R 

Afo V,(r0 ) r 0 

Discussion 

As paper I and this paper show, geometric ray theory allows the construction of 

different EF As. From a theoretical point of view preference should be given to 
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the EF A derived here, since it agrees with an EF A from wave theory, which has 

not yet been shown for the EF A of I. From a practical point of view, no 

essential differences exist, as follows from calculations of theoretical seismo

grams. For example, theoretical long-period P and PcP phases between 40° and 

70° have been computed by Mi.iller et al. (1977, Fig. 7) for the Jeffreys-Bullen 

earth model and a source at a depth of 600 km, using the EF A of I. 

Recalculation with the revised EF A shows agreement generally within 1 % in 

absolute amplitudes and in the amplitude ratio PcP/P. 

The density transformation of the EF A is not well defined from geometric 

ray theory. Chapman (1973) has shown from wave theory that in (9) n= 1 is 

optimum, although not exact, for P waves in liquid media, i.e., for the acoustic 

case, and n = - 5 for SH waves. For P-SV waves in solid media no optimum 

value could be found. Numerical calculations of theoretical seismograms, again 

for long-period P and PcP between 40° and 70° from a deep source, show 

changes in amplitudes from n = 1 to n = - 5 which do not exceed 2 % in the case 

of P and 4 % in the case of PcP. These numbers decrease for a closer 

approximation of the velocity-density-depth distribution by layers (which in the 

computational method used, the reflectivity method (Fuchs and Mi.iller, 1971), 

are homogeneous in the flat earth and hence inhomogeneous with negative 

velocity gradients in the spherical earth). The conclusion from this is that for 

practical purposes the choice of n is not critical in body-wave studies. On this 

background, a theoretical argument can be made in all three cases (acoustic, SH 

and P-SV) in favor of n = -1. It is an experience from numerical calculations 

that the influence of density on body-wave amplitudes is strongest for vertically 

travelling waves. For these the controlling parameter is the impedance, i.e., the 

product of velocity and density. Therefore, it is reasonable to match the 

impedances of the spherical and the flat earth, which means n = -1. For waves 

travelling predominantly horizontal this value is as reasonable as any other 

from -5 to 1. 

The amplitude correction formula (10) applies also in the case of diffracted 

rays, contrary to what was stated in I; i.e., formulas (12) and (17) of I are wrong. 

The simplest argument is that a diffracted ray which runs parallel to the 

diffracting boundary can be approximated arbitrarily close by a ray of the type 

discussed so far, having a turning point. This is done by introducing in an 

arbitrarily thin layer above the diffracting boundary a velocity gradient d Vjdr 

= V,(rd)/rd where rd is the radius of the diffracting boundary and V,(rd) the 

velocity directly above it. Then, (10) is applicable. For finite frequencies, i.e., 

non-zero wavelengths, the original and the new velocity distribution are equiva

lent, and thus (10) is also valid for diffracted rays. This qualitative argument is 

confirmed by strict geometric-ray-theory calculations of the changes in wave 

amplitude along the segments of a truly diffracted ray in the spherical earth and 

its image in the flat earth. The error in I is due to a wrong sequence in the 

treatment of the ray segments. 

A consequence of the error is that in Mi.iller (1973b) theoretical ~iff 

amplitudes are slightly incorrect (see Mi.iller, 1976). As a more serious con

sequence, it seems no longer certain that the EF A can be applied in those body

wave propagation problems for which the product wavenumber times radius, kr, 
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is greater than about 16. This lower limit had been inferred in I from a 

comparison of exact F:iirr amplitudes with those following from calculations via 

the EF A, including the wrong amplitude correction factor for diffracted rays (I, 

Fig. 3). If the correct factor is used the agreement is less good, and hence one 

would derive a greater minimum value of kr and consequently a more restricted 

range of applicability of the EF A. This question requires further investigation 

which is reported in the next section. 

Range of Applicability of the EF A 

The range of applicability of the EF A can be tested by comparing theoretical 

seismograms for a model, for which they can be calculated analytically, with 

those calculated numerically via the EF A and the reflectivity method for a 

layered half-space. The simplest test model is a homogeneous sphere with an 

explosive point source and receivers at the surface. The radius of the sphere is 

assumed to be 6370 km, the P velocity 10.00 km/s, the S velocity 5.77 km/s and 

the density 5.50 g/cm 3 . In the corresponding flat medium the wave velocities 

increase exponentially with depth; the density decreases exponentially with 

depth, according to the exponent n = -1 in the density transformation (9). For 

application of the reflectivity method, this half-space is approximated by homo

geneous layers which corresponds to saw-tooth-like velocity and density-depth 

distributions in the sphere. The thickness of the inhomogeneous layers in the 

sphere is 50 km in a first calculation; it is reduced in a second calculation to 

25 km at depths greater than 4000 km and to 12.5 km below 5000 km, in order to 

test whether or not the approximation of the homogeneous sphere is sufficient. 

Both calculations give essentially the same results, the differences in the maxi

mum peak-to peak amplitudes being 2 % or less. 

The far-field term of the displacement of the spherical P-wave at a reference 

distance close to the source is assumed to be 

. t . t 
s(t)=sm2n T-~sm4n T' O~t~T=20s. ( 11) 

The dominant wavelength is about 180 km in the sphere. The epicentral distance 

of the receivers increases from 120° -170°, such that the rays from the source to 

the receivers pass closer and closer to the center of the sphere where the EF A 

definitely breaks down. The influence of the free surface is disregarded, both at 

the source and at the receivers; in reality the test is one for an unbounded 

medium for which theoretical seismograms can be calculated analytically in a 

well-known manner from (11). 

Figure 2 shows a comparison of exact theoretical seismograms for the 

displacement component along the ray from the source to the receiver with 

calculations using the EF A. The component perpendicular to the ray, which in 

theory vanishes, has maximum amplitudes less than 1 % of those of the com

ponent along the ray. The agreement between analytical and numerical calcu

lations is very good up to 150°. Then discrepancies gradually develop, and at 

170° both amplitudes and pulse forms are significantly different. The most 
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Fig. 2. P-wave propagation from an explosive point source through a homogeneous sphere: 

comparison of exact theoretical seismograms (circles) and numerical calculations, based on the 

earth-flattening approximation and the reflectivity method for a half-space (solid lines). For more 

details see text 
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Fig. 3. Ratio of the amplitude spectra of the numerically calculated and the exact seismograms of 

Figure 2, for epicentral distances from 150°-170°. The length of the time interval considered is 127 s, 

and the time step I s. The normalized source spectrum follows from ( 11) 
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important conclusion can already be drawn by inspection from the seismograms 

at 165° where, inspite of certain differences in pulse form, the maximum peak-to

peak amplitudes arc practically identical. The distance of the luring point of the 

ray from the center of the sphere is 831 km, which in the real earth corresponds 

to a depth of about 400 km below the boundary of the inner core. Since the 

velocity-depth distribution in the inner core is quite similar to the one in the 

homogeneous sphere under investigation, it is safe to conclude that the EF A can 

be applied without essential errors in amplitude studies of long-period core 

phases with dominant periods up to at least 20 s, provided that the waves do not 

propagate deeper than about 400 km below the inner-core boundary. Moreover, 

spectral analysis of the scismograms of Figure 2 shows (Fig. 3) that at low 

frequencies the EFA leads to systematically reduced spectral ratios of the 

numerically calculated to the analytical scismograms. At 165° the spectral ratio 

is in error by more than I 0 /., at periods greater than about 30 s, taking a 

smoothed version of the spectral-ratio curve. Considering I 0 % as an acceptable 

error in the computational method, compared with the normally much larger 

observational error in amplitude studies of long-period waves, one derives kr 

~ 17 as the admissible range of the product k r in studies of long-period body

wavc amplitudes with the EFA. To be on the safe side, the waves should not 

pass closer than about 800 km to the earth's center. In essence, these arc the 

same conclusions that had been reached in I. 
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