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Abstract

Background: Microbial interactions shape the structure and function of microbial communities; microbial

co-occurrence networks in specific environments have been widely developed to explore these complex systems, but

their interconnection pattern across microbiomes in various environments at the global scale remains unexplored.

Here, we have inferred an Earth microbial co-occurrence network from a communal catalog with 23,595 samples and

12,646 exact sequence variants from 14 environments in the Earth Microbiome Project dataset.

Results: This non-random scale-free Earth microbial co-occurrence network consisted of 8 taxonomy distinct

modules linked with different environments, which featured environment specific microbial co-occurrence

relationships. Different topological features of subnetworks inferred from datasets trimmed into uniform size indicate

distinct co-occurrence patterns in the microbiomes of various environments. The high number of specialist edges

highlights that environmental specific co-occurrence relationships are essential features across microbiomes. The

microbiomes of various environments were clustered into two groups, which were mainly bridged by the

microbiomes of plant and animal surface. Acidobacteria Gp2 and Nisaea were identified as hubs in most of

subnetworks. Negative edges proportions ranged from 1.9% in the soil subnetwork to 48.9% the non-saline surface

subnetwork, suggesting various environments experience distinct intensities of competition or niche differentiation.

Conclusion: This investigation highlights the interconnection patterns across microbiomes in various environments

and emphasizes the importance of understanding co-occurrence feature of microbiomes from a network perspective.

Keywords: Co-occurrence patterns, Earth microbiomes, Genelist edges, Network hubs, Negative co-occurrence,

Specialist edges, Microbial network topology

Background
Most microorganisms do not live in isolation; they

thrive in communities with large numbers and develop

close interactions that generate increased benefits for

the group [1, 2]. Microorganisms can establish a range

of relationships including mutualism (such as antibiotic
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resistance conferral), commensalism (such as cross-

feeding on compounds produced by other members),

synergism (such as syntrophic cooperation), competition

(such as niche exclusion), parasitism (such as infecting

bacteria), predation (such as ciliates feeding on bacteria),

antagosim (such as biocontrol agents), and amensalism

(such as inducing a detrimental environment). These eco-

logical interactions are critical evolutionary pressures for

natural selection duringmicrobial evolution. This premise

is encapsulated by the Red Queen hypothesis, which

emphasizes the coevolution of species, wherein estab-

lished species evolve cooperatively through conditional
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dependencies [3]. Alternatively, the Black Queen hypoth-

esis, which states that leaky metabolite production in cer-

tain species will lead to a reduction in corresponding func-

tions in other species, provides an optional evolutionary

possibility for the development of metabolic dependen-

cies [4]. Adaptation in one species may increase selection

pressure on another species, giving rise to antagonistic

coevolution. Negative interactions (such as competition,

parasitism, and predation) drive evolution by selective

pressure [5], whereas positive interactions (such as mutu-

alism) drive evolution by enhancing biological fitness [6].

Microbial interactions can partially explain genetic diver-

sity in microbial populations. For example, certain func-

tional genes can be dropped in a microbial genome due

to random mutations and selective pressure if those func-

tions are satisfied by other community members, which

leads to low and medium gene frequencies, enabling eco-

logical frequency-dependent selective pressure to drive

microbial evolution [7]. Meanwhile, microbial inter-

actions could also be reshaped by gaining adaptive

genes to extend niche breadth, which alters interaction

patterns [8].

Due to the poor mechanistic understanding of micro-

bial community assembly, we found inconsistent predic-

tion performance of microbial community structure in a

wide range of fields [9–11]. Solving this unpredictabil-

ity requires a comprehensive understanding of all aspects

of microbiomes, including microbial interaction patterns

[2]. Microbial co-occurrence networks are widely applied

to explore connections in microbial communities. Nodes

and edges in microbial co-occurrence network usually

represent microbes and statistically significant associa-

tions between nodes, respectively. However, a systematic

evaluation of microbial network inference as a tool for

interaction prediction has highlighted this tool’s low accu-

racy and the biological implications of network properties

are unclear [12] . Nevertheless, modules in microbial

co-occurrence networks may be indicative of ecologi-

cal processes governing community structure, such as

niche filtering and habitat preference [13]. Additionally,

microbial co-occurrence network allows to predict hub

species and potential species interactions [12]. Global

microbial co-occurrence networks can provide a valuable

resource for unravelling microbial co-occurrence patterns

and their driving mechanisms. Chaffron et al. inferred a

global network of co-existing microbes across environ-

ments from 298,591 16S rRNA sequences from the Green-

genes database and found that phylogenetically close taxa

coexisted more frequently [14]. Recent advances of high-

throughput sequencing provide an opportunity for pre-

dicting microbial co-occurrence patterns from large-scale

microbial community studies. For example, Lima-Mendez

et al. inferred a global plankton co-occurrence network

from the dataset of Tara Oceans, including 313 samples

collected from 8 oceanic provinces. This network pro-

vides a resource for ocean microbial co-occurrence across

several size fractions and depths and demonstrates the

value of microbial co-occurrence networks for the formu-

lation of ecological hypotheses such as differences in the

role of top-down control across phytoplankton groups.

Moreover, this network also helps to determine the role

of global trends (generalist edges) and local signals (spe-

cialist edges) in driving entire plankton interactome [13].

The Earth Microbiome Project (EMP) is a public database

and a framework for crowdsourced sample collection

with standardized sequencing andmetadata curation [15].

This database provides microbial community resources

for cataloging global microbiota at an unprecedented

scale for investigating large scale ecological patterns and

exploring microbial community assembly theories. Here,

we have inferred a global microbial co-occurrence net-

work, describingmicrobial co-occurrence patterns using a

dataset of 23,595 samples encompassing 14 environments

from the EMP dataset. We used this network to explore

the wired pattern among microbial communities in 14

environments.

Results
Earth microbial co-occurrence network

Fourteen microbial co-occurrence networks represent-

ing different environments were constructed, compris-

ing 12,646 exact sequence variants (ESVs). To reduce

noise and false-positive predictions, network inclusion

was restricted to ESVs present in at least 10% of sam-

ples; we also used conservative statistical cut-off values

(see “Materials and methods” section). The 14 networks

were merged into a single Earth microbial co-occurrence

network by overlapping the vertices and edges; the final

network consists of 2928 vertices and 54,299 edges after

removing unconnected vertices (Fig. 1a). The scale-free

property (R2
= 0.19, P < 0.001) and independency

between abundance and degree (R2
= − 0.08, P =

0.07) suggest a non-random co-occurrence pattern in this

microbial network (Fig. S1). As ESVs were annotated to

their representative microbial taxa, we were able to iden-

tify 812 taxa-pairs that were present more than twice

in the global microbial co-occurrence network. We vali-

dated 432 co-occurrence edges, 15 intra-taxa edges, and

6 competition edges via literature mining (Data file S1).

Although this only accounts for 1.5% of edges in the global

microbial co-occurrence network, those 812 taxa pairs

account for 30% of the edges presented in more than 6

environments.

This global network exhibits a high degree of modu-

larity, but 87.9% of vertices were accounted for by only

8 of the 53 total modules (Fig. S2). Among these eight

modules, the first 5 are densely nested into a giant mod-

ule, while modules 6, 7, and 8 remain isolated from
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Fig. 1 Earth microbial co-occurrence network. a Layout and taxonomic profiles of eight domain modules in the Earth microbial co-occurrence

network. Modules (M1–M8) are displayed in different colors. b The distribution of vertices from 14 environments in the network where orange

indicates the vertices from corresponding environments

this greater module (Fig. S3). All 8 modules were com-

prised of different taxonomic profiles and were dominated

by Clostridia, Alphaproteobacteria, Deltaproteobacteria,

and Gammaproteobacteria (Fig. 1a). Vertices from micro-

biomes of soils, non-saline waters, animal distal guts, and

animal surfaces were present in all 8 modules (Fig. 1b;

Fig. S4a), and overrepresented in different modules

(Fig. S4b). However, vertices from microbiomes of ani-

mal corpus were mostly restricted to and overrepresented

than random frequency in M3 (3.1%), while vertices from

plant corpus comprised a major portion of and was over-

represented than random frequency in M3 (4.6%) and M4

(2.3%; Fig. S4a-b).

Phylogeny of co-occurrence network

With regard to phylogeny, a non-random edge distribution

across taxa was observed, with most co-occurrence rela-

tionships derived from Alphaproteobacteria, Clostridia,

and Deltaproteobacteria (Fig. 2a) classes. Most of the

combinations between dominant classes are overrep-

resented than random frequency (Fig. 2b). However,

only certain combinations between rare classes, such as

Flavobacteriia and Gemmatinonadetes, Bacteroidia and

Anaeroblineae, and Gemmatinonadetes and Bacteroidia,

are overrepresented than random frequency. For within

taxa co-occurrence, only co-occurrence within Deltapro-

teobacteria, Planctomycetia, Anaerolineae, and Acidobac-

teria Gp2 classes were overrepresented than random fre-

quency. Given that the subnetworks for different environ-

ments display different co-occurrence patterns, certain

co-occurrence relationships were only overrepresented

than random frequency in specific environments (Fig. 2c).



Ma et al. Microbiome            (2020) 8:82 Page 4 of 12

Fig. 2Microbial co-occurrence patterns across dominant taxa. a The profiles of co-occurrence links among dominant taxa; note that connections

are colored by the most dominant taxon. b Overrepresentation of co-occurrence links among taxa. The dot indicates significant overrepresentation

(P < 0.05) between corresponding taxon pairs. c The significant overrepresentation of co-occurrence links among taxa in subnetworks for 14

environments

Topological properties

To avoid biases introduced by sample number and ESV

number, we inferred 12 subnetworks for each environ-

ment with datasets trimmed into uniform size (see the

“Materials and methods” section). The topological prop-

erties were highly variable between the 12 environmental

subnetworks (Fig. 3). Although the datasets for 12 envi-

ronments were trimmed into the same number, the edge

numbers of the subnetwork of animal distal gut (4574) was

13 times larger than the subnetwork of non-saline surface

(350). The diameter values ranged from 4 to 6 but were not

correlated with edge numbers. The clustering coefficient

values of subnetworks for animal proximal gut (0.22) and

saline sediment (0.22) were higher than of subnetworks

for other environments. The average separation (0.30) and

modularity (2.7) were the highest for the subnetwork of

non-saline surface. Average betweenness centrality values

of subnetworks of animal distal gut (212.6) and soil (206.0)

were greater than those of other environments.

Generalist and specialist edges

The proportion of generalist edges, which were present in

more than one subnetwork, ranged from 34.3 to 57.0% of

the edges in corresponding subnetworks (Fig. 4a). Gener-

alist edges accounted for less than 50% of edges in most

subnetworks, except in non-saline water, animal secretion,

and the surfaces of plants and animals. The environmental

localization of generalist edges was assessed using omis-

sion scores (OS, see the “Materials and methods” section).

Only 3.4% of generalist edges were identified as local

edges (Data file S2).

Specialist edges, which are present in a single subnet-

work, could link environment specific vertex pairs present

in environment specific subnetworks or link general ver-

tex pairs present in at least two subnetworks. The pro-

portion of specialist edges linking specific vertex pairs

accounted for 54.5% of edges in the animal proximal gut

subnetwork and 52.4% of edges in the rhizosphere sub-

network, but only accounted for 15.6% of the edges in the
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Fig. 3 Network topology of subnetworks inferred from trimmed microbiome abundance datasets of 12 environments. The microbiome abundance

datasets were trimmed into 400 top-abundant ESVs and random selected 360 samples

animal secretion subnetwork. The proportion of special-

ist edges linking generalist vertex pairs ranged from 9.6

to 29.8% of edge numbers in corresponding subnetworks;

most were greater than 20% except in the animal proximal

gut (9.6%), rhizosphere (13.3%) and saline water (19.1%)

subnetworks. The proportions of generalist edges were

negatively correlated with the proportions of specialist

edges linking specific vertex pairs (ρ = −0.87, P < 0.001),

but were not correlated with the proportion of specialist

edges linking generalist vertex pairs (ρ = 0.11, P < 0.72)

(Fig. S5). Moreover, the proportions of those three edge

types were not related to edge numbers in subnetworks

(P > 0.10) (Fig. S6).

The profiles of the 50 most abundant associated ver-

tices were different for the three edge groups (Fig. 4b).

For example, Sphingobacterium was enriched in vertices

associated with generalist edges, in which the most

abundant edges were Sphingobacterium-Spartobacteria,

Sphingobacterium-Legionella, and Sphingobacterium-

Solirubrobacter (Data file S2). Microgenomates was

enriched in vertices associated with specialist edges

linking generalist vertices, in which the most abundant

co-occurrence relationships were between Microgeno-

mates and Armatimonates. The taxa profiles of vertices

associated with those three edge groups varied with

environments (Fig. S7-S9).

Based on edge overlap among the subnetworks inferred

from trimmed microbial community data, the 12 envi-

ronments were clustered into two groups (Fig. 4c). One

group consisted of the subnetworks of soil, non-saline

water, animal surface, and animal distal gut (group I);

the other cluster consisted of the subnetworks for rhi-

zosphere, plant surface, secretion and proximal gut of

animal, saline water and sediment, and non-saline sed-

iment and surface (group II). Those two groups were

mainly linked through the surface microbiomes of plants

and animals.

Network hubs

To correct for biases of sample or taxa number, we iden-

tified the ten hubs with the highest degree from each

subnetwork inferred from 12 trimmed datasets with the

same sample and taxa number. A total of 120 hubs

belonged to 60 ESVs (Fig. 5a), which were mainly from

phyla Clostridia, Deltaproteobacteria, Alphaproteobacte-

ria, Actinobacteria, and Gammaproteobacteria (Fig. 5b).

Based on hub presentation, 12 subnetworks were clus-

tered into two groups, which were consist with the two

groups clustered based on edge overlap as described

above. Acidobacteria Gp2 and Nisaea were identified as

hubs in most of subnetworks. Latescibacteria was iden-

tified as hubs in all the subnetworks of soil, non-saline
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Fig. 4 Generalist and specialist edges in subnetworks inferred from trimmed microbiome abundance datasets of 12 environments. a Proportions of

generalist edges, specialist edges linking specialist vertex pairs, and specialist edges linking generalist vertex pairs in 12 subnetworks. b Taxa profiles

of vertices associating with generalist edges, specialist edges linking specialist vertex pairs, and specialist edges linking generalist vertex pairs. c

Interconnection relationships among 12 environments based on similarity of co-occurrence relationships inferred from a Jaccard distance matrix

water, animal surface, and animal distal gut (group I).

Treponema, Micrococcus, and Methanobrevibacter were

identified as hubs in four of the subnetworks for rhi-

zosphere, plant surface, secretion and proximal gut of

animal, saline water and sediment, and non-saline sed-

iment and surface (group II). Thirty-seven hubs were

identified as specialist hubs, which were identified as

hubs in only one subnetwork (Fig. 5a), such as in

the subnetworks for soil (5), saline sediment (5), and

rhizosphere (5).

Negative co-occurrence links

The proportion of negative edges ranged from 1.9 to 48.9%

in the 12 subnetworks inferred from trimmed datasets

(Fig. 6). Most of subnetworks consisted of more than 10%

negative edges, except in subnetworks for soil (1.9%) and

non-saline water (7.5%). The proportion of negative edges

ranged from 10.1 to 20.1% in the subnetworks for animal

associated microbiomes (animal surface, secretion, and

distal and proximal gut) and ranged from 27.1 to 30.8%

in the subnetworks for plant-associatedmicrobiomes (rhi-

zosphere and plant surface). The proportion of negative

edges ranged from 32.8 to 39.7% in the subnetworks for

sediments and reached 48.9% in the subnetwork for non-

saline surface. Vertices linked with negative edges were

dominated by phyla Alphaproteobacteria, Actinobacteria,

Clostridia, Deltaproteobacteria, and Gammaproteobacte-

ria, but the taxa profiles of negative edge-linked vertices

varied with environments (Fig. 6). A substantial propor-

tion of negative edges were linked with Acidobacteria

in the subnetworks of soil, saline sediment, and animal

proximal gut, with Spirochaetia in the subnetworks of

saline and non-saline water, and with Sphingobacteria in

the subnetworks of surface of plant, animal, and non-

saline environments. However, most negative edges were

environmental specialists at genus level, except for the

negative co-occurrence relationships between Spartobac-

teria and Acidobacteria Gp10, between Legionella and
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Fig. 5 Taxonomic profiles of hub insubnetworks inferred from trimmed microbiome abundance datasets of 12 environments. a The class

proportion of 120 hubs in 12 subnetworks. b The genus profiles of 10 hubs in each subnetwork. The subnetworks for the 12 environments were

clustered based on the taxonomic profiles of hubs in the subnetworks

Plantactinospora, and between Acidobacteria Gp6 and

Acidobacteria Gp10 (Data file S3).

Discussion
We generated this global microbial co-occurrence net-

work by taking advantage of the Earth Microbiome

Project (EMP) datasets. The global microbial co-

occurrence network is scale-free as has been found in

other real-world networks such as the world wide web

[16], social relationships [17], scientific citations [18], and

interactomes of genes [19] and proteins [20]. This scale-

free feature implies that a few highly connected hub

species coexist with a large number of species that have

a small number of links [21] and also implies an ultra-

small world network [22], which acknowledges the critical

impact of microbial interaction relationships on microbial

community assembly processes. Due to the nature of small

world networks, impacts affecting one taxon can poten-

tially be delivered to any other member in a microbial

community via a few intermediate vertices.

The modularity of this microbial co-occurrence net-

work varied with the environment. Previous studies have

shown the existence of environmentally driven modules,

such as water depth [23] or soil properties [24]. Moreover,

given that modules in microbial co-occurrence networks

may represent different niches [2], the present patterns of

environments in modules may also indicate a similarity

of microbial co-occurrence patterns in different environ-

ments. For example, similar module distributions were

found for saline water and saline sediment, plant surface

and rhizosphere, and the corpus of plants and animals in

the current global microbial co-occurrence network.

Different profiles of topological features along the sub-

networks of various environments suggest unique micro-

bial co-occurrence patterns in different environments.

Large-edge numbers in the animal distal gut subnetwork

suggests a high density of interactions in that environ-

ment. Higher clustering coefficients in the subnetworks

of animal proximal gut and saline sediment might be

indicative of cross-feeding relationships, which suggests

a richness of degradation pathways, niche filtering, or

environmental heterogeneity in such environments. High

average separation and modularity in the non-saline sur-

face subnetwork suggests complex ecological processes

or environment gradients in non-saline surface. Between-

ness centrality measures the centrality of a vertex in a

network based on shortest paths. In other words, a ver-

tex with a higher betweenness centrality score would serve

as a bridge from one part of a graph to another. The

high betweenness centrality indicates that more microbes

bridged connections betweenmodules in the subnetworks

of animal distal gut and soil.

Given that more than half of the edges were identi-

fied as specialist edges in most of the subnetworks, the

contribution of specialist edges to co-occurrence patterns

was higher than generalist edges. The primary propor-

tion of specialist edges indicates that different environ-

ments harbored various specific microbial co-occurrence

relationships. Besides specialist edges linking specialist

vertices, each environment has its own specialist edges
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Fig. 6 Negative edges in subnetworks inferred from trimmed microbiome abundance datasets of 12 environments. The pie chart in center shows

percentage and numbers of negative edges in the 12 subnetworks. The pie charts around the figure’s edge show taxonomic profiles of negative

edge associating vertices in the 12 subnetworks

linking taxa pairs that presented in other environments

as well. Based on our results, we speculate that microbial

co-ocurrences could be an important aspect of describ-

ing microbial communities from different environments.

Accordingly, microbial co-occurrence patterns provide a

new perspective for understanding microbial community

assemblages besides taxon composition in microbiomes.

Although the previous finding observed major composi-

tional distinction among the microbiomes in soil, non-

saline water, animal surface, and animal distal gut, edge

overlap among subnetworks indicates a similarity of the

microbial co-occurrence patterns among these environ-

ments. This cluster of two groups was in line with the

subnetwork groups clustered by hub presence as well. The

position of plant and animal surface microbiomes might

indicate the role of these microbiomes in bridging other

microbiomes. However, it is still impossible to validate

the existence of inferred edges in different environments

at community scale due to the high proportion of uncul-

tured taxa in environmental microbiomes [25] and biases

of primers, DNA extraction, and PCR reaction.

Different taxon profiles between generalist edges and

specialist edges linking generalist vertices suggest that

generalist taxa could display different co-occurrence pat-

terns along different environments. We found that the

most abundant generalist edges were all linked with Sph-

ingobacterium, which are ubiquitous in soil [26], water

[27], and animal [28] or plant-associating microbiomes

[29]. However, ubiquitous existence cannot guarantee

formation of generalist edges since substantial special-

ist edges linked generalist vertex pairs. For example,

Microgenomates and Armatimonadetes are co-present in

11 environments, but only formed edges in the animal

distal gut subnetwork.

The importance of hub species is intuitive because

they are potentially associated with a high number of
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other species. The high degree of Acidobacteria Gp2 and

Nisaea in most of the environments may be explained

by their high prevalence and possibly by their generalist

lifestyles [30]. Given that Acidobacteria Gp and Nisaea

acquired edges with various taxonomic profiles in differ-

ent environments, those genera may have the potential

to synchronize ecological processes over broad ecosys-

tems. Latescibacteria, present in specialist hubs in group

I environment subnetworks, is from an uncultured can-

didate phylum. Its genomic segments recovered from

metagenome analyses demonstrate that it is prevalent in

a wide range of habitats, but that various Latescibac-

teria strains prefer specific habitats and have different

ecological functions [31]. Latescibacteria could play an

important role in the production of cellulosomes in anaer-

obic habitats, such as in animal guts and sediments, and

in polysaccharide degradation in soils [31]. These eco-

logical functions might make Latescibacteria a specialist

hub in the subnetworks of group I environments. Tre-

ponema, the hub in the subnetwork of animal distal gut, is

a characteristic symbiont in human gut microbiomes [32].

Micrococcus, the hub in the subnetworks of plant sur-

face and non-saline surface, plays critical roles in biofilm

formation [33]. Methanobrevibacter, the hub in subnet-

works of animal distal gut, positively correlated with

20 hydrogen-producing Clostridales in human gut [34].

Moreover, a high proportion of specialist hubs suggests

that hubs could represent co-occurrence characteristics in

various environments. We note that it is difficult to infer

hub nodes correctly [2] and that it is not yet clear whether

hub node status also implies a special role in the ecosys-

tem in the sense of a keystone, though initial experiments

suggest this is the case [35].

Negative edges may originate from a wide range of

co-exclusion mechanisms, including direct competition,

toxin production, environmental modification, and dif-

ferential niche adaptation [36]. Different proportions of

negative edges suggest various intensities of competition

or niche differentiation in different environments. Low

proportions of negative edges in soil subnetworks sug-

gest a prevalence of collaboration or niche sharing in

soil, in which heterogeneous microenvironments could

reduce direct competition. A large proportion of negative

edges in the soil subnetworks linked with Acidobacte-

ria, which are ubiquitous in soil environments but are

under-represented in culture studies [37]. The ecological

capabilities of Acidobacteria predicted by a metagenomic

approach alludes to a competitive life style in soils [37].

High proportions of negative edges in sediments and

surface data suggest that competition or subniche differ-

entiation were more prevalent in sediment and surface

environments. Compared with the soil, fewer ecological

niches exist in sediment and surface environments due

to their relatively homogenous microenvironments. The

proportion of negative edges in the subnetworks of plant-

associated microbiomes was higher than in the subnet-

works of animal associated microbiomes, suggesting that

competition or niche differentiation was more prevalent

in plant-associated microbiomes.

Conclusions
In summary, the present study provides an overview of

global microbial co-occurrence patterns. With this study,

we have shown the interconnection pattern across envi-

ronments in the Earth microbial co-occurrence network.

Moreover, we suggest that microbial co-occurrence pat-

tern is a critical aspect of microbial community charac-

teristic that can be used in conjunction with microbial

taxon compositional profiles. Given the increasing recog-

nition of the value of communal microbial biodiversity

monitoring and the current global advance in sequencing

techniques, future sequencing efforts will likely increase

the accuracy of the global microbial co-occurrence net-

work presented in this study. Given that most micro-

bial co-occurrence relationships lacked experimental val-

idation, a greater effort is needed to mine uncultured

microbial species for validating predicted microbial co-

occurrence relationships with co-culture experiments. In

addition, the EMP datasets currently focus on bacterial

and archaeal communities, but other life forms on Earth

(for example plants, animals, and fungi) are also essen-

tial in the microbial interactome due to their influences

on microbial environments. Future studies filling the

gaps for microbial eukaryotes within the EMP framework

will untangle global microbial co-occurrence patterns

comprehensively.

Materials andmethods
Abundance table from the EMP

The microbial abundance table used in the present study

was the 90-bp Deblur BIOM table from the EMP database

[15]. This table was based on the sequence data from

the EMP databased after filtering errors and trimming to

90 bp (the length of the shortest sequencing run) using

Deblur in Qiime2 [38]. The EMP employed a unified

standard workflow for soil collection, metadata curation,

DNA extraction, sequencing, and sequence preprocess-

ing, to avoid known issues in combining multiple ampli-

cons across diverse environments on Earth. The abun-

dance table was filtered to keep tag sequences with at

least 25 reads total over all samples. We then extracted

14 count matrices for 14 environmental categories at

level 3 of the EMP ontology (Table S1) from the 90-

bp Deblur BIOM table [15]. We filtered the ESVs with

relative abundance less than 0.001% and presenting in

less than 10% of samples in corresponding count matri-

ces of environments. All the analyses were done using

R 3.6.0 [39].
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Network inference

Microbial taxon-taxon co-occurrence networks were con-

structed as described by Lima-Mendez et al. [13] by

selecting Spearman correlation and Bray-Curtis dissimi-

laritymeasures. Briefly, to compute P values, we generated

permutation and bootstrap distributions (1000 iterations

each) by shuffling taxon abundances and resampling from

samples with replacements, respectively. The P value was

then obtained as the probability of the null value under

a Gaussian curve fitted to the mean and standard devia-

tion of the bootstrap distribution. Permutations computed

for the Spearman correlation included a renormalization

step to mitigate compositionality bias. Measure-specific

P values were merged using Brown’s method [40] and

multiple-testing-corrected with the Benjamini-Hochberg

method [41]. Finally, edges with an adjusted P value above

0.05 and a score below the thresholds determined with

random matrix theory method [42] or not supported by

both measures after assessment of significance were dis-

carded. For computational efficiency, we computed 14

taxon-taxon networks separately for 14 environmental

categories at level 3 of EMP ontology. Network deconvolu-

tion was employed for detecting indirect co-occurrences

in those networks (α =1, β=0.9) [43]. The 14 taxon-taxon

networks were then merged into a global network.

Trimmedmicrobial community dataset

In order to avoid the taxon or sample number biases,

we trimmed each community dataset of various environ-

ments into the same taxon number and the same sample

number. We kept 400 top-abundant ESVs and randomly

selected 360 samples in the trimmed microbial commu-

nity matrices. Due to smaller size than trimmed matrices,

the microbiomes in plant and animal corpus were not

involved in inferring subnetworks with trimmed dataset.

Influence of environment on co-occurrence pattern

The impact of environmental categories on the Spear-

man correlation of each edge in the network was assessed

through dividing the absolute omission score (OS) (Spear-

man correlation without the environmental categories)

by the absolute original Spearman score. To account for

group size, the OS was computed repeatedly for random,

same-sized sample sets. Nonparametric P values were cal-

culated as the number of times random OSs were smaller

than the sample group OS, divided by the number of ran-

dom OS (1000 for each taxon pair). Edges were classified

as region-specific when the ratio of OS and absolute orig-

inal score was below 1, and the multiple-testing-corrected

P values (Benjamini-Hochberg) were below 0.05.

Overrepresentation analysis

Statistics were done using stats package in R 3.6.0

[39]. Taxon-taxon counts at high taxonomic ranks were

assessed for overrepresentation significance using the

hypergeometric distribution implemented by stats ::

phyper. Mutual exclusion versus co-presence analysis was

performed using the binomial distribution implemented

by stats :: pbinom, with background probability esti-

mated by the frequency of edges in the network. In all

tests, P values were adjusted for multiple testing according

to Benjamini, Hochberg, and Yekutieli (BY); adjustments

were made using the stats :: p.adjust.

Literature-based evaluation of predicted co-occurrence

relationships

We counted known species pairs of co-occurrence rela-

tionships and filtered the co-occurrence pairs presenting

less than three times in the network. Then, we built a list

of 812 pairs of species co-occurrence relationships with

significant overrepresentation (P < 0.05). We screened

the literature retrieved from Web of Science by querying

two species names of a specific co-occurrence relation-

ship and confirm the relationships reported in literature.

The protocol to screen the literature was the following:

(i) we screened returned literature for direct observed

relationship, such as competition or mutualism; (ii) if

no direct relationships, we screened returned literature

for co-occurrence in the same samples; (iii) if no co-

occurrence, we checked if the two species belonged to

the same taxon; (iv) otherwise, the edges was labeled as

unpublished relationships.

Topological features

Topological features were estimated with igraph package

(v1.4.1) [44] in R 3.6.0 [39]. Edge number was determined

using the ecount function, and diameter was determined

using the diameter function. Clustering coefficient was

estimated with the transitivity function and average sep-

aration was estimated with the mean_distance function.

Mean betweenness centrality was calculated using the

centr_betw function. Modularity was estimated with the

modularity function based on the fast greedy clustering

algorithm.

Generalist and specialist edges

Edges present in only one subnetwork were specialist

edges, which were further clustered into two groups: a

specialist edge linking a specialist vertex pair or the same

linking a generalist vertex pair. A specialist edge link-

ing specialist vertex pair represents the contribution of

environmental-specific taxa in specialist edges, while a

specialist edge linking generalist vertex pair represents the

potential contribution of the environment in enriching

specific microbial interactions. The 50 top-abundant ESVs

for each edge type were counted for taxon profile com-

parison. An environment similarity network was inferred

with a Jaccard distance matrix based on edge overlap
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among subnetworks inferred with the trimmed dataset.

The spearman correlation between different edge types

and between edge number and edge types was calculated

using the cor.test function.

Hub identification

We identified ten hubs at the top-degree from each sub-

network inferred from the 12 trimmed datasets. The

taxon profiles of hubs in different subnetworks were iden-

tified at genus level with the 90-bp Deblur BIOM table

[15].

Negative edges

We counted the number and percentage of negative

edges in the subnetworks inferred from the 12 trimmed

datasets. The taxon profiles of negative edges in the sub-

networks of various environments were estimated with

the class groups of both vertices.
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