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YURI KNYAZIKHIN, MATTHEW KOWALEWSKI, NICKOLAY KROTKOV, ALEXEI LYAPUSTIN,  

RICHARD MCPETERS, KERRY G. MEYER, OMAR TORRES, AND YUEKUI YANG

T
 he Deep Space Climate Observatory (DSCOVR)  
 was launched on 11 February 2015 to a sun–Earth  
 first Lagrange point (L1) orbit, approximately 1.5 

million km from Earth toward the sun. Its mission is 
to provide continuous solar wind measurements for 
accurate space weather forecasting and to observe the 
continuously full, sunlit disk of Earth from a new and 

unique vantage point. The DSCOVR mission is a joint 
venture between National Oceanic and Atmospheric 
Administration (NOAA), National Aeronautics and 
Space Administration (NASA), and the U.S. Air 
Force. NOAA is operating the spacecraft and per-
forms operational space weather forecasting using 
the DSCOVR solar wind plasma and interplanetary 
magnetic field measurements. The Air Force provided 
the SpaceX Falcon 9 launch vehicle. NASA built the 
spacecraft, performed on-orbit checkout, and oper-
ates the two Earth-facing science instruments—the 
Earth Polychromatic Imaging Camera (EPIC) and 
the National Institute of Standards and Technology 
Advanced Radiometer (NISTAR). This paper is lim-
ited to applications related to the EPIC instrument.

EPIC consists of a 30-cm aperture Cassegrain 
telescope with a 0.62° field of view (FOV), which 
encompasses Earth, having a nominal size of 0.5° at 
the L1 vantage point. Light entering the Cassegrain 
telescope passes through a field-lens group, then a 
filter wheel, and finally is focused on a hafnium-
coated 2,048 × 2,048 pixel charge-coupled device 
(CCD) with sensitivity to ultraviolet (UV), visible, 
and near-infrared (NIR) wavelengths. The filter wheel 
contains 10 narrowband filters from 317.5 to 779.5 nm 
that were designed to obtain products similar to Total 
Ozone Mapping Spectrometer (TOMS; e.g., Herman 
et al. 1997) and Moderate Resolution Imaging 

The calibration and products produced by the Earth Polychromatic Imaging  

Camera on board Deep Space Climate Observatory are discussed.
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Spectroradiometer (MODIS; e.g., King et al. 1992). 
During the refurbishment phase, prior to launch, 
changes were made that significantly improved EPIC 
capabilities. The primary changes were a significant 
reduction of stray light (new filters and field-lens 
group) and addition of the oxygen A and B bands to 
sense cloud and aerosol heights.

Projected on the three-dimensional (3D) Earth, 
the sampling size is about 8 km at nadir (near the 
center of the image), which effectively increases to 
10 km when EPIC’s point spread function is included. 
To maximize time cadence by reducing transmission 
time, the images of all wavelength channels, except 
443 nm, have been reduced to 1,024 × 1,024 pixels. 
This yields a resolution of 10 km for the color images, 
which has been verified by looking at the width of 
major low-latitude rivers in Brazil and Egypt. Of 
course, the effective resolution is proportional to the 
secant of the observing angle measured relative to the 
normal to the Earth’s surface (10 km at nadir and 
20 km at 60°). The result for 2 × 2 pixel averaging is 
a spatial resolution at nadir of about 18 km.

The Earth-observing geometry of the EPIC instru-
ment is characterized by a nearly constant scattering 
angle (angle formed between the incident and scat-
tered-to-satellite sunlight vectors) between 168.5° and 
175.5°. Figure 1 displays the sun–Earth view (SEV) 
angle that is equal to 180° minus the scattering angle. 

The DSCOVR orbit around L1 is smaller than that of 
the Solar and Heliospheric Observatory (SOHO) and 
Wind missions, but similar to that of the Advanced 

Composition Explorer (ACE). It is important to 
note that the distance between DSCOVR and Earth 
changes approximately by 2,000–2,500 km day−1, 
as part of its nonrepeating Lissajous orbit, or about 
0.15% of its nominal distance of 1.5 × 106 km.

For the four UV channels, 317.5, 325, 340, 
and 388 nm, in-f light radiometric calibration is 
accomplished by comparison to the ref lectance 
values measured by current well-calibrated low-
Earth-orbiting (LEO) satellites observing scenes that 
match in time and observing angles with those from 
EPIC (Herman et al. 2018; see “Calibration of EPIC 
UV channels” section). Calibration of the visible and 
NIR channels is accomplished using well-calibrated 
measured Earth reflectance values obtained from the 
Terra and Aqua MODIS LEO satellite observations. 
Lunar reflectance data are used to help calibrate the 
two wavelength channels sensitive to the Earth’s 
oxygen absorption (oxygen B and A bands: 687.75 
and 764.0 nm) relative to their adjacent reference 
channels 680 and 779.5 nm. The details of these cali-
bration procedures are described in the “Calibration” 
section, below.

There are natural and enhanced color EPIC images 
provided daily online (at https://epic.gsfc.nasa.gov). 
The natural color images were created using the bands 
from EPIC that are within the human visual range. They 
have been color, contrast, and brightness adjusted to 
represent what a human eye would perceive. The red–
green–blue (RGB) ratios of the enhanced color images 
were processed to emphasize land features. In addition, 
the Rayleigh molecular scattering and attenuation of 
solar light by ozone was subtracted. The calculations 
accounted for Earth’s spherical geometry.

While MODIS on Terra and Aqua cross the 
equator at 1030 and 1330 local time (LT), respectively, 
DSCOVR EPIC provides measurements of the sunlit 
face of Earth from sunrise to sunset. Figure 2 illus-
trates the key difference between the L1 (EPIC) and 
LEO (MODIS) observations, where the EPIC’s obser-
vation of Africa is at 1056 UTC. Since Terra crosses 
the equator at 1030 LT, the western part of the left 
image has a more similar cloud structure with EPIC 
(middle) than their eastern parts. For Aqua crossing 
the equator at 1330 LT, the eastern part of the right 
(MODIS) and middle (EPIC) images are more alike 
than their western parts.

The paper structure is as follows. The next sec-
tion discusses EPIC calibration starting from raw 
data, then the geolocation algorithm for level-1 

FIG. 1. SEV angle (left axis, red curve) and the distance 

between DSCOVR and Earth (right axis, blue curve) are 

plotted vs the day since 1 Jan 2015. Note that SEV 

= 180° minus the scattering angle between solar and 

viewing directions. (SEV usually stands for sun–Earth 

vehicle, where “vehicle” refers to the satellite.)
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data, and finally calibration of all EPIC channels 
converting engineering units of counts per second 
into reflectance. The third section describes level-2 
products. First, there are ozone (O

3
) and Lambert 

equivalent reflectivity retrievals; then sulfur dioxide 
(SO

2
) for volcanic eruptions and aerosol products, 

including atmospheric correction, are discussed. 
Description of cloud and vegetation level-2 products 
completes this section. The fourth section reports 
on expected and unexpected capabilities of EPIC 
observations. Finally, the fifth section summarizes 
the results.

CALIBRATION. Raw EPIC data calibration. Before 
the raw EPIC data (counts per second) can be used 
for imagery and quantitative applications, a number 
of preprocessing steps must be taken. Level-0 EPIC 
data are converted to level-1A “corrected count rates” 
by correcting for detector, electronics, and optics-
induced effects. The major steps in the conversion 
from level-0 to level-1A are 1) subtracting the dark 
offset and dark rate signals; 2) correcting electronics 
signal-dependent nonlinearity; 3) correcting thermal 
dependence of the EPIC sensitivity; 4) normalizing 
by the image integration time; 5) “flat fielding” in 
order to remove pixel-to-pixel sensitivity differences, 
vignetting, and etaloning effects; and 6) correcting 

stray-light effects to account for light that should be 
going to a particular pixel but instead is scattered 
to other pixels. The dark offset correction utilizes 
overclock pixels (Habibi 2017) present in each image, 
and the dark rate correction is based on analysis of 
weekly in-flight shutter-closed dark rate measure-
ments. EPIC nonlinearity, temperature sensitivity, 
and stray-light corrections have been derived from 
prelaunch test data. The EPIC flat-field correction is 
based on preflight test data and updated using analysis 
of in-flight terrestrial observations taken over the first 
year of science operations. Finally, for level-1B data, 
the radiometric calibration factors for each wavelength 
channel are determined in terms of EPIC counts per 
second conversion to reflectance units (Geogdzhayev 
and Marshak 2018; Herman et al. 2018).

Geolocation algorithm for level-1A and level-1B data. 

EPIC image geolocation is a process that calculates 
the per-pixel latitude and longitude location for 
each wavelength’s image. This includes both the 
astronomical calculations to relate the scene to the 
instrument, as well as heuristical calculations to 
correct errors beyond the spacecraft instrumentation 
accuracy and achieve pixel-to-coordinate accuracy, as 
well as pixel-to-pixel coregistration between images 
on different filters. There are a number of challenges 

FIG. 2. DSCOVR EPIC “enhanced” image of (center) Africa taken at 1056 UTC 22 Mar 2016. (left) MODIS Terra 

and (right) MODIS Aqua 2,330-km-wide swaths of the same area taken on the same day. Note that West Africa 

follows UTC while East Africa is UTC + 3 h. Terra crosses the equator at 1030 LT so that the western swath of 

the left panel (Terra) resembles the cloud structure on the left part of the EPIC image. Since Aqua crosses the 

equator at 1330 LT, the eastern Aqua swath part of the right (Aqua) and middle (EPIC) panels are alike. Also 

note that the adjacent swaths of the MODIS examples are approximately 100 min apart.
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to achieving this correction, such as dealing with the 
rotation of the Earth due to the 0.5–2-min latency 
between imaging different wavelengths and correc-
tion for spacecraft rotation, jitter, and atmospheric 
refraction correction, as well as an accurate optical 
model of the telescope. The process of geolocation and 
georectification requires the images to be accurately 
mapped to a 3D model of the Earth.

The level-1A algorithm includes all the calcula-
tions required for geolocation on the images in their 
native format. This uses the ephemerides and other 
spacecraft information to generate a 3D view of the 
Earth in the same aspect as seen from EPIC at L1. 
A two-dimensional (2D) transformation of the 3D 
model, as it would appear on the CCD, is obtained 
using an instrument optical and model calculation. 
This 2D transformation in turn provides the per-
pixel geodetic coordinates, as well as sun and viewing 
angles. Figure 3 depicts this process.

The level-1B algorithm produces images in which all 
wavelengths are regridded to the same common grid. 
This includes correcting the images for changes in the 

scene due to Earth’s rotation, drift in spacecraft pointing, 
and the spacecraft’s own orbital motion. As outlined in 
Fig. 3, the level-1B algorithm takes the location infor-
mation generated and maps the EPIC pixels into 3D 
models, one per band. Each model is then rotated into 
the same orientation [north up, at a common universal 
time (UT)] and then projected and redrawn into a 2D 
image. The result is all 10 wavelength-band images share 
the same reference grid so that light for each pixel and 
wavelength comes from the same Earth scene. This is 
essential, since most of the science algorithms rely on 
ratios of different wavelength channels.

There are still residual issues that affect the 
geolocation accuracy. This includes errors with the 
star-tracker pointing, accuracy of the telescope opti-
cal model, image time stamps, and effects of atmo-
spheric refraction. Work is currently underway that 
treats these additional corrections to further improve 
science products beyond the basic requirements.

Calibration of EPIC UV channels. Since EPIC was 
launched without an accurate laboratory calibration, 

FIG. 3. Schematic diagram of the geolocation process in level-1A algorithm.
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in-flight calibration transfer using 
other well-calibrated satellites was 
necessary. There were two suit-
able LEO satellite instruments: 
Aura Ozone Monitoring Instru-
ment (OMI; e.g., Torres et al. 2007) 
and Suomi National Polar-Orbiting 

Partnership (Suomi NPP) Ozone 
Mapping and Profiler Suite (OMPS; 
e.g., Li et al. 2017) that contain 
similar wavelength channels and are able to observe 
scenes that closely match in location and angles with 
those observed by EPIC. Of these, the best calibrated 
was OMPS, which has an albedo accuracy of 2% and 
a wavelength accuracy of better than 1% (Jaross et al. 
2014).

Ref lectance calibration was chosen, since the 
ratio of reflected radiance to the incoming solar flux 
mostly cancels the strong Fraunhofer line struc-
ture. The lack of line structure permits accurate 
interpolation needed to match the wavelength bands 
of EPIC. EPIC measures raw counts per second based 
on permanently fixed exposure times designed to fill 
the CCD wells to approximately 80% for the brightest 
scenes in each of all 10 channels. Comparison with 
identical OMPS scenes produces EPIC multiplica-
tive albedo calibration coefficients Kλ (Table 1) to 
convert counts per second into top-of-atmosphere 
reflectance πIλ/Sλ. Here, Iλ is the radiance measured 
by OMPS at the top of the atmosphere, and Sλ is the 
wavelength-dependent solar f lux corrected for the 
sun–Earth distance. For the UV channels, there is a 
small secular change of a few percent per year. A more 
complete discussion is given in Herman et al. (2018).

Calibration of EPIC visible and NIR channels. We used 
MODIS Aqua and Terra level 1B (L1B) 1-km bands 3 
(central wavelength is 469 nm), 4 (555 nm), 1 (645 nm), 
and 2 (858.5 nm) reflectance values to infer calibration 
factors for four EPIC visible and near-IR channels: 
443, 551, 680, and 780 nm, respectively. For each EPIC 
pixel, we identified favorable MODIS pixels as follows: 
i) spatially collocated within 25 km, ii) temporally 
collocated within 10 min, and finally, iii) having the 
same scattering angles within 0.5°.

We selected EPIC pixels that had at least 40 MODIS 
pixels within 25-km radius. Relative standard devia-
tion was then calculated for the matching MODIS 
and EPIC pixels. In the latter case, a 5 × 5 pixel 
neighborhood was used to calculate the standard 
deviation. The value of the relative standard devia-
tion was used to select the most homogeneous scenes. 
Two methods were used to determine the calibration 

coefficients from the most homogeneous scenes: first, 
linear regression between EPIC counts and MODIS 
reflectance values and, second, mean MODIS/EPIC 
ratio for high MODIS reflectance (>0.6) and small 
relative standard deviation (<0.1).

The differences in the position and spectral 
width of the corresponding EPIC and MODIS 
channels may result in discrepancies when scenes 
with different spectral signatures are observed by 
the two instruments. To compensate, we employ 
spectral-band adjustment factors (SBAFs), which 
convert MODIS ref lectance values to equivalent 
EPIC reflectances for various surface types. These 
factors, in the form of linear regression coefficients, 
were obtained online (from www-angler.larc.nasa 

.gov/SBAF) and are based on the analysis of Scanning 
Imaging Absorption Spectrometer for Atmospheric 
Chartography (SCIAMACHY) hyperspectral data 
(Scarino et al. 2016). To identify the land-cover 
type for each matching EPIC pixel, we use a dataset 
developed by Channan et al. (2014). The land-cover 
type was identified based on a 0.5° × 0.5° reprojected 
version of the global mosaics of the standard MODIS 
land-cover-type data product (MCD12Q1) in the 
International Geosphere–Biosphere Programme 
(IGBP) land-cover-type classification. Separate 
adjustment factors were used for MODIS Aqua and 
MODIS Terra data (Geogdzhayev and Marshak 2018).

At the time of this writing, no degradation in the 
EPIC visible and near-IR bands has been detected, 
while the UV channels have a very small secular 
change (Herman et al. 2018). The calibration factors 
Kλ for these channels are given in Table 2.

Calibration of the EPIC O
2
-absorbing bands using lunar 

observations. To calibrate the EPIC O
2
-absorbing bands, 

we used EPIC lunar observations at the time of the 
full moon as seen from the Earth. Lunar reflectance 
Rλ does not increase much with a small wavelength 
change ∆λ; a 10-nm difference in λ leads to a differ-
ence in Rλ in the range of 0.0006–0.0013 or 0.8%–1.2% 
(e.g., Ohtake et al. 2010, 2013). It follows from this 
that the difference in moon reflectance between the 

TABLE 1. Calibration factors (K
λ
) and irradiance at 1 AU (S

λ
) for 

four UV channels. FWHM = full width, half maximum.

λ center (nm) FWHM (nm) K
λ

S
λ
 (mW m−2 nm−1)

317.5 ± 0.1 1.0 1.216 × 10−4 819.0

325.0 ± 0.1 1.0 1.111 × 10−4 807.7

340.0 ± 0.3 2.7 1.975 × 10−5 995.8

388.0 ± 0.3 2.6 2.685 × 10−5 1,003.0
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O
2
 B-band (688 nm) and the “red” (680 nm) channels 

as well as between the O
2
 A-band (764 nm) and the 

near-IR (780 nm) channels will be within 1.5%.
Since the calibration factors Kλ for λ = 680 and 

780 nm are assumed to be known from in-f light 
comparisons between EPIC Earth observations and 
well-calibrated measured Earth reflectances obtained 
from the Terra and Aqua MODIS LEO satellite 
observations (see “Calibration of EPIC visible and 
NIR channels” section), we can obtain the calibra-
tion factors for the O

2
-absorbing channels at 688 

and 764 nm. Indeed, the ratio F(λ
1
, λ

2
) of the lunar 

reflectance values measured in counts per second at two 
neighboring channels λ

1
 and λ

2
 is very stable (Fig. 4). 

Thus, the calibration factor Kλ for λ = 688 nm can be 
approximated as

 counts countsK
688

 = R
688

/R
688        

= R
688

/[R
680       

F(680,688)]
 = (R

688
/R

680
)K

680
/F(680,688) ≈ K

680
/F(680,688).

Similarly to 688 nm, the calibration factor for 764 nm 
can be estimated as
 

K
764

 ≈ K
780

/F(780, 764).

Here, Rλ and Rλ
counts are the values of calibrated reflec-

tance and measured counts per second at wavelength 
λ, respectively; Kλ is the multiplicative calibration 
coefficient expressed as a conversion from counts per 
second to reflectance at wavelength λ and the ratio 
F(λ

1
, λ

2
) = Rλ2

counts/ Rλ1

counts. The calibration factors Kλ for 
these channels are given in Table 3.

The calibration factors for all 10 EPIC channels 
are also publicly available online (at https://eosweb 

.larc.nasa.gov/project /dscovr/DSCOVR_EPIC 

_Calibration_Factors_V02.pdf).

PRODUCTS. EPIC ozone and Lambert equivalent 

reflectivity retrievals. Applying the OMPS-derived cali-
bration to EPIC’s counts per second to obtain Earth 
albedos for each of the UV channels, the reflectances 
can be used to retrieve total column ozone (TCO), 
Lambert equivalent reflectivity (LER), aerosol optical 
depth and absorption, aerosol index (AI), and UV 
reflectance at the Earth’s surface (Herman et al. 2018). 

Ozone retrieval requires the use of measured labora-
tory high-spectral-resolution absorption coefficients 
(Brion et al. 1993, 1998; Daumont et al. 1992; Malicet 
et al. 1995). The EPIC-measured reflectance spectra 
are compared with a set of radiative transfer–derived 
lookup tables for the EPIC filter transmission func-
tions and for a wide range of ozone values. LER, AI, 
and ozone are retrieved simultaneously with a maxi-
mum resolution of 18 km at the subsatellite point. A 
matched pair of ozone and LER images are shown in 
Fig. 5 for 1658 UTC 21 August 2016.

EPIC ozone has been compared to ozone retrieved 
from a Pandora spectrometer instrument (PSI) 
located in Boulder, Colorado (Herman et al. 2015), 
matched in location and time (UTC) several times per 
day. The average agreement is 2.1% ± 5.4% (Fig. 6). 
An additional comparison (Fig. 7) has been made 
(Herman et al. 2018) with the assimilated ozone 
product from the Modern-Era Retrospective Analysis 
for Research and Applications, version 2 (MERRA-2), 
based on Microwave Limb Sounder (MLS) and total 
column ozone from the OMI. All of the structures in 
the EPIC ozone retrieval are present in the MERRA-2 

TABLE 2. Calibration factors for three visible 

channels and one NIR channel.

λ center (nm) FWHM (nm) K
λ

443.0 ± 1.0 2.6 8.340 × 10−6

551.0 ± 1.0 3.0 6.660 × 10−6

680.0 ± 0.2 1.6 9.300 × 10−6

779.5 ± 0.3 1.8 1.435 × 10−5

FIG. 4. Moon observations. Ratios of moon reflectance 

F in counts per second at 688 over 680 nm and at 764 

over 780 nm channels averaged over moon pixels.

TABLE 3. Calibration factors for two O
2
-band 

channels.

λ center (nm) FWHM (nm) K
λ

687.75 ± 0.2 0.84 2.020 × 10−5

764.0 ± 0.2 1.02 2.360 × 10−5
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assimilation model ozone 
but with an average offset 
of about 3% [10 Dobson 
units (1 DU = 2.69 × 1016 
molecules of O

3
 per square 

centimeter)]. Compari-
sons with MERRA-2 have 
been made using ozone 
data from other satellites 
(Wargan et al. 2017) that 
have similar offsets.

EPIC SO
2
 ret r ieva l s for 

volcanic eruptions. Volcanic 
emissions of sulfur dioxide 
(SO

2
) and ash have been 

measured by UV sensors on U.S. and European polar-
orbiting satellites since the late 1970s (Bluth et al. 1993, 
1997; Carn et al. 2003, 2015, 2016; Carn and Krotkov 
2016; Guo et al. 2004; Krotkov et al. 1999a,b; Krueger 
1983; Krueger et al. 1995, 2000; Li et al. 2017; Pavolonis 
et al. 2013; Prata 1989; Prata and Prata 2015; Prata and 
Kerkmann 2007; Prata et al. 2003, 2015; Realmuto 
2000; Wen and Rose 1994). These observations permit 
detection of hazardous volcanic clouds in support of 
aviation safety management; however, they are gener-
ally available only once a day from LEO satellites with 
a delay of at least 2–3 h. More frequent observations 
can be crucial in providing timely warnings to miti-
gate threats to aviation safety. Current geostationary 
thermal infrared (TIR) imagers including Meteosat 
Second Generation (MSG) Spinning Enhanced Visible 
and Infrared Imager (SEVIRI), Geostationary Opera-

tional Environmental Satellite 16 (GOES-16) Advanced 

Baseline Imager (ABI), and Himawari-8 Advanced 
Himawari Imager (AHI) can detect and image vol-
canic SO

2
 and ash plumes, taking advantage of high-

frequency observations and low latency to provide 
timely warnings to the public and aviation authorities 
and operators (Prata 1989; Realmuto 2000; Ackerman 
et al. 2008; Pavolonis et al. 2013). DSCOVR EPIC pro-
vides the first opportunity to observe transient volcanic 
clouds globally from L1. The unique L1 vantage point 
offers the potential for multiple daily UV observations 
of drifting volcanic SO

2
 and ash clouds globally using 

a single instrument.
The EPIC volcanic SO

2
 algorithm is a modified 

version of the heritage TOMS four-band algorithm, 
adapted to the EPIC wavelengths. The algorithm 
uses all four EPIC UV channels (317, 325, 340, and 
388 nm) to retrieve i) vertical column amounts of 
SO

2
 and ii) O

3
, iii) the LER at 388 nm, and iv) its 

FIG. 5. EPIC-retrieved ozone and LER values at 1658 UTC 21 Apr 2016. The 

ozone scale is from 100 to 500 DU, and the LER scale is from 0% to 100%.

FIG. 6. (left) EPIC ozone data compared to Pandora retrievals at Boulder. (right) Daily (gray circles) and monthly 

(solid line) average difference between Pandora and EPIC ozone retrievals.
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spectral dependence. The algorithm relies on spectral 
differences in the SO

2
 and O

3
 absorption cross sec-

tions to simultaneously quantify column amounts 
of the two gases; SO

2
 is more absorbing than O

3
 at the 

shortest UV channel (317 nm), whereas O
3
 is more 

absorbing than SO
2
 at the longer channel (325 nm). 

The retrieval is performed iteratively for each EPIC 
pixel. It starts with the climatological value of O

3
 and 

zero SO
2
 and first computes LER at 388 nm. Because 

the O
3
 and SO

2
 absorption are very weak at 388 nm, 

LER remains fixed during the iterations. The itera-
tions start with climatological values of O

3
 and zero 

SO
2
. The algorithm then retrieves adjustments to the 

initial guess by matching measured and calculated 
sun-normalized backscattered UV (BUV) radiances 
in the shorter-wavelength spectral channels (317, 325, 
and 340 nm). The sensitivities (Jacobians) associated 
with linear perturbations in SO

2
, O

3
, and LER are 

computed for each UV spectral band using precom-
puted backscattered UV radiances lookup tables that 
are numerically interpolated to the EPIC viewing 
geometry at each iteration. This algorithm appears to 
have adequate sensitivity to detect moderate to large 
volcanic eruptions from L1 at solar and view zenith 
angles less than ~70° (e.g., Fig. 8).

To increase sensitivity to small eruptions, a sim-
plified version of the SO

2
 algorithm has also been 

developed. It uses the 317- and 388-nm EPIC channels 
and an a priori estimate of total ozone. The ozone is 
regridded and smoothed, which reduces channel-
to-channel collocation errors. The radiances are 
normalized accounting for smooth ozone variations 
but excluding pixels with elevated SO

2
. This error 

mitigation results in enhanced sensitivity to small 
volcanic SO

2
 clouds.

No large tropical erup-
tions have occurred during 
the DSCOVR EPIC mission 
to date (as of January 2018). 
However, the sensitivity 
of EPIC UV radiances to 
volcanic clouds has been 
demonstrated by the de-
tection of several mid- to 
high-latitude eruptions in 
2015–17. Figure 8 shows 
EPIC SO

2
 retrievals for the 

high-latitude eruption of 
Pavlof (Alaska) in March 
2016. Comparison with 
the low-Earth-orbit ing 
Suomi NPP  OMPS SO

2
 

data (Fig. 8c) collected at 
a similar time shows that EPIC clearly detects the 
proximal volcanic plume where SO

2
 columns were 

highest (>10 DU), along with some of the distal plume. 
Note that the EPIC viewing conditions were not ideal 
for this eruption, with a relatively high solar zenith 
angle in Alaska in March; nevertheless, the SO

2
 

cloud was detected in at least two EPIC exposures 
over approximately a 2-h period on 28–29 March 
(Figs. 8a,b), with the first observation ~90 min prior 
to the Suomi NPP OMPS overpass. The Atmospheric 
Infrared Sounder (AIRS) on NASA Aqua satellite also 
detected the Pavlof SO

2
 emissions, and a coincident 

AIRS retrieval at ~2330 UTC 28 March, using the 
method of Prata and Bernardo (2007), is shown in 
Fig. 8d. The total SO

2
 mass of 33 kilotons (kT) mea-

sured by AIRS compares favorably with the EPIC 
retrievals, which detected ~25 kT of SO

2
.

These EPIC exposures provide unique observa-
tions of SO

2
 cloud transport and have great potential 

to provide new insight into the evolution of volcanic 
SO

2
 emissions, as well as more timely detection and 

tracking of potentially hazardous volcanic clouds. 
Forecasting the dispersion of volcanic clouds 
requires an estimate of the volcanic cloud altitude. 
The combination of total column SO

2
 observations 

from polar-orbiting satellites with trajectory analysis 
methods has proved useful for estimating volcanic 
cloud altitudes (Eckhardt et al. 2008; Krotkov et al. 
2010; Hughes et al. 2012). Such techniques would be 
improved by assimilating more frequent observations 
of volcanic SO

2
 from EPIC, enabling more rapid esti-

mation of volcanic cloud altitude.

EPIC UV aerosol products. A variety of aerosol and 
aerosol-related products are derived from EPIC’s 

FIG. 7. Comparison of EPIC TCO with the MERRA-2 assimilation ozone model 

for 17 Apr 2016.
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observations. EPIC extends the multidecadal UV 
aerosol index (UVAI) record started in 1979 with 
TOMS (Herman et al. 1997; Torres et al. 1998) 
and currently available from OMI observations 

(Torres et al. 2007). The EPIC UVAI detects carbo-
naceous aerosols, desert dust particles, and volcanic 
ash over the oceans and the continents under both 
clear and partly cloudy conditions, as well as over 

FIG. 8. SO
2
 maps for the Mar 2016 eruption of Pavlof volcano (triangle). SO

2
 in the Pavlof volcanic ash cloud 

was detected in two EPIC exposures at (a) 2154 UTC 28 and (b) 0008 UTC 29 Mar, (c) Suomi NPP OMPS SO
2
 

measurements at ~2325 UTC 28 Mar produced using a principal component analysis (PCA) SO
2
 algorithm 

assuming a midtropospheric (TRM) volcanic plume located at 5–10-km altitude (Li et al. 2017), and (d) Aqua 

AIRS SO
2
 measurements at ~2329–2335 UTC 28 Mar.
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extremely bright backgrounds such as snow/ice 
surfaces and cloud decks. In addition to the qualita-
tive UVAI product, EPIC observations yield aerosol 
optical depth (AOD) in the UV–visible range, and 
near-UV single-scattering albedo for both absorbing 
and nonabsorbing aerosol types under cloud-free 
conditions using a modified version of the OMI 
aerosol algorithm (Torres et al. 2007, 2013). Because of 
the sensor’s coarse spatial resolution, subpixel cloud 
contamination affects both the frequency of retrievals 
and the quality of the retrieved aerosol parameters. 
Figure 9 shows retrievals of UVAI, aerosol optical 
depth, single-scattering albedo, and absorption 
optical depth associated with smoke and desert dust 
events in Africa.

Recently developed retrieval approaches are 
applied to EPIC observations to obtain the optical 
depth of aerosol layers above clouds, as well as the 
cloud optical depth unaffected by aerosol absorp-
tion effects (Torres et al. 2012; Jethva et al. 2013). 
Additionally, radiance measurements in the oxygen 
A and B bands are used to simultaneously derive 
the optical depth and the height of elevated desert 

dust and smoke aerosol layers over the oceans (Xu 
et al. 2017).

Atmospheric correction suite. DSCOVR EPIC is con-
tributing to the surface ref lectance Earth system 
data record. The shortcoming of EPIC’s rather coarse 
spatial resolution is compensated by its high (almost 
hourly) observation rate, which produces up to 8 to 12 
images of the same area from dawn to dusk, globally. 
This provides early morning observations, which are 
unavailable from MODIS or Visible Infrared Imaging 
Radiometer Suite (VIIRS), for climatically impor-
tant tropical regions of the world such as Amazonia 
where tropical convection generates more clouds in 
the afternoon. A comparison of statistics between 
MODIS Terra and Aqua shows about 10% more clouds 
from MODIS Aqua with an equatorial overpass time 
of 1330 LT as compared to MODIS Terra crossing the 
equator at 1030 LT (Hilker et al. 2015).

The surface products include spectral bidirectional 
ref lectance factors (BRFs; or surface ref lectance) 
and bidirectional reflectance distribution function 
(BRDF) represented by three parameters of the Ross-

Thick Li-Sparse (RTLS; 
Lucht et al. 2000) model. 
The suite also includes a 
cloud mask and aerosol 
optical thickness required 
for atmospheric correction.

The unique backscatter-
ing observation geometry 
of EPIC will allow us to 
revisit models of BRDF 
near the hot spot direction 
(scattering angle close to 
180°). So far, only a lim-
ited analysis has been con-
ducted based on Polariza-
tion and Directionality 
of the Earth’s Reflectances 
(POLDER) mu lt ia ng le 
observations (e.g., Bréon 
et al. 2002). Such models 
have a high importance 
for vegetation monitoring 
in tropics when geometric 
variation from a shifting 
azimuthal plane overlays 
a seasonal vegetation cycle 
(e.g., Bi et al. 2016).

Because EPIC differs 
significantly from MODIS 
or VIIRS in spectral bands 

FIG. 9. (top left) EPIC-derived UVAI, (top right) 388-nm AOD, (bottom left) 

388-nm single-scattering albedo, and (bottom right) aerosol absorption opti-

cal depth derived from observations at 1025 UTC 7 Aug 2016.

1838 SEPTEMBER 2018|
Unauthenticated | Downloaded 08/09/22 06:26 AM UTC



and spatial and temporal resolution, a new processing 
algorithm is being developed based on elements of 
NASA Multiangle Implementation of Atmospheric 
Correction (MAIAC) algorithm originally developed 
for MODIS (Lyapustin et al. 2011, 2012). The main 
idea of MAIAC is to take advantage of differences in 
the space–time variability of atmosphere (aerosols 
and clouds) and surface to separate their contribu-
tions in measured radiance. Such an approach re-
quires observing the same area over time; therefore, 
EPIC processing starts with gridding observations to 
a 10-km regular sinusoidal grid. Continuous observa-
tions of the same grid cell over time yield multiangle 
coverage for spectral BRDF retrievals, which then 
helps cloud detection and aerosol retrievals. MAIAC 
also characterizes spatial variability between adjacent 
grid cells under clear skies that helps cloud detection.

The EPIC MAIAC cloud detection employs a set 
of tests including absolute brightness test, spatial 
variability test, oxygen A- and B-band test for cirrus 
detection, and “deviation from expected” test based 
on our knowledge of spectral surface BRDF, which is 
translated to an expected top-of-atmosphere (TOA) 
reflectance. An additional filtering takes place during 
aerosol retrievals and atmospheric correction, which 
significantly increases overall data quality.

Aerosol retrieval is based on characterization of 
the surface spectral reflectance ratios from the time 
series of EPIC observations using the minimum 
ref lectance method (e.g., Knapp 2002). Following 
aerosol retrievals, the atmospheric correction stage 
includes BRDF retrieval and computation of surface 
reflectance (BRF). The BRDF retrieval uses linear 
inversion to derive three parameters of the RTLS 
BRDF model from the multiangle EPIC dataset 
accumulated from 2 to 3 days of observations over 
each 10-km grid cell. A preliminary example of 

atmospheric correction (AC) processing is shown 
in Fig. 10. It includes the RGB TOA EPIC image at 
1312 UTC 27 March 2016 (left), the atmospheri-
cally corrected land surface RGB image (middle), and 
retrieved aerosol optical thickness (AOT

0.44
) both over 

land and ocean on the right.

EPIC cloud product. Over the years, cloud products from 
LEO satellites, such as Terra, Aqua, and the NOAA 
satellites (e.g., Parkinson 2003; Platnick et al. 2017; 
Heidinger and Pavolonis 2009) and from geostation-
ary-Earth-orbiting (GEO) satellites, such as GOES (e.g., 
Schmit et al. 2008, 2017), constitute the main global 
cloud property database. With the launch of DSCOVR, 
the EPIC instrument provides new opportunities for 
cloud-related studies, since it covers almost the entire 
sunlit half of the Earth. Consecutive observations 
during the day make studying the cloud diurnal cycle 
on a global scale possible. EPIC cloud products also 
provide a spatial context for the observations from 
LEO satellites, because for every LEO observation 
at daytime, there are always closely collocated EPIC 
observations. The half-globe synoptic snapshot feature 
of EPIC makes comparison between synoptic GCM 
model outputs and observations intuitive (Holdaway 
and Yang 2016a,b) and helps model validations.

The EPIC level-2 cloud products include cloud 
mask (CM), cloud effective pressure (CEP), cloud 
effective height (CEH), and cloud optical thickness 
(COT). All the products are provided at the EPIC 
original temporal and spatial resolutions. CEP and 
CEH are derived from the oxygen A and B bands, 
respectively. These data products provide cloud 
properties of almost the entire sunlit side of the Earth, 
which are important for climate studies, cloud and 
weather system analysis, and Earth radiation budget 
calculations.

FIG. 10. An example of EPIC data processing at 1312 UTC 27 Mar 2016: (left) EPIC TOA RGB, (center) atmo-

spherically corrected RGB surface reflectance, (right) AOD.
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A suite of algorithms for generating the opera-
tional EPIC CM, CEP/CEH, and COT products has 
been developed (Yang et al. 2013; Meyer et al. 2016). 
1) The EPIC CM is based on the threshold method; 
surface is classified into three categories: land, deep 
water, and snow/ice; for each surface type, two 
independent tests are applied, and the final CM with 
confidence level is determined through combin-
ing the results from the two tests. 2) For the CEP/
CEH, the mixed Lambertian equivalent reflectivity 
(MLER) model (e.g., Koelemeijer et al. 2001; Yang et 
al. 2013) is adopted, which assumes that an EPIC pixel 
contains two Lambertian reflectors, the surface, and 
the cloud. This assumption simplifies the radiative 
transfer equation, and cloud pressure can be retrieved 
using the oxygen A- and B-band pairs. Since the 
MLER model does not take into account the effect of 

photon penetration into clouds, the retrieved cloud 
pressure is an effective pressure. By incorporating 
the Goddard Earth Observing System Model, ver-
sion 5 (GEOS-5), forecasted atmospheric profiles, the 
CEP is converted to CEH. 3) The EPIC COT product 
is produced using the operational MODIS cloud 
retrieval infrastructure (Platnick et al. 2017). The 
MODIS system provides simultaneous two-channel 
retrievals of COT and cloud effective radius (CER), 
and cloud phase retrievals using a variety of spectral 
tests. However, since EPIC does not have particle-
size-sensitive channels, a single-channel retrieval 
algorithm was developed assuming fixed values for 
CER (Meyer et al. 2016). In addition, cloud phase de-
termination capability for EPIC is limited; hence, the 
EPIC COT product provides two retrievals for each 
cloudy pixel, one assuming liquid phase and the other 

FIG. 11. Sample EPIC level-2 cloud products for the observations at 1457 UTC 23 Jun 2016. (a) EPIC RGB im-

age, (b) EPIC cloud mask: 1: high-confidence clear, 2: low-confidence clear, 3: low-confidence cloudy, and 4: 

high-confidence cloudy; (c) oxygen A-band CEP; (d) COT assuming liquid phase; (e) COT assuming ice phase; 

and (f) most likely cloud phase. Other level-2 cloud products not shown include oxygen B-band CEP and A- and 

B-band CEH.
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ice phase. A likely cloud phase is also provided based 
on the CEH. An example of EPIC cloud products is 
given in Fig. 11. We note that the relatively big EPIC 
pixel size (~10 km at nadir) results in a large number 
of partially cloudy pixels. This effect is taken into 
account in the CEP retrieval as the MLER model 
derives the effective cloud fraction first (Yang et al. 
2013). For COT retrievals, coarser spatial resolution 
results in a smoother retrieval field compared to the 
fine-resolution MODIS retrievals (Meyer et al. 2016).

EPIC vegetation product. The DSCOVR EPIC science 
product suite includes vegetation Earth system data 
record (VESDR) that provides leaf area index (LAI) 
and diurnal courses of normalized difference veg-
etation index (NDVI), sunlit LAI (SLAI), fraction of 
incident photosynthetically active radiation (FPAR) 
absorbed by the vegetation and Directional Area 
Scattering Function (DASF). The product at 10-km 
sinusoidal grid and 65–110-min temporal frequency 
is generated from the upstream EPIC BRF product 
(“Atmospheric correction suite” section). Whereas 
LAI is a standard product of many satellite missions, 
global diurnal courses of FPAR, NDVI, SLAI (Fig. 12) 
and DASF are new satellite-derived products. Sunlit 
and shaded leaves exhibit different radiative response 
to incident photosynthetically active radiation 
(400–700 nm; Mercado et al. 2009; Stenberg 1998), 
which in turn triggers various physiological and 
physical processes required for the functioning of 
plants. Leaf area and its sunlit portion are key state 
parameters in most ecosystem productivity models 
(Bonan et al. 2003; Chen et al. 2012; Dai et al. 2004; He 
et al. 2013; Mercado et al. 2009; Norman 1982) and 
the carbon/nitrogen cycle (Chen et al. 2003; Doughty 
and Goulden 2008; Wang et al. 2001). DASF provides 
information critical to accounting for structural con-
tributions to measurements of leaf biochemistry from 
remote sensing (Knyazikhin et al. 2013).

Theoretical basis of the operational algorithm 
is documented in Yang et al. (2017) and summa-
rized as follows. The lookup table (LUT) approach 
implemented in the MODIS operational LAI/FPAR 
algorithm is adopted. The LUT has been significantly 
modified. First, its parameterization incorporates the 
canopy hot spot phenomenon (Fig. 13) and recent 
advances in the theory of canopy spectral invariants. 
This allows more accurate decoupling of the struc-
tural and radiometric components of the measured 
BRF, improves scaling properties of the LUT, and 
consequently simplifies adjustments of the algorithm 
for data spatial resolution and spectral-band com-
positions. Second, the stochastic radiative transfer 
equations are used to generate the LUT for all biome 
types. The equations naturally account for radiative 
effects of the three-dimensional canopy structure 
on the BRF and allow for an accurate discrimina-
tion between sunlit and shaded leaf areas. Third, 
the LUT entries are measurable; that is, they can 
be independently derived from both below-canopy 
measurements of the transmitted and above-canopy 
measurements of ref lected radiation fields. This 
feature makes possible direct validation of the LUT 
and facilitates identification of its deficiencies and 
development of refinements.

The BRF of the vegetation reaches its maximum 
in the backscattering directions (Fig. 13). This is the 
so-called hot spot effect, that is, a sharp increase in 
canopy-reflected radiation when scattering direction 
approaches the direction to the sun (Kuusk 1991; 
Nilson 1991; Qin et al. 1996; Ross and Marshak 1988). 
The EPIC sensor therefore sees the brightest portion 
of the canopy-reflected radiation. This feature allows 
us not only to directly obtain sunlit leaf area but also 
estimate how individual leaves reflect solar radiation, 
which is unique diagnostic information about leaf 
biochemical constituents (National Research Council 
2007; Ustin 2013). Leaf optical properties can be 

FIG. 12. (left) NDVI, (center) FPAR, and (right) SLAI at 1524:58 UTC 23 Aug 2016. Corresponding EPIC image 

of the sunlit Earth is shown in Fig. 13.

1841SEPTEMBER 2018AMERICAN METEOROLOGICAL SOCIETY |
Unauthenticated | Downloaded 08/09/22 06:26 AM UTC



described by the scattering coefficient, which is the 
fraction of the canopy-intercepted radiation that has 
been reflected from, or diffusely transmitted through, 
the canopy (Knyazikhin et al. 2013). Figure 14 shows a 
false-color image (688–551–680 nm) of the scattering 
coefficient derived from DSCOVR EPIC images 
(Marshak and Knyazikhin 2017). The radiation scat-
tered by the vegetation in backscattering directions 
is very strong, allowing the EPIC to see green leaves 
even through optically thin clouds.

E X P E C T E D  A N D  U N E X P E C T E D 

CAPABILITIES. Use of the oxygen B band for moni-

toring vegetation. The EPIC NDVI, defined (Tucker 
1979) as the ratio between the difference and the sum 
of the NIR (780 nm) and the red (680 nm) channels, 
is used to monitor vegetation dynamics. A useful 
estimate of vegetation density requires an accurate at-
mospheric correction. However, it was recently shown 
(Marshak and Knyazikhin 2017) that if the EPIC O

2
 

B band (688 nm) is used instead of the conventional 
red band (680 nm), the effect of the atmosphere (dif-
fuse radiation) on remote sensing of surface reflec-
tance is reduced, and the residual uncertainties in 
atmospheric correction can be better tolerated. This 
is due to two factors: i) the vegetated surface is suf-
ficiently dark at 688 nm, and ii) the O

2
-absorbing 

atmosphere substantially reduces multiple scattering. 
Note that also at the slightly longer wavelength of 
688 nm, there is less Rayleigh and aerosol scattering.

To support this statement, the spectral invari-
ant approximation to the BRF of vegetated surface 
(Knyazikhin et al. 2011; Stenberg et al. 2016; Yang 

et al. 2017) was used. It was shown that the retrieval 
of spectrally invariant coefficients (Marshak and 
Knyazikhin 2017) determined by purely canopy 
structure is only weakly sensitive to the uncertainties 
in the spectral properties of the atmospheric opti-
cal depth above the canopy. On the other hand, the 
spectrally varying scattering coefficient at the EPIC 
green and NIR spectral bands is fully determined 
by the chlorophyll absorption spectrum and can be 
estimated from the TOA BRF and the approximated 
spectrally invariant coefficients (Fig. 14). It was dem-
onstrated (Marshak and Knyazikhin 2017) that the 
approximated values of the scattering coefficient at 
551, 688, and 780 nm fit well the spectral shape of 
the “true” scattering coefficient over vegetated land 
for all atmospheric conditions observed. The spec-
tral signature of the chlorophyll absorption at these 
wavelengths is unique to green leaves. Consequently, 
the wavelength-dependent scattering coefficient of 
the vegetated surface differs significantly from any 
one of other types of reflecting media, as illustrated 
in Fig. 14.

Figure 15 illustrates with two NDVIs with 780 and 
680 (center panel) and 780 and 688 (right panel) over 
Africa that the 780 and 688 NDVI better identifies 
patterns of dense vegetation compared to the 780 
and 680 NDVI. This is because without an accurate 
atmospheric correction the 780 and 688 NDVI is 
more sensitive to the presence of the chlorophyll than 
the standard 780 and 680 one.

Detection of oriented ice crystals from 1.5 million 

km away. Many DSCOVR EPIC images contain 

FIG. 13. (left) Enhanced RGB image of the sunlit face of the Earth (http://epic.gsfc.nasa.gov/enhanced) taken at 

1524:58 UTC 23 Aug 2016. (right) NIR BRF of an area in Amazonian rain forest (red circle in left panel) derived 

from Multiangle Imaging SpectroRadiometer (MISR) data (symbols) and EPIC (white square). Horizontal axis 

shows values of the phase angle (i.e., the angle between directions to the sun and sensor).
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unexpected bright f lashes 
of light over land not usu-
ally seen by other satel-
lites. Figure 16 provides an 
example of such f lashes. 
Here, we focus on f lashes 
only over land so as not 
to be confused with glints 
over ocean water. Marshak 
et al. (2017) constructed a 
yearlong time series of flash 
latitudes, scattering angles, 
and oxygen absorption to 
demonstrate conclusively 
that the f lashes over land 
are specular reflections off 
tiny ice platelets, f loating 
in air nearly horizontally.

The time series of lati-
tudes of the detected flashes 
corresponds to a set of lati-
tudes that permit specular reflection for a given time 
of year. As the Earth’s axial tilt (23.4°) causes local 
zenith directions to vary, the glints reach their south-
ernmost latitude of ~25°S around 22 December and 
their northernmost latitude of ~25°N around 22 June. 
The detected glints are near the equator around the 
equinoxes in March and September. The almost com-
plete coincidence of the measured latitudes with the 
theoretical curve constituted compelling evidence for 
the ice crystal specular reflection hypothesis.

In addition, using EPIC measurements of ab-
sorption by molecular O

2
 via the ratio of absorbing 

channel to adjacent nonabsorbing channel ref lec-
tances, cloud height was estimated for all detected 
f lashes. Compared with radiative transfer simula-
tions of EPIC O

2
 A- and B-band ratios, it was shown 

that that the glints occur within middle to high clouds 
that are most likely to contain horizontally oriented 
ice platelets.

While we are not aware of any deep space or 
geostationary observations (36,000 km) of glint off 
tropospheric ice clouds reported in the literature, 
atmospheric observations of such specular ice reflec-
tions have been made with ground-based lidars (Sassen 

FIG. 14. Vegetation dynamics. False-color image (688–551–680) of the scatter-

ing coefficient derived from DSCOVR EPIC images taken at 1322 UTC 11 Feb 

and 1314 UTC 23 Aug 2016 using a simple algorithm documented in Marshak 

and Knyazikhin (2017). The green color indicates green leaves that EPIC sees 

through the atmosphere. The images capture changes in savannas from wet 

(approximately Jun–Sep) and dry (Oct–May) seasons when the area of green 

leaves increases during the wet season and decreases during the dry season.

FIG. 15. MODIS and EPIC NDVIs. (left) MODIS Terra surface NDVI composited over Mar 2016 (https://giovanni 

.gsfc.nasa.gov/giovanni/). EPIC NDVIs at 1052 UTC 22 Mar 2016 calculated with the (center) red and (right) O
2
 

B-band channels. The inset in the right panel is the RGB plot. The use of the O
2
 B band enhances the sensitivity 

of the TOA NDVI to the presence of vegetation. Note that EPIC data do not have any atmospheric correction 

or cloud mask. Areas with high MODIS NDVI and very small EPIC NDVI are likely covered by clouds. From 

Marshak and Knyazikhin (2017).
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and Benson 2001) and by satellites on low-Earth orbit: 
POLDER polarized measurements (Chepfer et al. 1999; 
Breon and Dubrulle 2004; Noel and Chepfer 2004) 
and Cloud–Aerosol Lidar and Infrared Pathfinder 

Satellite Observation (CALIPSO) lidar returns (Noel 
and Chepfer 2010). All such cloud glint observations 
are bounded by an altitude of about 700 km and have 
broader angular resolution than EPIC.

Based on in situ measurements of cirrus clouds 
(e.g., Korolev et al. 2000), tiny hexagonal platelets of 
ice floating in air in nearly perfect horizontal align-
ment are likely responsible for the glints observed 
by EPIC over land. Cirrus clouds permanently cover 
more than 30% of the Earth’s surface and play a 
major role in the Earth’s radiation budget (Stephens 
et al. 1990). Most of these clouds are composed of 
nonspherical ice crystals. The orientation of these 
crystals is difficult to detect; however, oriented par-
ticles create a very strong specular reflection (Yang 
et al. 2003), and if their concentration is large enough, 
it can substantially increase cloud albedo compared 
to randomly oriented crystals.

EPIC erythemal irradiance. Synoptic ozone and cloud 
reflectivity and cloud transmission have been deter-
mined for most days during the current operating 
lifetime of DSCOVR. These may be used to estimate 
the erythemal irradiance at the Earth’s surface as 
a function of latitude, longitude (time of day), and 
altitude (Herman et al. 2018). The method is based 
on previous calculations (Herman 2010) applied to 
polar-orbiting satellites that measured ozone and re-
flectivity at 1330 LT and then assumed that the same 
values applied to noon. The noon assumption can be 
applied to slowly varying ozone, but it is not accurate 
for estimating the effects of cloud transmission T 
from rapidly varying cloud cover. This is especially 
true for local times other than noon. The calculation 
method outlined here for erythemal irradiance can 
be easily extended to other processes dependent on 
a wavelength-dependent action spectrum (Herman 
2010). Using the spectrally weighted erythemal action 
spectrum A

ERY
(λ), the erythemal irradiance is derived 

from an integral over UV wavelengths λ:

 400

 E
0
(θ, Ω, T) = ∫

250
 I(λ, θ, Ω, T) A (λ) dλ

For 250 < λ ≤ 298 nm, log
10

(A
ERY

) = 0,
For 298 < λ < 328 nm, log

10
(A

ERY
) = 0.094 (298 – λ),

For 328 ≤ λ < 400 nm, log
10

(A
ERY

) = 0.015 (139 – λ),

where E
0
(θ, Ω, T) is the erythemal irradiance at 

sea level from a radiative transfer calculation 
(Herman 2010). The erythemal weighting function 
log

10
[A

ERY
(λ)] is given by the standard fitting function 

(McKinley and Diffey 1987). At altitude z, the calcu-
lation of erythemal irradiance E(θ, Ω, z, T ) (W m−2) 
is defined in terms of the product E

0
(θ, Ω, T ) × H(θ, 

Ω, z), where H(θ, Ω, z) = 1 + f(θ, Ω, z). Here, f is the 
fractional increase of E

0
 as a function of altitude for 

specified solar zenith angle θ and ozone amount Ω. 
The details and computational method are described 
in Herman (2010) and with extensions for H(θ, Ω, z) 
in Herman et al. (2018).

An example of E(θ, Ω, z, T) is shown in Fig. 17a at 
1716 UTC 1 April 2016. Local noon is near the center 
of the image with sunrise to the left (west) and sunset 
to the right (east). For this date, the sun is overhead 
just north of the equator, producing very high values 
of erythemal irradiance E(θ, Ω, z, T) corresponding 
to a UV index (UVI) of 13 at sea level in the Pacific 
Ocean [UVI = 40 × E(θ, Ω, z, T )]. Higher values 
(UVI = 16) are seen in the Sierra Nevada in Mexico 
near 20°N. This particular day has some small clouds 
over most of South America except for thick clouds 
over eastern Argentina. For the erythemal irradiance, 
the presence of clouds reduces the amount of UV 

FIG. 16. An example of terrestrial glint. A true-color 

composite image captured at 0946 UTC 28 Oct 2015 

is shown (all EPIC true-color images are available 

at http://epic.gsfc.nasa.gov). The pixel size is about 

10 × 10 km2, and angular spread is ~3° × 10−4. A wheel 

inside EPIC spins color filters, causing a time lag be-

tween the component images: ~3 min between blue 

(443 nm) and green (551 nm), ~4 min between blue 

and red (680 nm), resulting in a coloration effect in the 

imagery. The framed region contains a bright colorful 

spot discernible by a naked eye and centered at 8.31°S, 

25.5°E (magnified in the inset).
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reaching the ground (blue color with a UV index of 
less than 4).

The increase with altitude is much more pro-
nounced during the summer months over the Andes, 
reaching above 4 km (over 13,000 ft). Figure 17b 
shows the large increases with altitude over the Andes 
for 27 November 2016, with the sun nearly overhead 
at 20°S latitude. Here, the UV index ranges from 
16 to 18, which agrees with previous ground-based 
measurements in this region (Cede et al. 2002). In the 
completely clear regions of the Andes, the UV index 
is even higher than 18.

SUMMARY. DSCOVR was launched on 11 February 
2015 into an L1 orbit, about 1.5 million km from 
Earth toward the sun to provide continuous solar 
wind measurements and to observe the sunlit disk 
of Earth from a new and unique vantage point. The 
observation of the rotating sunlit face of the Earth is 
done by the DSCOVR EPIC instrument, a 10-filter 
spectroradiometer (317.5–780 nm) with a maximum 
resolution of 10 × 10 km2 for 443 nm at the subsatellite 
point; the other 9 reduced-resolution channels have 
18 × 18 km2 resolution. The main difference with low-
Earth-orbiting (LEO) satellites is that EPIC observes 
the full sunlit face of the Earth from sunrise to sunset 
at near-backscattering directions (the scattering 
angle is between 168.5° and 175.5°). The frequency of 
EPIC observations is 68–110 min, depending on the 
season (more frequently in summer, from mid-April 
to mid-October).

The EPIC in-flight calibration is done by compari-
son with well-calibrated LEO satellites: Aura OMI, 

Suomi NPP OMPS for UV bands, and Terra MODIS 
and Aqua MODIS for visible and near-IR bands. 
The calibration of O

2
-absorbing bands are generated 

using the calibrated neighboring channels and EPIC 
lunar observations assuming that a 10-nm difference 
in wavelength leads to a difference in reflectance of 
only 1%.

Calibrated EPIC measurements are used to 
produce several EPIC products including ozone, 
erythemal irradiance, SO

2
, aerosol, cloud, and veg-

etation properties: in particular, total ozone level 
and SO

2
 retrievals for volcanic eruptions; UV aerosol 

index; UV total and absorption optical depths; UV 
single-scattering albedo; surface spectral reflectance; 
aerosol optical depth in visible channels, cloud mask, 
cloud optical depth, and cloud height; and finally, 
vegetation and sunlit leaf area index and fraction of 
incident photosynthetically active radiation absorbed 
by vegetation. Some of these products are unique (e.g., 
the sunlit portion of the leaf area). As a matter of fact, 
sunlit and shaded leaves exhibit different radiative 
response to incident radiation, and sunlit fraction of 
leaf area index is the key parameter in ecosystem pro-
ductivity model. Other parameters are also retrieved 
from LEO measurements, but a unique DSCOVR 
observational strategy (backscattering direction and 
sunrise to sunset observations) leads an innovative 
characterization of many of the retrieved parameters. 
All products are publicly available from the NASA 
Langley Atmospheric Science Data Center (https://

eosweb.larc.nasa.gov/project/dscovr/dscovr_table).
There are well-expected and completely unexpected 

discoveries made from EPIC observations. For 

FIG. 17. Erythemal irradiance: (a) 1 Apr 2016 over Central and South America and (b) 27 Nov 2016 over South 

America.
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example, since oxygen absorption in the B band 
reduces the contribution of multiple scattering (and 
diffuse radiation), we were able to use the O

2
 B band 

(688 nm) to monitor vegetation instead of a red 
(680 nm) channel without requiring an atmospheric 
correction. We were able to explain the bright 
flashes of light over land seen in EPIC RGB imagery 
as specular ref lection of tiny ice crystals f loating 
nearly horizontally (Marshak et al. 2017). Finally, 
because of EPIC’s L1 orbit, we were able to estimate 
the erythemal irradiance and the daily variation of 
UV radiances from sunrise to sunset to measure skin 
reddening and potential sunburn from sunlight.
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