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ABSTRACT

Geodetic parameters describing the earth's gravity field and the positions of

-satellite-tracking stations in a geocentric reference frame have been computed.

These parameters were estimated by means of a combination of five different types

of data: routine and simultaneous satellite observations, observations of deep-space

probes, measurements of terrestrial gravity, and surface-triangulation data. The-

combination gives better parameters than does any subset of data types. The dynamic

solution used precision-reduced Baker-Nunn observations and laser range data of

25 satellites. Data from the 49-station National Oceanic and Atmospheric Administra-

tion BC-4 network, the 19-station Smithsonian Astrophysical Observatory Baker-Nunn

netwvrk, and independent camera stations were employed in the geometrical solution.

Data from the tracking of deep-space probes were converted to relative longitudes and

distances to the earth's axis of rotation of the tracking stations. Surface-gravity data

in the form of 550-km squares were derived from 19, 328 1" X 10 mean gravity

anomalies. The surface-triangulation data consisted of the datum coordinates of each

tracking station. Coordinates and potential coefficients were derived separately for

each iteration. The adopted solution in each iteration was a combination solution

chosen to improve the residuals of all data types. In addition to these five data sets,

an independent test of the solution utilized sea-level heights plus satellite-tracking

and surface-gravity data not used in the combination. The total gravity field is repre-

sented by spherical-harmonic coefficients complete to degree and order 18 and a

number of higher degree terms. The half-wavelength resolution of this global solu-

tion subtends about 100 at the earth's center. The accuracy of the global gravity field

has been estimated as ± 2. 5 m in geoid height, or 64 mgal 2 . Coordinates of the funda-

mental laser stations are determined with an accuracy of 2 to 4 m, and those of the

fundamental optical network, of 5 to 10 m.' The best-fitting ellipsoid has a flattening

f of I/f= 298. 256 ± 0. 001 and a semimajor axis a e = 6378140.4 + 1.2 m.
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1. INTRODUCTION

The Smithsonian Astrophysical Obser-atory (SAO) has published a series of

Standard Earth (SE) models based on satellite-tracking and other data (Kozai, 1964,

1969; Gaposchkin, 1967, 1970; K6hnlein, 1967; Veis, 1967a, b; Whipple, 1967;

Lundquist and Veis, 1966 (hereafter referred to as SE I); Lambeck, 1969, 1970;

Gaposchkin and Lambeck, 1970 (referred to as SE II). There has been a steady

advance in the accuracy of the analytical treatment, the accuracy and completeness

of the data, and the significance of the results. The results summarized here are a

continuation of Gaposchkin and Lambeck (1970); they were reported at the American

Geophysical Union Meeting in April 1973 and at the First International Symposium

for the Use of Artificial Satellites for Geodesy and Geodynamics in May 1973 and

have been published in Gaposchkin (1973; referred to as SE III).

Each Standard Earth model consists of 1) a set of geocentric coordinates for

stations pbserving satellites and 2) a set of spherical harmonics representing the

geopotential. These two sets of unknowns can be correlated in the least-squares

adjustment, -and both sets of parameters have been determined in the same computa-

tion. This led, for example in Gaposchkin and Lambeck (1970), to solving a system

with 428 unknowns - i. e., for 39 stations and gravity-field coefficients complete

through degree and order 16. Evaluation of the Gaposchkin and Lambeck (1970) results

indicated that the remaining errors in these parameters were small; that is, the

corrections to the parameters would be small. Therefore, the effect of errors in

the adopted station coordinates on the determination of the gravity field, and vice

versa, would be small, and the two sets of parameters could be computed separately.

A general revision of the parameters for SE III was undertaken because of

new and improved data for almost all types of observations. Optical satellite

observations have been augmented by a large body of laser data with global coverage

from the International Satellite Geodesy Experiment (ISAGEX). Two satellites with

inclinations significantly lower (5° and 15 ° ) than previously available have been launched
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since 1970. Available surface-gravitv data have been significantly improved by the

distribution of a compilation of grav-ity anomalies by the Aeronautical Chart and

Information Center (ACIC). Determinations of station coordinates have been improved.

by data from the worldwide BC-4 geometrical network. Finally, information on site

locations from the Deep Space Net (DSN) of the Jet Propulsion Laboratory (JPL) has

been revised with the addition of new data and improved processing techniques.

The analysis was divided into two parts because of the initial high accuracy of the

geodetic parameters, the good coverage of all types of observational material, and

the result from Gaposchkin and Lambeck (1970) indicating that the interaction between

the gravity field arid the station coordinates is relatively small. The determinatioris

of the gravity field and of station coordinates were carried out in parallel, described

in Gaposchkin, Williamson, Kozai, and Mendes (1973) and in Gaposchkin, Latimer,

and Veis . (1973), respectively.. In an.iterative process, the improved coordinates .:

were used in the next iteration for the gravity field, and then the improved gravity

field was used in the subsequent iteration for the station coordinates. This process,

known as the block Gauss-Seidel iteration, will rigorously converge.

Gaposchkin (1970) has shown that, except for isolated harmonics, the gravity

field beyond 18th or 20th degree has a negligible effect on a satellite. The only

exceptions are some zonal harmonics that give rise to secular and long-period effects,

and the resonant harmonics. Therefore, one cannot hope to obtain from analysis of

satellite perturbations much more detail beyond 16th degree and order than is already.

available. Greater detail will have to come from other methods, such as terrestrial

gravimetry. The purposehere is to improve those harmonics to which satellite

orbits are sensitive. Many of the harmonics between 10th and 18th degree are not

very well determined from satellite-perturbation analysis, but terrestrial gravimetry,

when combined with satellite data, provides a good determination of these coefficients.

Since the gravity field beyond ISth degree does not give rise to an observable

change in satellite position, the satellite observations could be modeled with the use

of a gravity field complete through degree and order 18, including, of course, some

additional resonant and zonal harmonics. Therefore, there is no model error due to

neglected higher harmonics. However, the surface-gravity data are given in area

means of 550 lan X 550 kmn squares. This surface distribution of gravity would require.

a spherical-harmonic development to I = m = 36. Therefore, using a gravity field
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through degree and order 18 will have a significant model error that must be taken

into account in establishing weights and making comparisons with surface-gravity data,

A number of approaches can be used to determine the position of points on the

earth's surface. Of these, we have chosen tracking of close-earth satellites, deep-

space probes, and surface-triangulation measurements for this analysis. The data

and the method of analysis have been selected to optimize the results for a global net-

work of reference points.

The satellite methods separate nicely into two distinct types of analysis: geo-

metrical and dynamical. The former hinges on making simultaneous observations of

a satellite from two or more points on the earth's surface. When these are camera

observations, the vector connecting the two stations must lie in the plane defined by

the two observed directions. A number of independent simultaneous observations

will define the direction between the two stations. SAO has obtained a sufficient

number of simultaneous observations to determine a network for its stations. The

National Ocean Survey (NOS) of the National Oceanic and Atmospheric Administration

(NOAA) has carried out a program of observations with the BC-4 camera to establish

a global geometrical network. Figure 1 shows the distribution of observing stations

included in SE III.

The dynamical analysis.assumes the satellite's orbit is known and computes

the location of the observing station from individual observations. In practice, the

orbit is determined from the same observations. The orbital mode has been used

by SAO to analyze tracking data on close-earth satellites and by JPL to analyze

tracking data on deep-space probes.

Surface-triangulation measurements are reduced by organizations such as NOS

and the Defense Mapping Agency, who publish coordinates of given points referred to

a datun that, in general, has an arbitrary origin, orientation, and scale. The relative

positions of stations are determined from these data.

The main objectives of this analysis are the following:

A. To improve the low-degree and low-order harmonics from satellite data and

the higher degree and order harmonics from terrestrial data.



B. To improve the accuracy of the fundamental stations. Heretofore (SE II),

the accuracy was estimated as 5 to 10 m.

C. To improve the distribution of reference points or tracking sites. In SE II,

coordinates were obtained for 39 independent sites.

D. To use the latest available data. New data include the complete BC-4 network

and all the laser tracking data taken during the ISAGEX program. Surface-triangulation

data were used as observations rather than as constraints.
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2. DATA AVAILABLE

2. 1 Satellite Data Collection, Reduction, and Reference System

In addition to data from the Baker-Nunn and laser networks, we also used the

following data collected by other agencies (see Figure 1):

A. Laser data from stations 7804, 7809, 7815, 7816, and 7818 were made

available by the Centre National d'Etudes Spatiales (CNES) in France.

B. Goddard Space Flight Center (GSFC) provided laser data from stations 7050

and 7060.

C. Simultaneous observations of the Pageos satellite taken by the BC-4 camera

network were made available by the NOS of NOAA.

D. Optical data were obtained from the following European stations: 8015 and

8019 (Observatoire de Paris), 9066 (Astronomical Institute, Bern), 9074 and 9077

(USSR Astronomical Council), and 9080 (Royal Radar Establishment, Malvern).

E. Reduced deep-space-probe data from DSN stations 4711, 4712, 4714, 4741,

4742, 4751, 4761, and 4762 were provided by JPL of the California Institute of

Technology.

All the satellites used in the orbit computation are listed in Table 1, and Figure 2

shows their distribution in inclination and height. In the determination of station coor-

dinates, high satellites less affected by the anomalous gravity field were emphasized.

Specifically, we eliminated satellites with drag model errors (large area-to-mass ratio

and low perigee height), particular sensitivity to gravity-field model errors (reso-

nances), or poor orbital distribution (less than six stations observing the satellite).

Certain satellites with unmanageable long-period resonances (e.g., 5900701) were

used only for the determination of station coordinates; they have such a rich body of

data that relatively short-arc orbits (4 days) could be derived for this purpose. For

the determination of the gravity field, lower satellites with a more uniform distribu-

tion in inclination were stressed.
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The optical data that were reduced included all terms in precession and nutation

necessary to ensure that the maximum neglected effect was less than 0. 5 m. We

applied annual aberration to all observations and diurnal aberration to the simultaneous

observations. Parallactic refraction was applied by use of mean nighttime tempera-

ture and pressure taken at each station to calculate the refraction coefficient

(Gaposchkin, 1972). - Systematic corrections to star-catalog positions were applied'............

where appropriate. All optical data received from other agencies were corrected

in the same way. The accuracy of the optical data ranges from 1 to 4".

The laser range data are considered to be accurate to about 2 m and are reduced

by use of the. corrections described in..Lehr (1969). The influence of timing errors at

the stations also has to be considered. For passes with more than 30 observed points,

we selected 30 points equally spaced in the pass. To account for redundancy and

systematic errors of-the- laser data, the asstuned accuracy of each laser point was .- '

modified as indicated in Table 9 (see Section 3.2) for the determination of coordinates

and in Table 21 (see Section 4. 3) for the determination of the geopotential.

SAO has its own master clock and, through VLF transmission, maintains its own

coordinated time system, called A. S. The principal time reductions were to convert

the GSFC data from UTC to A. S and the CNES data from A3 to A. S.. It is assumed

that atomic time is a satisfactory system for ephemeris calculation and that the error

in observing time is random.

The analysis assumes that the stations for a fixed system (i. e., there is no

relative motion due, for example, to tides or crustal movements) and the pole posi-..

tion and instantaneous position of the earth are known without error from numerical

values published by the International Polar Motion Service (IPMS) and the Bureau

International de l'Heure (BIH). It appears that these data may be a limiting factor

for the ultimately attainable accuracy of station positions. Polar-motion data from

IPMS differ from those published by the BIH by as much as 1. 5 m for the period since

the two systems have been referred to the same origin. The IPMS data used here

were all referred to the mean pole of 1900-1905, and the coordinate system is the

equator of date and the equinox of 1950. 0. We have assumed that the BC-4 camera

data are referred to the terrestrial system through the same values of pole position

and UT1.
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2.2 Information from Deep-Space Probes

Data from DSN's eight-station network for tracking deep-space probes have been

used to obtain, among other parameters, the longitudes (relative and absolute) of

each station and the distance of its antenna to the earth's instantaneous axis of rota-

tion (Vegos and Trask, 1967; Trask and Vegos, 1968). The DSN data are particularly

interesting because 1) they constitute a unique, complementary, and independent

determination of geocentric locations, and 2) they provide a very strong determination

of scale.

Comparisons of the JPL and SAO results have been made by Veis (1966) and

Vegos and Trask (1967) from data from the Ranger missions and from SE I (Lundquist

and Veis, 1966). More refined JPL solutions were combined with satellite-tracking

data in the determination of SE II. The combination was made with Location Set (LS)

25, as determined by Mottinger (1969), by using datafrom the Mariner 4 and 5 mis-

sions. Continued refinement of the DSN data has provided LS 37, which is used in the

present analysis (Mottinger, 1973).

Each DSN site is located near other stations whose coordinates were determined

in the analysis presented here. Surface-triangulation data, in the form of geodetic

coordinates, can be used to relate the DSN coordinates to the SAO coordinates.

The ephemeris r of a deep-space probe is assumed known. For a distant space-

craft, the observed range rate p can be expressed approximately as

p= r+ wr s cos 6 sin (a s - a 0)

where w is the earth's rotation rate, r s is the spin-axis distance of the observer, 6 and

a 0 are the declination and right ascension of the spacecraft, and as is the right ascen-

sion of the observer. Each station observes a diurnal variation in p, the amplitude

and phase depending on r s and as, respectively.
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Generally, any data can be analyzed. However, cruise data seem less reliable

than close-encounter data for determining as (Mottinger, 1973), and they are used only

for the determination of r . In any case, refraction (tropospheric and ionospheric)

and orbit computation must be done with great care, and recent improvements come

from refinements in the treatment of refraction.. The ephemeris r (6, ag) will be

determined in the system of the JPL planetary ephemeris. We can expect to find a

systematic difference in the definition of longitude between the planetary ephemeris

and the astronomical reference system (FK4) used for analysis of close-earth satellites.

The DSN data reduction used numerical values for pole position and UTI from BIH, as

was done for the close-earth-satellite analyses.

The data for LS 37 are summarized in Table 2. The main improvements

over LS 25 are as follows:

A. Better treatment of refraction, particularly ionospheric.

B. Inclusion of more data because of A.

C. Inclusion of Mariner 6 encounter data.

D. Revision of the planetary ephemeris.

E. Use of BIH polar motion and UT1.

Realistic estimates of accuracy are 2 m for rs, 4 m for absolute longitude, and 2 m

for relative longitude (MIottinger, 1972).

Mottinger (1972) provided a solution and covariance matrix for rs, X, in addition to

the masses of Venus, Mars, and the moon and the oblateness of Mars. This system

was transformed by SAO for corrections in coordinates X, Y of the station. These

converted equations were then added to the larger system of normal equations, which

included the other stations sought.

The LS 37 coordinates for the DSN stations are given in Table 3. In LS 37, the

relative coordinates of 4711, 4712, and 4714 and of 4761 and 4762 were constrained to

agree with the survey data.



2. 3 Information from Surface Triangulation

Extensive surface-triangulation data exist that relate station positions. These

data are generally given in terms of datum coordinates and occasionally in terms of

interstation vectors for collocated stations. We have used this information in four

ways:

A. For stations in the same datum, the geodetic coordinates are used'as obser-

vations relating the positions of the stations in the general combination adjustment.

B. For collocated instruments, these datum coordinates are used as a constraint

relating the two sites. These cases could be treated as in A above.

C. The geodetic coordinates are utilized as a check on the accuracy of the final

coordinates.

D. The geodetic coordinates are employed to determine the relation of each datum

to a geocentric reference system.

Evaluating geodetic coordinates is the most difficult aspect of this analysis. When

reliable, they are very accurate; but problems often eist in relating the local survey at

the station to the datum.

In A, B, and C above, care must be taken to ensure that datum tilts, distortions,

and scale differences do not corrupt the results. For most uses, limiting the applica-

tion of geodetic coordinates to lengths of 100 km or less is satisfactory. Otherwise,

the datum orientation must be determined and applied before the geodetic coordinates

can be used with geocentric satellite-based coordinates.

The use of datum coordinates as observations of relative station positions assumes

no correlation between X, Y, and Z. If we have datum coordinates for station i, X ,
d d 

Yd, Zd, and initial values for the geocentric coordinates that are to be corrected,
Xg  i

X, Y , Z?, we can write observation equations for each component of the vector

between two stations:

xd -X= - + Ax. -Ax.
1 j 1 J 1 3
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with similar expressions for Y and Z. If these are given weights WVi., we can immed-

iately write the normal system as

A 1

o-.... jj 1-C L,-- xj) (d-)

3 13 j/J

ij j2

where ..ij = (1/W..) This system can augment a normal s-ystem for determining

AX, '~Y, AZ.

The accuracy W.. of the geodetic ties chosen is given in Table 4 (see Gaposchkin,

1973, for the geodetic coordinates of all the stations used in SE III).

2.4 Terrestrial Gravity Data

The primary objective of the analysis of terrestrial gravity data is to obtain

mean anomalies for regions 550 km X 550 km. When these data are combined with

the satellite-perturbation analysis, the spherical harmonics representing the geopo-

tential can be determined. A set of gravity data with known (and preferably simple)

statistical properties is needed. Our approach is based on covariance analysis, follow-

ing the ideas of Wiene-r (1966) and-Kolmogoroff. When this technique is used in com-

munications engineering, it is sometimes known as filtering theory. The ideas here

are an extension of a one-dimensional time series to the two-dimensional surface of

a sphere (Kaula, 1967).

Estimation of gravity by covariance methods hinges on the stationarity of gravity

data; that is, the statistical properties of the data are the same no matter where the

data are taken. There is some evidence that gravity data are not stationary; however,

if some subsets of the total gravity population are stationary, then gravity covariance

functions between sets and within each set can be defined (see Gaposchkin, 1973, for

details).
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A set of 1 X 10 mean free-air anomalies, containing 19, 115 measured means,

was obtained from ACIC (1971), and another set, of 1454 10 X 10 means for Australia,

from Mather (1970). The'two sets were combined, with the MIather data being used

for all areas they covered. Figure 3 shows the geographical coverage of all the data.

The combined data set contained 19, 328 means. A complete-set of 10 X 10 mean topo-

graphic heights, used to define oceanic and continental areas, was obtained from

Kaula (Kaula and Lee,' 1967) The distribition of 10 X'1 0 mean gravity data is sum-

marized in Table 5.

The estimated uncertainty given with each gravity anomaly for 99. 9% of the data

is less than 25 mgal. Comparing the Mather data with the ACIC data at the 1241

common points, we find that the average difference is 1. 7 mgal and the root-mean-

square (rms) difference is 20 mgal. At a number of points, the discrepancy between

the two sdts exceeds 100 mgal.

Kaula (1967) has developed a procedure that greatly simplies the calculation of the

covariance function, which is called the block covariance function, and the gravity esti-

mates. This method has both advantages and disadvantages. The disadvantages follow:

A. The estimate of gravity does not make use of all the gravity information;

i.e., the estimates are not so good as possible.

B. The covariance function must be determined by using only the combinations

of anomalies within blocks and therefore does not employ all possible combinations of

the data.

The advantages of Kaula's method are as follows:

A. It greatly simplifies calculation of the covariance function and the gravity

estimates.

B. It produces mean anomalies 550 km X 550 km with uncorrelated errors.

C. The statistical properties of data within a block may be closer to stationarity

since the method involves primarily the short-distance covariance.

If the gravity signal were a stationary process, then it would have the same

statistical properties everywhere. Possible nonstationarity has been investigated.



14

The main result is that by using the block covariance estimator of Kaula, a statistically

independent set of 550 km X 550 km averages is obtained with no loss of accuracy.

Block coiariance provides the optimum set of gravity anomalies when used in combina-

tion with satellite observations. Table 6 and Figure 4 present the global covariance

function for the 10 X 10 mean gravity anomalies. In Table 7 and -Figure 5, we give

the block covariance function, and in Table 8, the covariance function of the derived

550 km X 550 km anomalies. The reader is referred to Gaposchkin (1973) for a list

of the derived anomalies used in combination with satellite data for the determination

of the geopotential.

The gravity anomalies are given with respect to the international gravity formula

(Heiskanen and MAIoritz, 1967, p. 79) and must be corrected to refer to the best-fitting

ellipsoid defined by J 2 and the adopted values of ae, GM, and we' We must also

include the Potsdam correction of -14-mgal- Using the-following initial values:

J2 = 1082.637

8
a = 6.378140 X 10 cm

e

20 3 -2
GMI = 3. 986013 X 10 cm sec - 2

and

w = 7.292115085 X 10 - 5 sec -

we have

1/f = 298.'256 ,

and the correction

gSA O - 6in = 1. 3 - 13. 8 sin2 2 mgal
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3. DETERMINATION OF STATION COORDINATES

3. 1 Geometrical Solution

In deriving a geometrical solution, the objective was to produce a system of normal

equations for use in combination with other data. The data consisted of direction obser-

vations only, and there is no scale information in the geometric net. Nor is there any

information to locate the origin of a geometrical network. Hence, any purely geometrical

solution with these data would require an arbitrary scale and origin. The combination

of normal systems avoids this problem, as other data sets contain scale and origin

information. The result of an unscaled,. purely geometrical solution is a set of

interstation directions, independent of the arbitrary scale and origin introduced.

The geometrical solution included two networks: 27 stations of the SAO network,

including the U. S. Air Force Baker-Nunn cameras and several European stations;

and 48 stations of the NOS BC-4 network. Of the SAO group, 21 stations were also

included in the dynamical solution. The SAO data block consisted of 5200 pairs of

synthetic simultaneous observations, or about 50, 000 individual direction observations

processed at SAO. The satellites observed were 6102801 (Midas 4), 6303004, 6508901

(Geos 1), 6605601 (Pageos), 6800201 (Geos 2), and 6305501. The BC-4 data consisted

of 2157 pairs of simultaneous events of Pageos. Each event generally consisted of

seven directions and a covariance matrix from each of two stations. When more than

two stations observed the satellite simultaneously, we treated each station pair

separately.

The computation was divided into two stages. First, all data between pairs of

stations were used to determine, by least squares, the interstation direction and its

covariance matrix for each pair. The mathematical model for determining this direc-

tion uses the condition that the interstation direction (u3 ) and the two directions from

the stations to the satellite (u 1 , u 2 ) must be coplanar:

A A A 0 (1)
uI - u Xu 3 =0 . (1)

1 2
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A system of first-order Taylor expansion approximations to equation (1.) is solved by

least squares to determine u3 and its 2 X 2 covariance matiix. In oizder for truly

simultaneous points (Ul, u2) to be obtained, synthetic observations were computed by

interpolation from a series of observations overlapping in time from two stations

(Aardoom, Girnius, and Veis, 1966). The synthetic observations (U1 , u2 ) are weighted

according to the quadratic fit of the individual observations used to determine the

synthetic ones. The weight is modified according to SE II (p. 8) to account for the

possibility of systematic errors, principally in station timing. Separate synthetic

observations are considered to be uncorrelated. For BC-4 data, the NOS has derived

seven simultaneous observations from each photographic plate (event) with the associated

14 X 14 covariance matrix for each set of directions. These are the data provided and

used to determine u3. For the SAO block, 68 directions were determined, and for

the BC-4 group, 152.

The second stage consisted of a network adjustment for each data block. The

mathematical model for stage two is that of variation of coordinates:

u -u -u = 0

where u" is the vector from station 1 to the satellite, u2 is that from station 2 to the

satellite, and u3 is the interstation vector. Satellite positions are eliminated, and we

obtain a solution for station coordinates, thus deriving adjusted interstation directions.

This is equivalent to adjusting the directions directly by using the coplanarity condition

for each triangle formed by observed directions between three stations. The advantage

of this normal system is that it refers to coordinates, not directions, and can be

readily combined with other normal systems for station coordinates. These directions

are given in Gaposchlkin (1973).

We have available for comparison the interstation directions and their accuracy

estimates va2 resulting from simultaneous-observation data and also the new directions

and accuracy estimates a 2 resulting from the network adjustment. Gaposchkin (1973)

gives accuracy estimates for interstation vectors.
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We expect that; on the average, for the interstation direction adjustment 6,

62 r (o2+ r 2)/2 -

To satisfy thiis condition, we must multiply the variance estimates by a factor

2  62

( + 2 ")/2 -

The average value for k2 is 2.65, and the accuracy esimats for the geometrical

solution are scaled by this #umber. A similar analysis of the BC-4 network gives

an average value for k2 of 2. 60.

3.2 Dynamical Solution

An observation 0 of direction (right ascension and declination) or:-range can be
-1

related to the satellite position r(t) and to' the station position X by

= [A] [F(t) - R (, x, y) X] (2)

In general, A is an easily computed transformation matrix.. Further, the orbit

Y(t) depends on the orbital elements, the gravity field, the atmospheric density, solar

and lunar gravitational'attraction, and radiation pressure. Finally, equation (2)

depends on UTI r- i.e.,-the sidereal angle E -and on the pole position x and y. tone

of these quantities is known without error and each, in itself, provides a number of

difficult problems. For a certain class of satellites, the earth's gravity field presents

the major source of error but is improved as part of the analysis described here.

Two types of data have been used in the dnamical solution. Observations of

direction are made by photographing the satellite against a star background. The star

positions then define the direction from the observing station to the satellite in the

coordinates of right ascension and declination. The star positions are taken from a
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catalog and refer to its epoch. Precession and nutation are therefore applied to refer

the observation to the reference system desired. For reasons related to the orbital

theory for r(t), we have chosen to work in the quasi-inertial reference system defined

by the equinox of 1950.0 and the equator of date. In addition, UT1 and pole positions

are applied to bring the. terrestrial reference frame, defined by the Conventional :- ,- , --

International Origin and the zero meridian of the BIH, into this system. Therefore,

orbital elements and station positions are expressed in this quasi-inertial reference

system when determined with direction observations. Specifically, the right ascension

of the ascending node of the satellite (hereafter called the node) is unambiguously

defined.

Observations of range relate the relative position of the satellite to the observer "

and not-to the. reference system; i. e. ,.the observation is unchanged if the reference

system is transformed by translation 6r rotation. .Specifically, the node is defined

only relative to the adopted value of +UT1. Therefore, when only observations of

range (and velocity) are used to determine coordinates, a correction for the longitude

must be allowed for in each orbit.

Optical data were-assigned an assumed accuracy of 4". In those instances in

which five or more observations were made within a few minutes - e. g., of Geos

flashes - a smoothed or synthetic observation was determined. The same calculation

was used to generate simultaneous observations, because one cannot, in general, make

exactly simultaneous observations.. These synthetic observations were assigned an

accuracy determined from the polynomial .fit. .If the computed uncertainty was less.

than 2", then 2" was used. Laser data have a precision of 1 to 2 m in distance meas-

urements; however, timing errors and other errors such as those due to the gravity

field must be taken into account. Therefore, we have used the assumed accuracies

listed in Table 9.

The data were kept in two parts. Before 1970, most of the observations were direc-

tions. A number of laser ranges were made, and where it was possible to do so,

they were included in the orbits. In 1971, the cooperative tracking program ISAGEX,

with 10 laser stations, provided for the first time relatively complete orbital and

geographical coverage with laser data. From these ISAGEX data, 15 orbits were used
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in the-dynamical determination of station coordinates. Table 10 gives the number of

observations selected both from pre-IS'AGEX data and from ISAGEX data. The dynam-

ical solution was based on 140 arcs of 15 satellites from the pre-ISAGEX data taken

between 1962 and 1969, and 15 arcs of 3 satellites from the ISAGEX data taken in 1970.

- Since ISAGEX data are of a new. type, we examined the origin of the node and the rela- - -

tive weighting in order to find the best treatment. The pre-ISAGEX data were in arcs

of from 4 to 30 days long, as appropriate, and the ISAGEX data were in 10-day arcs.

For all practical purposes, the length scale in a dynamical solution is fixed by

the value of GM, which directly enters the calculations of the radius vector through

r = (1 + e cos E)(1 + perturbations)

With optical directions, no further information in scale is available. With range data,

both scale and GM can, in principle, be determined. The unit of distance is then

defined by the speed of light and becomes the "light second. " In this analysis, GM

was assumed to have the value given in Table 11, and our dynamical scale is therefore

defined by GM. If this value of GM is far from the exact one, some deterioration

of the coordinates will occur. We will return to this question in'Sedtion 3.4.

3.3 Combination Solution for Coordinates

The six sources of data combined are the following:

SAO dynamical network (pre-ISAGEX),

SAO dynamical network (ISAGEX),

SAO geometrical network,

BC-4 geometrical network,

JPL dynamical network (DSN),

Geodetic coordinates.

As described above, each subset of data was processed individually, with certain

internal checks being allowed. Each subset was reduced with its own a priori weight-

ing scheme, which was internally consistent. The greatest difficulty in combining these
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six sets of data was to establish realistic relative weights for each system. Relative

weighting is derived by experiment tempered with some notion of the accuracy and by

.comparison-with datum coordinates and heights. Only the SAO dynamical network

and certain geodetic coordinates could not be taken at their given weight.

The geodetic coordinates provided.the greatest source of concern and.uncertainty

in the analysis. Except for the SAO networks, the geodetic coordinates provide the

only Link between. networks, and within networks, the link between collocated stations

(e.g.,. 4761-4762, 6111-6134). Geodetic coordinates were used as observations between

relatively close stations - i.e., separated by less than 100 km - because the accuracy

may not be so good for greater distances and because the use of geodetic coordinates

as described above assumes no datum tilt nor scale difference.

Each subset of data was treated to provide a system of normal equations and

normal residuals. The systems are combined with their relative weights. In addition,

each -system may have a different origin, orientation, and scale, but these differences

should not occur if each system had been referred to the defined system without error.

In the combination, additional parameters as necessary were introduced into the com-

bined normal system to account for possible systematic errors. The SAO dynamical

pre-ISAGEX data were taken as the reference. Since the geometrical networks have

no scale, only translation and rotation parameters were introduced. For practical

purposes, the SAO geometrical network covers only one hemisphere in an east-west

orientation, so only the rotation about,the z axis (E ) may be meaningful. This corre-

sponds to a correction to UT1. The polar orientation for the SAO geometrical network-

(IEx Ey) turned out to be smaller than the formal uncertainty. The JPL net had only a

scale and Ez parameter as it is not sensitive to E'E y or to the origin. Experiments

with determining corrections to the node (AQ2) for each arc of ISAGEX data indicated

that 1) the corrections were small, generally less than 1 prad, and 2) they were satis-

factorily included through the reduced normal equations. Therefore, formally, the

combination solution contained 14 additional parameters, the final values of which are

given in Table 12. The translation of the two geometrical networks is the correction

to the station used as the origin. Excellent agreement occurs between these transla-

tions and the coordinates determined from an a posteriori geometric adjustment. The

formal uncertainty for the translation of the SAO geometrical network is not given,

because the origin station 9051 has very few observations and is not determined very

well.
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Two iterations-were completed- the first starting with the coordinates given in

* Gaposchkin and Lambeck (1970).. Examination of the solutions indicated problem

stations; in particular, the geodetic coordinates were sometimes seriously in error.

The strategy used to determine the relative weights and the formal uncertainty was

.based on the geometrical solutions, and all other solutions were referred to them.

The accuracy of each station-to-station direction was computed. This estimate

can be verified by comparison with the direction determined in the network adjustment.

The.adjustment essentially enforces the coplanarity condition for any three directions

that connect three stations. By comparing these estimates of the direction, we can

compute a scale factor that is a measure of the agreement between the formal statistics
2

of the adjustment and the actual errors. This scale factor turned out to be k = 2. 65

for the SAO geometrical network and k 2 = 2. 60 for the BC-4. Since the difference

between these estimates of k2 is not significant, we adopted an overall scale factor of

k = 2. 625 for the geometrical networks. It is interesting to note that when only the

12 SAO Baker-Num cameras are used, the scale factor becomes k 2 = 1. 03, indicating

excellent control of systematic errors.

In the combination of the six types of data, the geometrical networks, the JPL

network, and the geodetic survey data were used with a priori variances. The pre-

ISAGEX dynamical data were given-a weight of 0.25 for the combination of the normal

equations, which effectively doubles the assumed accuracy. In addition, the assumed

accuracy of the pre-ISAGEX laser data was further multiplied by a factor of 1/ TOf

and thus the assumed accuracy of the laser data was multiplied by 6. The ISAGEX

data were given an overall weight of 0. 0625; i.e., the assumed accuracy was multiplied

by 4. Thus, the reference orbits were computed by using the assumed accuracy in

Table 9, but the normal system was scaled by these factors. These adjustments were

necessary in order to accommodate the enormous volume of data used for the dynam-

ical solutions. Large volumes of well-distributed data lead to cancellation of random

errors, which is desirable, but give optimistic estimates of variance. The balance

of weights presented here leads to an internally consistent solution, which has

acceptable agreement with independent data. Table 13 lists the geocentric coordinates

for the stations determined in SE III, together with their uncertainties scaled by

k 2 = 2.625.
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3.4 Comparisons

The combination solution for coordinates scaled by k 2 = 2. 625 gave estimates of

variance of 2 m for the best stations. Since no comparison exists that can verify this

accuracy for geocentric coordinates, we are limited to consistency checks. The

coordinates should agree with the standard-at least as well as the accuracy of the
standard. A number of internal checks (e. g., between geometrical and dynamical

solutions) can be performed. Comparisons can be made with surface data, but they

test only the relative position and not the geocentric position of the coordinates.

Nevertheless, these comparisons are instructive and indicate that the computed

variances (uncertainties) are realistic estimates. Further, the general agreement

internally in the satellite data - and externally with the terrestrial data - indicates

that, as a rule, discrepancies are within the expected uncertainties. The large dis-

crepancies are probably due to errors in the survey data, and further analysis is

needed.

Comparisons with satellite orbits are inconclusive at best, because of the large

,number of error sources. In Section 4. 4, numerical results are given for orbit com-

putations with laser data by using the latest gravity field and station coordinates. This

comparison indicates that the orbit computing system (data, theory, physical param-

eters, and station coordinates) has an accuracy of 5 to 10 m, which is not inconsistent

with a 2- to 5-m accuracy for the station coordinates.

The typical direction is determined with an accuracy of 5 prad, equivalent to a

relative position of 10 m. For selected sets of stations, Figure 6 compares the

determined direction (both before and after the coplanarity condition is applied), the

dynamical solution, and the combination solution. In some. cases, a direction from the

SAO geometrical net and another from the BC-4 geometrical net are available. These

comparisons are perhaps unfavorable in that the errors of both stations are reflected

in the figures. The error ellipses for all the directions are scaled by the factor

k2 = 2. 625. In order to express all the directions in the same coordinate system, the

plotted directions are rotated by the parameters given in Table 12.
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When the origin--and scale are provided, the .BC-4-network of 48 stations gives a

geometric solution that can be compared with the combination solution. Table 14

gives the.results of such a comparison, with residuals in X, Y, and Z and north, east,

and height. The geometrical solution has an average uncertainty of 5 m for each

coordinate, while the combined solution-has the uncertainty given in Table' 13. The '

adjustment uses a weight computed from the two solutions. The ms of.12.m and

the standard error of unit weight o0 = 0. 8 indicate the excellent agreement in the

coordinates and the estimated uncertainties. A number of individual coordinates are

too large. The north-south residual of -25 m for station 6068, which is tied

geodetically to 7902 and 4751, is the most troublesome.

The JPL coordinates given by the LS 37 solutions, rotated and scaled by the results

in Table-12--a-re compared in Table-15 with the coordinates determined in the combina -

tion solution.

Comparisons within each datum are possible. The four major datums. where this

was done are as follows:

North American datum (NA27),

South American datum (SA69),

Australian datum (AUGD),

European datum (EU50).

As described earlier, the use of datum coordinates in the combination solution

has been restricted to nearby stations, primarily in order to relate different types of

observations. Therefore, datum coordinates constitute a relatively independent set

of data. However, each datum has an arbitrary origin, orientation, and scale, and the

relation between eachl datun and the geocentric system must be determined. One can

therefore determine up to seven parameters, but depending on the size of the datum and

the distribution of stations on the datum, some of these transformation parameters may

not be significant. The seven transformation parameters are three translations, three

rotations, and one scale. We have elected to express the rotations as rotations of the

datum origin about the normal to the ellipsoid and around two axes in the tangent plane
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oriented north-south and east-west. -These rotations have a physical interpretation i

sincei they express ari, error in the azimuth of orientation of the datum and a tilt of the

datum ellipsoid. Accordingly, the transformation will be given by

Xsa t = Xd a t + T + (1 + K) R (Xdat - X0 )

where Xsa t and Xda t are the coordinates from the satellite solution and the datum,

respectively, T is the vector of the three translation parameters, K is the scale

correction,. X0 are the coordinates of the datum origin, and R is a rotation matrix

dependent on the three rotational parameters and the latitude and longitude of the

datum origin.

Table 16 gives.the translation, rotation, and scale parameters for four major

datums as computed fromthe adjustment of the datum coordinates to the satellite

solution. A positive scale here means that the datum scale has to be increased in

order to agree with the satellite scale. The table also gives the number of stations

used in each datum. In the computation of datum shifts, each station was assigned a

weight computed from the standard deviation of the satellite solution and the standard

deviation of the datum-:coordinates, which was taken as a= 5 X (S X 106 )2 / 3 (m),

where S is the distance of the station from the datum origin in meters. In all cases,

the standard deviation of unit weight g 0 (given in Table 16) after the adjustment is

smaller than 1, which means that the weights are somewhat pessimistic. The rms

a (m) of the final residuals for each datum in Table 16 are between 5 and 16 m. It is

apparent that the European and the South American datum coordinates do not agree

very well with the satellite solution. The European datum is rather unhomogeneous,

and its extension into Africa and Asia - which we used - makes it rather weak.

Further checks with datum information can be obtained with station heights. The

height above the reference ellipsoid (hell) should be equal to the mean height above sea

level (h sl), which is approximately the height above the geoid, plus the geoid height

N; i.e., the disagreement between these two estimates, Ah, is

Ah= hel l - h s l - N
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If we use the satellite geoid to calculate N, we can make this comparison for all stations

but we lose the detailed variation in geoid height. The computation does provide a

value for the semimajor axis of the best-fitting ellipsoid used to calculate helI. We get

a = 6378140.4 1.2 m .
e

To employ the detailed geoid-height information given for each datum, we must refer

the coordinates to the datum origin by using the datum shifts in Table 16. Table 17

lists the standard deviations of the heights calculated for each datum. The average

of 3. 98 m must be considered excellent in view of all the uncertainties in calculating

Ah. Figure 7 plots these residual heights as a function of latitude.

The results by Gaposchidn and Lambeck (1970) were derived in the same manner,

by combining several types of data, establishing relative weights, and verifying the

accuracy by intercomparison. Their accuracy was 7 to 10 m for the fundamental

stations. In Table 18, we give the corrections derived in this analysis for selected

stations. The overall rms of ao = 10 m and a standard error of unit weight a0 = 0. 662

indicate excellent agreement in the derived coordinates and the accuracy Qstimates; if

anything, the accuracy estimates are pessimistic. The very small shift in origin indi-

cates that the whole reference system has not changed.

Williams, Mulholland, and Bender (1972) have determined the spin-axis distance

of McDonald Observatory from lunar laser observations. We compare this distance

with that deduced by means of the coordinates of station 9001 from survey data in the

following. The agreement of -3. 51 m is acceptable.

Using SAO station 9001 and geodetic tie 5492412.489 m

Using McDonald lunar laser 5492416.0 O 3 m

Difference -3.51 m

The scale of the combination solution is defined by the value of GM adopted in the

dynamical solution, given in Table 11. We found a scale difference of 0.18 ± 0. 55 ppm

between the JPL and the SAO coordinates, the JPL ones being slightly larger. If the

discrepancy with the lunar laser is attributed to scale, then the scale difference would

be 0.7 ppm.
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The scale obtained.from the four major datums is given in Table 16. It appears

from the NA27, EU50, and AUGD datLums that the datum scale is smaller than the

satellite scale by approximately 2 ± 1 ppm, while from the SA69 datum, it is larger

by 1 ± 1 ppm. Since the survey scales are not expected to be established to better

than a few ppm, the weighted mean of 1. 6 ±1 ppm is not considered to be significantly

different from zero.

Each geometrical network has an arbitrary origin specified by the initial coordi-

nates of one station, a station not explicitly determined in the combination solution.

The translation parameters in Table 12 correspond to the correction to the origin

of the network, i.e., the correction to the initial coordinates of the reference station.

It principle, the orientation of the. two geometrical systems and that of the

dynamical system should be identical. Orientation parameters (E x ,y' z ) are deter-

mined to accommodate possible systematic differences in the actual representation

of the three systems. Since the SAO geometrical network covers only one hemisphere

in an east-west orientation, the orientation of its pole (Ex' Ey) may be poorly deter-

mined.

The polar orientation of the BC-4 system with respect to the SAO dynamical sys-

2 9
tem is 1. 88 = 1. 76 + 0.65 ± 1. 16 prad. This systematic difference is obtained

by comparing the observed BC-4 directions with directions determined from 11

stations in the combination solution with characteristic interstation distances of 2 to

3 Mm. In metric terms, the orientation difference is 1. 88 X 10 - 6 X 2 X 106 = 4 m. The

accuracy of the mean station for the 11 stations is approximately 4 m. It is assumed

that the value of 1. 88 prad results from differences in pole-position data or in process-

ing methods.

The rotation in longitude (E z) corresponds to a correction in UT1. Figure 8 indi-

cates the relative position of the zero meridian of each system. We note almost the

same relation between the SAO and the JPL systems found in SE II, which was

4.0 prad. The difference between the SAO geometrical and the SAO dynamical systems

is -0. 40 ± 1.43, and that between BC-4 and the SAO dynamical is -2. 20 ± 0. 82. The
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relative rotation in longitude between the JPL and the SAO systems is due to a differ-

ence between the JPL!s planetary ephemeris and the FK4 system used by SAO. The

JPL ephemeris is referred to the dynamical equinox rather than to the FK4 system

(D. Trask and T. C. Van Flandern, private communication, 1974). The difference 01'7

is almost exactly equal to the 3. 43 i 1. 02 prad determined in this analysis. The longi-

tude difference between the geometrical and the dynamical nets most likely results from

differences in the UTi data or in the processing methods.
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4. DETERMINATION OF THE GEOPOTENTIAL

4.1 Methods

The external potential of the earth is represented by a set of orthogonal functions:

00 1

r=m Pm(sin ) eimX , (3)

1=0 m=O

where M is the mass of the earth, including the atmosphere; G is the universal con-

stant:of gravity; Im= Cm - iSim; C_10 = -J,/-2--TT; { } designates the real

part of { }; F~m(sin 4) are fully normalized associated Legendre polynomials; and

r, , X are the coordinates of the test particle. It is possible to choose a coordinate

system such that

1, Oa, I ?2 1 =0- i

and we assume that the instantaneous spin axis as defined by IPMS and the center

of gravity of the earth are that system. This assumption is not strictly true, but

the departures are small and are ignored in this analysis.

It is observed that for the earth the amplitude of E m decreases approxi-

mately according to

E 10 5 (4)

Although for theoretical reasons E Im) must decrease more rapidly than equa-

tion (4) at some point, and individual coefficients can be arbitrarily large, this rule

seems valid throughout the range of i used in this investigation.
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.We use two types of data on the earth's gravity field: those derived from gra-

vimeters and those obtained from the motion of artificial satellites. The gravity'

calculated from the gradient of equation (3) is

= - (sin) e (5)

.=2 m=O

where y = GM/r 2 and are m modified to accommodate those effects of the

reference ellipsoid (or gravity formula) that change the definition of 02,0' C4,0'

and 0. By comparing equations (3) and (5), it is apparent that Ag is relatively

more influenced by ,im of high degree and order than is / because of the I - 1

multiplier and that measurements of Ag are more useful for determining these high-

degree and high-order coefficients.

Determination of (pm from analysis of satellite observations requires a theory

for satellite motion. General solutions for the motion in an arbitrary potential field

have not yet been found. We must therefore restrict ourselves to approximate solu-

tions, which are quite sufficient for the following reasons. It is observed that for the

earth, the second-degree zonal harmonic C2,0 makes the largest contribution to the

anomalous potential and is 10- 3 of the main term. The remaining anomalous potential

-3 -6
is 10 of , or 10- of the main term. Therefore, to calculate the trajectory

to 10- 6 (our objective), we require at least a second-order theory for 2, (i.e.

one including 2,0), but only a first-order linear theory for the remaining C m'

Although there are notable exceptions - resonances and some zonal harmonics - these

considerations provide a workable base.

The earth's motion is complicated because of precession, nutation, polar motion, ,

and rotation. A convenient reference frame is defined by the stars and, in practice,

is defined (imperfectly) in terms of a star catalog at some epoch. On the other hand,

in an inertial frame, the earth's gravity field has a temporal variation that significantly

complicates the construction of an analytical theory. For this reason, a compromise

quasi-inertial reference frame referred to an equinox (epoch 1950.0) and an equator

(epoch of date) has been adopted. Veis (1960) knew, Kozai (1960) proved, and we have

used the fact that this coordinate system minimizes the additional effects required to

account for the temporal variations of the gravity field and the noninertial property of

the coordinate system.
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Accordingly, the.determination of m from analysis of satellite observations

uses the elaboration of a satellite-perturbation theory. This elaboration is too lengthy . .

to detail here; we refer the reader to Gaposchkin (1973).

In summary, the process of gravity-field determination begins with the evaluation

of the secular and long-period perturbations to determine the Jn. The perturbations

accumulate for weeks and months, and the effects are very large. The mean orbital

elements, determined from overlapping 4-day arcs, constitute the basic data used

in the analysis. Data and reference orbits of moderate accuracy are adequate for the

Jn determination. The unbiased recovery of the Jn requires painstaking evaluation of'

the long-period and secular perturbations from other sources, principally solar radia-

tion pressure, atmospheric drag, an.1 lunar and solar attraction. This phase of the

analysis is--accomplished first. The tesseral harmonics are determined from.the.

short-period (1-revolution to 1-day) changes in the orbit. .The detailed structure of

the orbit must be observed, and each observation provides an observation equation.

Data of the highest possible precision are needed. The unbiased recovery of im

requires the evaluation of the periodic terms from other sources that have periods

similar to those arising from the gravity-field coefficients. The most important are

the short-period terms due to Jn and the lunar attraction. Because they are smaller

than 1 m for the satellites used in this analysis, the periodic effects of air drag and

radiation pressure can be ignored. The nonperiodic terms are empirically determined

and hence accounted for. The short-period terms due to J2 must be carried to second -

order.

4.2 Coefficients of Zonal Spherical Harmonics in the Geopotential

Coefficients of zonal spherical harmonics in the geopotential determined from

secular motions of angular variables and from amplitudes of long-periodic terms with

the argument of perigee o in the orbits of artificial satellites are more accurate than

are coefficients derived by classical terrestrial methods. The reason is that the com-

ponent of geoid height represented by the zonal harmonics is amplified by a factor of

1000 when they appear as secular and long-periodic perturbations of satellites. How-

ever, because these perturbations are averaged effects, contributions from the har-

monics in each are not very different from one satellite to another unless their orbital -

elements are quite different. Also, few satellites with inclinations below 30' have been
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employed in the determination of the coefficients, since accurate observations of such

satellites have been scarce. It was also found that many more terms than expected

were necessary to represent the geopotential. Therefore, it has usually been very

difficult to separate the contributions from each harmonic in the observed values of the-

- secular motions and of the amplitudesof the long-periodic terms. In other words;,

different sets of coefficients could represent these observations within observed accu-

racies for satellites with inclinations larger than 300.

Now, however, data for two low-inclination satellites - Dial (7001701; I = 5.4,

.e= 0. 09, a = 1. 15) and Peole (7.010901; I = 15. 0, e = 0. 02, a = 1. 10) - have become

available since our last determination of zonal harmonics (Kozai, 1969).

The-equations of condition were solved by least squares for both the even-order

and the odd-order harmonics. They were solved first with 11 unknowns, Jn (n _ 23),

and then with 12, the twelfth being Jn (24 - n - 49). Seven solutions were obtained.

The solutions. are quite stable, especially for lower order coefficients, and the obser-

vations can be represented very well by including J35 and J36' Although there is

some uncertainty whether J35 and J36 can have such large values, the 12-unknown

solutions that include them are regarded as the best. For further details, see

Gaposchkin (1973). The adopted numerical values of the zonal harmonics are given

in Table 19.

4.3 Determination of Tesseral Harmonics

Tesseral harmonics are computed by combiring satellite perturbations and

terrestrial gravimetry. In the computation of the normal system, terms with small

contributions have been omitted. Therefore, the normal system determined from

satellite analysis is complete through I = m = 12. In each higher order, terms have

been omitted - for example, 13, 6 through 13, 9 and 14, 5 through 14, 11. The higher

order terms selected were C/S(f, 1) 13 5 1 I- 16; C/S(e, 2) 13 - 1 -5 15; C/S(14, 3);

C/S(I, 12) 13 5 -5 19; C/S(f, 13) 13 5 1 5 2; and C/S( , 14) 14 5 <_ 24. Of course,

all terms were included in the computation of the residuals. In the same way, for

surface gravity all available geopotential coefficients have been used, but no partial

derivatives for the zonal harmonics or tesseral harmonics less than 9th degree were

computed, since they are negligibly small.
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For each orbital are, a set of six mean elements, ., is determined. The linear

rates: are derived empirically, as is the mean anomaly. In addition, higher polynomials

in the mean anomaly are employed,. where appropriate, to account for the nonperiodic,

yet nonsecular, effects of air drag and radiation pressure. Twelve or more orbital

elements are determined for each arc, and the arcs range in length from 4 to 30 days.

The m = 9, 12, 13, 14 terms are resonant with some satellites, which are listed

in Table 20 along with their resonant periods. Several satellites are resonant with

more than one order.

A summary of the data is given in Table 1. The selection of data and unknowns

evolved through the analysis. The number of satellites used ranged from 21 to 25,

and the number of arcs in the largest solution was 203. Arcs were added or rejected

on the basis of their contribution to the normal equations, the number of observations

for a particular station, the improvement of distribution for a resonant harmonic, and

the quality of the orbital fit.

Two iterations were performed for the gravity field. The first employed the

gravity field and station coordinates determined by Gaposchkin and Lambeck (1970) as

initial values; and the second used the results of the first iteration for the gravity

field plus the station coordinates as described earlier. For each iteration, several

solutions were obtained. Orbital arcs were added or deleted to improve the satellite

distribution and the variance-covariance matrix.

Several weights for the surface gravity were used. For areas without surface-

gravity data, we had four choices of treatment:

A. We could make no assumptions about unobserved areas.

B. We could use a zero anomaly with a very large variance; that is, the expected

value of gravity would be zero.

C. We could use a reference gravity field with a very large variance; that is,

only the higher harmonics would have an expected value of zero.

D. We could use a model anomaly, for example, one determined from topography.
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Adoption of method A would introduce very large short-wavelength features into those

regions where no gravity is measured. In addition, the statistical comparisons dis-

cussed later are very poor, although the (O - C) values and the satellite orbits are good.

Therefore, A had to be discarded. Gaposchkin and Lambeck tried methods B and D

and found them equivalent. Choice C is an improvement over B because the low-degree

and low-order terms are well determined by means of satellite data. Therefore, C

was adopted, with the weight given in Table 21. Comparing the results of choices A

ind C, we found that satellite comparisons are identical, the (O - C) for the surface

gravity is marginally improved, and the statistical comparisons of the surface gravity

are quite acceptable. The adopted accuracy of a gravity anomaly with one observation .., .

was determined by experiment. The optimum combination solution used 13.5 mgal, in

acceptable agreement with 17. 7 mgal obtained from the variance in Table 8.

The fully normalized spherical-harmonic coefficients for the tesseral harmonics

are given in Table 22. Figure 9 shows the mean potential coefficient by degree and

the 10-5 2 rule. The mean potential coefficient for degrees 2 through 36 is deter-

mined by numerical quadrature of surface-gravity data and is also plotted in Figure 9.

Figure 10 plots the geoid heights and gravity anomalies: Figures 10a and 10b are cal-

culated from the coefficients in Tables 19 and 22 with respect to the best-fitting

ellipsoid; Figures 10c and. 10d, with respect to the hydrostatic ellipsoid; and Figures

10e and 10f, with respect to the 5th-degree and order reference surface defined by

the 5th-degree and order coefficients from Tables 19 and 22.

4.4 Evaluation of Geopotential

A detailed evaluation of SE III results with satellite orbits is difficult. Although

other effects - such as lunar and solar perturbations, body tides, radiation pressure,

and air drag - are all included in the orbit computation, none of these is known without

error, and each, in itself, provides a number of problems. Also, the coordinates

of the tracking stations are not known without error. Furthermore, incomplete orbital

coverage can result in overoptimistic estimates of orbital accuracy from formal

statistics. Finally, the tracking data contain errors. A few comparisons are given

here to indicate approximately the accuracy of the total orbit-computation system.

The gravity field is certainly one of the larger contributors to the error budget.
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From ISAGEX data, consecutive orbits were computed every 2 days, by using

4 days of data (except for 6800201, where 6 days of data were employed). Results

for 6508901, 6800201, and 6701401 are given in Table 23, together with the number

of observed points used in the final iteration. All calculations were performed by

using the final station coordinates and the tidal parameter k2 = 0. 30; radiation-

pressure perturbations were calculated with a fixed area-to-mass ratio.

We see that with good orbital coverage, we can expect to have rms residuals of

between 4 and 10 m. Satellite 6701401 has a relatively low perigee, and the poorer

orbits from MJD 41072 to 41078 coincide with an increase in solar activity that resulted

in increased drag.

Of the 4- to 10-m rms residuals, 2 to 3 m come from station coordinates and 1 to

4 m could be attributed to the orbital theory. Therefore, the accuracy of the gravity

field for orbit computation may actually be somewhat better than indicated by Table 23.

To compare a geopotential model (g ) with observed values of surface gravity (gt) ,

the following quantities defined by Kaula (1966) can be computed:

2 2

(g2) The mean value of t, where t is the mean free-air

gravity anomaly based on surface gravity, indicating the

amount of information contained in the surface-gravity

anomalies.

2 2
(g ) The mean value of g , where gs is the mean free-air

gravity anomaly computed from the geopotential model,

indicating the amount of information in the computed

gravity anomalies.

(gtgs) An estimate of gh- i. e., the true value of the contribution

to the gravity anomaly of the geopotential model and the

amount of information common to both t and g

((gt - gs) 2 ) The mean-square difference of gt and gs.

E (E2) The mean-square error in the geopotential model.
s
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E (Et2) The mean-square error of the observed gravity.

E (6g2) The mean square of the error of omission - that is, the

difference between true gravity and gh; this term is then

the model error.

2 2

(gtgs) if t were free from error and known everywhere. Then, E2 would be zero

even though gs would not contain all the information necessary to describe the total

field. The information not contained in the model field - i. e., the error of omission,

5g - then consists of the higher order coefficients. The quantity ((gt - gs 2) is a

measure of the agreement between the two estimates gt and gs and is equal to

((gt - gs2) = E (E) + E(E2) + E (6g2

Another estimate of gh can be obtained from the gravimetric estimates of degree

variance a2 (Kaula, 1966):

2 n 2
E(gh= D 21 + 1 91 '

where n, is the number of coefficients of degree . included in gh' and

2 2 (U1-)2  m ( 2 m

m

We also have

E(E) = (g2s>- (gsgt

and

E(r:) = (g2)/(n)
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Table 24 summarizes the above quantities for SE III. The improvement over

SE II in the coverage of surface-gravity data is evident. The more limited gravity

coverage used for SE :I resulted in accuracy estimates that were consistently

optimistic. The revised set of gravity anomalies has greater coverage and is more

independent of the geopotential model. Even so, line 2 represents an estimate of the

accuracy, E(E ) 52 mgal2 , that is more optimistic than that based on independent

gravity data for SE II, which was 99 mgal 2 (Gaposchkin and Lambeck, 1970).

We used the 306 gravity anomalies with 20 or more observed units in each

average for the comparison. There is very good agreement between (gtgs), (gs '

and D, which would all be equal for a perfect solution. In E(6g ), we have a measure of

the information remaining in the higher harmonics. The formal statistics give an

2 2
error in the combination reference field of E (E ) 15 mgal

An alternative approach is to eliminate 6g by use of

g (sin Cos)mX dc
AS 4iry (1 - 1) f Ot ref) Im sin mX d>

sphere

where

(sin 4) CosmX is the mean of P (sin sin mX

sin mX Isin m

over the area defined for the gravity anomaly. We can compute any harmonic with

respect to a reference gravity field, but care must be used in treating areas where

no observed gravity is available. A gravity field defined by gref and the ACm~

will have an error of

2 2 2 2 2
((gtg)2) = E(E) + E(E) +'E(5- ) + E(E 2

s t quad) 2

where E(E2) is the error in the composite field and E(Equad) is the error due to the

inexact quadrature and imperfect distribution of the data.
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Table 25 gives the results of this numerical quadrature with reference fields defined

by the first 1. degrees of SE III. Computing all the geopotential coefficients to

2= m= 36, i.e., the null reference field, we get E(Es) 0, and

2 2 2 2
E( 2 ) + E(g 2 ) + E(Equad ) = 29 mgal 2

2
Using an increasingly detailed reference field, we obtain an estimate of E(E s) as a

function of degree. As expected, the mean-square error for the low-degree and low-

order harmonics estimated from a comparison with terrestrial gravimetry is quite

small. The satellite data provide accurate values, and the low harmonics have a

smaller effect on gravity anomalies. The mean-square error for the 8th to 18th

degrees is relatively constant, as expected, since these harmonics are determined

largely by surface-gravity data. The mean-square error E(E 2) estimated from the

quadrature is in good agreement with that obtained from statistical analysis. For

comparison, the values are given in Table 24.

The estimate of E( s ) assumes that gs and g are independent; i.e., they have

uncorrelated errors. Since the terrestrial gravity (gt) was used to determine the

combination solution (gs), this assumption is certainly incorrect, and therefore, the

2 2
estimate of E(es) = 15 mgal is definitely optimistic. A better test could be made.with

independent data for gt. Since the mean gravity anomalies used in the combination

solution were computed, two compilations of 10 X 1* anomalies have been published:

for North America and the North Atlantic (Talwani, Poppe, and Rabinowitz, 1972) and

for the Indian Ocean (Kahle and Talwani, 1973). These compilations were published

after the set of mean anomalies used here became available, but some basic data are

probably common to both; furthermore, these two new compilations may not be com-

pletely independent of the data used in the SAO combination solution. The processing

methods used by Talwani and his coworkers were different from those of ACIC, and

additional data were included.

Two comparisons are nevertheless instructive. A simple 50 X 50 average was

computed for these data since all 10 X 10 areas had values given in the region of

interest. These 50X 5 ° averages, with the mean of the whole region subtracted, were
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used to compute the same statistical quantities as in Table 24 and are given in

Table 26.. The number n is the number of points, centered in a 10 X 10 area, for which

a 5' X 5" mean was computed. Therefore, we have a moving 5* X 50 mean calculated

every 1° . Most of the gravity data in these ancillary compilations were taken at sea,
2

and the estimate of their uncertainty E (E t) may be optimistic. The weighted mean of

E(s) is 64 mgal 2 , equivalent to 2.5 m in geoid height. The remaining gravity infor-

2
mation in the higher harmonics, 5g, equals 68 mgal 2 . We notice that 5g for the

Indian Ocean is larger than 6g for North America and the Atlantic and is probably due

to the very sharp low below the Indian subcontinent, which cannot be modeled very

well by the generalized geoid. Further confidence in this comparison comes from

((gt - g 2  , (g2 , and (gt gs), which are all in good agreement with the global

values from Table 24. Therefore, we feel reasonably certain that for comparison

purposes, both the North America and North Atlantic region and the Indian Ocean

region are typical. Thus, we conclude that the generalized geoid has an accuracy of

±2.5 in geoid height and ±8 mgal for the whole earth. Figures 11 to 15 give north-

south and east-west profiles for both North America and the Indian Ocean.

Figure 15 was selected because of the large change in the values at the India Low

from those given in SE II. However, the terrestrial gravity and the combination solu-

tion are in good agreement there. A further point is the disagreement, east of Borneo,

between the observed gravity from the ACIC compilation and the anomalies used in 1969.
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5. SUMMARY AND CONCLUSIONS

The results described above, the procedures, the tests and comparisons, and the

experience of carrying'out the work have led to several conclusions about the use of

artificial satellites for the determination of station coordinates and the geopotential:

A. Observations of close-earth satellites have been successfully combined with

observations of deep-space probes and surface triangulation, enabling us to determine

the coordinates of 90 satellite-tracking sites in a uniform homogeneous system.

B. The combination of these data provides a better solution than we can obtain

from each set of data separately, because more complete coverage results and because

the combination enables us to overcome wealknesses in each system.

C. The methods of processing each type of data are sufficiently understood to

make a rational combination.

D. Successive solutions have resulted in improvements. When compared with

the previous solution, each new one has agreed to within the estimated uncertainty,

and that uncertainty has steadily decreased from 10 to 20 m in 1966, to 5 to 10 m in

1969, to 2 to 8-m in 1973.

E. Formal statistics are generally optimistic, and therefore the uncertainty in

coordinates is established by intercomparison, a method that has proved reliable.

F. A comparison between coordinates indicates an accuracy of 2 to 4 m for

fundamental stations and 5 to 10 m for most others.

G. The body of laser data available, though small, has made a significant con-

tribution.' The laser data dominate the solution through the relatively great weight

assigned and thereby essentially establish the reference frame for the station coordi-

nates.

H. The use of a variety of satellite orbits spanning a considerable period of time

is very important. Such data average over error sources with a slow variation such

as UT1 or epoch timing and eliminate poor orbital geometry. The laser data suffered

from both problems.
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I. Geometrical data require a minimum of assumptions, and geometrical solu-

tions have relatively straightforward statistics. Geometrical data are more difficult

to obtain owing to the necessity of simultaneous observations. Dynamical data are

more plentiful, but their processing requires an elaborate orbit-computation program

that may introduce model errors. - The well-behaved statistical properties of the

geometrical data allowed the use of the geometrical networks to establish the uncer-

tainties.

J. Small but significant systematic differences in scale and orientation are found

between satellite coordinate systems. These differences may result from variations

in data-processing methods or from fundamental differences in the definition of refer-

ence systems, e.g., the FK4 system and the JPL planetary ephemeris.

K. Satellite determinations of site location are now sufficiently accurate to verify

terrestrial survey data. The most troublesome part of the analysis was finding the

erroneous survey coordinates. Considerable effort remains in providing global geodetic

coordinates with sufficient reliability.

L. Scale obtained for the four major datums is systematically smaller than the

satellite results by 1. 6 ± 1 ppm. Since survey scales are not expected to be established

to better than a few ppm, this result is not considered to be significantly different from

zero.

M. Satellite-tracking data from 25 satellites have been combined with terrestrial

gravity data to determine the spherical-harmonic representation of the geopotential

complete through degree and order 1S, plus several higher harmonics to which satel-

lite orbits are sensitive.

N. The zonal harmonics are successfully determined from analysis of long-

period and secular perturbations, while the tesseral and sectorial harmonics are

obtained from short-periodic satellite perturbations and terrestrial gravimetry. Low-

degree and low-order 1, m s 8 are primarily determined from satellite perturbations,

and the short-wavelength i, m - 8, primarily from terrestrial gravity data.

O. The principal improvements over Gaposchldin and Lambeck (1970) are due to

1) the addition of two low-inclination satellites for the determination of the zonal

harmonics, 2) the use of a sizable number of precise laser observations, and 3) the

use of an improved set of terrestrial gravity anomalies.
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P. In the combination of satellite and surface-gravity measurements, some atten-

tion must be given to the unobserved areas.

Q. The unobserved areas are treated by using anomalies computed from a satellite-

determined reference field and by taking the expected value of this residual field as

zero, with a large variance.

R. The accuracy of the solution is established by comparison with satellite orbits

and with terrestrial gravity data not used in the solution.

S. The lower harmonics have been improved such that the total orbit-computing

system has an rms error of between 5 and 10 m for 4-day arcs.

T. The accuracy of the generalized geoid is = 64 mgal 2 , or 2.5 m.

U. The geoid is very similar to that found by Gaposchkin and Lambeck (1970); no

new features have been found, and none has disappeared. Therefore, geophysical

analyses from these results remain valid (see, e. g., Kaula, 1970, 1972; Gaposchkin,

Kaula, and Lambeck, 1970).
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TABLE 1. Dynamical Data Used in SE III

1960 v 28 0.016 7465 965 x

1959a Periaee 33 0.165 8300 557 x x 7
Number Name Inclination Eccentricity (kin) (kIn) 6.5 S8 N A z C Z 0

7001701 Dial 5033 0.088 7344 301 x

7010901 Peole 15 0.017 7070 635 x x x 4

6001301 Courier B24

96E-Cvl 28 0.016 731165 965 x x x 7

5900101 VanguTelstard 2
195962 al 33 0.165 8300 557 x x 7

5900701 1959 iql 33 0. 188 8483 515 X 18

6100401 196161 39 0.119 7960 700 x 4

6701401 DID 39 0.053 7337 569 x x x 10

6701101 DIC 40 0.052 7336 579 x x x 9

6503201 Explorer 24
BE-C 41 0.026 7311 941 x x x 13

6102901 Telstar 1
1962 ael 44 0.241 9672 962 x 4

6000902 1960 62 47 0.011 7971 1512 x x x 10

6206001 Anna 1B

1962 567 0.007 7508 1077 896 x x 12

6302601 Geophysical

Research 50 0.062 7237 424 x 6

6508901 Explorer 29

Ges -B 59 0.073 8074 1121 x x x x 56

6101501 Transit 4A

6101 67 0.008 7318 885 x x 10

6101502 Injun 1

6102 67 0.008 7316 896 x 9

6506301 Secor-5 69 0.079 8159 1137 x x 2

6400101 70 0.002 7301 921 x x 4

6406401 Explorer 22

BE-os 2 106 0.012 7370962 912 x x x x 6

6508101 OGO 2 87 0.075 734406 420 x x 5

6600501 Oscar 07 89 0.023 7417 868 x x 1

6304902 5BN-2 90 0.005 7473 1070 x x 5

6102801 Midas 4
1961 a l 96 0.013 10005 3503 x x x 6

6800201 Explorer 36
Geos 2 106 0. 031 7709 1101 x x x 13

6507801 OVI-2 144 0.182 8306 416 x x 4
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TABLE 2. DSN Data Used in LS 37

Flight Tracking time period 6

Mariner 4 July 10-21, 1965 -30

encounter

Mariner 5 July 28-September 16, 1967 -8S to +80

cruise

Mariner 5 October 14-25, 1967 60

encounter

MIariner 5 October 28-November 21, 1967 +20 to -20

post encounter

Mariner 6 July 26-31, 1969 -240
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TABLE 3. LS 37 Coordinates, from Mottinger (1973)

r X Y

Station (Mm) (iIm) (Mm)

4711 5.2063409 243?15059 -2.3514288 -4.6450800

4712 5.2120525 243.19452 -2.3504424 -4.6519794

4714 5.2039978 243..11047 -2.3536211 -4.6413425

4741 5.4502019 136.88749 -3.9787186 3.7248488

4742 5.2053494 148.98126 -4.4609782 2.6824124

4751 5.7429399 27.68542 5.0854415 2.6682659

4761 4.8626083 355.75097 4.8492431 -0.3602785

4762 4.8608181 355.63217 4.8467007 -0.3701960
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TABLE 4. The Stations Related by Survey

1/2 1/2
-2 -2

Location Stations pairs (m - 2 ) Location Station pairs (m- 2

Maryland 7050-6002 1.0 California 4714-4712 5.0
4714-4711 5.0

Hawaii 9012-6011 1.0 9113-4714 0.7
9113-4714 0.7

Argentina 9011-6019 1.0 9113-6111 2.0

6111-6134 5.0
Japan 9005-6013 0.1

Ethiopia 9028-6042 2.0
Spain 4761-4762 5.0 Ethiopia

9004-4761 0.20 Australia 6060-4741 1.0
9003-4741 1.0

Central Europe 9066-8015 0.25 9003-9023 1.0

9066-6065 0.0025

7816-9030 0.01
South Africa 9002-6068 1.0

Brazil 9029-6067 0 9002-4751 0.1
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TABLE 5. Distribution of 10 X 10 Mean Gravity Anomalies

Ocean Continent

Boundary

(kim) Measured Total Measured Total

0 9213 42918 10115 21882

-1 7015 36199 12313 28601
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TABLE 6. The Global Covariance Function, Calculated by Using the

19, 328 10 X 1' Mean Gravity Anomalies

Average angular Covariance fnction

distance (mgal " )

00 1150

0.92 .656

1.62 431

2.52 326

3.50 266

4.50 234

5.49 208

6.47 185

7.47 180

8.48 163

9.48 145

10.48 131

11.47 124

12.48 124

13:48 111

14.48 105

15.47 92

16.48 95

17.48 86

18.48 84

19.48 78
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TABLE 7. The Block Covariance Function of Unit Gravity Anomalies

Average angular Covariance function
distance (mgal 2 )

0o 1078

0.29 604

0.93 662

1.21 505

1.78 420

2.18 329

2.80 278

3.17 251

3.70 246

4.19 211

4.75 179

5.22 168

5.69 200

6.20 - 2

6.69 575
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TABLE 8. The Covariance Function of 50 X 50 Mean Block Gravity Anomalies

Average angular Covariance function

distance (mgal2)

00 314

4.85 192

7.32 141

12.23 97

17.25 65

22.32 43

27.33 22

32.29 8

37.33 2
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TABLE 9. Assumed Accuracy for Data Used in SE III

Data Weight Remarks

Baker-Nunn 4"

Smoothed Baker-Nunn 2"

SAO laser 5 m Observed before 1970

Centre National d'Etudes Spatiales laser 10 m Observed before 1970

GSFC laser 5 m Observed before 1970

ISAGEX laser 5 m 1971 International Campaign
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TABLE 10. Observations Included in the Dynamical Solution

Pre-ISAGEX Data ISAGEX Data

15 satellites 140 arcs 3 satellites 15 arcs

Station. Number of Station Number of Station Number of

number observations number observations number observations

7050 274 9011 1637 7050 1425

7818 1223 9012 3088 7060 1514

8015 612 9028 525 7804 625

7815 1970 9029 261 7809 1178

9001 4357 9031 467 7820 296

9002 2120 9021 81 7902 1484

9003 349 9066 809 7907 746

9023 2630 9025 9 7921 225

9004 3343 9080 47 7929 213

9005 945 9091 143 7930 89

9006 3170 7921 9 9030 172

9007 1646 7816 2382 9021 29

9008 2301 7804 200

9009 1825 7901 761

9010 2424
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TABLE 11. Adopted Constants

20 3 -2
GM = 3. 986013 X 10 cm sec

10 -1
c = 2. 997925 X 10 cm sec (velocity of light)

k2 = 0. 30 (Love number)



TABLE 12. Additional Parameters Determined

Rotation
Translation parameters

Relation to the * parameters about the axis

dynamical system (m) (prad) Scale parameter

SAO geometrical X=- 6.66 c ' 0.70s 1. 56x

Y= -14.88 . y =  0.841 1.24

Z = -0-9.900 = -0.40 1 1.43

1C-4 geometrical X = -11. 25 ± 9.60 - = 1.76 0. 961

Y = -16.63 ± 9.'58 y -. 65- 0.651

Z'= - 6.79 ± 13.74 Ez = -2.20 1 0.82

-6 - 0-G
JPL -3.43 1. 02 0.18X 10 0.55X 10

P00

j !' *
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TABLE 13. Geocentric Coordinates

Station X ,Im) Y ,!m) Z (Mm) c (m) Location

7050 1.1306739 -4.8313735 3.9941010 1.81 GREENSELT ,USA

.1021 ..1,1180308 -4.8763213. .39429730 1.81 BLOSSOM POINT#USA
7060 -5.0689641 358410561 1.,587443 2.88 GUAMUSA
7816 4,6543369 1,9591790 3.8843585 2.26 STEPHANIONsGREECE

7818 5.4263231 -,2293266 3,3346064 6.07 COLOMB-BECHARALGERIA'"

8015 4.5783277 *4579748 4,4031797 2.07 HAUTE PROVENCEFRANICE
7815 4.5783707 .4579591 4.4031355 2.07 HAUTE PROVENCE,FRANCE
7809 4,5783484 .4579659 4.4031579 2.07 HAUTE PROVENCE,FRANCE
S9001 -1,5357686 -5.1669390 3.4010425 2.44 ORGAN PASS,USA

7901 -1.5357686 -5.1669890 3,4010425 2.44 ORGAN PASSUSA
9002 5,0561267 2,7165136 -2.7757883 1.79 OLIFANTSFONTEINREP.S.AFR,
7902 5,0561265 2.7165135 -2.7757883 1.79 OLIFANTSFONTEINREP.S.AFR.

9022 5,0561207 2.7155243 -2,7757870 1,79 OLIFANTSFONTEINREP.S.AFR.
..9003 -3.9837783 3,7430939 -3.2755610 2.49 WOOMERAAUSTRALIA
9023 -3,9777668 3.7251061 -3,3030283 2,16 ISLAND LAGOON,AUSTRALIA
9004 5.1055919 -,5552300. 3,7696625 3.06 SAN FERNANDO,SPAIN--

7804 5,1056120 -,5552523 3,7696312 3.06 SAN FERNANDO,SPAIN

9005 -3.9466906 3,3662957 3.6988334 6.26 TOKYO.JAPAN
9025 -3,9104342 3.3763574- 3.7292202 6,26 DODAIRA,JAPAN
9006- 1,0182044 5,4711045 3.1096219 2.77 NAINI TAL,INDIA
9007 1,9427769 -5,8040994 -1.7969311 2.11 AREOUIPAvPERU

7907 1,9427770 -5.8040898 -1.7969312 2,11 AREQUIPAPERU

9.027 1.9427718 -5,8040951 -1,7969094 2.11 AREOUIPAPERU

9008 3,3768929 4.4039823 3,1362578 5.08 SHIRAZIRAN

9009 2,2518237 -5,8169157 1.3271635 4.42 CURACAOANTILLES

9010 .9762870 -5,6013947 2,8302347 2.86 JUPITER,USA
9011 2,2805913 -4.9145735 -3,3554230 3.19 VILLA DOLORES,ARGENTINA

9012 -5.4660598 -2.4042788 2.2421805 2.72 MAUI,USA

7912 -5.4660630 -2.4042787 2.2421727 2.72 MAUIUSA
9021 -1o.9367738 -5.0777083 3.3319024 3.16 MT. HOPKINSUSA
7921 -1.9367727 -5.0777053 3.3319.076 3.16 MT. HOPKINSUSA

9023 4,9037652 3,9652160 99638680. 4,85 ADDIS ABABAETHIOPIA
9029 5,1864597 -3,6538660 -.6543347 3.86 NATALBRAZIL
7929 5,1864599 -3,6538662 ..6543348 3.86 "NATALBRAZIL

9039 5.1864698 -3,6538452 -,6543344 3.86 NATALBRAZIL
9031 1.6938054 -4.1123326 -4.5566531 5,24 COMODORO RIVADAVIAARGENTINA

9091 4.5951675 2.0394660 3,9126587 4.11 DIONYSOSGREECE

7930 4.5952234 2.0394432 3.9126121 4.11 DIGNYSOSGREECE

9030 4,5952145 2,0394480 3,9126220 4.11 DIONYSOS,GREECE

8019 4,5794767 ,5866188 4.3864127. 10.40 NICEFRANCE

9066 4,3313047 .5575218 4,6331012 3.67 ZIMMERWALD,SWITZERLAND

9074 3.1838845 1,4214753 5,3228021 20.57 RIGA,LATVIA

9077 " 3,9074366 1,6024417 4,7638864 83,31 USHGOROD,USSR

9080 3,9201689 -,1347323 5,0127143 13,26 MALVERN,U.K.

9113 -2.4500089 -4,6244149 3,6350288 3,70 ROSAMONDiUSA

9114 -1,2648451 -3,4668797 5.1854541 10.87 COLD LAKE,CANADA

9.115 3.1212760 .5926423 5.5127109 12.63 HARESTUANORWAY

9117 -6.0074079 -1.1118591 1.8257369 7.25 JOHNSTON IS,USA

4711 -2.3514471 -4.6450706 3,6737600 3,80 CALIFORNIA JPL,USA

4712 -2.3504606 -4.6519699 3.6656247 3.80 CALIFORNIA JPLUSA

4714 -2.3536393 -4.6413332 3,6770483 3.77 CALIFORNIA JPL,USA

4741 -3.9787021 3,7248587 -3.3022081 2.78 AUSTRALIA JPL

4742 -4.4609669 2,6824234 -3,6746138 6.05 AUSTRALIA JPL

4751 5,0854475 2,65682502 -2,7687261 4.73 SO, AFRICA JPL

4761 4.8492411 -.3602972 4,1148673 3,64 SPAIN JPL

4762 4.8466987 -,3702149 4,1168905 3.66 SPAIN JPL

6001 ,5465862 -1,3999730 6,1802329 11.15 THULEiGREENLAND

6002 1,1307688 -4,8308360 3,9947002 2.38 BELTSVILLEUSA

6003 -2.1278251 -3.7858474 4.6560279 7.52 MOSES LAKEUSA
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TABLE 13. (Cont..)

Station X (Im) Y (m) Z ( m) a (m) Location

6004 -3.8517699 .3964305 5.0513354 19,38 SHEMYAUSA
6006 2.1029482 .7216791 5.9581765 13.56 TROMSONORWAY

6007 4.4336546 -2.2681407 3.9716410 12.86 AZORESPORTUGAL
6003 3.6232536 -5.2142311 .6015174 12.95. PARAMARIBOsNETHERLAND

6009 1.2808455 -6.2509435 -.0108277 15,17. OUITOECUADOR

6011 -5.4660104 -2.4043979 2.2422163 3.12 MAUIUSA

6012 -5.8585251 1,3945295 2,0937902 13.96 WAKE IS.,USA
6013 -3,5658470 4.1207283 3,3034218 7.56 KANOYAJAPAN
6015 2.6043786 4,4441667 3,7503171 10.37 MASHHAD,IRAN

6016 4.8964136 1.3161788 3.8566662 10,87 CATANIA,ITALY

6019 2.2806429 -4.9145366 -3.3554419 3.54 VILLA DOLORESARGENTINA

6020 -1.8886006 -5,3548647 -2.8957716 19.81 EASTER IS.,CHILE

6022 -6.0999436 -.9973208 -1.5685982 12.65 TUTUILAAM.SAMOA

6023 -4.9553518 3.8422666 -1.1638598 8.96 THURSDAY IS.,AUSTRALIA

6031 -4.3138010 .8913646 -4.5972827 9.29 INVERCARGILLNEW ZEALAND

6032 -2.3753707 4,8755672 -3.3454056 10.59 CAVERSHAM,AUSTRALIA

6038 -2.1609779 -5.6426947 2,0353523 8.65 REVILLA GIGEDOMEXICO

6039 -3.7247525 -4.4211985 -2.6861050 22.12 PITCAIRN IS.,U.K.

6040 '.7419364 6.1908105 -1,3385578 13.24 COCOS IS.,AUSTRALIA

6042 4.9007728 3,9682490 .9663303 4.93 ADDIS ABABAETHIOPIA

6043 1,3713935 -3,6147358 -5,0559691 12.76 CERRO SOMBREROvCHILE

6044 1,0989265 .3.6846465 -5.0718835 23,43 HEARD IS.,AUSTRALIA

6045 3.2234594 5:0453453 -2.1918119 9.30 MAURITIUSU.K.

6047 -3.3619221 5.3653261 .7636214 12.76 ZAMBOANGAsPHILIPPINES

6050 1,1926976 -2,4509877 -5,7470744 19.81 PALMER STA9.ANTARCTIC

6051 1,1113619 2.1692821 -5.8743530 13.95 MAWSON STA.,ANTARCTIC

6052 -.9025718 2,4095500 -5.8165695 13.80 WILKES STA..ANTARCTIC

6053 -1.3108218 .3112a60 -6.2132992 13.45 MCMURDO STA.,ANTARCTIC

6055 6.1183495 -1.5717384 -*9786181 11.14 ASCENSI0N IS.,U.K.

6059 -5.8853237 -2.4483377 .2216584 10.63 CHRISTMAS IS.iJ.K.

6060 -4,7516206 2.7920847 -3.2001812 3.1.9 CULGOORAAUSTRALIA

6061 2,9999396 -2.2193526 -5.1552794 15.33 50. GEORGIAU.K.

6063 5.8844939 -1.8534891 1.6128432 11.17 DAKARtSENEGAL

6064 6.0234113 1.6179373 1,3317254 9.89 FORT LAMYvCHAD

6065 4.2135852 .8208359 4.7027662 12.59 HOHENPEISSENBERG*W.GERMANY

6067 5.1864154 -3.6539275 -.56542977 4.13 NATALBRAZIL

6068 5.0848489 2,6703463 -2,7681144 2.38 JOHANNESBURGREP.S,AFR.

6069 4.9784430 -1.0868607 -3.8231816 26.56 TRISTAN DA CUNHAU.K,

6072 -.9416635 5,9674615 2,0393072 13.65 CHIANG MAITHAILAND

6073 1.9051653 6,0322878 -*8107365 12.02 CHAGOSARCHIPELG

6075 3.6028471 5.2382448 ..5159507 11.39 SEYCHELLESU.K.

6078 -5.9523041 1.2319412 -1,9259390 22.93 NEW HEBRIDES.U.K.

6111 -2,4488492 -4.6679685 3.5827461 3.83 WRIGHTWOODUSA

6123 -1.8817815 -.8124227 6,0195886 17.73 POINT BARROW.USA

6134 -2.4489029 -4,6680586 3,5824408 3.89 WRIGHTWOODIUSA
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TABLE 14. Comparison of BC-4 Geometrical Solution with the Combination Solution

(in units of meters). The Standard Error of Unit Weight, ~0, is 0. 823.

Res idual

Station Weight AN AY AZ North East Height

6001 12.22 0 0 4 0 0 4
6002 5.54 12 -13 9 1 -15 13
6003 9.03 0 - 4 0 - 2 2 2
6004 20.01 2 - 9 1 3 9 0
6006 14.45 - 6 -12 4 11 -10 0
6007 13.80 - 6 - 5 -I 1 - 7 - 3
6003 13.93 2 - 4 - 4 - 5 0 4
6009 15.97 5 - 5 - 1 - 1 4 6
6011 5.99 15 4 4 9 2 -13
6012 14.83 7 - 2 1 4 0 - 6
6013 9.06 - 1 - S 12 13 6. 1
6015 11.51 - 5 - 9 7 12 0 - 4
0016 11.96 - 5 -11 3 8 -10 - 4
6019 6.13 13 3 - 5 - 3 13 5
6020 20.43 3 5 - 6 - 8 1 - 2
6022 13.60 7 6 - 1 - 3 -4 - 8
6023 10.26 - 2 3 0 1 - 1 4
6031 10.55 - 2 4 - 9 - 4 - 4 9
6032 11.71 1 7 - 4 0 - 4 6
6033 9.99 4 5 - 1 0 2 - 6
6039 22.69 4 7 - 4 - 7 -2 - 5
6040 14.15 - 1 0 0 0 1 0
6042 7.02 - 3 - 7 5 6 - 3 - 6
6043 13.70 11 8 - 8 - 8 13 4
6044 23.96 4 7 - 5 3 - 2 10
6043 10.56 - 5 - I - 7 - 8 3 - 1
6047 13.70 0 0 5 5 0 1
6050 20.43 10 2 - 6 0 10 6
60.3 14.82 5 4 -10 1 - 2 12
6052 14.63 4 5 - 9 0 - 5 10
6053 14.35 3 5 -12 - 5 - 5 11
6053 12.21 - 9 0 11 10 - 1 -11
6059 11.75 9 5 - 2 - 2 - 1 -11

6060 5.93 - 3 3 - 8 - 5 - 1 8

6061 16.12 8 3 - 4 1 8 6
6063 12.24 - S - 2 0 2 - 4 - 7
6064 11.03 . - 6 -12 5 7 -10 - 7

6065 13.55 - 6 -12 4 9 -11 - 2

6067 6.49 - 5 13 10 9 7 -13
6063 5.54 - 4 - 3 -24 -24 0 5

6069 27.03 - 8 2 5 0 0 -10
6072 14.54 - 3 - 1 9 9 4 1
6073 13.02 - 7 - 2 0 0 6 - 4

6075 12.44 - 4 - 2 1 1 1 - 4

6073 23.47 - 8 3 9 12 -1 5

6111 6.30 3 2 7 8 2 1
.6123 19.42 1 -13 2 - 3 12 3

6134 6.33 4 12 6 12 - 1 - 7

rms: 7.35 6.33 7. 10

Total rms: 12.02

Parameters Determined

X Y Z

Translation (m) 16.32 = 1.22 23.21 ± 1.22 -4.69 ± 1.22

Rotation - 0'101 = 0'050 0.036 ± 0.050 0:'338 ± 0:046

Scale Cppn) 1. 17 ± 0. 19
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TABLE 15. JPL-SAO Residuals

Rotation: -3.43 + 1.02 prad

Scale: 1.8 X 10 - 7  5.5 X 10 - 7

R X

Station (m) (m)

4711 -0.81 2.69

4712 -0.66 2.63

4714 -0.86 2.57

4741 4.31 -0.21

4742 0.51 1.66

4751 0.96 -3.03

4761 -0.26 2.10

4762 -0.31 2.31



TABLE 16. Translation, Rotation, and Scale Parameters for the Four Major Datuuns.

Number Translation (m) Rotation Scale

of correction

Datum stations X Y Z Azimuth E-W N-S (ppm) ag0  r (m)

NA27 10 - 31.4 154.0 176.3 01'09 -0'62 -0'23 1.78 0
0. G7 8

+ 1.9 + 2.2 ± 1.9 ±0.24 ±0.69 ±0. 24 ±1.13

EUS0 1.7 - 85.4 -111.1 -131.9 0.56 -0.51 -0.22 2.(;0
0.59 1(;

+ 2.0 + 1.9 ± 2.0 ±0.21 ±0.35 ±0.22 ±0.92

SAG9 - 75.3 - 3.3 - 52.2 -0.33 -0.13 -0.33 -1.39
0.61 14

± 2.5 ± 2.6 ± 2.5 ±0.21 ±0.27 ±0.33 ±0.99

AUGD 7 -118.2 - 38.6 +119.6 0.23 0.82 -0.22 2.33
0.354 ±0.26 ±0.41 ±0.

+ 1.5 + 1.4 ± 1.4 ±0.26 ±0.41 ±0.31 +1.22



64

TABLE 17. Standard Deviations of Datum-Height Comparisons

Datum (m)

NA 27 3. 07

SA69 2.69

AUGD 1. 25

EU50 8. 90

Average: 3.9S
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TABLE 18. Comparison of Coordinates Determined in Both SE II and SE III. The

Systematic Translation, Rotation, .and Scale Differences Were Removed

Before the Residuals Were Computed (in units of meters). The Standard

Error of Unit Weight, 00, is 0. 662.

Residual

Station Weight AX AY AZ North East Height

7050 7.23 1 - 6 - 9 -12 0 0
8015 5.41 0 7 0 .0 7 0
9001 5.58 - 8 4 0 1 - 9 - 1
9002 7.23 1 0 - 3 - 2 - 1 2
9003 6.50 0 0 4 3 0 - 1
9004 5.86 3 -3 - 4 -5 - 3 0
9005 11.80 3 - 8 - 1 3 4 - 7
9006 9.42 0 - 2 - 2 - 1 - 1 - 3
9007 7.31 5 -10 3 6 1 10
9008 10.33 - 1 2 6 5 2 4
9009 8.28 -2 1 4 5 - 1 - 1
9010 5.76 -1 1 - 4 - 3 -1 - 3
9011 9.55 5 - 2 5 7 3 1
9012 7.51 - 3 - 1 8 6 0 6
9021 15.33 11 - 6 -13 -13 12 -5
9023 6.38 1 -2 5 3 0 -5
9028 12.94 14 11 - 4 - 6 0 17
9029 12.61 0 -11 - 7 - 7 - 9 7
9031 15.89 5 - 7 - 1 5 2 7
9066 7.90 -5 8 7 8 9 2
9080 16.03 - 9 4 5 11 3 - 1
9113 7.92 4 3 - 6 - 2 2 - 8
9114 16.19 - 5 2 -13 -. 7 - 5 -11
9115 21.18 - 4 - 2 8 8 - 1 5
9117 16.66 - 2 - 4 5 4 4 4

rms: 6.62 5.02 6.37

Total rms: 10.47

Parameters Determined

X Y Z

Translation (m) -1. 69 1. 19 3.76 ± 1. 18 0.04 ± 1. 18

Rotation -0:7039 ± 0'.047 -0'043 ± 0".049 -0"059 ± 0"044

Scale (ppm)= -0. 26 + 0. 18
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TABLE 19. Zonal Harmonics in Fully Normalized Form. C, = -JI/ -+.I

Harmonic Value Harmonic Value

2 -4.84170E-04 140 -1.94980E-08
2,0 14,0
3 0 9.60408E-07 C- -1. 88586E-08
3)0 15,0

C4 0 5.39333E-07 C16 0 -5.91864E-09

5 0 6.87446E-08 C 17 0 3.71868E-08

C6 0 -1. 53097E-07 C18, i. 67687E-08

C7 0 9. 08860E-08 C19 0 -1. 58527E-08

C 4. 97198E-08 C20 0 1. 85847E-08

C9,0 3.53300E-08 C21,0 1.26574E-08

100 5. 17176E-08 22 -1. 37146E-08

Cll 0 -6.50565E-08 C23 0 -2.11504E-08

C12, 0 3.84000E-08 C35, 0 1.59029E-08

C13,0 6.52406E-08 C36 0 -2.32912E-08
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TABLE 20. Resonant Periods

Resonant

with order Period

(m) Satellite Inclination (days)

9 6102801 950 2.90

12 6100401 39 15.0

12 6000902 47 15.5

12 6508901 59 7.2

12 6506301 69 3.3

12 6507801 144 2.3

13 6701401 39 9.4,10.9, 13. 1,...

13 6503201 41 5.6

13 6701101 40 1.6

13 6206001 50 5.3

13 6800201 105 6.3

13 6600501 89 1.8

13 6304901 90 2.5

14 6701101 40 2.6

14 6302601 50 12.2

14 6101501 67 3.84

14 6101502 67 3.76

14 6400101 70 4.9

14 6406401 80 2.9

14 6408101 87 3.8

14 6600501 89 2.2
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-TABLE 21. Assumed-Accuracy-for Determination of the Geopotefitial.

Data Weight Remarks

Baker-Nunn 4"

Smoothed Baker-Nunn 2"

SAO laser 5 m Taken before 1-970, observed before 1970

CNES laser 10 m Taken before 1970, observed before 1970

GSFC laser 5 m Taken before 1970, observed before 1970

ISAGEX laser 2 m 1971 International Campaign

13.-5
Gravity anomalies (A) - mgal

nA n. is the number of 1 X 10 squares in each

27 5" X 5° mean
MIodel (zero) (A) mgal A is the area

anomaliesA A is te area



TABLE 22. Fully Normalized Tesseral-Harmonic Coefficients for the Geopotential

Harmonic Value Harmonic Value Harmonic Value Harmonic 'value

C 2 2. 3799E-06 S -1. 3656E-06 C 1 1. 9977E-06 S 2.2337E-07
2,2 2,2 3, 1 3, 1

C 7. 7830E-07 S -7. 5519E-07 C 4.9011E-07 S3  1. 5283E-06
3,2 3,2 3,3 3,3

C -5. 1748E-07 S -4.8140E-07 C 3.4296E-07 S 6.7174E-07
4,1 4,1 4,2 4,2

C4 , 1.0390E-06 S4 3 -1. 1923E-07 C4, -1. 0512E-07 S4,4 3. 5661E-07
, _ 3 4 _,

C 1 -5. 3667E-08 S -7. 9973E-08 C 5. 9869E-07 S -3. 9910E-07
,6E1 5,1 5,2 5,2

C 5-5. 8429E-07 S -1. 638E-07 C -1. 1583E-07 S -4. 5393E-08

C5 .956E07 S5 -8.084 E-07 C -7. 216E-08 S 1. 775GE-08
,5 .,5 , 1 6,

C 2. 167 0E-08 S -4. 0654E-07 C 4.4139E-09 S, 3 2. 9055E-08
6,2 6,2 G,8

C6 4 -1. 0003E-07 S,4 -3. 0297E-07 C -1. 3504E-07 S, 5 -6. 09(E-07
4 6,4 6, 56,5

C6,6 -2.9136E-08 S6,6 -2.6327E-07 C7, 2.3532E-07 S 7, 5.5634E-08
6,6 6,67 Y

C7,2 2.0425E-07 S7,2 1.7321E-07 C7 3 2.1994E-07 S7,3 -3.4644E-07

C7 4 -2.8617E-07 S,4 -2.7738E-07 C7 5 3.4727E-08 S ,5 8.7014E-08

C7 6 -2.7496E-07 S7,6 8.5865E-08 C7,7 -2.4856E-08 S7,7 -8.8968E-09

C 1 1.0946E-08 S8,1 4.8429E-08 C8 1.1084E-07 S8 2 1.0359E-07

C8 3 -8. 8578E-08 S -5.0715E-08 C -2.2315E-07 S 2.6511E-07
8,3 8,3 8,4 8,4
8C 1. 5318E-07 S 8. 1158E-08 C -9.7542E-08 S 2.8082E-07
8,5 8,5 8,6 8,6

C 2.0498E-07 S 2.4592E-07 C 1.6967E-07 S 9.3261E-08
8,7 8,7 8,8 8,8

C 1. 8099E-07 S 4. 1091E-08 C -2.2013E-08 S 2.4215E-08
9,1 9,1 9,2 9, 2

C -9. 9252E-08 S -2.3085E-08 C -4. 0867E-08 S -3. 85 25E-08
9,3 9,3 9,4 9,4

C9 5 -5. 8957E-08 S 3.6834E-09 C 4.8812E-08 S 1.1115E-07
9,5 9,5 9,6 9,6

C -1. 9880E-07 S -1.4978E-07 C 2.3523E-07 S 9.6355E-09
9,7 9,7 9,8 9, 8

C9 9 -3.4533E-08 S 5.9502E-08 C10 1 8.9008E-08 S -6.0157E-08
9,9 9,9 10,1 10,1

C 1 0 , 2  -3.7256E-08 S10,2 -6.3676E-08 C103 -1.3307E-07 S -7. 2728E-08

..-. . .*.... . r.



TABLE 22. (Cont.)

Harmonic Value Harmonic Value Harmonic Value Harmonic Value

C -2. 1887E-08 S -7. 8408E-08 C -6. 1509E-09 S -1. 1904E-07
10,4 10,4 10,5 10,5

C106 -9.4142E-08 S -1. 1728E-08 C 1.8525E-07 S 2. 1656E-08
10,6 10,6 10,7 10,7

C 1.0887E-09 S 7.0781E-09 C 7.8473E-08 S 5.6381E-09
10,8 10,8 10,9 10,9

C 0,10 1.3321E-07 0,10 9.8839E-08 C -1.2194E-08 Si1 , 7.5463E-08
10, 10 10,10 11, 1 9111

C -2. 0255E-08 S -6.2998E-08 C -1.0988E-09 S -3.8098E-08
11,2 11,2 11,3 11, 3

CII 4 1.5676E-08 S -1.9551P-07 C 5 -1.8591E-09 S 6. 1113E-08
11,4 11,4 11,5 11, 5

C 6. 3601E-08 S -2.6457E-08 C -3.3761E-08 S -1.2825E-07
11,6 11,6 11,7 11,7

C -1.3634E-08 S 4.5229E-08 C 2. 1256E-08 S 6.6721E-08
11,8 11,8 1119 11,9
, 5. 2555E-08 S -7.7401E-08 C 8.6996E-08 S -2. 5691E-08

11, 10 11110 1 -11,11 11,11

C 12 -5. 6935E-08 -6.6159E-08 C -9. 7424E-08 S 4.6341E-08
12,1 12,1 12,2 12,2

1 1.1555E-07 S12,3 -4.8666E-08 C -5.0379E-08 S12,4 5. 3568E-08

C 12 8. 1834E-08 'S 2.7932E-08 C 12-2. 1177E-08 S 3. 5034E-08
12,5 12,5 12, 6 12,6
12 7 2. 97 5 1E-08 12 3. 1783E-08 C 12, 84. 0190E-08 S12, 5. 6877E-08
12-7 12,7 12)8 1?,8

C12 -1. 1503E-07 S12 1.4508E-08 C12, -4.5921E-08 12, 10 324-08
12 9 12,9 12, 10 12,10 1. , 808E -0

C1 -7. 8443E-09 -4.7858E-08 C -2.7617E-08 S -1.6808E-08
12, 11 12,11 12, 12 12, 12

13, 1 8. 6136E-09 S -3. 2401E-08 C -1. 0679E-08 S -9. 0670E-08
13,1 13,1 13, 2 13,2

C 13 -3. 2361E-08 S 4. 9286E-08 C 3. 9852E-08 S -1. 0608E-07
13,3 13,3 13,4 13,4

C 4. 0047E-08 S 3. 8114E-08 C -2. 1906E-08 S -1. 1321E-08
13,5 13,5 13,6 13,6

13-7. 6933E-08 S 1. 1140E-08 C -2; 7448E-09 S 1.4309E-08
13,7 13,7 13,8 13,8

C -1. 1588E-08 . S 7.2989E-08 C 14.1979E-09 S 7.6769E-09

13,9 13, 9 13,10 13, 10

C 11 -5.4381E-08 S 1.3450E-08 C 12 -4.6633E-08 S 7.9963E-08
13, 11 13,11 13, 12 13, 12

13,13 -6.8944E-08 13,13 7.1891E-08 C 14,1 -1.4359E-08 s14 1 5.2390E-08 .



TABLE 22. (Cont.)

Harmonic Value Harmonic Value Harmonic Value IIarmonic Value

C -1. 5908E-08 S 2.7374E-08 C4 9.6915 -08 S -2. 5631E-08
14, 2 14, 2 14, 3 -14, 3

C14 4 -2. 9864E-08 S14 -3.8189E-09 C14 -1. 3828E-09 5 -5. 8680E-OS

C -1. 3872E-08 S -2.7976E-08 C 7. 1056E-08 S 2.4043E-09
14, 6 14,6 14,7 14,7

C148 -1.877E-08 S14 8 -5.8750E-08 C14 9 -2.4322E-08 S G.0461E-08
14, 8 1 0, 8 14 , 9 14, 9

C14, 10 2. 8985E-08 S14 -3.4224E-08 C 8. 2611E-08 S14 , i -1. 9627E-09

C14,12 1. 1751E-09 S14, 12 -3. 0967E-08 C14,13 3.0793E-08 14, 13 4. 7620E-08

C1414 -6. 5969E-08 814, 14 3.3030E-09 C 2.9358E-08 S15, 1 -1. 6691E-08

C -1. 2291E-08 S -6. 8963E-08 C -5. 8921E-08 8 4. 4772E-08
151 2 15, 2 15, 3 15, 3

C15, 1. 4876E-08 S15 4 7.0359E-09 C 15 5 3. 6806E-08 S15 5 -8.4051E-09

C15 1. 0081E-08 S -3. 0473E-08 C 1 5 , 7  3. 0439E-08 S 1. 5775E-08
15,6 15, 6 15, 7 15, 7

C15 8 -6. 8884E-08 S15, 8 6. 0808E-08 C15 9 -4. 5169E-08 S15, 9 5. 5556E-08

C 6. 2126E-08 S -7. 1799E-09 C -4.4724E-08 S -3.4391E-09
15, 10 15, 10 15, 11 15,11

C -4. 2025E-08 S 5. 9072E-09 C -4. 1654E-08 S -5. 5892E-09
15, 12 15, 12 15, 13 15 13

C 14 9. 5654E-09 S -2.7145E-08 C -5.6358E-08 S 3.4895E-08
15, 14 15, 14 15, 15 15, 15

C -9. 9588E-09 S 5.4160E-08 C 5. 5086E-09 S 4. 9455E-08
16, 1 16, 1 16, 2 16, 2

C 5. 4189E-08 S 5.4887E-09 C 4. 6176E-08 S .3.6270E-08
16, 3 16, 3 16, 4 16, 4

C -2.4432E-08 S165 2. 9671E-08 C -3.7203E-09 S -2. 0786E-08
16, 5 16, 5 16, 6 16, 6

C -2. 2794E-09 S 3.0609E-09 C -1.0459E-07 S -4.4731E-08
16,7 16,7 16,8 16, 8

C 2. 4845E-08 S -8. 6262E-08 C -3. 9928E-08 S -4. 5058E-09
16, 9 16, 9 16, 10 16, 10

C 16 -2. 0848E-08 S16 2. 9738E-08 C, 16). 5930E-08 S1612 -1. 2703E-08
16, 11 16, 11 16, 12 16, 12

C 13 2. 5280E-08 S16 13 6.6240E-09 C -1. 4852E-08 S -8. 1713E-09
16, 13 16, 13 16, 14 16, 14-

C16,5 -7.7425E-08 Se15 -2.6491E-08 C1 1 -1. 8538E-08 S 11 -2.2310E-08



TABLE 22 (Cont.)

Harmonic Value Harmonic Value Harmonic Value Harmonic Value

C 8.6593E-09 S -4. 1093E-08 C -9.0769E-09 S -2.7205E-08
17,1 17,1- 17,2 17 2

C17,3 -7.7864E-09 S17 , 3 -1.7913E-08 C17,4 -4.3231E-08 S17,4 .6.8203E-08

C17 5 4. 1513E-08 S17,5 -2. 5453E-08 C17,6 -4.5453E-08 S17,6 -1. 7273E-08

C 17 1.6938E-08 S1 7 7 -3.3752E-08 C 4. 1231E-08 S 5. 8792E-09
17,7 17,7 17,8 17,8

C -4. 3119E-08 S -1. 5974E-08 C 10 -1. 0844E-08 S 5.5628E-08
17,9 17,9 . 17,10 17, 10

C 17 -4.4136E-08 S17 11 -4.3123E-09 C 3.1661E-08 S17  6.2982E-09
17,11 17, 11 17,12 17 12

C 1713 2. 5147E-08 S17 13 9.7728E-09 C -5. 5945E-09. S 7.2604E-09
17,13 17,13 17,14 1 7 14

15 4. 9113E-08 17,15 3. 1958E-08 7, 16 -2. 3540E-08 S17 16 -1. 5882E,-08

C 17 -9. 0191E-08 S -9.4775E-09 C -2. 3557E-08 S -7. 453GE-08

C -9.4249E-09 2 3.0353E-08 C -3.5003E-08 S -2.04G4E-08
18,2 -, 2 18,3 18,3

C 184 2. 9433E-08 S18. -4.4672E-08 C 1.7511E-09 S -6. 0367E-09
18,4 18,4 18,5 18, 5

C 2. 3931E-08 S 6 -4.4966E-09 8C -7. 8040E-10 S1 8  -8.2010E-09
18,6 18,6 18,7 18,7

C 188 5. 3819E-08 S -2.2106E-08 C -3. 6120E-10 S -5. 0562E-09
18,8 18,8 18,9 18,9 4-

C 4.2146E-08 S 7.8924E-09 C 2.4981E-08 S 2.3183E-08
18,10 18,10 18, 11 1811

C 1 8 12  -6. 2242E-09 S18 1 6.6025E-09 C -2. 6685E-08 S 1 8 13 -4.2500E-08
18,12 18, 1 18,13 18 13

C18 14 9.1191E-09 S 18 -3.3129E-08 ,C -4.1521E-08 S -1. 710E-08
418,14 18, 15 18, 15

C 2.4850E-08 S -4.8182E-09 C 3.5357E-08 S -4.7166E-08
18, 16 18, 16 18, 17 18, 17

C -3.4701E-10 S 5. 0554E-08 C 3.6058E-08 S -3.4421E-09
18, 18 18, 18 19,12 19, 12

C 9.6876E-09 S -6.6095E-08 C 7.6389E-09 S -2.7649E-08
19, 13 19, 13 19, 14 19, 14

C20 13 2. 7630E-08 S2 0  3. 2389E-08 C 3.3687E-08 2 -6. 5741E-08
20,13 20,13 20, 14 20, 14 -

C -1. 9799E-08 S -3. 0711E-08 C 1. 6623E-08 S 8. 7215E-09
21,13 21,13 21,14 21,14

C -7. 9435E-09 221 4.1452E-09 C 2. 8516E-09 S -4. 2148E-08
22, 13 22, 13 22, 14 22, 14

C -1. 3236E-08 S -4.8892E-09 C23, -2. 1148E-08 8 2. 2010E-08
23134 3.2368, 13 2314 23, 83E-014

C24,14 3.4668E-09 s24) 14 2.2983E-08



TABLE 23. Comparison of SE III with Satellite Observations

Epoch (MIJD) 0-(m) n Epoch (MJD) c (m) n

6508901 (Geos A), A/M = 0. 05 cgs

41000 4.1 289 41010 7.7 523

41002 5. 5 367 41012 9.8 577

41004 3.2 314 41014 9.2 715

41006 8.9 601 14016 4.1 425

41008 10.6 696 41018 3.6 221

6800201 (Geos B), A/M = 0. 05 cgs

41038 2.4 249 41046 2.7 441

41040 6.5 533 41048 3.8 304

41042 7.8 681 41052 2.8 388

41044 6.3 651 41054 6.6 602

6701401 (DID), A/M= 0. 1 cgs

41072 10.3 467 41080 7.4 621

41074 9. 9 332 41082 6.9 764

41076 16.3 341 41084 4.9 427

41078 17.0 254 41086 3.6 519



TABLE 24. Comparison of SE III Combination Solution with Surface Gravity (in mgal )

2) 
<gigs22 g

Solution 2,m ((gt -s) 2 (tg) s) D (g2 ) E (E 2) E(6 ) E(6g 2) n

SE II 16 75 184 186 163 253 2 11 63' 20

SE II 16 187 177 229 203 311 52 13 122 (306 anomnalies)

SE III 18 105 221 236 237 311 15 13 77

SE III 10 195 150 192 163 302 42 24 129 1

14 174 174 220 198 302 47 24 103 (118.3 anomalies)

18 156 202 258 237 302 56 24 75

SE III •10 . 184 183 205 163 345 22 19 143 _ 10

14 151 215 236 198 345 20 19 111 (659 anomalies)

18 117 255 281 237 345 26 19 63

SE III 10 186 151 176 163 311 25 (24) 13 148 - 20

14 146 182 200" 198 311 17 (21) 13 116 (306 anomalies)

18 105 221 236 237 311 15 (18) 13 77

n is the number of 1P X 10 mean gravity anomalies used to obtain the 50 X 50 mean gravity anomalies.

[From the available data, there were 935, 369, and 136 gravity anomalies with n 1 , 10, and 20 10 X 10

anomalies.

Aj
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TABLE 25. Surface-Gravity Residuals for an 2 = m = 36 Potential from Numerical

Quadrature (in mgal 2 )

S(gt )2  (gs -gef)2

Degree of 2

reference field nl1 na20 n= 0 E( S)

0 28 29 12

6 38 39 12 10

8 53 54 20 25

10 56 53 21 24

14 61 50 19 21

18 70 48 16 18

Anomalies

used: 1183 306 471



TABLE 26. Comparison with Independent Surface-Gravity Data (in mgal 2)

Comparison Maximum
fielcl, gs 1, m n ((gt- (s2t s) (g D (g ) E(c ) c) E(6g) Region

SE III 18 3726 147 209 284 237 282 75 13 59 North Atlantic

SE mI 18 1794 145 188 232 237 290 44 13 88 Indian Ocean

Averages 64 .2.5 m 68
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