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Abstract. Data on the extent, patterns, and trends of human land use are critically important to support global
and national priorities for conservation and sustainable development. To inform these issues, we created a series
of detailed global datasets for 1990, 2000, 2010, and 2015 to evaluate temporal and spatial trends of land use
modification of terrestrial lands (excluding Antarctica). We found that the expansion of and increase in human
modification between 1990 and 2015 resulted in 1.6 Mkm2 of natural land lost. The percent change between
1990 and 2015 was 15.2 % or 0.6 % annually – about 178 km2 daily or over 12 ha min−1. Worrisomely, we
found that the global rate of loss has increased over the past 25 years. The greatest loss of natural lands from
1990 to 2015 occurred in Oceania, Asia, and Europe, and the biomes with the greatest loss were mangroves,
tropical and subtropical moist broadleaf forests, and tropical and subtropical dry broadleaf forests. We also
created a contemporary (∼ 2017) estimate of human modification that included additional stressors and found
that globally 14.6 % or 18.5 Mkm2 (±0.0013) of lands have been modified – an area greater than Russia. Our
novel datasets are detailed (0.09 km2 resolution), temporal (1990–2015), recent (∼ 2017), comprehensive (11
change stressors, 14 current), robust (using an established framework and incorporating classification errors and
parameter uncertainty), and strongly validated. We believe these datasets support an improved understanding of
the profound transformation wrought by human activities and provide foundational data on the amount, patterns,
and rates of landscape change to inform planning and decision-making for environmental mitigation, protection,
and restoration.

The datasets generated from this work are available at https://doi.org/10.5281/zenodo.3963013 (Theobald et
al., 2020).

1 Introduction

Humans have transformed the Earth in profound ways
(Marsh, 1885; Jordan et al., 1990; Vitousek et al., 1997; Hurtt
et al., 2006), contributing to global climate change (IPCC,
2019), causing global habitat loss and fragmentation, and
contributing to declines in biodiversity and critical ecosys-
tem services (IPBES, 2019). Addressing the consequences
of rapid habitat loss and land use change is essential for the

implementation of various international initiatives, including
the Convention on Biological Diversity 2020 Aichi Biodi-
versity Targets, the United Nations 2030 Sustainable Devel-
opment Goals (especially Goal 15; Secretariat of the Con-
vention on Biological Diversity, 2010), the Bonn Challenge
(Verdone and Seidl, 2017), and the Global Deal for Nature
(Dinerstein et al., 2019). Foundational to addressing these
goals is a firm understanding of the rates, trends, and extent
of these land use changes. Efforts to date have focused on
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historical patterns (Klein Goldewijk et al., 2007, 2017; Ra-
mankutty et al., 2008; Ellis, 2018) or have been limited due
to the unavailability of contemporary, temporally compara-
ble, and high-resolution (< 1 km2) data (Venter et al., 2016;
Geldmann et al., 2019a; Kennedy et al., 2019b).

Here we describe a new dataset that maps the degree of
human modification of terrestrial ecosystems globally, for
recent changes from 1990 to 2015 and for contemporary
(circa 2017) conditions. We mapped human activities that di-
rectly or indirectly alter natural systems, which we call an-
thropogenic drivers of ecological stress or “stressors” (fol-
lowing Salafsky et al., 2008; Theobald, 2013). Similarly to
other efforts (Sanderson et al., 2002; Theobald, 2010, 2013;
Geldmann et al., 2014; Venter et al., 2016; Kennedy et al.,
2019b), we augmented remotely sensed data with tradition-
ally mapped cartographic features. This is because remotely
sensed imagery has limitations for this application – espe-
cially prior to ∼ 2010 – because it can require human in-
terpretation to classify adequately and can miss development
features that are obstructed by vegetation canopy or are small
or narrow features (e.g., towers, wind turbines, power lines).

We mapped the degree of human modification based on an
established approach that has been applied nationally, inter-
nationally, and globally (Theobald, 2010, 2013; González-
Abraham et al., 2015; Kennedy et al., 2019b). It uses an ex-
isting classification system (Salafsky et al., 2008) to (a) en-
sure parsimony, (b) distinguish two spatial components (area
of use and intensity of use), (c) use a physically based mea-
sure that is needed to estimate change (Gardner and Urban,
2007), (d) incorporate spatial and classification uncertainty,
and (e) combine multiple stressors into an overall measure
that assumes additive relationships among stressors and ad-
dresses the correlation among variables (Theobald, 2010).
The resulting quantitative estimate of human modification
has values ranging from 0 to 1 that support robust landscape
assessments (Schultz, 2001; Hajkowicz and Collins, 2007).

To understand temporal landscape change, we calculated
the degree of human modification – denoted by H – for the
years 1990, 2000, 2010, and 2015 using methods and datasets
that minimize noise and bias. Second, we included additional
stressors not incorporated previously, including disturbance
of natural processes due to reservoirs, effects from air pollu-
tion, and human intrusion (Theobald, 2008). Third, we cal-
culated human stressors using data that are of a resolution up
to 2 orders of magnitude finer (0.09 vs. 1–86 km2) than past
efforts (Ellis and Ramankutty, 2008; Geldmann et al., 2014,
2019a; Haddad et al., 2015; Venter et al., 2016; Kennedy et
al., 2019b). This higher resolution reduces the loss of in-
formation of the spatial pattern within a pixel; better iden-
tifies rare features; facilitates the application of these data for
species and ecological processes that often occur at a fine
scale; and improves the utility and relevance of these prod-
ucts for policy makers, decision makers, and land use man-
agers.

Calculating H as a real value across the full gradient of
landscape change is valuable because it can be applied rig-
orously to a variety of questions (Theobald, 2010, 2013),
including discerning the heterogeneity of human uses that
are often lumped within broad classes like “urban”, captur-
ing the extent and pattern of the agricultural lands typically
occurring beyond urban centers and protected areas, and de-
lineating areas of low modification, all of which are useful for
conservation prioritization and planning efforts (Kennedy et
al., 2019b, c). Here, we describe the technical methods and
briefly report on results on the temporal trends and current
spatial patterns of human modification across all terrestrial
lands, continents, biomes, and ecoregions. Because conser-
vation organizations often use these types of data to focus
their activities on specific regions (e.g., Jantke et al., 2019),
we provide rankings by biome and ecoregion (Dinerstein et
al., 2017) and briefly compare our results to other available
studies.

2 Methods

2.1 Overview

We calculated the degree of human modification using the
Direct Threats Classification v2 (Salafsky et al., 2008; http:
//cmp-openstandards.org, last access: 28 December 2019),
which defines a stressor as the proximate human activities
or processes that have caused, are causing, or may cause im-
pacts on biodiversity and ecosystems. Table 1 lists the spe-
cific stressors and data sources we included in our maps: ur-
ban and built-up, crop and pasture lands, livestock grazing,
oil and gas production, mining and quarrying, power gener-
ation (renewable and nonrenewable), roads, railways, power
lines and towers, logging and wood harvesting, human intru-
sion, reservoirs, and air pollution.

To estimate temporal change in H from 1990 to 2015,
we followed established criteria (Geldmann et al., 2014)
and included 11 stressors for which we could obtain global
data with a fine-grained resolution (≤ 1 km2) and that pro-
vided consistent and comparable repeated measurements, es-
pecially in regards to the data source, methods used, and ap-
propriate time frame (Table 1). We included current major
roads and railways as a static layer in the temporal maps be-
cause in most cases some form of road existed prior to our
baseline year of 1990 (except for the relatively rare, though
important, new highways constructed).

To estimate the current amount of H circa 2017 (me-
dian = 2017, min = 2012, max = 2019), we included three
additional stressors, comprising grazing, oil and gas wells,
and power lines. We note that we did not map stressors for
invasive species or pathogens and genes, geologic events, or
climate change. This was because suitable temporal global
data were not available to capture stressors due to invasive
species or pathogens and genes, the majority of geological
events is not directly caused by humans, and climate change
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Table 1. Overview of stressors, datasets, spatial resolution, and years data were available and used in the maps of human modification.
Stressor classification levels in parentheses correspond to those within the Direct Threats Classification v2 (Salafsky et al., 2008). Acronyms
of source data are in bold in the “Source” column for reference throughout the paper. For each stressor, the years 1990–2015 are used for
change analysis, and ∼ 2017 is a compilation of all stressors that represents “current” conditions with the median year of 2017.

Class Stressora Source Scale (km2) Year

1990 2000 2010 2015 ∼ 2017

Urban & built-up (1) Built-up (1.1, 1.2) Global Human Settlement Layer ver-
sion R2018A (GHSL; Pesaresi et al.,
2015)

0.0009–0.9 1990 2000 2010a 2015 2015

Agriculture (2) Croplands & pasture-
lands (2.1)

European Space Agency Climate
Change Initiative land cover (ESA

CCI; Li et al., 2018)

0.9 1992 2000 2010 2015 2015

Unified Cropland Layer (UCL; Wald-
ner et al., 2016)

1 2010 2010

Global Land Systems v2 (GLS; Kehoe
et al., 2017)

1 2010 2010

Grazing (2.3) Gridded Livestock of the World v3
(GLW; Robinson et al., 2014; Gilbert
et al., 2018a–i)

10 2010 2010

Energy production &
mining (3)

Oil & gas production
(3.1)

Nighttime flares from Defense Mete-
orological Program Operational Lines-
can System (DMSP OLS, Elvidge et
al., 2009) and Visible Infrared Imag-
ing Radiometer Suite (VIIRS, Elvidge
et al., 2016)

0.25–1.0 2016

Mining & quarrying
(3.2)

S&P global mining dataset (S&P, 2018;
Valenta et al., 2019)

∼ 1 : 10 000 1990, 2000 2010 2015 2018

Renewable (3.3) &
nonrenewable power
(1.2) generation

World Resources Institute Global
Power Plant Database (WRI; WRI,
2019)

∼ 1 : 100000 1990 2000 2010 2015 2018

Transportation & ser-
vice corridors (4)

Roads (4.1) OpenStreetMap highway, minor, and
two-track features (OSM; Open-
StreetMap, 2019)

∼ 1 : 10–25 000 b b 2019

Railways (4.1) OSM railway features (OpenStreetMap,
2019)

∼ 1 : 10–25 000 2019

Power lines (4.2) OSM power line features (Open-
StreetMap, 2019)

∼ 1 : 10–25 000 2019

Electrical infrastructure
(4.2)

Nighttime lights from DMSP OLS and
VIIRS (Elvidge et al., 2001, 2013;
Doll, 2008; Zhang et al., 2016)

0.25–1.0 1992 2000 2010 2015 2018

Biological harvesting
(5)

Logging & wood har-
vesting (5.3)

Forest loss (Curtis et al., 2018) and for-
est change (Hansen et al., 2013)

0.09–100 2000 2000 2010 2015 2018

Human intrusions (6) Human intrusions (1.3,
5.1, 5.2, 6.1)

Human intrusion (HUE; Theobald,
2008) using accessibility and popula-
tion from Global Rural-Urban Map-
ping Project v1.01 (GRUMP; CIESIN,
2017) and Gridded Population of the
World v4 (GPW; CIESIN, 2018)

1 1990a 2000 2010 2015 2015

Natural system modifi-
cations (7)

Reservoirs (7.2) Global Reservoir and Dam database
(GRanD v1.3; Lehner et al., 2011)

∼ 1 : 25 000 1990 2000 2010 2015 2017

Pollution (9) Air pollution (9.5) Emission Database for Global At-
mospheric Research (EDGAR v4.3.2;
Crippa et al., 2018) for NOx

∼ 100 1990 2000 2010 2012 2012

a Based on interpolation. b Used major roads (i.e., highways) for 2019.
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is better modeled as a separate process distinct from the ef-
fects of direct human activities and there is a plethora of re-
search on this topic (Geldmann et al., 2014; Titeux et al.,
2016).

For each stressor s we quantified the degree of human
modification as

Hs = Fs · p(Cs) · Is, (1)

where Fs is the proportion of a pixel occupied (i.e., the foot-
print) by stressor s, p(Cs) is the probability that a stressor oc-
curs at a location to account for spatial and classification un-
certainty, and Is is the intensity. Importantly, F and I have a
direct physical interpretation (Gardner and Urban, 2007), are
well bounded, and range from 0 to 1 and values are a “real”
data type. Consequently, H provides the basis for unambigu-
ous interpretation to assess landscape change (Hajkowicz and
Collins, 2007; Riitters et al., 2009). Specific formulas used
to map raw stressor data as indicator layers are provided
below. Table 2 details our estimates of intensity values for
each stressor (modified from Theobald, 2013; Kennedy et
al., 2019b), which is used to differentiate land uses that have
varying impacts on terrestrial systems (e.g., grazing is less in-
tensive than mining). Our intensity values were informed by
standardized measures of the amount of nonrenewable en-
ergy required to maintain human activities (Brown and Vi-
vas, 2005) and found to generally correlate with species’ re-
sponses to land use where examined (Kennedy et al., 2019b).

We generated datasets that represent temporal changes be-
tween 1990 and 2015 and for current (∼ 2017) conditions
by combining stressor layers using the fuzzy algebraic sum
(Bonham-Carter, 1994; Malczewski, 1999; Theobald, 2013),
which is calculated as

H = 1 −
∏n

s=1
(1 − Hs) , (2)

where n is the number of stressors (s) included. Of critical
importance, the fuzzy sum formula is an increasive function
that calculates the cumulative effects of multiple stressors in
a way that minimizes the bias associated with nonindepen-
dent stressors and assumes that multiple stressors accumulate
(Theobald, 2010, 2013; Kennedy et al., 2019b). This differs
substantially from simple additive calculations that are com-
monly used (Halpern et al., 2008; Halpern and Fujita, 2013;
Venter et al., 2016) but assume that stressors are independent
and results in a metric that is sensitive to the number of stres-
sors included in the model (Malczewski, 1999).

We mapped human modification of all terrestrial lands (ex-
cluding Antarctica) and included lands inundated by reser-
voirs but excluded other rivers and lakes. An often over-
looked but critical aspect to understanding human modifica-
tion is how water is mapped, especially for the interface be-
tween land and coastlines, lakes, reservoirs, and large rivers.
We mapped nonreservoir areas dominated by water (i.e.,
oceans, lakes, reservoirs, and rivers) by processing data on
ocean from the European Space Agency’s Climate Change

Initiative program (ESA CCI; 0.15 km, circa 2000) and on
surface waters using the Global Surface Water dataset (GSW;
30 m; Pekel et al., 2016). We identified inland water bod-
ies (i.e., lakes, reservoirs, rivers, etc.) using ESA CCI nono-
cean pixels that were at least 1 km from the interior of the
land–ocean interface. We identified interior water pixels us-
ing GSW with at least 75 % water occurrence from 1984 to
2019 and that were at least 0.0225 km2 in area (to remove
small lakes, ponds, and narrow streams). As a result, inland
water bodies and the ocean–land interface are more distinct,
more consistent, and better aligned.

We summarized our estimates of human modification
across all terrestrial lands, biomes, and ecoregions (defined
by Dinerstein et al., 2017) and here report median (Hmedian)
and mean (Hmean) statistics. We summarized results of tem-
poral trends using the mean annualized difference (Hmad),
calculated as the mean values across each analytical unit
(e.g., biomes, ecoregions) of the annualized difference as-
suming a linear trend (Had):

Had = (Hu − Ht )/(u − t), (3)

where u and t are the years of the datasets (e.g., u = 2015,
t = 1990) and u > t . When discussing trends between 1990
and 2015, we emphasize the mean statistic because it bet-
ter captures locations where H values have changed (mostly
increasing over time), partly due to land uses with high val-
ues (e.g., urbanization ∼ 0.8) that are not well represented in
the median statistic. We calculated the increase in H , or con-
versely the amount of natural habitat loss, as the per-pixel
value times the pixel area, summed across a given unit of
analysis. This assumes that any increase in the level of hu-
man modification causes natural land loss regardless of the
original H level. We also report the median statistic because,
as is typical of spatial landscape data, the distribution of H

values is skewed to the right. Finally, we compared our re-
sults of the Hmad to those calculated on the human footprint
(HF; for 1993–2009; Venter et al., 2016) and the temporal
human pressure index (THPI; for 1995–2010; Geldmann et
al., 2019a).

2.2 Stressors mapped

2.2.1 Urban and built-up

To map built-up areas that are typically found in urban ar-
eas and dominated by residential, commercial, and indus-
trial land uses, we used the most recent version of the Built-
up Grid from the Global Human Settlements Layer dataset
(GHSL R2018A; Pesaresi et al., 2015; Corbane et al., 2018).
The degree of human modification that is contributed by
built-up areas, Hbu, is

Hbu = Fbu · p(Cbu) · Ibu, (4)

where Fbu measures the proportion of the area of a pixel clas-
sified as built-up, p(Cbu) applies the GHSL-reported confi-
dence mask (for 2014) for locations of the built-up areas (for
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Table 2. Estimates of the intensity value for each stressor. “Best” estimates were determined from Brown and Vivas (2005)1, Theobald
(2013)2, Kennedy et al. (2019b)3, or expert judgment4 and are bracketed by a minimum and maximum range, following the lowest–highest–
best-estimate elicitation procedure to reduce bias (McBride et al., 2012). Results presented here use the best estimate, while minimum and
maximum estimates are used to specify the range of possible randomized intensity values in the uncertainty analysis.

Class Stressor Minimum Best Maximum

Urban & built-up Built-up areas3,4 0.69 0.85 1.00

Agriculture Cropland & pasture3

– Minimal4 0.29 0.34 0.39
– Light4 0.35 0.45 0.55
– Intense1,4 0.60 0.65 0.70

Livestock grazing1 0.20 0.28 0.37

Energy production & mining Oil & gas production1,3 0.70 0.85 1.00

Mining3 0.83 0.91 1.00

Power generation1 (nonrenewable) 0.70 0.85 1.00

Power generation (renewable)1 0.70 0.80 0.90

Transportation & service corridors* Major roads1 0.78 (20) 0.80 (30) 0.83 (40)

Minor roads1 0.39 (15) 0.44 (20) 0.50 (25)

Two-track roads1 0.10 (3) 0.15 (5) 0.20 (10)

Railways1 0.78 (15) 0.80 (20) 0.83 (25)

Power lines2 0.10 0.15 0.20

Electrical infrastructure (nighttime lights)3 0.20 0.35 0.50

Biological harvesting Logging & wood harvesting1,4,**
– Commodity-driven1,4 0.60 0.65 0.07
– Shifting agriculture1,4 0.10 0.20 0.30
– Forestry1,4 0.10 0.20 0.30

Human intrusion Human intrusion3,4 0.20 0.35 0.50

Natural systems modification Reservoirs4 0.60 0.65 0.70

Pollution Air pollution4,*** 0.05 0.10 0.20

∗ Assumed width of roads and railways (meters) provided in parentheses. Use of roads is incorporated into estimates of human intrusion.
∗∗ Forest loss due to wildfire was not included because of the challenges in understanding human causation and suppression, especially over a global extent.
Also, loss due to urbanization was not included in this stressor because it is incorporated directly into the built-up stressor.
∗∗∗ Minimum value is half of best; maximum is twice the best.

the target year; Pesaresi et al., 2015), and Ibu is the intensity
factor specified in Table 2.

2.2.2 Agriculture

We mapped agriculture stressors by identifying land cover
classes associated with crop and pastureland from ESA CCI
land cover datasets (ESA CCI, 2017; Pérez-Hoyos et al.,
2017; Li et al., 2018) available at 0.09 km2 for 1992, 2000,
2010, and 2015. We merged the cropland and pastureland
stressors because these two classes are combined in the
ESA land cover data and they are challenging to distinguish
even at higher resolution (∼ 30 m; Wickham et al., 2017).

To incorporate classification errors associated with all cover
classes, we multiplied the footprint Fcp = 1.0 with the proba-
bility that a pixel with cover class C was found to be cropland
or pasture, p

(

Ccp
)

, by interpreting reported accuracy assess-
ment results (ESA CCI, 2017, in Table 3). To reduce the ef-
fects of scattered pixels that have some probability of being
mapped as cropland–pastureland (e.g., misclassified pixels of
high-elevation tundra or alpine areas), we multiplied p

(

Ccp
)

by the proportion of lands estimated to be cropland from the
Unified Cropland Layer (Waldner et al., 2016), v, so that

p(Ccp)′ = p
(

Ccp
)

× v (5)
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Table 3. Probability of a land cover type being classified as cropland or pasture, calculated using the producer’s accuracy, which is how
often features on the ground are classified or the probability that a certain pixel is classified as a given land cover class. Probabilities of being
cropland or pasture cover type (Ccp) are adjusted based on patch size (A) for patches with A < 1 km2, where p(Ccp) = Ccp · A2

cp.

Value Name Cropland–pastureland weight Probability cropland–pastureland

10 Cropland, rainfed 1 0.887
20 Cropland, irrigated 1 0.893
30 Mosaic cropland (> 50 %) 0.5 0.387
40 Mosaic cropland (> 50 %) 0.25 0.366
50 Tree (> 15 %), broadleaved, evergreen 0 0.038
60 Tree (> 15 %), broadleaved, deciduous 0 0.070
70 Tree (> 15 %), needleleaf, evergreen 0 0.016
80 Tree (> 15 %, needleleaf, deciduous 0 0.000
90 Tree, mixed leaf type 0 0.000
100 Mosaic tree or shrub (> 50 %) 0 0.345
110 Mosaic herbaceous (> 50 %) 0 0.091
120 Shrubland 0 0.104
130 Grassland 0 0.176
140 Lichens and mosses 0 0.000
150 Sparse vegetation (< 15 %) 0 0.032
160 Tree, flooded 0 0.043
170 Tree, flooded saline 0 0.000
180 Shrub or herbaceous, flooded 0 0.000
190 Urban areas 0 0.120
200 Bare 0 0.011
210 Water 0 0.018
220 Permanent snow & ice 0 0.000

and also reduced the value of p(Ccp)′ based on patch size
A, assuming that accuracy declines rapidly with cropland–
pastureland small patches (A < 1 km2) using

p
(

Ccp
)′′

=

(

p
(

Ccp
)′
)2

, A < 1. (6)

We then calculated Hcp as

Hcp = Fcp · p
(

Ccp
)′′

· Icp. (7)

We developed spatially explicit estimates of agricultural in-
tensity based on land management, such as cropping and
number of rotations, tilling, and cutting operations, because
these activities typically vary geographically (van Asselen
and Verburg, 2012; Kehoe et al., 2017). We followed existing
methods (Chaudhary and Brooks, 2018) to estimate three in-
tensities of agricultural land use – minimal, light, and intense
– and then mapped them using cover types from the Global
Land Systems v2 dataset (GLS; Kehoe et al., 2017) by esti-
mating intensity values (I ) for each of the agricultural inten-
sity types (Table 2). Although GLS v2 represents conditions
circa 2005, we incorporated temporal changes by weighting
the proportions of agricultural lands from the time-varying
ESA CCI land cover datasets.

To estimate the modification associated with the grazing
of domestic livestock (Hau), we used Gridded Livestock of
the World v3 (Robinson et al., 2014; Gilbert et al., 2018a–
i) which maps the density of animals per square kilometer

(G) for eight types of livestock (j ): buffaloes, cattle, chick-
ens, ducks, goats, horses, pigs, and sheep. To calculate the
overall footprint of grazing (Fau), we summed the weighted
densities by global averages of livestock unit (LU) coeffi-
cients (wi = 0.84, 0.67, 0.01, 0.01, 0.10, 0.84, 0.23, 0.10,
listed, respectively, for each livestock species stated above).
We used a lower threshold found at 10 % to remove val-
ues < 1.0 LUkm−2 (similar to Jacobson et al., 2019) and
1000 LUkm−2 as an upper threshold because it is a common
breakpoint between grazing and industrial feedlots (Gerber
et al., 2010). We assumed (here and below unless otherwise
provided) no uncertainty (p(Cau) = 1.0), because we lacked
explicit data to do so. We then log10 transformed and max-
normalized (Kennedy et al., 2019b) to obtain 0–1 values and
calculated the mean Hau using a 10 km radius moving win-
dow to reduce the effects of the coarser-resolution pixels:

Fau =
∑8

j=1
Gjwj ,max(1000),min(1), (8)

Hau = ((log(Fau + 1))/ log(1000) · p(Cau) · Iau. (9)

2.2.3 Energy and extractive resources

To estimate stressors associated with extractive energy pro-
duction, we mapped gas flares derived from nighttime lights
using data from the Visible Infrared Imaging Radiometer
Suite from the Suomi National Polar-orbiting Partnership
(VIIRS; Elvidge et al., 2013). Roughly 90 % of gas flares
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occur at locations where oil and gas are extracted (Elvidge
et al., 2016). We used point data processed specifically to
identify gas flares in VIIRS for 2012 and 2013 (Elvidge et
al., 2016). For each flare, we approximated a footprint of
0.057 km2 per wellhead (Allred et al., 2015). It is common
to approximate the footprint of points (and lines) using a
simple “buffer”, which implicitly assumes no location er-
ror and no distance decay from the point of origin. Such a
buffer approach essentially centers a cylinder on each data
point, where volume (V ) equals the approximate footprint
and height (h) and a perfect certainty of 1.0. Here, how-
ever, we assumed some uncertainty in the location of the
point and that the effects associated with a feature such as
an oil or gas wellhead diminish with distance. That is, rather
than use a cylinder with volume V (or similarly a simple
uniform buffer away from linear features, e.g., power lines
or roads), we used a conic-shaped kernel centered on the
point to calculate the uncertainty p(Cog), where the height of
the cone h = 0.5 represents a conservative estimate of spa-
tial accuracy (Theobald, 2013). We derived the cone radius
D = 0.329 km by setting V to the footprint of 0.057 km2:

D =
√

(3/h)V/π. (10)

Thereby the uncertainty parameter for each point is calcu-
lated using

p(Cog) = 3h/πD2. (11)

We assigned the value of p(Cog) that overlapped the center
of each pixel, with max p(Cog) = 1.0. Human modification
was then calculated as

Hog = Fog · p
(

Cog
)

· Iog. (12)

2.2.4 Mines and quarries

To estimate modification due to mines and quarries, we de-
rived locations represented as points from a global mining
dataset (n = 34565; S&P, 2018; Valenta et al., 2019). We re-
tained surface mines that were constructed, where construc-
tion had started, were in operation, were in the process of be-
ing commissioned, or had residual production (n = 22705).
For the temporal change analysis, we removed locations that
did not have a specified year of construction (n = 3634).
We calculated the mean disturbed area and associated in-
frastructure of a mine by intersecting mine point locations
with 441 623 polygons that represent footprints of quarries
and mines (OpenStreetMap, 2019). For four types of mines –
coal, hard rock (bauxite, cobalt, copper, gold, iron ore, lead,
manganese, molybdenum, nickel, phosphate, platinum, sil-
ver, tin, uranium oxide, and zinc), diamonds, and other (anti-
mony, chromite, graphite, ilmenite, lanthanides, lithium, nio-
bium, palladium, tantalum, and tungsten) – we estimated the
mean area (a) to be 12.95 km2 (n = 647) for coal, 8.54 km2

(n = 860) for hard rock, 5.21 km2 (n = 39) for diamonds,

and 3.40 km2 (n = 27) for other. Finally, following Eqs. (8)
and (9), we calculated p(Cm) for each of the four mining
types using D values of 4.973, 4.038, 2.548, and 3.154 km,
respectively, and calculated Hm as

Hm = Fm · p(Cm) · Im. (13)

2.2.5 Power plants

To estimate the effects of where energy is produced, we
mapped the location of power plants represented as points
(n = 29903; WRI, 2019). For the temporal change analy-
sis, we removed locations that did not have a specified year
of construction (n = 16288). We estimated p(Cpp) using a
conic-shaped kernel (Eqs. 8 and 9) and h = 0.5. We mapped
both nonrenewable energy forms (Hppn; coal, oil, natural gas)
and renewable energy forms (Hppr; geothermal, hydro, solar,
wind), where we assumed Fpp = 1 and calculated a single
p(Cpp) for both nonrenewable and renewable energy sectors
with Dpp = 1224 m (following Theobald, 2013):

Hppn = Fpp · p(Cppn) · Ippn, (14)

Hppr = Fpp · p(Cppr) · Ippr. (15)

2.2.6 Transportation and service corridors

For transportation, we mapped roads and railways using
OpenStreetMap highway linear features (OpenStreetMap,
2019). We calculated the footprint for the following trans-
portation types: major (motorway, primary, secondary, trunk,
link), minor (residential, tertiary, tertiary link), and two-track
roads and railways as

Frr =
∑c

i=0
(w/α) · µ, (16)

Hrr = Frr · p (Crr) · Irr, (17)

where w is the estimated width of a road of type i from
Table 2, α is the pixel width (i.e., 300 m), and µ = 0.79 to
adjust for the fractal dimension of road lines crossing cells
(Theobald, 2000) because road lines often cross pixels at ran-
dom angles. If a divided highway is represented as two sep-
arate lines, then each is represented independently. Also, if
a cell has two or more roadway types cross it (e.g., where a
secondary road joins a highway), the fuzzy sum of Hrr for
both roads is calculated. Note that use of roads is incorpo-
rated into the “human intrusion” stressor (described below).

To map the modification associated with aboveground
power lines (Hpl), we used

Hpl = Fpl · p(Cpl) · Ipl, (18)

where Fpl is calculated using a 500 m buffer (Theobald,
2013), p(Cpl) is calculated using h = 0.5, and Ipl is the esti-
mate of intensity.

To estimate a stressor associated with electrical infrastruc-
ture and energy use (Hnl), we mapped “nighttime lights”
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using the Defense Meteorological Satellite Program Oper-
ational Linescan System (DMSP OLS; Elvidge et al., 2001)
“stable lights” dataset. We included this as a distinct stres-
sor from the energy extraction stressor (oil and gas flares,
discussed above) because gas flares are derived by finding
anomalies (high values) in the images rather than from the
stable lights product and the footprints associated with the
flares are an extremely small fraction of the overall extent of
energy infrastructure.

To maximize temporal consistency, we used the intercal-
ibrated DMSP OLS dataset and extended their (Zhang et
al., 2016; Li and Zhou et al., 2017) approach for 2013 (us-
ing a = 1.01, b = 0.00882, c = −0.965; Zhang et al., 2016).
DMSP OLS values, L, are expected to range from 0 to 63,
but because max values differed yearly (ranging from 57.87
to 66.16), we normalized all images (1992–2013) to range
from 0 to 1.0 using the max-adjusted value for each year (L′).
To reduce the effects of noise in the images in areas with low
light and in high northerly latitudes, we removed nighttime
light values when L′ < 0.077 – that is, we set values to null

when they were below the 25th percentile of the global ter-
restrial distribution compared to the often-used noise thresh-
old of L = 5 (following Elvidge et al., 2001).

To adjust for interannual spatial-misalignment errors
(Elvidge et al., 2013), we adjusted the normalized DMSP im-
age for 2013 to align with the 2013 VIIRS product by iden-
tifying sharply contrasting and consistent signals at 10 loca-
tions (n = 10) distributed across the continents. We then vi-
sually compared each of the images from 1992 to 2012 to the
DMSP image for 2013 and shifted the images to align them
(averaged shift in meters – x = 359.5, y = 476.2). To fur-
ther reduce interannual variability, we averaged image values
at each pixel using a 3-year “tail” and used a rank-ordered-
centroid weighting (Roszkowska, 2013) such that the spa-
tially aligned and temporally smoothed nightlight value Y

for year t is

Yt =
(

L′
t · 0.62

)

+
(

L′
t−1 · 0.26

)

+
(

L′
t−2 · 0.12

)

. (19)

Finally, to reduce the blooming effects and to take advantage
of the higher-quality VIIRS-based nightlights (i.e., higher
spatial resolution, reduction in saturated pixels), we sharp-
ened DMSP nightlight values yt using the VIIRS brightness
value y to be proportional to the ratio of the DMSP values:

Y ′
t = Yt ·

(

L′
t/L2013

)

. (20)

We then transformed Y ′
t following Kennedy et al. (2019b),

capping values above 126.0 (the 99.5 percentile of global val-
ues):

Hnl =
(

log10

(

1 + Y ′
t

)

/2.104)
)

· p(Cnl) · Inl. (21)

2.2.7 Logging

To estimate stressors on forested lands, we used maps of
forest loss (Curtis et al., 2018) associated with commodity-
driven deforestation, shifting agriculture, and forestry. (Note

that we excluded as stressors wildfire because of the chal-
lenges of attributing wildfires to human causation – espe-
cially over global extent – and urbanization because it is mea-
sured directly by the built-up stressor.) We then identified lo-
cations where forest was lost due to one of the three mapped
stressors (using v1.6, updated to 2018; Hansen et al., 2013)
prior to the year of our estimated human modification map
and applied the intensity value associated with that stressor.
Thus,

Hfr = Ffr · p(Cfr) · Ifr, (22)

where Ffr is pixels of forested loss in a given year and Ifr is
an estimate of intensity associated with the cause of forest
loss.

2.2.8 Human intrusion

We estimated human intrusion (Hi) using a method that
builds on and extends accessibility modeling (Nelson, 2008;
Theobald, 2008, 2013; Theobald et al., 2010; Weiss et al.,
2018; Nelson et al., 2019). Human intrusion (a.k.a. “use”;
Theobald, 2008) uses central place theory (Alonso, 1960)
and integrates human accessibility throughout a landscape
from defined locations, typically along roads and rails, as
well as to off-road areas from urban areas (Theobald et al.,
2010; Esteves et al., 2011; Theobald, 2013; Larson et al.,
2018).

Accessibility measured in travel time in minutes is cal-
culated from each mapped settlement point j (e.g., cities,
towns, villages) from GRUMP v1.01 and GPW v4 (CIESIN,
2017, 2018). This approach is much less sensitive to arbitrary
thresholds of city or town size (e.g., 50 000 residents), often
used due to computational constraints (e.g., Nelson, 2008;
Weiss et al., 2018). Second, to estimate intrusion of people
into adjacent areas from a given settlement, we estimated
the number of people (using population estimates at settle-
ment j ) at a given location (X; population density is people
per square kilometer) following the assumption that the hu-
man density halved with every 60 min traveled (Theobald,
2008, 2013). The resulting intrusion map for each settlement
was then summed to account for typical overlaps of intru-
sion from nearby settlements. We assumed that there is a
limit at very high population densities, and so we capped the
maximum value of intrusion, X, at 1 000 000 and then max-
normalized using a square-root transform:

Fi = X0.5
· 0.001, (23)

Hi = Fi · p(Ci) · Ii. (24)

Note that accessibility was calculated using estimates of
travel time along roads and rails, as well as off-road through
different features of the landscape, using established travel
time factors (Tobler, 1991) and presuming walking off-trail
or via boats on freshwater or along ocean shoreline (Nelson,
2008; Theobald et al., 2010; Weiss et al., 2018; Nelson et al.,
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2019). This included effects of international borders follow-
ing Weiss et al. (2018), and accessibility to lands was calcu-
lated across oceans.

2.2.9 Natural systems modification

Dams and their associated reservoirs flood natural habitat
and strongly impact the natural flow regimes of the adja-
cent rivers (Grill et al., 2019). We mapped the footprint
of reservoirs Fr created from 6849 dams from the Global
Reservoir and Dam database (GRanD v1.3; Lehner et al.,
2011; http://globaldamwatch.org/grand/, last access: 28 De-
cember 2019).

Hr = Fr · p(Cr) · Ir (25)

Because there are some potential analyses that would benefit
from treating all water bodies consistently, we provided an
additional version with all water bodies masked out in the
dataset.

2.2.10 Pollution

We estimated the stress of air pollution by using data on
nitrogen oxides (NOx) through time from the Emission
Database for Global Atmospheric Research (EDGAR v4.3.2;
Crippa et al., 2018). We selected NOx because it is a strong
contributor to acid rain and fog and tropospheric ozone and
because atmospheric levels are predominantly from human
sources (Delmas et al., 1997). We used the 99th percentile
(46 750 Mt) as the maximum value and then max-normalized
(Fnox) and adjusted using the intensity value Inox:

Hnox = Fnox · p(Cnox) · Inox. (26)

2.3 Uncertainty and validation analyses

To understand the uncertainty in our results associated with
our estimated intensity values (Table 2), following Kennedy
et al. (2019c), we recalculated H , where Is was randomized
(n = 50) between the minimum and maximum intensity val-
ues for each stressor. We then calculated the per-pixel mean
and standard deviation for the 50 randomizations at 1 km2

resolution for computational efficiency and provided corre-
sponding maps.

We also assessed the accuracy of our maps following val-
idation procedures described in Kennedy et al. (2019a, b, c).
Because historical ground truth human modification data in
a comparable form are not widely available, we restricted
our analysis to test the contemporary conditions of human
modification (∼ 2017 map) that included all stressor layers.
We used an independent validation dataset from Kennedy et
al. (2019b) that quantified the degree of human modification
from visual interpretation of high-resolution aerial or satellite
imagery across the world. We selected plots using the Global
Grid sampling design (Theobald, 2016), a spatially balanced

and probability-based random sampling that was stratified
on a five-class rural-to-urban gradient using stable nighttime
lights 2013 imagery (Elvidge et al., 2001). Within each of
the 1000 ∼ 1 km2 plots, we selected 10 simple random loca-
tions to capture rare features and heterogeneity in land use
and land cover (for a total of 10 000 subplots), which were
separated by a minimum distance of 100 m. The spatially bal-
anced nature of the design maximizes statistical information
extracted from each plot, because it increases the number of
samples in relatively rare areas that are likely of interest (in
contrast to simple random sampling) – especially for urban-
ized and growing cities (Theobald, 2016).

2.4 Processing platform

We processed, modeled, and analyzed the spatial data using
the Google Earth Engine platform (Gorelick et al., 2017).
We calculated all distances and areas using geodesic algo-
rithms in decimal degrees (EPSG 4326). We summarized ar-
eas and percentages after projecting the data to the Moll-
weide equal-area projection (WGS84) to simplify calcula-
tions. All datasets and maps conform to the Google Earth
Engine terms of service. We used program R 3.6.1 (R Core
Team, 2019) to generate Fig. 2.

3 Results

Below we describe the temporal and spatial trends of hu-
man modification by continent (Table 4), biome (Table 5),
and ecoregion (Fig. 2).

3.1 Changes from 1990 to 2015

The mean value of H for global terrestrial lands increased
from 0.0822 in 1990 to 0.0946 in 2015, a percentage change
of 15.04 % overall and 0.60 % annually (Table 4). This
equates to 1.6 Mkm2 of natural lands lost – 178 km2 daily.
Increases in human modification occurred globally and in
both urban and rural locations. We found that the largest in-
creases in the Hmad occurred in Oceania, followed by Asia
and Europe. Australia had the lowest increase followed by
North and South America (Table 4). The biomes that exhib-
ited the greatest increases in modification were mangroves,
tropical and subtropical moist broadleaf forests, and tropical
and subtropical dry broadleaf forests, while the biomes with
the smallest increases were tundra, boreal forests and taiga,
and deserts and xeric shrublands. Maps of changes in the
Hmad between 2015 and 1990 for each ecoregion are shown
in Fig. 1a, relative to the HF (Fig. 1b) and THPI (Fig. 1c).
Figure 2 shows the ratio of natural land loss between 1990
and 2015, for each ecoregion and grouped by biome, in the
context of the contemporary extent of human modification.
We found most ecoregions (n = 814) had increased in hu-
man modification, while the few (n = 32) that had decreased
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Figure 1. A comparison of the recent trends in human activities by ecoregion using the mean annualized difference estimated by (a) human
modification (H ; from 1990 to 2015), (b) human footprint (for 1993–2009; Venter et al., 2016), and (c) temporal human pressure index
(for ∼ 1995–2010; Geldmann et al., 2019a). Note that interactive maps are available at https://davidtheobald8.users.earthengine.app/view/
global-human-modification-change (last access: 29 August 2020).
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Table 4. Summary of estimates of the degree of human modification (H ) and the mean annualized difference between 5- or 10-year incre-
ments for which change over time can be calculated (1990, 2000, 2010, and 2015) and H values for the contemporary dataset (∼ 2017, all
stressors). Mean annualized mean difference is calculated as the mean value across the continents of the difference in H values divided by
the number of years (e.g., Hmad = (H2015 − H1990)/25).

Mean H Mean annualized difference ∼ 2017

Continent 1990 2000 2010 2015 1990–2000 2000–2010 2010–2015 1990–2015 Median Mean SD

Africa 0.0457 0.0489 0.0515 0.0530 0.00032 0.00026 0.00030 0.00029 0.0056 0.1073 0.1730
Asia 0.0856 0.0915 0.0988 0.1025 0.00059 0.00073 0.00075 0.00067 0.0056 0.1542 0.2286
Australia 0.0313 0.0324 0.0334 0.0341 0.00011 0.00011 0.00013 0.00011 0.0006 0.0495 0.1250
Europe 0.1145 0.1187 0.1206 0.1226 0.00042 0.00019 0.00041 0.00033 0.0136 0.1533 0.2279
N America 0.0408 0.0419 0.0461 0.0463 0.00011 0.00042 0.00005 0.00022 0.1309 0.1680 0.1681
Oceania 0.0431 0.0475 0.0580 0.0662 0.00044 0.00105 0.00164 0.00093 0.0527 0.1592 0.1856
S America 0.2378 0.2398 0.2434 0.2442 0.00020 0.00036 0.00015 0.00026 0.2324 0.2868 0.2717

Global 0.0822 0.0864 0.0915 0.0946 0.00042 0.00051 0.00062 0.00049 0.0096 0.1461 0.2146

Table 5. A comparison of the mean annualized difference in hu-
man modification values for changes from 1990 to 2015 (H ; 1990–
2015), human footprint (HF; 1993–2009; Venter et al., 2016), and
the temporal human pressure index (THPI; 1995–2010; Geldmann
et al., 2019b). Mean annualized mean difference is calculated as
the mean value of the difference in H values divided by the num-
ber of years (e.g., Hmad = (H2015−H1990)/25), for each continent.
Note that Oceania extends below Papua New Guinea (excluding the
country of Australia).

Continent H HF THPI

Africa 0.0003 0.0007 0.0011
Asia 0.0007 0.0008 0.0012
Australia 0.0001 0.0002 0.0001
Europe 0.0003 −0.0002 0.0002
North America 0.0002 0.0027 −0.0001
Oceania 0.0009 0.0011 0.0007
South America 0.0003 0.0000 0.0002

Global 0.0005 0.0006 0.0008

were concentrated in higher latitudes and in more remote ar-
eas. We also found that changes in the Hmad have increased
over time, from 0.0004 to 0.0005 to 0.0006, during 1990–
2000 to 2000–2010 to 2010–2015. The percent change has
also increased over time from 0.51 % to 0.59 % to 0.68 %.

3.2 Contemporary extent

We found that about 19.1 Mkm2 (±0.0013) of natural lands
was lost by ∼ 2017 – about 14.6 % of land globally (Ta-
ble 4). South America was the most transformed (28.7 %),
followed by North America (16.8 %), while Australia (5.0 %)
and Africa (10.7 %) were the least transformed. Broad-scale
patterns of the extent of human modification in ∼ 2017 are
shown in Fig. 3. Note that “natural lands lost” was calculated
using the continuous value of H , rather than approximations
based on classifying the distribution.

Terrestrial lands with very low levels of human modifica-
tion (H < 0.01; Kennedy et al., 2019a; Riggio et al., 2020)
are concentrated in less productive and more remote areas
in high latitudes and are dominated by inaccessible per-
manent rock and ice or are within tundra, boreal forests,
desert regions, and to a lesser extent montane grasslands.
Table 5 shows that the biomes with the highest levels of
H in ∼ 2017 were temperate broadleaf and mixed forests
(H = 0.3744); tropical and subtropical dry broadleaf forests
(H = 0.3317); and Mediterranean forests, woodlands and
scrub (H = 0.2903). The five least modified biomes were
tundra (mean H = 0.0023), boreal forests and taiga (H =

0.0213), deserts and xeric shrublands (H = 0.0572), and
montane grasslands and shrublands (H = 0.0894).

Following thresholds from Kennedy et al. (2019b), we
found that in ∼ 2017, 51.0 % of global lands had a mean
value of H ≤ 0.01 (i.e., very low human modification),
13.3 % had a mean of 0.01 < H ≤ 0.1 (low), 21.0 % had
a mean of 0.1 < H ≤ 0.4 (i.e., moderate), 12.3 % had a
mean value of 0.4 < H ≤ 0.7 (high), and 2.4 % (3.2 Mkm2,
±0.0003) had a mean of 0.7 < H ≤ 1.0 (very high). By
area, these results by class amount to the following: very
low = 66.8 Mkm2 (±0.0067), low = 17.4 Mkm2 (±0.0017),
moderate = 27.6 Mkm2 (±0.0028), high = 16.1 Mkm2

(±0.0016), and very high = 3.18 Mkm2 (±0.0003). Also,
we found that 17.6 % had a mean value of H < 0.0001
(23.0 Mkm2, ±0.0023) and 4.2 % had H < 0.00001
(5.5 Mkm2, ±0.0006).

3.3 Comparisons

We compared our work to earlier efforts (summarized in Ta-
ble 6) to determine if overall trends and extents were gener-
ally consistent with similar priorities of biomes and ecore-
gions. Globally, the Hmad from 1990 to 2015 (t = 1990,
u = 2015) was 0.0005, while for the HF and THPI it was
higher (HFmad = 0.0006, THPImad = 0.0008). Perhaps more
important is that the variability of the mean annualized differ-
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Table 6. A summary of the data, methods, and results comparing the degree of human modification (HM; this paper), degree of human
modification 1 km (HM1k; Kennedy et al., 2019a, b, c), human footprint (HF; Sanderson et al., 2002; Venter et al., 2016), and temporal
human pressure index (THPI; Geldmann et al., 2019b). Also see discussion of comparison in Kennedy et al. (2019a, c), Venter et al. (2019),
and Riggio et al. (2020). Data source acronyms are provided in Table 1.

Factor HM HM1k HF THPI

Conceptual
framework

Direct Threats Classification v2
(Salafsky et al., 2008); inten-
sity values based on land devel-
opment index (LDI; Brown and
Vivas, 2005)

Direct Threats Classification v2
(Salafsky et al., 2008); LDI

Sanderson et al. (2002) Geldmann et al. (2014)

Stressor: urban
and built-up

Urban and built-up (GHSL;
0.03–0.3 km; 1990–2015)

Urban and built-up (GHSL;
0.03–0.3 km; 2015); population
density (GPW v4 2015; 1 km)

Nighttime lights (DMSP OLS
> 20; 1 km; 1994–2012); pop-
ulation density (CIESIN v3;
4 km; 1990, 2010)

Change in population
density (GPW v3 1995,
2010; 1 km)

Stressor: agri-
culture

Cropland & pastureland for
1990, 2015 (ESA CCI; 300 m)
and cropland intensity (GLS;
1 km); Unified Cropland Layer
(UCL; 1 km);
grazing (GLW; 10 km;
1 < LU km−2 < 1000)

Unified Cropland Layer (UCL;
1 km); grazing (GLW v2; 1 km;
LU km−2 < 1000)

Cropland (University of Mary-
land for 1990 and GlobCover
for 2009); pastureland (2000),
10 km

Cropland area (HYDE,
10 km)

Stressor: en-
ergy production
& mining

Oil & gas production (gas
flares; DMSP OLS and VI-
IRS); renewable and nonrenew-
able power plants (WRI); large
mining operations (S&P)

Oil & gas wells, wind turbines,
mines (OSM, 2016)

NA NA

Stressor: trans-
portation & ser-
vice corridors

Road (highway, minor, two-
track; OSM, 2019); railways
(OSM, 2019) power lines
(OSM, 2019);
electrical power infrastruc-
ture (harmonized DMSP and
VIIRS, 1992–2018)

Road (highway, minor, two-
track; OSM, 2016; gROADS-
2000); railways (OSM, 2016;
VMAP-2000), power lines
(OSM, 2016); electric in-
frastructure (nighttime lights;
DMSP OLS, 2013)

Roads (gROADS, 1980–2000);
railways (VMAP0-2000); elec-
tric infrastructure

nightlights (DMSP
OLS; nightlights > 20;
1 km; 1994–2012)

Stressor:
biological
harvesting

Forest loss (Hansen et al., 2013;
Curtis et al., 2018; 0.03–1 km;
2000–2017)

NA NA NA

Stressor: hu-
man intrusions

Human intrusion (HUE, 1990–
2015; 1 km)

NA NA NA

Stressor: nat-
ural system
modifications

Reservoirs (GRanD, 1990–
2017; 0.03 km)

NA NA NA

Stressor: pollu-
tion

Nitrous oxide pollution
(EDGAR, 1990–2012; 100 km)

NA NA NA

Metric Degree of human modification
(H ; 0–1.0 continuous value)

Degree of human modification
(H ; 0–1.0 continuous value)

Scaled 0–10, 0–4, summed to
50, ordinal value

NA

Combine
factors

Increasive to 1.0 using fuzzy
sum

Increasive to 1.0 using fuzzy
sum

Additive, max-normalized Equal weight, additive-
normalized

Uncertainty or
sensitivity anal-
ysis

Calculates per-pixel variance
due to estimates of intensity
values, randomized (n = 50)

Calculates per-pixel variance
due to estimates of intensity
values, randomized (n = 100)

Sensitivity of static vs. dynamic
pasture data

NA

Validation Tested using independent vali-
dation dataset that included ∼

10 000 subplots within ∼ 1000
1 km2 sample plots

Tested using independent vali-
dation dataset that included ∼

10 000 subplots within ∼ 1000
1 km2 sample plots

Tested using independent val-
idation dataset in 3460 1 km2

sample plots

NA

NA: not available
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Figure 2. Graphs of the ratio of natural land loss (2015 : 1990) and contemporary (∼ 2017) degree of human modification (denoted as HM)
for each of the 14 biomes and their ecoregions, globally. Note that ecoregions with change ratios ≥ 3.0 are placed on the maximum x-axis
value (3.0).

ence values in the HF and THPI was 2.3 and 3.2 times that of
H . By continent, we found that the Hmad increased the most
in Oceania, followed by Asia, Europe, Africa, South Amer-
ica, North America, and Australia. Continental ranks by the
THPI followed H roughly, though the HF differed more sub-
stantially (Table 5). The Hmad increased for all continents,
but the HFmad showed declines in modification for Europe
and South America, while the THPImad showed a decline for
North America.

We also found the ranking of biomes by mean annual-
ized difference for the HF and THPI was fairly different
from ranks developed from H values (Table 7). Of the three
biomes with the largest increase for the Hmad, two were also
identified by the HF (tropical and subtropical dry broadleaf
forests and tropical and subtropical moist broadleaf forests)
and none by the THPI. Of the five biomes with the largest in-
crease for the Hmad, three were also identified by the HF and
THPI. The biomes that had the greatest disagreement among
the ranking of H , the HF, and the THPI were mangroves,

https://doi.org/10.5194/essd-12-1953-2020 Earth Syst. Sci. Data, 12, 1953–1972, 2020



1966 D. M. Theobald et al.: Detailed mapping of global human modification from 1990 to 2017

Figure 3. The degree of human modification for circa ∼ 2017: (a) globally; (b) in central America; (c) in Europe, and (d) in Oceania.
Note that interactive maps are available at https://davidtheobald8.users.earthengine.app/view/global-human-modification-change (last ac-
cess: 29 August 2020).

tropical and subtropical coniferous forests, and tropical and
subtropical dry broadleaf forests.

The biggest differences in rankings between the H and the
HF were for temperate and broadleaf mixed forests (and see
comparisons of H1k and the HF in Kennedy et al., 2019b,
c; Riggio et al., 2020). The HF was estimated to result in
a 12.3 % modification for an earlier date (∼ 2009; Venter et
al., 2016) and is lower likely because fewer stressors were
included, because of its additive combination method, and
because of its strongly right-skewed distribution caused by
max-value normalization. The ranks of the extent of modifi-
cation by biomes, however, were very similar in H , H1k, and
the HF. In general, H had intermediate modification levels
compared to H1k and the HF, with H1k levels being slightly
higher (difference between 0.00 min and 0.09 max and aver-
age difference of 0.05 by biome) and the HF being slightly
lower (difference between 0.00 min and 0.13 max and aver-

age difference of 0.04 by biome; Table 7). Results for ecore-
gions shown in Fig. 1 are even more striking, as the mean
annualized difference values for the HF and THPI were in-
consistent with our results. Of the 814 ecoregions that had
increases in the Hmad, a decrease in modification was found
for 201 ecoregions for the HFmad and 202 for the THPImad;
and for the 32 ecoregions that were found to have decreases
in the Hmad, an increase in modification was found for 20 in
the HF and 22 in the THPI.

Finally, the global estimate for H1k was likely higher
than H because H1k did not limit the livestock stressor at
LUkm−2 < 1.0, used a slightly higher value for the low-
threshold on the electrical infrastructure and energy use stres-
sor (i.e., nightlights), and reported results that incorporate
uncertainty into estimates of intensity. Furthermore, global
modification from farming was estimated at 37 % for 2000
(Ramankutty et al., 2008) compared to 14.6 % with H . The
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Table 7. Summary of results by biome, comparing trends using the mean annualized difference for the human modification (Hmad), human
footprint (HFmad; Venter et al., 2016), and the mean temporal human pressure index (THPImad; Geldmann et al., 2019) score. Also provided
are estimates of the proportion of terrestrial lands modified as estimated from Kennedy et al. (2018, 2019b; H1k) and the HF (score was
max-normalized to rescale to 0–1). The THPI dataset characterizes only change, and so estimates of the proportion of lands modified in 2010
could not be provided. Mean annualized mean difference is calculated as the mean value across the continents and globally of the difference
in H values divided by the number of years.

Biome name HM HF THPI HM HM HF
(1990–2015) (1993–2009) (1995–2010) (∼ 2017) (∼ 2016) (2009)

Boreal forests & taiga 0.00000 −0.00001 0.00000 0.0213 0.0374 0.0288
Deserts & xeric shrublands 0.00001 0.00003 0.00003 0.0571 0.1059 0.0820
Flooded grasslands & savannas 0.00002 0.00002 0.00015 0.2024 0.2480 0.1423
Mangroves 0.00005 0.00005 0.00002 0.2165 0.3051 0.1972
Mediterranean forests, woodlands, & scrub 0.00003 0.00008 0.00012 0.2903 0.3373 0.2162
Montane grasslands & shrublands 0.00001 0.00006 0.00006 0.0894 0.1634 0.1076
Temperate broadleaf & mixed forests 0.00002 0.00003 0.00002 0.3744 0.3968 0.2485
Temperate conifer forests 0.00002 0.00001 0.00006 0.1072 0.1561 0.0992
Temperate grasslands, savannas, & shrublands 0.00002 0.00001 0.00009 0.2374 0.2943 0.1668
Tropical & subtropical coniferous forests 0.00003 0.00000 0.00025 0.2052 0.2606 0.1568
Tropical & subtropical dry broadleaf forests 0.00005 0.00012 0.00006 0.3317 0.4242 0.2265
Tropical & subtropical grasslands, savannas, & shrublands 0.00002 0.00006 0.00008 0.1476 0.2120 0.1207
Tropical & subtropical moist broadleaf forests 0.00005 0.00007 0.00009 0.1862 0.2310 0.1390
Tundra 0.00000 0.00000 0.00000 0.0023 0.0001 0.0066

difference with our results is largely due to their (Ramankutty
et al., 2008) mapping of the area land cover types without dif-
ferentiating the intensity of the impact of those cover types
(crop and pasture).

3.4 Uncertainty and validation analyses

We addressed uncertainty in our results by incorporating the
parameter p(Cs) for every sector s to best quantify uncer-
tainty in its spatial location and classification as detailed in
Sect. 2.2; for example, we adjusted p(Ccp) by directly incor-
porating measured confusion among land cover types using
the results from the accuracy assessment of the land cover
dataset (from Eq. 4). Additionally, we incorporated uncer-
tainty by calculating the global mean for each of the 50
randomizations, which across the 50 iterations was 0.1434
(SD = ±0.0076) and ranged from 0.1243 to 0.1612. Thus,
the global mean of 0.1461 obtained using our best-estimate
intensity values was in line with our uncertainty results. We
also mapped the per-pixel variance (standard deviation) to
examine the spatial pattern of uncertainty (Fig. 4). The loca-
tions of the highest levels of uncertainty tend to be in more
highly developed landscapes.

We found strong agreement between H for ∼ 2017 and
our validation data (r = 0.783), with an average root mean
square error of 0.22 and a mean absolute error of 0.04, for
the 926 ∼ 1 km2 plots (9260 subplots). There were 726 plots
within ±20 % agreement, while for 161 plots H was esti-
mated to be higher (and for 39 plots lower) than our visual
estimate from the validation data. Estimates of H were bi-
ased high, likely because the stressors for human intrusion
and electrical infrastructure (based on nighttime lights) are

not readily observable from the aerial imagery used to gen-
erate the validation data. Our results here are consistent with
our earlier findings (Kennedy et al., 2019a, b, c).

4 Data availability

The datasets generated from this work are available at
https://doi.org/10.5281/zenodo.3963013 (Theobald et al.,
2020), which includes the land–water mask used to support
subsequent analyses. Extracts of specific geographic areas
can be obtained by contacting the authors. All other datasets
used in our work are open-source data cited herein.

5 Discussion

5.1 Summary

We found rapid and increasing human modification of terres-
trial systems, resulting in the loss of natural lands globally.
Our findings foreshadow trends and patterns of increased hu-
man modification, assuming future trends in the next 25–
30 years continue as they have recently. Thus, our study rein-
forces calls for stronger commitments to help reduce habitat
loss and fragmentation (Kennedy et al., 2019b; Jacobson et
al., 2019) – which should be considered in conjunction with
current commitments to reduce CO2 emissions through the
Paris climate accord (Baruch-Mordo et al., 2019; Kiesecker
et al., 2019). We believe that the comparisons of ecoregions
and biomes offer valuable contextual information that pro-
vides initial guidance on conservation strategies that may
be most appropriate (Kennedy et al., 2019b). Also, it is im-
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Figure 4. A map of the uncertainty as a result of randomizing the intensity factors when calculating the degree of human modification for
2017, showing the per-pixel standard deviation of 50 randomized maps. The highest levels of uncertainty tend to be in more highly developed
landscapes (minimum = 0.0, median = 0.0, mean = 0.009, standard deviation = 0.014, maximum = 0.186).

portant to consider the feasibility of achieving ecoregional
(Dinerstein et al., 2017) or ecosystem (Jantke et al., 2019)
representation goals as well as additional stresses caused by
climate change (Costanza and Terando, 2019). We empha-
size that although global, continental, biome, and ecoregional
summaries provide a general understanding of trends and
patterns, the high resolution of H and its gradient nature
support robust estimates of change in human modification
within a country and within an ecoregion, which are essential
for tracking progress toward international and national con-
servation commitments (Mace et al., 2018), especially when
placed within a broader structured decision-making frame-
work (Tulloch et al., 2015).

Our datasets of human modification provide the most
granular, contemporary, comprehensive, high-quality, and ro-
bust data currently available to assess temporal and spatial
trends of global human impacts on landscapes. Our work is
grounded in a structured classification of stressors, uses an
internally consistent model, evaluates uncertainty, and incor-
porates refinements to minimize the effects of scaling and
classification errors. Our validation approach uses an inde-
pendent and spatially balanced random-sample design to pro-
vide strong support for the quality of our findings (Kennedy
et al., 2019a).

Our overarching goal in producing and publishing these
datasets is to support detailed quantification of the rates and
trends, as well as the current extent and pattern, of human

modification and to understand the degree of human mod-
ification across the continuum from low (e.g., wilderness)
to high (e.g., intense urban). Beyond the basic findings pre-
sented here, we believe there are many potential applica-
tions of these datasets, including examining temporal rates
and trends of land modification in and around protected ar-
eas (e.g., Geldmann et al., 2019b), estimating fragmentation
for ecoregions and biomes (Kennedy et al., 2019b; Jacobson
et al., 2019), and evaluating conservation opportunities and
risks (e.g., the conservation risk index; Hoekstra et al., 2005).
We also note that the human modification approach allows,
in a straightforward and logically consistent way, for the in-
clusion of additional stressors and higher-resolution datasets
that may become available over time or may be available for
specific, local areas.

5.2 Caveats

As with any model, we recognize there are limitations to our
work. We did not include data for all human stressors, largely
because of incomplete global coverage or coarse mapping
units (Klein Goldewijk et al., 2007; Geldmann et al., 2014),
an inability to discern human-induced versus natural distur-
bances, or uncertainty in the location and directionality of
their impact (e.g., the impact of climate change on terrestrial
systems; Geldmann et al., 2014). In particular and discussed
in Kennedy et al. (2019b, c), changes to land cover due to
ecological disturbance events, such as wildfires or flooding,
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are not included in our analysis because of the difficulty in
separating natural from human-caused disturbances – yet, we
recognize that the broad extent of wildfire in particular could
have strong implications. We did not include climate data as
a stressor in this product to keep our analysis manageable
and tractable. Although we attempted to map each stressor
comprehensively, we recognize that some datasets may have
missing features, particularly for mine and oil/gas wells –
though large mines and concentrated oil/gas fields have been
mapped quite well. For more integrated analyses, our data
product should be used in combination with datasets of im-
pacts due to climate change (e.g., Parks et al., 2020).

Stressors that are particularly important to improve in-
clude effects of grazing (currently coarse data and very broad
expanse), pasture land, invasive species, and climate change
(especially wildfire and effects of sea-level rise), and we
encourage future work to focus on developing appropriate
datasets and approaches to include or better capture these
stressors. Key datasets we believe should be improved in-
clude transportation networks, including logging roads (e.g.,
van Etten, 2019), that are comparable through time; live-
stock grazing, rangelands, croplands, timber plantations, and
pasturelands and their intensity of use; resource extraction
(especially mining footprints); and temporal trends in gas
flares, utility-scale solar and wind installations (Dunnett et
al., 2020), and electrical substations.
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