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Abstract 

Earthquake Early Warning and the Physics of Earthquake Rupture 

by 

Gilead Wurman 

Doctor of Philosophy in Earth and Planetary Science 

University of California, Berkeley 

Professor Richard M. Allen, Chair 

One of the great debates in seismology today revolves around the question of 

whether earthquake ruptures are self-similar, cascading failures, or whether their 

size is somehow predetermined at the start of the rupture. If earthquakes are self-

similar there is theoretically no way to determine the magnitude of an event until 

the rupture has completely terminated, while if it is deterministic the magnitude 

should be immediately discernible. Recent advances in Earthquake Early Warning 

methodologies provide new insight into the fundamental physics of earthquake 

rupture and highlight the importance of understanding the answer to this question. 

Observations of the amplitude and frequency content of early P-wave arrivals 

suggest that some information about the final size of an earthquake is already 

present within a few seconds of the initiation of rupture, in agreement with a host 

of other observations that show a degree of scaling between large and small 

earthquakes. While this suggests that earthquakes are deterministic, there is 

likewise a large body of work, both observational and model-based, that indicates 

that this is not true and earthquakes are self-similar. 

This work documents the process of calibrating and testing the ElarmS Earthquake 

Early Warning methodology in northern California on the Northern California and 

Berkeley Digital Seismic Networks. In the process the work adds to the body of 

observations which show a dependency on event magnitude of P-wave frequency 

content and amplitude. These observations are corroborated with a new set of 

independent observations of kinematic slip distributions. These new observations 

indicate that the early slip on a fault also scales with magnitude and suggest again 

that earthquakes are not entirely self-similar cascading events. 
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In an effort to assign a physical mechanism to the observations of scaling, both in 

P-waves and in kinematic slip inversions, a hypothetical model is tested wherein 

the intensity of the early rupture imparts more or less energy to the rupture front 

and affects the likelihood of the rupture continuing or dying out in the face of 

unfavorable conditions further along the fault plane. The results of testing this 

hypothesis are somewhat equivocal, but they are suggestive of the likely truth, that 

earthquakes exhibit aspects of both deterministic and cascading rupture to some 

degree. Understanding the details of the interplay between these two aspects is 

crucial to the successful application of Earthquake Early Warning systems, 

especially in rare large earthquakes for which there is little empirical data on the 

performance of these systems. 
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1. Introduction 
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Earthquakes are among the most powerful natural phenomena on Earth, 

and when large earthquakes have coincided with human populations they 
have caused some of the deadliest natural disasters in recorded history. The 

M 7.8 1976 Tangshan earthquake in China killed an estimated 250,000 
people, and the 1556 Shanxi earthquake reportedly killed in excess of 

800,000. On an annualized basis, earthquakes cause $5.3 billion in damage 
in the United States alone [Federal Emergency Management Agency, 2008]. 

Great effort has been put into mitigating the effects of earthquakes in the 
long and medium terms. We now regularly forecast earthquake probabilities 

on the scale of a few decades [Working Group on California Earthquake 
Probabilities, 2008] and using these forecasts we generate empirical 

estimates of ground motions [Petersen et al., 2008]. New buildings in the 
United States are designed to withstand these ground motions and remain 

life-safe. Meanwhile, public education initiatives such as the Great California 
ShakeOut seek to increase the proportion of the population that is prepared 

for an earthquake by raising awareness of disaster preparedness and home 

retrofit measures. 
The elusive aspect of earthquake mitigation has always been the short 

term. Unlike other natural disasters such as hurricanes or, in many cases, 
volcanic eruptions, there is no time to evacuate or take shelter once the 

event has begun. Seismic waves travel at between 10 and 20 times the 
speed of sound, and the time between the initiation of an earthquake and 

the onset of shaking at nearby locations is on the order of only a few 
seconds. Although many different avenues of research have been pursued in 

the quest for short-term earthquake prediction, there is to date no 
precursory phenomenon which is both unique to earthquakes and universal 

to earthquakes. Also, no means exist to translate precursory phenomena 
into the precise size, location and timing of an imminent event, i.e. an 

actionable warning. However, recent advances in real-time seismic 
monitoring have opened up a new avenue for short-term earthquake 

mitigation: Earthquake Early Warning. 

Earthquake Early Warning (EEW) at its most basic relies on detection of 
seismic activity at one or more stations on a network, and relaying that 

detection to other sites on the network or to assets in the area protected by 
the network. Mexico City has been using such a “frontal detection” system 
for over a decade [Espinosa Aranda et al., 1995]. These methods require 
detecting the damaging S-waves and surface waves from an earthquake 

before an estimating the intensity of shaking, and thus rely on the fact that 
the speed of seismic waves, while quite fast, is much slower than the speed 

of digital communications. The warning afforded by these methods is 
dependent on the earthquake source being close to the seismometers but far 

from the assets that require protection. More recent methods detect and 
characterize the P-waves of earthquakes to estimate the intensity of 

impending shaking [Allen, 2004; Wu and Kanamori, 2005a; Wu and 
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Kanamori, 2005b; Wu et al., 2006; Allen, 2007], and rely on the fact that 

the weaker P-waves travel faster than the damaging S-waves and surface 
waves to enable on-site warning as well as network-based warning. These 

methods are better suited to regions like California, Japan and Taiwan, 
where hazardous faults exist in close proximity to population centers. 

As a practical matter, EEW systems based on P-waves function by 
exploiting empirically observed correlations between some property of the 

early P-wave (amplitude, spectral content, etc.) and the final magnitude of 
the earthquake. While the statistical significance of the observations, and the 

observations themselves, continue to be debated [Rydelek and Horiuchi, 
2006; Wolfe, 2006], these correlations appear to offer some insight into the 

deeper physics of earthquake rupture. In particular, these observations 
speak to one of the more hotly-debated topics in modern seismology: 

whether earthquakes are self-similar, cascading ruptures or whether they 
scale deterministically from a very early time in the rupture history. The 

purpose of this dissertation is to address this fundamental question through 

a combination of observational seismology and kinematic and dynamic 
modeling. 

The first part of this dissertation involves observations of the correlation 
between the predominant period of early P-wave arrivals and the final 

magnitude of an earthquake. These observations are part of an ongoing 
effort to establish an operational EEW system in California using the ElarmS 

methodology [Allen, 2007]. This work establishes empirical scaling 
relationships for both predominant period and peak amplitude of P-waves 

with magnitude, and demonstrates the performance of the methodology on 
two moderate events in the greater San Francisco Bay Area. These observed 

scaling relationships add to the statistical significance of observations from 
preceding work, leading to increased confidence in the veracity of these 

scaling relationships. 
In the second part, we seek to corroborate the observations of scaling in 

P-waves with an independent dataset: kinematic source inversions. Using a 

large online database of kinematic inversions, we extract the moment 
release in the early part of the rupture history and correlate it to the final 

magnitude of each event. We test the correlations against the null 
hypothesis that earthquakes are purely cascading events and find that this 

hypothesis can be rejected with a high degree of confidence. This finding, in 
combination with the observed relationship between the properties of early 

P-waves and earthquake magnitude, suggests that the early rupture history 
has some effect on the later evolution of rupture. 

The third and final part of this dissertation posits a physical mechanism 
by which this effect might be mediated. We hypothesize that some property 

of the early rupture, which we call its “intensity,” imparts more or less 
energy to the rupture front and respectively either enables or inhibits the 

rupture to overcome regions of the fault which are unfavorable to rupture. 
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We simulate this hypothesis using dynamic rupture models in two and three 

dimensions with imposed heterogeneous shear stress and a rate-and-state 
friction law. We search over four parameters governing the shear stress 

distribution, and five governing the friction law using a Genetic Algorithm 
search, and find plausible values for all but one parameter, suggesting the 

hypothesized behavior is physically realistic. 
Much further work must be done, but these three studies bring us closer 

to answering the question of whether or not earthquakes are purely 
cascading phenomena.  
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2. Toward Earthquake Early Warning 

in Northern California 

Gilead Wurman, Richard M. Allen, and Peter Lombard  
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Wurman, G., R. M. Allen, and P. Lombard (2007), Toward earthquake early 
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2.1. Abstract 
Earthquake Early Warning systems are an approach to earthquake hazard 

mitigation which takes advantage of the rapid availability of earthquake 
information to quantify the hazard associated with an earthquake and issue 

a prediction of impending ground motion prior to its arrival in populated or 
otherwise sensitive areas. One such method, Earthquake Alarm Systems 

(ElarmS) has been under development in southern California and, more 
recently, in northern California. Event magnitude is estimated using the peak 

amplitude and the maximum predominant period of the initial P-wave. 
ElarmS incorporates ground motion prediction equations and algorithms 

from ShakeMap for prediction of ground motions in advance of the S-wave 
arrival. The first peak ground motion estimates are available one second 

after the first P-wave trigger, and are updated each second thereafter for 

the duration of the event. The ElarmS methodology has been calibrated 
using 43 events ranging in size from ML 3.0 to Mw 7.1 which occurred in 

northern California since 2001. We present the results of this calibration, as 
well as the first implementation of ElarmS in an automated, non-interactive 

setting and the results of 8 months of non-interactive operation in northern 
California. Between February and September of 2006, ElarmS successfully 

processed 75 events between Md 2.86 to Mw 5.0. We find that the ElarmS 
methodology processed these events reliably and accurately in the non-

interactive setting. The median warning time afforded by this method is 49 
seconds at the major population centers of the Bay Area. For these events 

the magnitude estimate is within an average of 0.5 units of the network-
derived magnitude, and the ground motion prediction from ElarmS is within 

an average of 0.1 units of the observed Modified Mercalli Intensity. 

2.2. Introduction 
Earthquake Early Warning (EEW) systems are combinations of 

instrumentation, methodology and software designed to analyze rapidly an 

ongoing earthquake and issue real-time information about the hazard to 
persons and property before the onset of strong ground motions in 

populated areas. Japan, Mexico, and Turkey currently operate EEW systems, 
while Taiwan, Italy, Romania and Greece are testing EEW systems [Allen, 

2006, and references therein]. Japan’s EEW system, which has been 
providing warnings to a limited group of users, is anticipated to begin 

widespread public dissemination of warnings in the summer of 2007. The 
system operating in Mexico is a frontal detection system, which relies on the 

fact that the largest potential earthquake epicenters are 300 km from Mexico 

City in the Middle America Trench, such that an array of seismometers 
between the fault and the city can reliably detect and measure the intensity 

of an earthquake’s S-waves and issue a warning well before those waves 
arrive at the city [Espinosa Aranda et al., 1995]. 



 

7 

In California, the proximity of major faults to population centers limits the 

utility of frontal detection systems for EEW. Under the conditions found in 
California a useful EEW system must be able to rapidly and reliably estimate 

the location, origin time and size of an earthquake based on the P-wave 
alone. The system must then generate predictions of ground motion at 

multiple locations of interest and disseminate these predictions in the time 
between the P-wave arrival and the S-wave arrival. Such systems are being 

developed in Taiwan [Wu and Kanamori, 2005a] and in Japan [Odaka et al., 
2003] which rely on measurement of the amplitude of the P-wave as a proxy 

for the magnitude of the earthquake. Such systems are effective for small- 
and moderate-size events, but are susceptible to saturation in large events. 

Ground accelerations near the source of large earthquakes saturate at 
approximately 10-15 m/s2, due in part to ground response becoming 

nonlinear under large stresses. 
The Earthquake Alarm Systems (ElarmS) methodology [Allen and 

Kanamori, 2003] has been tested using data from southern California, 

Taiwan, Japan and the Pacific Northwest of the United States [Olson and 
Allen, 2005; Lockman and Allen, 2007], and uses the maximum 

predominant period (pmax) of the first 1 to 4 seconds of the P-wave as an 

estimate of earthquake magnitude. The ElarmS methodology has been 

shown to be effective in these areas for M 3 and larger earthquakes [Allen 
and Kanamori, 2003; Lockman and Allen, 2005; Olson and Allen, 2005; 

Allen, 2006; Lockman and Allen, 2007; Allen, 2007]. In the process of 
testing ElarmS in northern California, we find that using both pmax and the 

peak amplitude of the P-wave improves the accuracy of the ElarmS 
magnitude estimate. We have been testing the effectiveness of the 

combined methodology since February of 2006 and find that the system 
estimates the magnitude of earthquakes in northern California rapidly, 

accurately and reliably. 
In addition to incorporating P-wave peak amplitude in the magnitude 

determination, we have incorporated the attenuation relationships (hereafter 
referred to as ground motion prediction equations, GMPEs) and algorithms of 

ShakeMap [Wald et al., 2005] into the part of the methodology which 

predicts ground motions during an event. The GMPEs used by ShakeMap 
[Newmark and Hall, 1982; Boore et al., 1997; Wald et al., 1999a; 

Boatwright et al., 2003] replace the empirical attenuation relationships 
developed for southern California [Allen, 2004; Allen, 2007]. ShakeMap 

algorithms [Wald et al., 1999a] incorporate individual station corrections to 
observations as well as scaling of predicted ground motions based on local 

geology [Borcherdt, 1994; Wills et al., 2000] throughout northern California. 
In addition to making ElarmS ground motion predictions directly comparable 

to other products like ShakeMap itself, we find the incorporation of these 
algorithms allows us to generate accurate and timely predictions of ground 

motion at seismic stations. 
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2.3. The ElarmS Methodology 
Implementing Earthquake Early Warning in northern California presents 

opportunities not seen in other places for improving the robustness of the 
ElarmS methodology across different networks. A functional EEW system in 

northern California must integrate data from both high-gain, broadband 
velocity instruments and from low-gain, strong-motion accelerometer 

stations. The system must collect this data over the two networks currently 
operating in northern California: the Northern California Seismic Network 

(NCSN) operated by the US Geological Survey, and the Berkeley Digital 
Seismic Network (BDSN) operated by the UC Berkeley Seismological 

Laboratory. Within each network, high-gain velocity instruments (channels 
HHE, HHN and HHZ, which we address as HH henceforth) are more useful 

for measuring the small (M < 4.5) events on which we rely for calibration 

and routine validation of the method. However, these stations will clip 
quickly in the event of a nearby major earthquake. Low-gain, strong-motion 

accelerometers (channels HNE, HNN and HNZ; or HLE, HLN and HLZ, which 
we address as HN and HL respectively) will remain on-scale longer in the 

event of a nearby major earthquake, but are of limited use in measuring 
small events due to low signal-to-noise ratios. Between networks, 

differences in instrumentation may lead to different behavior within the 
same channel type (i.e., velocity or accelerometer). All of these differing 

behaviors must be accounted for by an EEW system which seeks to 
maximize the amount of usable data in a minimum amount of time. 

We use the Earthquake Alarm Systems (ElarmS) methodology developed 
by Allen and Kanamori [2003], with some modifications for the particular 

problems of northern California. The ElarmS methodology is built of two 
systems: a single-waveform processing system extracts parameters of 

interest from a single channel of data, and sends these parameters to an 

event processing system. The latter integrates output from waveform 
processing of multiple channels into information about an event’s size, time 
and location, and in fact whether there is an event at all. Given an event's 
size and location, ground motion predictions are issued for specific locations 

on a second-by-second basis during the event. Within both of these systems 
we encounter the need to modify the original ElarmS methodology to 

account for the specific challenges of northern California data. These will be 
discussed at length later. 

2.3.1. Calibration dataset 

Prior to applying ElarmS in a real-time setting, we tested the method on 

43 calibration events ranging in size from ML 3.0 to Mw 7.1 which occurred in 
northern California since 2001. The calibration events are shown in Figure 

2.1. We were restricted from using older events such as the 1989 Loma 

Prieta and 1992 Petrolia earthquakes in the calibration, because prior to 
2001 the NCSN and BDSN networks did not have sufficient station coverage 

or the appropriate instrument types to measure these events. The 



 

9 

calibration events were used to establish the maximum predominant period 

vs. magnitude and peak amplitude vs. magnitude relations described below. 

2.3.2. Triggering and event location 

The first step in the early warning process is to detect an event. This 
begins with the waveform processing system, which must detect the initial 

P-wave of an event and issue a trigger at the onset of that P-wave. We use a 
short-term/long-term average method following Allen [1978]. The algorithm 

is applied to the vertical velocity trace with timescales of 0.5 sec for the 
short-term average and 5 sec for the long term, and a triggering threshold 

of 20. Triggering can be accomplished using any real-time algorithm, but 
cannot be done with any method which requires data after the trigger itself, 

as such data is by definition unavailable at the time of the trigger. 
Consequently, methods such as auto-regressive pickers [Sleeman and van 

Eck, 1999] and pickers based on wavelet transforms [Zhang et al., 2003], 

while more precise than a simple short-term/long-term average method are 
not practical for this application. This also means generally that any filter 

applied to the data must be causal. 
When the first station triggers, the event processing system will 

provisionally locate the event beneath that station. When a second station 
triggers the provisional location moves to a point directly between the two 

stations, based on the timing of the arrivals. Once trigger times are 
produced at three or more locations, the event location and origin time is 

estimated using trilateration and a grid-search algorithm to find the optimal 
solution. Although a depth can be estimated using more stations or more 

sophisticated algorithms, this is unnecessary for the geologic setting of 
northern California, where most events nucleate at less than 20 km depth 

[Hill et al., 1990]. We currently fix the depth of the event to be 8 km. 
Based on the estimated event location and time, warning times can be 

calculated for any geographical locations of interest. These warning times 

are based on a move-out speed of 3.75 km/s, which is determined from 
observations of the onset times of significant ground motions in southern 

California. Again, although more sophisticated methods exist for the 
estimation of time until significant shaking, when one considers the 

computational requirements for greater sophistication against the need for 
rapid processing and notification, this simple move-out speed seems 

sufficient for the purpose of estimating the warning time. 

2.3.3. Magnitude from predominant period 

The ElarmS methodology rests largely on the use of the maximum 
predominant period (pmax) within the first 4 seconds of the P-wave as an 

indicator of the size of the event [Allen and Kanamori, 2003; Olson and 
Allen, 2005]. The predominant period, p of a single vertical channel (HHZ, 

HLZ or HNZ) is calculated in real time using the iterative relation 
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i

i
ip

D

X 2,   (2.1) 
 

 
where Xi =  Xi-1 + xi

2 and Di =  Di-1 + (dx/dt)i
2. The constant  is a 

smoothing constant, and xi is the ground velocity of the last sample. 
Because both velocity sensors and accelerometers are used, the 

accelerometer traces must be integrated to velocity before p can be 

calculated. In addition, a causal 3 Hz low-pass Butterworth filter is applied 

iteratively to the velocity data [Allen and Kanamori, 2003]. This calculation 
is done by the waveform processing system, and the maximum value of p 
within the first 4 seconds of the P-wave arrival is recorded and sent to the 
event processing system, which uses it to estimate magnitude according to a 

predetermined relationship. 
Our initial attempts to establish a relationship between magnitude and 

pmax were frustrated by noise in the low-magnitude data (M < 4.5). This 

problem led us to adopt two significant additions to the ElarmS 

methodology. The first of these is a criterion for the disqualification of S-

wave data. Part of the low magnitude scatter was due to many small events 
being located close to our stations in the San Francisco Bay Area. As a 

result, the S-wave arrival occurs within 4 seconds of the P-wave arrival, and 
since S-waves generally have longer periods than the associated P-waves, it 

is the S-wave p which gets recorded as pmax. A simple criterion based on an 

S-minus-P move-out of 1 second per 8 km eliminates these false signals and 

cleans up the data somewhat, though we do apply a minimum S-minus-P 
time of 1 second, based on the assumption that the event is 8 km deep. 

In addition to this S-wave criterion, we chose to incorporate a second 
criterion for the exclusion of data, based on the signal-to-noise ratio (SNR) 

of each waveform. As this was a particular problem for low-gain 
accelerometers (HL and HN channels), we chose to treat each channel type 

separately. The absolute noise level is calculated as a very long-term 
average from inter-event data, and is frozen when a trigger is detected. 

From the time of the trigger until the event is over, the signal level is 

calculated using a 0.05-second short-term average [Allen, 1978], and the 
ratio of these two is the SNR. In principle the higher we require the SNR to 

be, the better our results. However, we must consider the need for fast 
measurements as well as good ones, and the greater SNR we require, the 

fewer measurements of the first second of the P-wave will be admitted. By 
weighing the reduction in scatter of small magnitude pmax against the 

number of excluded p measurements in the first second of data, we arrive 

at the optimal minimum SNR: 100 for HH channels and 200 for HL and HN 

channels. 
The results of calibrating pmax vs. magnitude are shown in Figure 2.2. 

Note that low-gain accelerometer data still shows a significant scatter in 
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spite of the two added criteria. We are investigating the root cause of this 

scatter, but presently the HN channels (Figure 2.2c) exhibit the largest 
scatter, and we have provisionally removed them from the pmax 

determination until this can be resolved. The best fit relationship between 
pmax and magnitude is 

 
 )(log66.622.5 max

10 pM   (2.2) 
 

 

using only the HH and HL channels. This relationship is plotted in Figure 2.2. 
In determining magnitude from pmax for any new event we only use data 

from HH and HL channels to be consistent with the calibration of this 
relationship. 

2.3.4. Magnitude from P-wave peak amplitude 

While we have succeeded in reducing the scatter in measurement of pmax 

at low magnitudes, the scatter is still sufficient to present us a problem in 
discriminating between small non-hazardous events and large hazardous 

events. Because of this scatter, there is a potential to misidentify a small 
event as a large one, leading to a false alarm. This is of critical importance in 

many early warning applications, as a high incidence of false alarms will 

drastically reduce the credibility and utility of the warnings. This is especially 
true in applications where the cost of false alarms is high, such as industrial 

process interruption. In order to further improve this discrimination, we have 
added a second, independent estimate for rapid magnitude determination. 

Using a method similar to that of Wu et al. [2006], we calculate the peak 
amplitude of the P-wave, scaled by the logarithm of the epicentral distance. 

As with pmax, we glean the peak amplitude from the first 4 seconds of the 

vertical record. Wu et al. used the peak displacement, Pd of the P-wave, but 

we chose to analyze displacement, velocity and acceleration for each channel 
type independently. In theory, the displacement record has longer periods 

than the acceleration or velocity records, and will be less susceptible to 
random high frequency excursions. For velocity instruments (HH channels) 

this holds true, and measuring the peak amplitude in displacement yields the 
lowest error. However, for accelerometer channels (HN and HL), the act of 

numerically integrating twice (from acceleration to velocity and then again to 
displacement) introduces errors to the point where using the velocity record 

rather than displacement yields a better magnitude estimate. 

We also investigated the merit of using between 1 and 5 seconds of P-
wave data for determining Pd or Pv (peak velocity, for HN and HL channels). 

Using less than 4 seconds yielded greater errors, and between using 4 and 5 
seconds there was little difference in performance (4 seconds performed 

slightly better for HH, slightly worse for HL and HN channels). We chose to 
use 4 seconds for the sake of internal consistency with our p

max 

measurements, which also use 4 seconds of P-wave data. 



 

12 

The results of calibrating Pd and Pv (which we henceforth abbreviate Pd/v) 

vs. magnitude are shown in Figure 2.3. The amplitudes are plotted as a 
function of magnitude, after being scaled to an epicentral distance of 10 km 

using the best-fit relations in Eqs. 2.3 through 2.5 below. These plots do not 
show nearly the scatter at low magnitudes that the pmax vs. magnitude plot 

does in Figure 2.2. However, the Pd/v of the largest (Mw 7.1) event is 
significantly lower than predicted. This is due to the fact that this event 

incorporates data from more distant stations than is normally allowed, as 
will be discussed in detail later. Due to this effect, the Pd/v measurements for 

the Mw 7.1 event were not used in the best fit lines plotted in Figure 2.3. 
Although the variability of the HN data seen in pmax is visible to a lesser 

degree in Pv, (Figure 2.3c) the data are not unusable. However, we chose to 
fit HL and HN data separately to minimize the error of measurements on the 

HL channels. The best fit relationships between magnitude and Pd/v are 
 
 27.1)(log16.5)(log04.1 1010  RPM d  

(HH channels) 
 

(2.3) 
 

 57.1)(log25.4)(log37.1 1010  RPM v  
(HL channels) 

 

(2.4) 
 

 65.1)(log40.4)(log63.1 1010  RPM v  

(HN channels) 

 

(2.5) 
 

where R is the distance in kilometers from the station to the epicenter. When 
the source of scatter in the HN data is found and controlled for, it may be 

beneficial to unify the relationships for HL and HN channels. Since the HH 
channels use Pd rather than Pv the relationship for HH channels must remain 

separate from the other two. 

2.3.5. Data integration and magnitude determination 

The waveform processing system sends any new information available to 
the event processing system every tenth of a second for four seconds after a 

trigger. This includes the maximum value of pmax or Pd/v only if that 

maximum has changed since the last tenth of a second. The pmax data is 

accompanied by the value of the SNR at the time of the measurement. This 
low data volume has the advantage of being easily transmissible over 

existing station telemetry, so that the waveform processing system can 
potentially be implemented at each station independent of the rest of the 

network. The advantage of this approach, in turn, is that the waveform 

processing happens much sooner and much more reliably, as there is no 
delay for telemetry of data over the network, and no risk of data dropout 

leading to errors in processing. Instead, the large volume of data being 
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produced by the sensors is reduced on site to a few parameters of interest 

which can be cheaply transmitted over the network. 
The event processing system gathers the transmitted data from the 

waveform processing systems at each station within 100 km of the 
estimated epicenter. This is the distance within which frequency-dependent 

attenuation (Q) has a minimal effect on the predominant period 
measurement [Allen and Kanamori, 2003]. For the two largest calibration 

events, the Mw 6.5 San Simeon earthquake and the Mw 7.1 earthquake in 
the Gorda Plate, this cutoff distance is increased to 150 km and 200 km 

respectively, due to the lack of stations within 100 km of these events. We 
justify this in particular for the Gorda Plate event by asserting that the 

intervening crust between the event and the stations is mostly oceanic, and 
has higher Q than continental crust [Vera et al., 1990]. The system 

integrates the data from the stations once per second to determine a 
magnitude estimate for the event as it progresses. Each time a new 

maximum pmax or Pd/v value is reported, the event processing system checks 

it for validity by examining whether the S-wave may have arrived at that 
station, as described earlier in this section. It also checks that the SNR at 

the time of a pmax measurement exceeds the minimum required value. If 

any of these checks fail, the event processing system ignores that 

measurement and proceeds as if it was never reported. 
The event processing system makes one more check, in which it looks for 

an indication that a given channel has clipped. This indication is actually 
given by the waveform processing system in the form of a negative SNR 

beginning when the channel’s output first exceeds a particular threshold, 
and extending for a fixed duration after the last sample which exceeds that 

threshold. This duration represents the time required for the channel to 
recover from the clipping event and become usable. The clipping threshold 

and recovery time vary from channel to channel, and are encoded in the 
waveform processing system at each station, so the event processing 

system does not know anything about the value of the data, only whether it 
has clipped. If the event processing system receives a clipping indication, it 

immediately stops updating information from that station for the duration of 

the event. The pmax value at the time of clipping is recorded as the final pmax 

for that station, and the Pd/v value for the station is stricken. The reason for 

treating the two estimates differently is that we often find that the time at 
which pmax is taken is not the same time as the peak amplitude of the P-

wave, so the pmax value before the clipping occurred is still potentially valid. 

In contrast, the fact that the sensor has clipped means a priori that the 

previous Pd/v value has been exceeded, and is therefore invalid. In this 
respect pmax is more robust, as it can tolerate clipping of a channel and still 

represent a valid estimate. 
If the data passes all the checks, the quality of the data can be 

reasonably assured, and the event processing system uses the updated 
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information to produce a magnitude estimate for the event. It takes the 

log10 average of pmax from each available channel, and calculates a 

magnitude from the average value. The results of magnitude estimation for 
the calibration events using pmax alone are shown as gray triangles in Figure 

2.4. Note the significant scatter in the magnitude estimate below M 4.5, 

consistent with the calibration of pmax vs. magnitude from Figure 2.2. 

The event processing system also takes the average value of Pd/v from 
each station and calculates a magnitude from that average value. The 

results for the calibration events are shown as gray squares in Figure 2.4. 

Note the comparatively low magnitude assigned to the largest event in the 
calibration dataset, consistent with Figure 2.3. As discussed earlier, this is 

the result of incorporating data from more distant stations for this event. 
However, it highlights a potential limitation of the Pd/v estimate. The Pd/v 

estimate is susceptible to saturation near the fault for very large events. 
This is because at fault-normal distances less than the length of the rupture 

the distance to the farthest point of the rupture is significantly greater than 
the distance to the nearest point. As a result, the effective distance between 

the station and the rupture (i.e., the average distance between the station 
and all points on the rupture) is greater than the actual fault-normal 

distance, leading to lower P-wave amplitude than predicted for a given 
epicentral distance. 

The value of pmax does not appear to be susceptible to this effect [Olson 

and Allen, 2005], but is much more susceptible to noise pollution at lower 

magnitudes than peak amplitude measurements. Thus the two estimates of 

pmax and Pd/v are particularly complementary, with the strengths of one 

compensating for the weaknesses of the other, and using some combination 

of the two magnitude estimates from pmax and Pd/v produces a more robust 

single estimate. Currently, the two estimates are combined in a linear 

average, the results of which are shown as black circles in Figure 2.4. Note 
the superior performance at both ends of the magnitude scale as a result of 

this combined approach. The large events are not underestimated, and the 
scatter in the small events has been greatly reduced. 

A more sophisticated scheme may be conceivable for the combination of 
the pmax magnitude with the Pd/v magnitude. In particular, since we are 

interested in the low-magnitude performance of Pd/v and the high-magnitude 
performance of pmax, it makes sense to consider a progressive weighting 

scheme in which the latter is more heavily weighted at low magnitudes and 
the former more at high magnitudes. We investigated a scheme by which 

the weighting changes linearly with the magnitude of the event, but found 
that the data does not bear out the use of such a scheme. At this time the 

simple linear average appears to be as good as any weighted average, so we 

use the linear average. 
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2.3.6. Ground motion prediction 

The final step in an early warning system is to predict the severity of 
imminent ground motions from an ongoing earthquake and to issue 

warnings based on those predictions. We do not address the question of 
when and how to issue warnings. For a discussion of this aspect of EEW, see 

the work of Brown et al. [2009]. For this study, we observe that the 1- 

error in magnitude estimate reduces to a reasonable level (0.5 magnitude 

units) when 4 seconds of data are available from 4 channels. We define this 
criterion of 4 seconds of data in 4 channels as the “alarm time” for the 
purposes of performance evaluation in the next section. However, we arrive 
at this definition somewhat arbitrarily, and different users would require 

different levels of uncertainty or timeliness, depending on their tolerance for 
false or missed alarms [Brown et al., 2009]. 

ElarmS is capable of generating ground motion predictions through the 
incorporation of algorithms from ShakeMap [Wald et al., 2005]. These 

algorithms, which have been developed for and tested extensively in 

California, incorporate empirically-derived GMPEs [Newmark and Hall, 1982; 
Boore et al., 1997; Wald et al., 1999a; Boatwright et al., 2003], as well as 

geological amplification correction and corrections for site conditions at 
seismic stations [Borcherdt, 1994; Wills et al., 2000]. The ground motion 

predictions are initially calculated using only the estimated magnitude and 
location of the event, as no observations of peak ground motion are yet 

available. We use the GMPE for the given magnitude to compute the 
predicted ground motion on a regular grid of points with a spacing of 0.1° 

around the source. The prediction at each point is then corrected for local 
geological effects. The result is a coarsely spaced grid of points with 

predictions of peak ground motion based solely on the magnitude and 
location of the event. This grid can be interpolated to create predictions at 

finer resolution, and to generate predictions for discrete locations of interest, 
such as urban centers or seismic stations. 

As the event progresses and the S-wave field expands outward from the 

source, peak ground motion observations become available at each station. 
The observations are first corrected for the site condition at the station, and 

then the GMPE curve, based on magnitude and location, is linearly scaled up 
or down to best fit the corrected observations. The resulting equation is used 

to generate ground motion predictions on a regular grid as before, with the 
addition of grid points representing the individual station observations 

available at the time. This irregular grid is interpolated to produce a finer, 
regular grid of peak ground motion incorporating magnitude, location and 

station observations. This grid is predictive at all points ahead of the S-wave 
front. The process is similar to that used to produce ShakeMaps after an 

earthquake, but here it is done once per second. Initially there is very little 
information to incorporate and the ground motion predictions are 

correspondingly rough, but with each second that passes the information 
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becomes more complete and the ground motion predictions are refined in 

real time. ElarmS produces predictions of PGA and PGV at all points, which 
are combined to produce a prediction of Modified Mercalli Intensity (MMI) 

using the relationship of Wald et al. [1999b]. 

2.3.7. Simulating ElarmS 

It is not practical to implement the ElarmS methodology online as 
outlined in the first part of this section without first testing it offline to 

ensure its functionality. This is because a full implementation requires the 
investment of time and money to emplace the waveform processing system 

at each station in the network. Therefore, we test the performance of the 
methodology offline using a program that simulates the causality of 

information after the event has completed. While this simulation may differ 
somewhat from the final implementation of ElarmS, the behavior of the 

methodology will not change appreciably from the results of the simulation. 

Henceforth, when referring to “ElarmS” we refer to the simulation unless 
otherwise stated. 

2.4. ElarmS Performance 
Since February 2006, we have been operating ElarmS automatically 

following every event of M 3.0 or larger in northern California. This 

processing is initiated 10 minutes after notification of a new event, in order 
to allow the requisite data to be collected at the network data center for 

retrieval. The processing is performed automatically with no human input or 
oversight. We have been using the results of this automatic processing to 

make improvements to the ElarmS methodology, and consequently it is 
necessary on occasion to re-process these events after the fact, when a 

significant change is made in the methodology. This reprocessing is 

prompted by a human operator, but without any added input from the 
operator. The process is identical to the automatic processing and uses the 

same data which was gathered 10 minutes after each event. We call this 
“non-interactive” processing, and we use it to indicate how a real-time 

implementation of ElarmS might perform. 

2.4.1. Performance of non-interactive processing 

Between February and September of 2006, a total of 85 instances of non-
interactive processing were initiated. Of these, one is a duplicate event, a 

result of the email notification system posting an update to an existing 
event. One instance was a false event. This was not the result of a false 

detection by ElarmS, but of an erroneous email notification. 
The geographic distribution of the remaining 83 events is shown in Figure 

2.5. Of these, one event was offshore Mendocino, with no stations within 
100 km of the source. This is the cutoff distance for usable stations in the 

ElarmS methodology, so the event produced no output. Seven events 

suffered errors as a result of maintenance of the operating system. Five of 
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these occurred consecutively, due to the extraordinary misfortune of an 

update to the operating system coinciding with a temporal (not spatial) 
cluster of small events (all ML  3.6). The system maintenance prevented the 

acquisition of data 10 minutes after the earthquake. Acquiring data at a later 
time invalidates the “non-interactive” procedure, so these events are not 

considered in this analysis. 
The remaining 75 events range in magnitude from Md 2.86 to Mw 5.0. The 

results of magnitude estimation for these 75 events are presented in Figure 
2.6. This figure shows the magnitude errors (with respect to network-based 

magnitudes, usually Mw or ML) produced by ElarmS at three different times 
for each event. The initial magnitude error (Figure 2.6a) refers to the 

magnitude estimation based on only the first second of P-wave data at the 
first station or stations to detect the event. This is the earliest possible 

magnitude determination, which can be used to give the maximum warning 
time. The initial magnitude has a significant scatter (  0.72 magnitude 

units) due to its reliance often on a single station's data. 
Figure 2.6b shows the errors at “alarm time”, which we define as in the 

previous section to be the time at which at least four seconds of P-wave data 

are available from at least four different channels. The magnitude error at 
this time is considerably less than in the first second (  0.54 magnitude 

units). There are fewer events represented in this plot (66 events vs. 75 in 
Figure 2.6a), because not all of the events are ever detected in enough 

channels to meet the alarm criteria. This is primarily due to the weak signal 
from small (M  3) events, and in some cases results from a lack of enough 

stations within 100 km of the epicenter. 
Figure 2.6c shows the error in the final magnitude determination for 

events that met the alarm criteria, using all available data from stations 
within 100 km of the source. The scatter has decreased slightly (  0.48 

magnitude units) due to the incorporation of more station information. In all 
three of these plots, the magnitude estimate is biased slightly downward 

(mean of -0.57 magnitude units in the initial estimate, -0.13 at alarm time 
and -0.02 in the final magnitude estimate). This is due to events beyond the 

physical edge of the network, which can be mislocated by tens of kilometers 
due to poor azimuthal coverage. This does not affect pmax-based magnitude 

estimates, but Pd/v-based magnitude estimates are strongly affected by 

epicentral distance errors. Location errors can also cause the system to set 
the S-wave arrival time earlier than the true arrival time because it 

considers some events to be closer to the station than it is. This causes the 
system to discard valid data when measuring both pmax and Pd/v, because it 

considers the signal contaminated by the S-wave. This biases the estimates 
downward because it prevents both pmax and Pd/v values from being revised 

at later times, and these revisions are always upward. 
Figure 2.7 summarizes the error in ground motion prediction at seismic 

stations in the NCSN and BDSN networks for all events. The logarithm of the 
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observed ground motions is subtracted from the logarithm of the predicted 

ground motions for PGA (Figure 2.7a,b) and PGV (Figure 2.7c,d). An error of 
1 signifies over-prediction by a factor of 10. Figure 2.7a and c show the 

errors in the first second of data, and Figure 2.7b and d show the errors at 
alarm time. At alarm time the 1- error in PGA and PGV is approximately a 

factor of 4 (0.6 log units). For the MMI errors (Figure 2.7e,f) no logarithm is 
necessary as MMI incorporates logarithms of PGA and PGV [Wald et al., 

1999b]. The number of predictions in the center bin (less than 0.17 MMI 

unit error) is off scale in Figure 2.7e and f. There are 435 observations in the 

center bin in the first second (Figure 2.7e) and 398 at alarm time (Figure 
2.7f). The scatter in ground motion prediction is significantly reduced by 

waiting for the alarm condition to be met (=0.42 MMI units in the first 

second, versus =0.08 at alarm time). Figure 2.7e has a positive bias (0.12 

MMI units). This is because the ShakeMap MMI scale ranges from 1 to 10, 
and for many of the smaller events MMI cannot be significantly under-

predicted simply because the actual MMI is only 1 or 2. There is also a slight 
negative bias (-0.01 MMI units) in Figure 2.7f reflecting the same effects as 

seen in Figure 2.6. The errors reported in Figure 2.6 and Figure 2.7 are valid 

only for events in the validation dataset. We cannot evaluate the error for 
larger earthquakes, as none occurred in the time of the study. 

The times between event origin and detection and the achievement of the 
alarm condition for all the events are summarized in Figure 2.8. Initial 

detection occurs an average of 8.0  4.8 seconds after event origin (Figure 

2.8a). The alarm condition is reached an average of 14.9  4.6 seconds after 

origin (Figure 2.8b). These results are presented in Figure 2.9 in terms of 
time until largest ground shaking at three major Bay Area metropolitan 

centers: San Francisco, San Jose and Oakland. The median warning time in 
these cities at initial detection is 56 seconds in San Francisco (Figure 2.9a) 

or Oakland (Figure 2.9e), and 48 seconds in San Jose (Figure 2.9c). If we 
wait for the alarm condition to be reached, the median warning times reduce 

to 39.5 seconds in San Francisco (Figure 2.9b), 40 seconds in San Jose 
(Figure 2.9d) and 39 seconds in Oakland (Figure 2.9f). This analysis does 

not show the warning time for any future earthquakes, but the distribution 
of event locations in Figure 2.5 does coarsely reflect the potential locations 

of future large earthquakes. For a more detailed analysis of warning time for 

potential damaging earthquake scenarios, see Allen [2006]. 
The two event parameters which have not been discussed are the 

epicenter estimates and the origin time estimates. When only one station 
has triggered, ElarmS assumes the event origin time and epicenter 

correspond to the time and location of that first trigger. When two stations 
have triggered, the epicenter is located at a point between the first two 

triggered stations, based on timing. Consequently location and origin time 
errors are significant when fewer than three stations are used. However 

when three or more stations are used we find the error is small, and by the 
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time the alarm condition is met both of these estimates have insignificant 

error. This characterization does not hold as well for events beyond the edge 
of the network. At alarm time, the mean absolute error in epicenter location 

is 13.7  km and the mean absolute error in origin time is 2.3  3.1 

seconds, including events beyond the edge of the network. For both of these 

measures, the mean error is within a standard deviation of zero. 

2.4.2. Two Bay Area scenario events 

Among the 75 events processed non-interactively by ElarmS, two 
moderate events represent likely hazardous earthquake scenarios for the 

Bay Area (Figure 2.10), and thus provide some insight into what can be 
expected of ElarmS. For these two events we use ML as a reference, even 

though Mw values exist for both. This is because ML is sensitive to the same 
frequencies (~1-2 Hz) as ElarmS, and because ML is more directly related to 

the severity of the event in terms of damage to persons and property. 
The first event is a ML 4.7 event near Gilroy, CA on 15 June, 2006. This 

event is located near the southern Calaveras fault, in a geographic location 

where a Calaveras or Southern Hayward fault rupture might nucleate (Figure 
2.10). Figure 2.11a shows the magnitude estimate for this event as a 

function of time in relation to the arrival time of significant shaking at San 
Francisco, Oakland and San Jose (vertical lines). The time at which the 

alarm condition was reached is also plotted, and the dashed horizontal line 
represents M = 4.7, the actual local magnitude of the event. 

Figure 2.11b shows the error in predicted PGA vs. time, over all stations 
which have not yet reported peak ground motion at the given time. The solid 

line is the mean error at each time, and the dashed lines are 1- error 

margins. Figure 2.11c shows the error in predicted PGV vs. time for the 

event in a similar fashion. Both of these factor into the predicted MMI for the 
event [Wald et al., 1999b]. 

Figure 2.11d shows the error in predicted MMI vs. time in a manner 
similar to Figure 2.11b and c. After 13 seconds the only stations which have 

not reported peak ground motion are those far from the fault, which 

experience an intensity of 1. The predicted MMI at all these stations is 1 (the 
ShakeMap algorithm does not produce MMI less than 1), and this is reflected 

in Figure 2.11d by the fact that the mean and 1- lines converge to zero 

after 13 seconds. 

Figure 2.12 shows the predicted peak ground shaking from ElarmS (which 
we call the “AlertMap”) for 7 seconds following event detection for 
comparison with the ShakeMap for this event (Figure 2.12h). The time since 
event origin and magnitude estimate are given above each AlertMap. 

Stations are plotted as small white symbols in the same fashion as the maps 
in Figure 2.1 and Figure 2.5: triangles for velocity sensors, inverted triangles 

for accelerometers and diamonds for a collocated installation. Stations which 
have triggered are plotted as larger gray symbols, and stations which are 

experiencing peak ground motions are plotted in black. When the peak 
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observations become available, the stations are colored according to their 

observed peak MMI, following the scale at the bottom of the plot. The 
circular contours radiating from the epicenter represent the estimated time 

until the onset of the largest ground motions at all locations, based on the 
current epicenter location and a move-out speed of 3.75 km/s. The color 

field in Figure 2.12b-g represent estimated peak MMI following the scale at 
the bottom of the plot, which is the same as for the ShakeMap in Figure 

2.12h. At all points outside the 0-second warning time contour, this peak 
MMI estimate is predictive. 

The first AlertMap in Figure 2.12a, 3 seconds after event origin, 
represents the initial detection time for this earthquake. There is no 

magnitude estimate yet, since ElarmS requires a full second of P-wave data 
before making the initial estimate. The larger gray station is the first station 

to trigger for this event, and the red star represents the epicenter, currently 
located at the station as described above. The initial magnitude estimate of 

M 5.0 is available one second later, 4 seconds after the origin (Figure 

2.12b). With the magnitude estimate ElarmS begins predicting ground 
motions based only on the GMPE. The epicenter has also been relocated at 

this time due to a second station triggering. As described above, the 
epicenter is now located directly between the two triggered stations based 

on the trigger times. At 5 seconds after origin (Figure 2.12c), a third station 
triggers and from this point forward the location is fit to the trigger times 

using a grid search. At this time, data is being collected from 4 channels 
(two channels at the station southeast of the epicenter, one at each of the 

other two stations), so 4 seconds later (i.e., 9 seconds after origin) the 
alarm condition will be reached. At 6 seconds (Figure 2.12d) two more 

stations have triggered, but by now the epicenter location is good and does 
not move noticeably. 

At 7 seconds after origin (Figure 2.12e), the magnitude estimate has 
dropped to 4.7, and the first peak ground motion observation is available. At 

this time, the GMPE curve is biased to pass through that single observation, 

which is why the predicted MMI field for the event changes so drastically 
between Figure 2.12d and e. The station southeast of the epicenter is 

plotted in black to indicate that it is currently experiencing peak ground 
motion, consistent with its location within the 0-second warning time 

contour. At 8 seconds (Figure 2.12f) two more stations have triggered and 
another has entered the peak ground motion window. At 9 seconds (Figure 

2.12g) the alarm condition is reached since the fourth channel triggered at 5 
seconds, and the magnitude estimate is 4.3, only 0.4 magnitude units below 

the actual ML. At this time, 3 additional stations have triggered, bringing the 
total to 13 triggered channels at 10 different stations. Another station has 

entered the peak ground motion window, and the station southeast of the 
epicenter has reported its peak ground motion observation. When there are 

multiple observations, ElarmS biases the GMPE curve to best fit the available 
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observations. In this case, this results in a slight increase in the predicted 

ground motion over Figure 2.12f. 
The reason for the low intensities far from the event in the final AlertMap 

(Figure 2.12g) versus the ShakeMap (Figure 2.12h), is that the ShakeMap 
incorporates peak ground motion observations from stations on the 

Peninsula and in the East Bay. At 9 seconds after the origin, the S-wave 
front has not arrived at many of these stations, so that information is not 

used to bias the GMPE curve in the AlertMap. However, in Figure 2.11d it is 
apparent that the ElarmS ground motion predictions at 9 seconds are 

accurate to within a standard deviation of 0.3 MMI units of the actual 
observed intensities. The vertical lines in Figure 2.11 represent the arrival of 

the largest ground motions at the three major urban centers in the Bay 
Area. San Jose experienced peak ground shaking only 12 seconds after 

event origin, meaning San Jose would have had about 3 seconds warning 
time in this event, not considering telemetry and dissemination delays. 

However, Oakland and San Francisco would have had 20 and 22 seconds of 

warning, respectively for this event. These warning times depend primarily 
on the disposition of stations around the epicenter, so they would be 

comparable for a magnitude 7 event. In this case, the distance between the 
epicenter and the major cities is comparable to that of the Mw 6.9 Loma 

Prieta Earthquake. Thus, in the case of a Loma Prieta repeat, we would 
expect comparable warning times in the major cities. 

The second scenario event is a ML 4.7 event near Santa Rosa on 2 August 
(local time), 2006. This event is located near the Rodgers Creek fault, near 

possible epicenter locations for a southward-rupturing Rodgers 
Creek/Hayward fault event (Figure 2.10). Figure 2.13 and Figure 2.14 show 

the history of this event in the same manner as for the Gilroy event. 
Initial detection of this event occurs 3 seconds after event origin, as 

shown in the AlertMap in Figure 2.14a. The epicenter at this time is 
collocated with the only triggered station. At 4 seconds (Figure 2.14b), two 

other stations have triggered, so the epicenter is located using a grid search 

method. In addition, one of the stations has both an accelerometer channel 
and a velocity channel, bringing the triggered channel count to 4. Thus the 

alarm condition will be reached in 4 seconds, at 8 seconds after origin. The 
initial magnitude estimate at this time is 5.8, over one magnitude higher 

than the actual size of the event. The high magnitude estimate in turn 
causes the ground motion predictions to be high, as these are produced 

using the GMPE alone, with no station observations to bias the curve. This is 
reflected both in the AlertMap, which shows significantly higher MMI than the 

ShakeMap (Figure 2.14h), and in Figure 2.14b, which shows that the first 
MMI predictions exceed actual observations by as much as 2 MMI units. 

The comparatively large magnitude error highlights the utility of waiting 
for more data to become available rather than issuing the alarm 

immediately, based on information from a single station only. In this case, 
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the large error is due to the first triggered station being a strong-motion 

accelerometer. Most of the stations to the north of the Bay Area are strong-
motion accelerometers, which are susceptible to noise pollution below M  5. 

For large earthquakes this is not a problem, but in smaller events high-gain 
broadband velocity sensors yield superior data. 

At 5 seconds (Figure 2.14c) after origin the magnitude drops to 4.3 due 
to the incorporation of one second of data from the three channels which 

triggered in the previous second. The magnitude estimate is now 0.4 units 
lower than the actual ML for this event, but the error is nearly a third of that 

in the previous second, again suggesting that it is better to wait one second 
for multiple stations to provide data rather than relying on a single-station 

estimate. At 6 seconds after origin (Figure 2.14d) the first peak ground 
motion observations become available, and the GMPE curve is biased to 

minimize the errors at these stations. Two more stations to the southwest 
have triggered at this time, leading to a small revision in the epicenter 

location. At 7 seconds after the origin (Figure 2.14e) the magnitude estimate 

drops slightly to 4.2. Two more stations have triggered, but the location 
does not change noticeably after 6 seconds from origin. The station directly 

south of the epicenter now reports an additional peak ground motion 
observation, further informing the ground motion predictions at this time. 

At 8 seconds after origin (Figure 2.14f) the alarm condition is reached. 
Two more stations have triggered in this second, bringing the total to 10 

channels at 9 stations. The magnitude estimate is 4.2, half a magnitude 
lower than the actual ML of 4.7. However the peak ground motion predictions 

are biased up by the available station observations of peak ground motion, 
and match both the ShakeMap (Figure 2.14h) and the final observed peak 

ground motions at the stations outside the 0-second warning contour. Figure 
2.14b shows that the MMI predictions are accurate to within a standard 

deviation of 0.3 MMI units at alarm time. For consistency with Figure 2.12 
the AlertMap at 9 seconds, one second after the alarm time, is shown in 

Figure 2.14g. There is no noticeable change from Figure 2.14f, other than 

one additional station having triggered. 
When comparing the ElarmS AlertMap for this event (Figure 2.14f) with 

the ShakeMap (Figure 2.14h) the performance appears better at alarm time 
than for the Gilroy event, even in light of the low magnitude estimate. The 

two maps are almost identical in terms of peak intensities, though the 
AlertMap does under-predict the intensity near the epicenter as a result of 

the low magnitude estimate. At alarm time, both San Francisco and Oakland 
have 11 seconds until the arrival of the largest ground shaking. The 

magnitude estimate is low, and will only rise to 4.6 at 13 seconds after the 
origin (Figure 2.11b) leaving 6 seconds of warning for San Francisco and 

Oakland, but this is not an issue when considering ground motion 
predictions, which are accurate at this time. San Jose experiences its largest 

ground motions 37 seconds after origin, so even with the additional 5 second 
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delay for the magnitude estimate to rise, it still has 24 seconds of warning in 

this instance. 

2.5. Improving ElarmS Performance 
The performance of ElarmS in the non-interactive processing arena is 

promising. At alarm time the 1- magnitude error for these events is 0.5 

magnitude units, which is consistent with the results using the calibration 

events, and also consistent with previous work with the ElarmS methodology 
in southern California [Allen, 2007]. This indicates that we now have a good 

understanding of how ElarmS behaves in a real setting, at least for 
earthquakes less than M5, and suggests that we can expect the same 

behavior in the future in northern California and in other locations as well. 
Although the results are largely favorable, there are a few things to 

consider for full online implementation. For one thing, the warning times 

obtained in the non-interactive processing are maximum warning times, as 
they do not take into account telemetry, processing or dissemination delays. 

The processing time delay should not exceed one second if we are to run 
ElarmS with continuous updates every second. In terms of station telemetry, 

the actual transmission delays are negligible [Uhrhammer, personal 
communication, 2006], but currently data is telemetered in up to 10-second-

long packets for stations in the BDSN and NCSN networks [Neuhauser, 
personal communication, 2006]. This packetization can be reduced to 1 

second or less, but the overhead associated with transmitting each packet 
gets proportionally larger as the packet itself gets smaller. Finally, these 

warning times do not account for delays in disseminating the data and 
taking action at the user end. We cannot quantify these delays as no 

dissemination system exists at this time. However, the results reported here 
show that a dissemination delay of less than 1 second is ideal. When such a 

system is designed, the minimization of dissemination delays must be a 

primary design goal. 
One way to significantly improve warning times is to improve the 

disposition of seismometers around northern California. At present the 
broadband velocity and strong-motion accelerometer stations in the NCSN 

and BDSN networks are distributed somewhat unevenly, and not always in 
optimal locations for observing an earthquake near its epicenter. In 

particular, most of the stations are located in and around the Bay Area, with 
comparatively few stations along the northern coast of California. The 

mitigating circumstance here is that most of the population of northern 
California lives in the Bay Area, and the preponderance of faults capable of 

major earthquakes is in and around the Bay Area, where most of the 
instruments are located. However, the comparative lack of instruments 

along the northern portions of the San Andreas Fault mean first that any 
people living north of the Bay Area would receive limited benefits from 
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ElarmS or a similar EEW system. The second consequence of this station 

distribution is that an event nucleating on the northern portions of the San 
Andreas Fault and propagating southward would take a long time to achieve 

the alarm condition due to the dearth of stations in the vicinity of the 
epicenter. This means drastically reduced warning times for the Bay Area 

and likely a larger error margin due to the comparatively few measurements 
that would be incorporated in the event estimates. Given that a southward-

propagating rupture on the northern San Andreas Fault may cause as much 
as $90 - $120 billion in losses in the Bay Area [Kircher et al., 2006] it is 

worthwhile to instrument the northern reaches of the San Andreas more 
thoroughly. 

Even within the Bay Area there is some room for improvement. There are 
few broadband or strong-motion stations around the southern segment of 

the Hayward Fault, which is considered the most hazardous fault in the 
region [Working Group on California Earthquake Probabilities, 2008]. Given 

this fault's proximity to the major urban centers in the Bay Area, as little as 

one or two seconds' additional warning could make a significant difference. A 
few well-placed seismometers along the Hayward Fault would go a long way 

toward attaining those extra one or two seconds. 

2.6. Conclusions 
The ElarmS methodology incorporates two independent measurements to 

estimate the magnitude of an event: the peak amplitude of the P-wave and 
its maximum predominant period, both within 4 seconds of the onset of the 

P-wave. These measurements are controlled both for sufficient signal-to-
noise ratio and to prevent pollution by the S-wave arrival. The magnitude 

estimate produced by ElarmS is a linear average of the estimates 
determined from peak amplitude and maximum predominant period. The 

epicenter of an event is located using a grid search algorithm based on the 

trigger times at three or more stations. The epicenter and magnitude 
estimates are used to generate predicted ground motions at all points 

around the epicenter, using algorithms similar to ShakeMap. The predictions 
are updated each second based on updated epicenter and magnitude 

information. As observations of peak ground motion become available at 
stations near the epicenter, the prediction is corrected to conform to these 

observations, further refining the prediction. 
The ElarmS methodology has been applied in an offline simulation to 

every event greater than M 3 in northern California since February of 2006. 
The methodology has been applied automatically and without human 

interaction 10 minutes after each event, to simulate how ElarmS performs 
without human assistance, as it would in a real-time application. Eight 

months of non-interactive operation of the ElarmS simulator have shown 
that the ElarmS methodology can reliably deliver accurate earthquake 
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information within a few to a few tens of seconds of event origin. 75 events 

were successfully processed non-interactively in that time frame. We define 
an “alarm time” of 4 seconds of data at 4 stations, and at this alarm time 

the 1- magnitude errors for the non-interactive processing are half a 

magnitude unit. This is as expected given past performance of the 

methodology on calibration events and in southern California. At alarm time 
the ground motion predictions have a 1- error within approximately a factor 

of 4 in PGA and PGV, or within 0.1 MMI of the actual observed MMI at 
seismic stations in the BDSN and NCSN networks. These errors are valid for 

the 75 events in the non-interactive dataset, and it is difficult to estimate 
the errors for events larger than those in that dataset. The alarm time 

occurs an average of 15 seconds after event origin. Of the 75 events 
processed since February 2006, 66 achieve the alarm condition. For these 66 

events, ElarmS provides a median warning time of 49 seconds in major Bay 
Area metropolitan centers. 

Two events since February 2006 represent hazardous scenario 
earthquakes for the Bay Area. In both cases, the magnitude estimate at 

alarm time is within 0.5 of the network-determined ML of 4.7, and ground 

motion predictions are within 0.3 MMI units of the actual peak ground 
motions observed for the events. Warning times in the Bay Area achieved by 

the system for the two scenario earthquakes range from about 3 to 30 
seconds, depending on the location of the epicenter relative to the city in 

question. 
A functional Earthquake Early Warning system in northern California has 

the potential to save both lives and money in the event of a major 
earthquake. Based on the results of simulating the operation of ElarmS, we 

find the methodology in a condition in which we can move forward to a real-
time, online implementation of ElarmS in northern California in the near 

future. 
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2.8. Figures 
 

 
Figure 2.1: Map of California showing distribution of events used in the calibration process 
(white circles) and stations in the NCSN (gray) and BDSN (black) networks. Upright triangles 
signify high-gain, broadband velocity sensors. Inverted triangles signify low-gain strong-motion 
accelerometers, and diamonds signify a station with collocated velocity sensor and 
accelerometer. 
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Figure 2.2: Plots of p

max vs. magnitude for all calibration events. Each point represents a single 

station measurement. Measurements are separated by channel code: HH (a) represents velocity 
sensors, while HL (b) and HN (c) represent accelerometers. The dotted line in all three plots is 
the same line of best fit using HH and HL data simultaneously. 

 

 

 
Figure 2.3: Plots of Pd/v vs. magnitude for all calibration events. Each point represents a single 
station measurement, corrected to a distance of 10 km using the empirical best fit equation. 
Measurements are separated by channel code: HH (a), HL (b) and HN (c). The dotted line in each 
plot is the line of best fit using data from the corresponding channel only. 
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Figure 2.4: Plot of ElarmS magnitude estimate vs. network-derived magnitude (usually ML or 
Mw) for the calibration events. Gray triangles are magnitude estimates using p

max only, gray 

squares are estimates using Pd/v only, and black circles are a linear average of the two 
magnitudes for each event. 

 
 

 
Figure 2.5: Map of California showing distribution of events (white circles) processed non-
interactively by ElarmS from February through September 2006. Stations in the NCSN (gray) and 
BDSN (black) networks are plotted as upright triangles for high-gain, broadband velocity sensors. 
Inverted triangles signify low-gain strong-motion accelerometers, and diamonds signify a station 
with collocated velocity sensor and accelerometer. 
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Figure 2.6: Histograms showing errors in magnitude estimate for all non-interactive events (a) 
at one second after detection (75 events), (b) at “alarm time” when 4 seconds of data are 
available in 4 channels (66 events), and (c) 60 seconds after the event began for those events 
which achieved the alarm condition (66 events). 

 
 

 
Figure 2.7: Histograms showing ground motion prediction errors at all stations for all non-
interactive events. Only stations which had not already observed peak motions at the initial and 
alarm times are included in the data. (a) Errors in Log(PGA) at one second after detection, and 
(b) at “alarm time” when 4 seconds of data are available in 4 channels; (c) errors in Log(PGV) at 
one second after detection and (d) at alarm time; (e) errors in MMI at one second after detection 
and (f) at alarm time. In (e) and (f), the 0-centered bin is off scale. The value of this bin is 435 in 
(e) and 398 in (f). 
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Figure 2.8: Histograms of time between event origin and initial detection (a) and between event 
origin and the “alarm time” at which 4 seconds of data are available in 4 channels (b) for all non-
interactive events. 

 

 

 
Figure 2.9: Histograms of warning time until onset of largest ground motions at San Francisco, 
San Jose and Oakland for all non-interactive events. Onset times are estimated using a move-out 
speed of 3.75 km/s. Warning times are calculated from one second after initial detection (a, c 
and e) and from “alarm time” (b, d and f), defined as having 4 seconds of data in 4 channels. 
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Figure 2.10: Map of the San Francisco Bay Area showing the location and focal mechanisms of 
two hazardous scenario earthquakes processed non-interactively by ElarmS. The black symbols 
are stations in the NCSN and BDSN networks. Stations are plotted as upright triangles for high-
gain, broadband velocity sensors, inverted triangles for low-gain strong-motion accelerometers, 
and diamonds for stations with collocated velocity sensor and accelerometer. Focal mechanisms 
are from the BDSN regional moment tensor catalog [Pasyanos et al., 1996]. 

 
 

 
Figure 2.11: Plot of ElarmS output for the first 40 seconds of the Gilroy event. Vertical lines 
represent (as labeled) the time of alarm condition, or the onset of largest ground motions at San 
Francisco, San Jose or Oakland based on a move-out of 3.75 km/s. (a) Magnitude estimate. The 
dotted horizontal line represents the network-based ML of 4.7. (b) Error in the logarithm of 
predicted peak ground acceleration. At each time interval, the plot incorporates all stations which 
have not yet observed peak ground motions. Dotted lines represent the 1- error envelope. (c) 

Error in the logarithm of predicted peak ground velocity. (d) Error in the predicted Modified 
Mercalli Intensity. 
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Figure 2.12: (a-g) ElarmS AlertMap output for 3-9 seconds after the origin of the Gilroy event. 
Time since event origin and the magnitude estimate are shown above each AlertMap. The 
epicenter is plotted as a red star. Stations which have triggered are shown in gray, stations which 
are experiencing peak ground motions are black, and those that have reported peak ground 
motion are color coded according to the scale at bottom. Stations are plotted as upright triangles 
for high-gain, broadband velocity sensors, inverted triangles for low-gain strong-motion 
accelerometers, and diamonds for stations with collocated velocity sensor and accelerometer. The 
circular contours represent time until onset of strong ground motion based on the location and 

origin time of the event and a move-out of 3.75 km/s. The color field is the ElarmS prediction of 
Modified Mercalli Intensity, according to the scale at bottom. (h) The ShakeMap for the Gilroy 
event. The color field represents actual instrumentally-observed Modified Mercalli Intensity for 
the event, processed after the event occurred. 
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Figure 2.13: Plot of ElarmS output for the first 40 seconds of the Santa Rosa event. Vertical 
lines represent (as labeled) the time of alarm condition, or the onset of largest ground motions at 
San Francisco, San Jose or Oakland based on a move-out of 3.75 km/s. (a) Magnitude estimate. 
The dotted horizontal line represents the network-based ML of 4.7. (b) Error in the logarithm of 
predicted peak ground acceleration. At each time interval, the plot incorporates all stations which 
have not yet observed peak ground motions. Dotted lines represent the 1- error envelope. (c) 

Error in the logarithm of predicted peak ground velocity. (d) Error in the predicted Modified 
Mercalli Intensity. 
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Figure 2.14: (a-g) ElarmS AlertMap output for 3-9 seconds after the origin of the Santa Rosa 
event. Time since event origin and the magnitude estimate are shown above each AlertMap. The 
epicenter is plotted as a red star. Stations which have triggered are shown in gray, stations which 
are experiencing peak ground motions are black, and those that have reported peak ground 
motion are color coded according to the scale at bottom. Stations are plotted as upright triangles 
for high-gain, broadband velocity sensors, inverted triangles for low-gain strong-motion 
accelerometers, and diamonds for stations with collocated velocity sensor and accelerometer. The 
circular contours represent time until onset of strong ground motion based on the location and 
origin time of the event and a move-out of 3.75 km/s. The color field is the ElarmS prediction of 
Modified Mercalli Intensity, according to the scale at bottom. (h) The ShakeMap for the Santa 
Rosa event. The color field represents actual instrumentally-observed Modified Mercalli Intensity 
for the event, processed after the event occurred. 
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3.1. Abstract 
A central question in earthquake physics is whether earthquakes are a 

fundamentally self-similar process or not. This issue continues to be 
vigorously debated in the seismological community. If they are not self-

similar phenomena, small ruptures may behave qualitatively differently from 
large ruptures. In particular, this may be observable in the evolution of slip 

over the course of an earthquake. Modeling studies have attempted to 
answer this question, but there exist models that show self-similar behavior 

and others that show deterministic behavior. 
We examine 167 kinematic slip inversions, most from the SRCMOD 

database (see Data and Resources Section), to determine whether these 
models exhibit self-similar characteristics or scaling with magnitude. The 

large number of models available for the analysis allow us to address 

statistically the early slip history which otherwise, taken for each model 
individually, is not sufficiently well-resolved to draw robust conclusions. 

We find a clear and robust scaling of slip amplitude within the first second 
to the first 10 seconds of rupture with the final size of the earthquake. We 

separate out the models according to use of linear or nonlinear methods and 
find no distinguishable difference between different types of inversions. The 

scaling becomes more pronounced when earthquakes with large grid spacing 
are removed from the analysis, suggesting that the coarser parameterization 

of larger events is not responsible for the observed behavior. This scaling is 
suggestive of a degree of determinism in earthquake rupture, though it is 

likely that we are observing the aggregate behavior of individually cascading 
ruptures, and not the fundamental physics of each rupture. 

3.2. Introduction 
The process by which earthquake ruptures initiate and propagate is 

usually expressed as one of two broadly-defined mechanisms. The cascade 
model [Bak and Tang, 1989; Steacy and McCloskey, 1998; Sato and 

Kanamori, 1999; Ide and Aochi, 2005; Otsuki and Dilov, 2005] explains 
earthquake rupture as a process by which a small initial patch of the fault 

nucleates slip, and the stress concentration at the edges of that patch load 
the adjacent patch which may or may not rupture as a result of the stress 

from the first patch. If it ruptures, it subsequently loads yet another patch, 
which in turn may fail as a result. The final size of the earthquake is 

determined by whether each subsequent patch does or does not fail from the 
loading of the previous patch. A consequence of this behavior is that the 

initial rupture of a large earthquake is indistinguishable from that of a small 

earthquake; it is the spatial distribution of stress (i.e., the presence or 
absence of barriers and asperities) that determines whether the final 

earthquake will be small or large. Thus, this model predicts that earthquakes 
are self-similar phenomena, and are therefore inherently non-deterministic 
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in that one cannot predict the final size of the rupture while the event is 

ongoing. The second model, known as the preslip model [Ellsworth and 
Beroza, 1995; Aki, 2000; Ohnaka, 2000; Ohnaka, 2004; Abercrombie, 

2005], suggests that a nucleation slip patch, which is either aseismic or 
seismically slow, is allowed to develop before the fast rupture process 

begins. This patch loads the surrounding fault according to the amount of 
pre-seismic slip accumulated, and this variation accounts for any difference 

between large and small earthquakes. The consequence of this model is that 
the rupture of a large earthquake is immediately distinguishable from the 

rupture of a small earthquake because of differences in stress in the 
nucleation region. Thus the final size of the event is deterministic, having 

been set by the amount of preslip before the onset of seismic rupture. 
There is a diversity of modeling results that alternately support either 

cascade- or preslip-type rupture. These include both data-driven kinematic 
inversions of real earthquakes and more theoretical, dynamic forward 

models that start with assumptions on the initial fault stress and constitutive 

properties, and calculate the evolution of fault rupture and slip. For example, 
Ohnaka [2000, 2004] developed constitutive models based on fracture 

mechanics, in which the nucleation phase scales with the size of the event, 
whereas Lapusta and Rice [2003] created simulations in which the aseismic 

nucleation phase did not scale with the size of the final event. Aochi and Ide 
[2004] found in their numerical models that a scale-dependent nucleation 

phase is not necessary to generate a range of earthquake sizes, but 
Fukuyama and Madariaga [2000] and Fukuyama et al. [2002] developed 

models in which a nucleation phase was observed, similar to the 
observations of Ellsworth and Beroza [1995, 1998]. Mai et al. [2005] 

examined the correlation between the hypocenter location and the region of 
peak slip in around 90 kinematic slip inversions of over 50 global 

earthquakes between Mw 4.1 and 8.1. They found that the focus of many 
large earthquakes is not collocated with the point of peak slip. While this 

result is suggestive of cascade-type behavior, they determined that the 

focus is statistically more likely to fall near a region of high slip than low slip. 
This observation may be an indication that a focus near a high-stress region 

generates a more energetic initial rupture and tends to generate large 
earthquakes. Oglesby and Day [2002] indirectly address this issue with 

dynamic models, noting that with rough initial stress distributions only 
earthquakes that nucleate near relatively large regions of high average 

shear stress can develop into full spontaneous ruptures. Ripperger et al. 
[2007] find similar results in their simulations of ruptures with 

heterogeneous initial stress conditions, though this might be due in part to 
some ruptures not having an initial patch size large enough to generate a 

self-propagating rupture. Murphy and Nielsen [2009] find, using dynamic 
models, that altering the initial stress conditions on the fault plane can 
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control the evolution of rupture, even when the nucleation conditions do not 

vary between simulations. 
At least some of the disagreement between the findings of the data-

driven studies may be attributed to the high degree of variability among 
kinematic slip inversions, even for the same event [Beresnev, 2003]. The 

recent development of the SRCMOD database (see Data and Resources 
Section), a large database of kinematic slip inversions, makes it possible to 

examine many fault models in a statistical fashion to suppress the effects of 
this variability. We examine the aggregate behavior of faults in many 

different earthquakes and slip models to characterize the evolution of slip in 
the early stages of earthquake rupture. Although the slip at the beginning of 

rupture is difficult to resolve in kinematic inversions, using such a large 
number of events allows us to make first-order observations of any 

relationships that might be present. By the nature of this analysis, it is not 
possible to distinguish whether any relationships result from behavior of 

individual ruptures or from aggregate behavior of the sample population as a 

whole. The purpose of this work, then, is to assess whether earthquakes as 
a statistical population, viewed through kinematic rupture models, exhibit 

any deterministic or self-similar behavior, rather than to infer the 
fundamental physics of earthquake rupture from a statistical treatment with 

large inherent uncertainties. 
 

3.3. Method 
We examine 152 inversions of 80 different earthquakes in the SRCMOD 

database (see Data and Resources Section) as well as 7 teleseismic and 8 

joint geodetic/teleseismic inversions provided by M. E. Pritchard [Pritchard et 
al., 2006; Pritchard et al., 2007; Pritchard and Fielding, 2008; Loveless et 

al., in review] for this study, for a total of 167 inversions and 95 events 

(Figure 3.1). The events range in magnitude from 4.1 to 8.9 and include a 
variety of mechanisms in a variety of tectonic regimes. 

We take the final slip distribution for each inversion and reconstruct the 
time-evolution of slip on the fault from rupture time and rise time 

information. We calculate the moment release within a given time window by 

summing the moment at each grid point via the relation SDM 0  where 

11103  dyne/cm2, S  is the area of each grid element and D  is the slip at 

each grid element. 53 models have point-by-point rupture time data and 24 

of these also have point-by-point rise time data. One model has only rise-
time data with no rupture time information. In cases where point-wise data 

is available we initiate slip on each grid point at the associated rupture time, 
and increase slip to the final amount in a linear ramp over the associated 

rise time [Haskell, 1964]. In models where one or both of these parameters 
is not recorded point-wise we take the reported average rupture velocity or 
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rise time and assume a rupture front expanding isotropically from the 

hypocenter. 24 models have neither point-wise rupture time information nor 
reported average rupture velocity, and for those events we assume a 

rupture velocity of 3.0 km/s (the most common average rupture velocity in 
the database). There are also 15 events with no point-wise rise time 

information and no reported average rise time, and for these events we 
assume the slip rises instantaneously. This is not a realistic assumption, but 

only 15 events are subject to this assumption and the overall results are 
invariant under assignment of rise times up to 10 seconds; thus we choose 

zero rise time for simplicity. 
 

3.4. Relationship between early and final moment 
Before inspecting the slip models for any correlation we must consider the 

expected outcomes in terms of the competing end-member hypotheses of a 
preslip (deterministic) model and a cascading (self-similar) model. The latter 

end-member case implies that at any given time after rupture initiation all 
earthquakes look the same. That is, 1 second into the rupture process all 

earthquakes should, on average, have the same magnitude as an 
earthquake with duration of 1 second. To first order, we can approximate 

this magnitude via the relation 
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0 tVtVtVSDM RRR    (3.1) 
 

 

where 11103  dyne/cm2,  2tVS R  is the fault area after t seconds 

assuming a rupture velocity 5103RV  cm/s, and tVD R  is the mean slip 

with 510  [Heaton, 1990; Wells and Coppersmith, 1994]. The choice of 

the value of  is driven by the kinematic data themselves, and is discussed 

at length in the following section. Using this approximation, we find that a 

source duration of 1 second corresponds to a moment of approximately 2.5 
× 1023 dyne-cm, or MW 4.9. Thus in the cascading end-member case, any 

earthquake larger than magnitude 5 should look like a magnitude 5 at one 
second after nucleation. We can visualize this hypothesis in Figure 3.2. 

Allowing for a normally distributed variability around the theoretical 
magnitude at 1 second, the data should resemble the randomly generated 

dataset shown in Figure 3.2, and have a best-fit slope around zero. The solid 
diagonal line in Figure 3.2 represents the limit in which the initial magnitude 

after 1 second is equal to the final magnitude, meaning the rupture has 
propagated to completion. Since there is no way for the initial magnitude to 

exceed the final magnitude, the triangles in Figure 3.2 are physically 
impossible and in reality no points will lie above this solid line. This can 
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potentially introduce a spurious positive slope to the data, which we assess 

in greater detail in the next section. We minimize this potential bias in the 
following analyses by culling all data points for which the final magnitude is 

less than the reference magnitude (represented as hollow symbols in Figure 
3.2), i.e., points that lie to the left of the intersection between the solid 

diagonal line and the dotted horizontal line. The hypothesis for a 
deterministic model is that there will be some positive scaling of the 

magnitude at 1 second with the final magnitude of the earthquake, yielding 
a positive slope to the data. The cascading model will be the null hypothesis 

against which we will test the data, using a one-sided t-test to determine 
whether the best-fit slope is statistically greater than zero. Because the data 

have a large variance and we are trying to resolve early slip which is 
inherently difficult, we will require a 95% confidence level to reject the 

cascading model hypothesis. 
We first examine the dataset in as complete a form as possible, to gain 

the greatest possible statistical advantage from the large number of data 

points. Figure 3.3 shows the initial magnitude plotted against the final 
magnitude for each event (as determined by summing the completed slip 

over the entire fault plane) for four time windows ranging from 1 second to 8 
seconds. At this stage we apply only the most rudimentary checks on the 

data to avoid introducing biases into the analysis. We manually pick outliers 
(shown as crosses on all figures), and exclude any events for which the 

initial magnitude is 99% or more of final magnitude, as those events have 
effectively terminated by the end of the time window. We also exclude all 

events with a final magnitude less than the reference magnitude for the null 
hypothesis, because these events are expected to have a duration less than 

the time window. Theoretically, had they continued rupturing until the end of 
the time window, they would have an initial magnitude greater than their 

final magnitude. Since this is not possible (there cannot be any points above 
the solid line in the figures) these events can only introduce a bias of the 

best-fit line to greater slope, unrealistically favoring deterministic behavior. 

In Figure 3.3(a) through (d) the null hypothesis can be rejected with 
greater than 95% confidence. In this figure as well as Figure 3.4 circles 

represent inversions with no point-wise rupture time data, triangles 
represent inversions with point-wise rupture time information, and hollow 

symbols represent data for which the time window is shorter than the rise 
time, or for which only one grid point has begun rupturing within the time 

window. The slope of the best-fit lines for 1, 2, 4 and 8 second time windows 
are strongly positive, suggesting some degree of non-self-similar behavior 

for these models. This result holds for all time windows between 1 and 10 
seconds. For time windows between 8 and 10 seconds the confidence, while 

still exceeding the 95% level, is not as high as for time windows between 1 
and 7 seconds (Figure 3.5). We therefore expect the initial magnitude to 

scale more strongly with final magnitude for longer time windows. One 



 

41 

possible explanation for the degradation in scaling for longer time windows is 

that more and more events are being excluded due to having completed 
rupture, thus reducing the number of data points available for analysis. In 

Figure 3.3(a-c) the number of points used for the fit varies between 112 and 
128, and by 8 seconds (Figure 3.3d) that number has fallen to 80. Another 

possibility is that longer time windows afford greater resolution of the slip 
within the time window, implying that the strong correlation observed for 

shorter time windows is a spurious result of poorly resolved slip in such short 
time spans. The influence of poorly resolved slip can be approximated 

visually by noting the open symbols, which represent models for which the 
time window was either shorter than the average rise time for the model or 

for which only one grid element had begun slipping in that time window. 
In Figure 3.4 we attempt to reduce the influence of poorly resolved slip in 

two ways. Primarily, we disregard all of the “open” data points from Figure 
3.3 which represent cases where the slip is likely to be particularly poorly 

resolved owing to the time window being too short. In addition, we 

recalculate both the initial and final magnitude for each point, disregarding 
any slip which is less than 10% of the peak slip for the model. This process 

is to account for the fact that slip below 10% of peak slip is generally 
regarded as being poorly resolved in kinematic inversions and thus an 

unstable component of the slip models [Somerville et al., 1999]. 
Remarkably, the correlation between early and final magnitude is now even 

stronger, with the null hypothesis being rejected at greater than 95% 
confidence for all time windows as seen in Figure 3.5. This suggests that 

poor resolution of slip in short time windows is not generating a spurious 
correlation between early and final magnitude. Rather, the analysis suggests 

that the decreasing number of data points in longer time windows (owing to 
more ruptures having run to completion) is primarily responsible for the 

weaker correlation for 8-10 second time windows seen in Figure 3.3 and 
Figure 3.5. 

There are two additional features of both Figure 3.3 and Figure 3.4 that 

argue against purely cascading behavior in these slip inversions. The first is 
that the large majority of points in all time windows lie above the null 

hypothesis line (dotted lines in Figure 3.3 and Figure 3.4), indicating that 
these models as a rule exhibit greater than expected moment release at any 

given point in the rupture. Recalling the null hypothesis (Figure 3.2), the 
cascade model predicts that moment release after a given time window will 

be normally distributed above and below the null hypothesis line. That is, 
some models will exhibit greater than expected early moment release, and 

others will exhibit less than expected moment release at a given point in 
time. Since this is quite clearly not the case with these data, the implication 

is that the events examined here do not obey the cascade model. The other 
feature is that the best-fit lines all intercept the 1:1 line on the plots close to 

the null hypothesis line. This means that whatever scaling is seen converges 
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to the correct magnitude, i.e. a 1 second rupture for a magnitude 5 

earthquake releases about a magnitude 5, as it should. While neither of 
these observations is necessarily robust on its own, they serve as 

corroboration that the observed scaling is physically realistic. 
 

3.5. Effects of Size Distribution, Bias and Stress Drop 
3.5.1. Size Distribution 

One possible confounding effect in the foregoing analysis is the uneven 

distribution of event sizes in the dataset. This distribution is atypical of 
earthquake catalogs, in that the number of events is limited both on the high 

end due to the small number of events at large magnitudes, and at the low 

end due to the dearth of small events which are well-recorded enough to be 
modeled. The magnitude distribution in the dataset is approximately normal 

with a mean magnitude of 6.75±0.65. The potential control exerted on the 
best-fit line by the few events at large magnitude is thus balanced by the 

few small-magnitude events. To assess the degree of this effect and any 
bias it introduces we randomly select three events in each bin from 

magnitude 4.0 to 9.0 in ¼ magnitude increments and perform the analysis 
on this subset of data which is approximately homogeneously distributed 

across the entire magnitude range. The results of 100 such random subsets 
are presented in Figure 3.6. This figure shows that homogenizing the size 

distribution tends to reduce the confidence with which the null hypothesis 
can be rejected, but that this degradation of confidence is more pronounced 

for shorter time windows. This result is to be expected as the subsampling is 
more severe for the shorter time windows that have more data to begin 

with. The net effect is to even out the confidence levels between the 

different time windows, so that we no longer observe the degradation in 
confidence at longer time windows as compared with the shorter windows. 

This result again suggests that the degradation observed in the previous 
section is primarily due to a reduced number of data points at the longer 

time windows. In any case, all but one of the time windows still show the 
null hypothesis rejected at 95% confidence, leading us to conclude that the 

heterogeneous distribution of event sizes is not a controlling factor in our 
prior results. 

3.5.2. Bias 

As previously stated and shown in Figure 3.2, the fact that no data can lie 

in the upper left half of the plane introduces an artificial upward bias to the 
best-fit slope in the foregoing analyses. We attempt to minimize the effect of 

this bias by culling all data for which the final magnitude is less than the 
theoretical reference magnitude (open symbols in Figure 3.2), but some bias 

will remain because of points above the 1:1 line in Figure 3.2 (solid 

triangles) which have a magnitude greater than the reference magnitude, 
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but are nevertheless physically impossible. The possibility exists that our 

conclusions thus far have been controlled by this unavoidable bias. Assuming 
a normally distributed random error about the reference magnitude as in 

Figure 3.2, the degree of bias is controlled by the standard deviation of that 
error and by the reference magnitude, which affects how many of the low 

magnitude data are culled. To estimate the effect of this bias, we generate a 
set of 200 points randomly normally distributed about the reference 

magnitude of 6.9 (corresponding to a 10-second time window) with a 
standard deviation of 0.38 magnitude units. This standard deviation was 

chosen by calculating the standard deviation of the unfiltered dataset in 
Figure 3.3 for all time windows between 1 and 10 seconds. We calculate a 

one-sided standard deviation considering only those points falling below the 
best-fit magnitude, to avoid artificially reducing the standard deviation due 

to the physical limit of the 1:1 line. Using this technique a standard deviation 
of 0.38 magnitude units, corresponding to the 2-second time window, is the 

greatest standard deviation over all the time windows. We cull the random 

dataset as described above and in Figure 3.2, and take the best-fit slope of 
these data. We do this 1000 times and take the average of the best-fit slope 

over all simulations and time windows, a slope of 0.105 for a 10 second time 
window, to be the biased null hypothesis. Since we only simulate points up 

to magnitude 9, by using the reference magnitude of 6.9 for the 10 second 
time window we limit the possible magnitudes to be between magnitudes 7 

and 9, thus maximizing the potential bias. We can test the data, as in Figure 
3.5, against this biased best-fit slope rather than against a slope of zero. 

Figure 3.7 shows the probability of acceptance of this new null hypothesis as 
a function of time window length. For all time windows less than 8 seconds, 

the biased null hypothesis of a slope less than or equal to 0.105 is still 
rejected with greater than 95% confidence, even in the unfiltered dataset. 

We therefore conclude that the artificial bias introduced by our method is not 
controlling the observed scaling relations. 

3.5.3. Stress drop 

The reference magnitude is itself affected by the choice of the parameter 

, which is related to stress drop via the relation 
   L

D

. Our choice 

of 
510  represents a stress drop of 

6103 dyne/cm2, or 3 bars. Although 

this is a very low stress drop, the choice of 
510  is driven by the dataset 

itself, as shown in Figure 3.8. This figure shows the actual magnitude of 

each inversion calculated by summing all slip greater than 10% of peak over 
the fault plane, plotted against the duration of the ruptures. Using only the 

slip greater than this threshold yields better-constrained magnitudes 
[Somerville et al., 1999], though incorporating these small slips adds less 

than 1.3% to the final magnitude of any event. The duration of each rupture 
is calculated by taking all the grid-point rupture times for points with slip 

greater than 10% of peak. Simply taking the maximum time at which a grid 
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point with sufficient slip ruptured would bias the analysis toward excessively 

long rupture times, leading to low apparent stress drops. Instead, we take 
the total rupture duration to be the 90th percentile rupture time, meaning 

that 90% of points with sufficient slip have ruptured prior to this time and 
10% will rupture after this time. The lines superimposed on this data 

represent magnitude vs. duration calculated via Eq. 3.1 for stress drops of 
0.3, 3, 30 and 300 bars ( from 10-6 to 10-3). Figure 3.8 clearly shows that a 

stress drop of 3 bars is more consistent with the data than the canonical 30 
bars. While the finite-source models in the database tend to have low 

average stress drop when calculated in this way, if we consider the stress 
drops only over primary asperities rather than overall ruptures they would 

be larger due to the non-uniform nature of the slip. On the other hand, to 
make the rupture durations fit the 30 bar line equally well as the 3 bar line, 

we would need to set the rupture duration to the 60th percentile rupture time 
rather than the 90th. That is, the analysis would suggest that kinematic 

inversions tend to overestimate rupture duration by a factor of 5/3, which is 

highly unlikely to be true. 

Although the choice of 510  appears reasonable given the dataset, it is 

worth examining the effect that a different choice of  has on the foregoing 

analysis. The more severe culling (reference magnitude increases from 6.9 

to 7.6 for a 10 second time window) has a predictably adverse effect on the 
confidence with which we can reject the null hypothesis. Figure 3.7 shows 

the likelihood of accepting the null hypothesis of zero slope as a function of 
time window length. With high quality data it is still possible to reject the 

null hypothesis with as much as a 6 second time window, but the severe 
culling makes this impossible to do with unfiltered data. This is because 

filtering out the poorly-resolved models preferentially removes small-
magnitude events (which are much more likely to be poorly resolved as 

discussed regarding Figure 3.4). Consequently, the more severe low-

magnitude cutoff has less of an effect on the high-quality data since most of 
the low-magnitude events have been filtered out already. 

An additional effect of increasing the stress drop is that the biased best-fit 
slope increases from 0.105 to 0.221, due to the more severe culling of 

events. If we use this biased slope as the null hypothesis, it becomes very 
difficult to reject (Figure 3.7). The unfiltered data cannot reject the null 

hypothesis with any confidence (for longer time windows the best-fit slope is 
even less than 0.221), and even the high quality data can only reject the 

null hypothesis for time windows less than 3 seconds. This demonstrates 
that using a higher average stress drop with this analysis introduces a very 

severe bias which renders the conclusions unsupportable. Although there is 
still an observable correlation between early and total moment release, it is 

indistinguishable from the bias inherent to the method. 
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3.6. Variability due to inversion data and methods 
It is apparent from the foregoing analysis that kinematic slip models favor 

a larger than expected amount of slip early in the rupture process, which 
supports the possibility that the aggregate behavior of earthquakes is not 

entirely self-similar. There is still quite a large variability in the data, which 
may be due in some part to the diverse dataset used in the foregoing 

analysis, including both linear and nonlinear inversions as well as models 
incorporating strong motion, teleseismic, geodetic and other data sources. 

Of interest is whether one class or another of inverse techniques particularly 
favors early slip over late slip, or if incorporating a particular type of source 

data biases the slip distribution in one or the other direction. 
To begin with, we break out the models by the type of data they 

incorporate based on the SRCMOD classification (see Data and Resources 

Section) which identifies eight data types: strong ground motion (SGM) 
seismic, teleseismic, trilateration, leveling, GPS, InSAR, surface rupture 

mapping, and other. The “other” classification primarily refers to tsunami 
modeling studies using the methods of Satake and Tanioka [Satake, 1987; 

Tanioka and Satake, 2001]. The GPS classification refers mostly to static 
coseismic displacements, but one model (Ji’s 2004 Parkfield model, see Data 
and Resources Section) includes both static-offset GPS and 1-Hz continuous 
GPS displacement waveforms, which we treat as strong ground motion 

records for the purpose of this analysis. Only one model, the 2002 Denali 
rupture model of Oglesby et al. [2004] incorporates surface rupture mapping 

information in the inversion. For the purpose of the following analysis we 
separate the eight data types into two classes: “seismic” data which includes 
strong ground motion and teleseismic data, and “geodetic” data which 
includes leveling, trilateration, GPS, InSAR, surface rupture mapping and 

other data. In other words, “seismic” data contains coseismic timing 

information and “geodetic” data does not. 
The most definitive way to analyze the effects of each data class is to 

filter out all results that incorporate a class and observe the effect on the 
slope of the best-fit line. However this presents a problem in that there are 

only 19 models that do not incorporate any seismic data, and this is not a 
large enough population to overcome the inherent noise in the data. 

Instead, we select all models that incorporate at least some seismic data 
(148 “seismic” models), then all that incorporate at least some geodetic data 

(60 “geodetic” models), and finally all that incorporate both geodetic and 
seismic data (41 “joint” models). 

The results are shown in Figure 3.9. For a time window of 2 seconds, only 
the seismic models cause the null hypothesis to be rejected at 95% 

confidence. By comparison, geodetic and joint inversions show only a slightly 
positive correlation between early and final slip. This effect is largely due to 

the size of the seismic model population being 2-3 times larger than the 

geodetic and joint populations. When 100 random subsamples of 60 models 
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are taken from the seismic population, the differences between the seismic, 

geodetic and joint inversions are somewhat diminished. Nevertheless, this 
result suggests that seismic data biases the inversion toward earlier slip. 

This is an interesting result, since seismic data contains timing information 
necessary to properly constrain the early rupture history. This again 

suggests that we are observing a real effect rather than a product of poor 
resolution of the early source process. 

Figure 3.10 shows the probability of acceptance of the null hypothesis as 
a function of time window length for the three populations (with the seismic 

population subsampled 100 times and log-averaged). For time windows 
between 3 and 7 seconds the null hypothesis is rejected at 95% confidence 

for all populations. Figure 3.10 also shows that for time windows shorter 
than 5 seconds seismic data biases the inversions toward deterministic 

behavior, while for time windows greater than 5 seconds it is geodetic data 
that biases the models toward deterministic behavior. A related observation 

is that the minimum probability of acceptance for seismic inversions occurs 

with a 3 second time window, whereas for geodetic inversions this minimum 
occurs with a 6 second time window. This may be a consequence of geodetic 

inversions’ increased sensitivity to the slip centroid rather than the 
hypocenter, which causes slip to be concentrated further down the fault than 

slip in seismic inversions, in some cases [Wald et al., 1996] eliminating slip 
at the hypocenter altogether. If this is the case, geodetic inversions may not 

sample much of the slip on the fault within a shorter time window. 
In addition to the diversity of incorporated source data, the 167 models 

applied over twenty different inversion methods between them, which may 
account for some degree of variability. The applied method in 31 of the 

models could not be determined from the source literature for various 
reasons, and 28 of the models used in-house methods or uncommon 

methods. The remaining 108 models used one of nine methods. Three of the 
methods [Cotton and Campillo, 1995; Ide and Takeo, 1997; Ji et al., 2002] 

are nonlinear inversion methods which invert both for slip amplitude and 

timing, while the remaining six [Olson and Apsel, 1982; Hartzell and Heaton, 
1983; Satake, 1987; Yoshida and Koketsu, 1990; Sekiguchi et al., 2000; 

Tanioka and Satake, 2001] are linear methods that assume a rupture 
velocity and invert only for slip amplitude. For simplicity we separate the 

data into two groups according to this fundamental methodological 
difference. 

When we account for the different population sizes (35 nonlinear vs. 72 
linear inversions) we find no statistically significant difference between linear 

and nonlinear inversions in terms of bias toward deterministic or cascading 
behavior. This is apparent in Figure 3.11, which plots each population with a 

2-second time window. The best-fit lines have similar slopes and the 
populations have comparable variances, and both cause the null hypothesis 

of purely cascading behavior to be rejected at the 95% confidence level. The 
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similarity between linear and nonlinear inversions appears to be robust over 

time windows up to 10 seconds, and for time windows from 3 to 7 seconds 
both populations reject the null hypothesis at the 95% confidence level. 

 

3.7. Variability within individual events 
Kinematic slip inversions for an event are non-unique, and often different 

authors will publish very different slip models for the same earthquake. To 
control for the effect of this variability on our results, we select from the 

dataset 10 events (Table 3.1) which are represented by 3 or more models 
and calculate the mean of the final magnitude and the mean of the 

magnitude within a 2 second time window for each model. We then fit these 
means in a linear least-squares sense. Although there are 14 events in the 

dataset with 3 or more models, only 10 have at least 3 models that yield 

valid measurements within a 2 second time window (nonzero slip and 
incomplete rupture process), and these are shown in Figure 3.12. We find 

that the means behave in a comparable manner to the dataset as a whole. If 
anything the slope is greater than for the dataset as a whole, although that 

is mostly due to our decision not to exclude outliers in this analysis. 
In the context of this analysis we can see that the degree of variability 

between models (at least in the one parameter we examine) is not the same 
for different events. Figure 3.12 and Table 3.1 show, for example, that the 

final magnitude of the 1999 Hector Mine event is very well constrained by 
four models at MW 7.15±0.03, but the initial magnitude in a 2 second time 

window is MW 5.81±0.88, and varies from MW 4.6 to MW 6.8. Note that the 
lowest of these data points is considerably outside the range of the other 

models, but considering the event by itself it makes no sense to strike the 
lowest data point as an outlier, as it is not much farther from the mean (MW 

5.8) than the highest data point. This is consistent with observations that 

the Hector Mine earthquake was a temporally complex event, potentially 
with a slow rupture process and long, spatially variable rise times [Kaverina 

et al., 2002]. Compared to the Hector Mine event, which has well-
constrained final magnitude but poorly constrained initial magnitude, the 

1994 Northridge and 2000 Tottori events have comparable standard 
deviations for both measures. The Northridge final magnitude is MW 

6.70±0.08, while the initial magnitude is MW 6.02±0.06. Similarly, the 
Tottori final magnitude is MW 6.75±0.06 and the initial magnitude is MW 

5.67±0.09. For these events the early slip history appears to be more or less 
consistent between models, though care must be taken in drawing any 

detailed conclusions from this as we are reducing a 2D heterogeneous slip 
model to a single number, and much information is lost in this 

representation. 
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The observation of strong scaling in this reduced dataset demonstrates 

that the scaling is robust when using well-studied events. This is true despite 
the sometimes significant variation among models for the same event 

[Beresnev, 2003]. It would be impossible to make any reliable observations 
of scaling if only one model were used for each event, but by using multiple 

models we are able to overcome this variation to observe robust scaling 
between initial and final magnitude. 

 

3.8. Conclusions 
We began our investigation by including all possible data from the 

SRCMOD database and 15 additional events, under the premise that the 
large number of events would overcome the inherent variability in the 

kinematic inversions. We observe scaling of early slip and magnitude with 

the final magnitude of these events. To determine whether the scaling is a 
spurious result of the poor resolution of slip in the early rupture we filtered 

out those data which are most poorly constrained: models for which the rise 
time is longer than the time window, and those which had not ruptured more 

than one grid point within the initial time window. After filtering the data the 
scaling remains robust, and in fact is more prominent, indicating that poor 

resolution of early slip is not the cause of the observed scaling. This scaling 
is also robust for several subsets of the data: inversions derived from 

seismic data or geodetic data, and joint inversions; nonlinear and linear 
inversion methods; and well-studied events with multiple models. 

If we interpret these findings at face value, we must allow for the 
possibility that magnitude is at least in part influenced by processes in the 

early part of the rupture process. Although this is suggestive of at least 
partially deterministic rupture behavior, it is not inconsistent with individual 

earthquakes being cascading ruptures. While the individual earthquake may 

be strongly controlled by the distribution of stress down-fault, it is possible 
that the conditions encountered by the early rupture affect its ability to 

propagate past unfavorable conditions down-fault. In this way, while it may 
be impossible to determine the course any individual rupture will take, the 

aggregate behavior of many earthquakes can still exhibit magnitude-
dependent scaling reflecting the predisposition of ruptures that start out 

energetically to propagate farther. This interpretation is consistent with the 
observation that hypocenters tend to be located near high-slip patches for 

events in the SRCMOD dataset [Mai et al., 2005], as well as with a number 
of observational studies [Beroza and Ellsworth, 1996; Olson and Allen, 2005; 

Lewis and Ben-Zion, 2008] that suggest some correlation between the early 
seismic arrivals of earthquakes and their magnitudes. It is possible that the 

observed scaling is due to some fundamental assumptions associated with 
kinematic inversions, which lead to larger slips near the hypocenter for 
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larger earthquakes. The likelihood of this case is low, as we continue to 

observe scaling after filtering out those models for which the grid size is 
large relative to the time window. Assuming that the observed scaling is a 

real effect of the physics of rupture, it is impossible to characterize, within 
the framework of this study, the process or processes by which the final 

event magnitude is influenced by early slip evolution, or even whether the 
effect is truly deterministic for each individual rupture or only observable in 

the aggregate behavior of many earthquakes. Nevertheless, the implications 
of the observed scaling are significant to the wider debate about the nature 

of earthquake rupture and may have consequences for other questions or 
applications in seismology. 

3.9. Data and Resources 
152 of the slip models used in this study are available in the SRCMOD 

database, available at http://www.seismo.ethz.ch/srcmod (last accessed 
July 2007). Ji’s slip inversion for the 2004 Parkfield Earthquake is 
additionally available at 
http://www.tectonics.caltech.edu/slip_history/2004_ca/parkfield2.html. 
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3.11. Tables and Figures 
 

Initial and Final Magnitudes of 10 Well-Studied Events 

Event Number of Models Initial Magnitude Final Magnitude 

1979 Imperial Valley 4  5.24±0.70 6.54±0.07 
1989 Loma Prieta 5 6.17±0.20 6.90±0.04 

1992 Landers 5 6.18±0.39 7.20±0.04 
1994 Northridge 6 6.02±0.06 6.70±0.08 

1995 Kobe 7 5.80±0.11 6.88±0.06 
1999 Chi-Chi 5 6.12±0.48 7.67±0.04 

1999 Hector Mine 4 5.81±0.88 7.15±0.03 
1999 Izmit 6 6.17±0.48 7.46±0.07 

2000 Tottori 3 5.67±0.09 6.75±0.06 
2004 Parkfield 3 5.50±0.09 6.03±0.03 

    
Table 3.1: 10 earthquakes with 3 or more models yielding usable slips within a 2 second time 
window. 4 additional events in the dataset have 3 or more models, but within a 2-second time 
window either the event had ruptured to completion, or no slip had yet been observed on the 

fault plane. 

 
 

 
Figure 3.1: Map of the 95 events used in this study. Most of the events occur either in California, 
Japan, or the west coast of South America. 
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Figure 3.2: The null hypothesis, that earthquakes are cascading ruptures, requires that all 
earthquakes have approximately magnitude 5 after one second of rupture duration. The dotted 
line at MW 4.9 represents the theoretical magnitude after 1 second, and the points are randomly 
generated and normally distributed about the line. Points above the diagonal line (triangles) are 
physically impossible. Points with final magnitude less than the reference magnitude (hollow 
symbols) are culled from the data. The best-fit slope of the remaining points (solid circles) is near 
zero. 
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Figure 3.3: Initial vs. final magnitude for time windows of 1, 2, 4 and 8 seconds. Circles are 
inversions with no point-wise rupture time information, triangles are inversions with rupture time 
information and hollow symbols are events for which either the time window was shorter than the 
rise time or only one grid point had ruptured. The dashed line represents the least-squares best 
fit to the data, and the dotted line is the estimated magnitude for the null hypothesis. Plots (b) 
and (c) do not show two outliers (crosses) with initial M ≈ 3. No outliers are included in the fits. 
For all time windows the null hypothesis can be rejected at the 95% confidence level. 
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Figure 3.4: Initial vs. final magnitude for time windows of 1, 2, 4 and 8 seconds, after removing 
points for which the average rise time is less than the time window, or for which only one grid 
element had begun to rupture within the time window. Magnitudes have been recalculated 
disregarding any slip less than 10% of peak slip for a given event. The null hypothesis can be 

rejected at greater than 95% confidence for all time windows. 
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Figure 3.5: Likelihood of acceptance of the null (cascading) hypothesis as a function of time 
window length. The solid trace is the likelihood using all data (as in Figure 3.3), and the dashed 
trace is the likelihood using only the high quality data as described in Figure 3.4. Lower likelihood 
in the dashed trace indicates a more robust scaling of initial vs. final magnitude. The horizontal 
line indicates the 95% confidence level, and all points below this line reject the hypothesis with 
95% confidence. 

 
 

 
Figure 3.6: Analyses of 100 random subsets of 3 events in each ¼-magnitude bin from 
magnitude 4 to 8. Gray dots are individual likelihoods of rejecting the null hypothesis, and black 
circles are the log-average likelihood for all 100 simulations. The null hypothesis can be rejected 
at 95% confidence for 9 out of 10 time windows 
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Figure 3.7: Probability of accepting the null (cascading) hypothesis for all time windows using all 
available data (black lines) and only high quality data (gray lines) as described in Figure 3.4. 
Solid lines represent the hypothesis test using a null hypothesis slope of 0.105. Dashed lines 

represent the dataset assuming 
410 , and a null hypothesis slope of zero. Dotted lines 

represent the combined effect of choosing 
410  and a null hypothesis slope of 0.221. The 

horizontal line indicates the 95% confidence level, and all points below this line reject the 
hypothesis with 95% confidence. 

 
 

 
Figure 3.8: Event magnitude plotted against event duration as determined from kinematic slip 
inversions. Diagonal lines represent theoretical magnitude-duration relations assuming stress 
drops of 300, 30, 3 and 0.3 bar. The solid line (3 bar) is the closest order of magnitude to the 
data. 
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Figure 3.9: Magnitude within a 2 second time window vs. final magnitude for (a) inversions 
incorporating seismic (strong ground motion or teleseismic) data, (b) inversions incorporating 
geodetic (trilateration, leveling, GPS, InSAR, surface rupture mapping or other) data, and (c) 
inversions incorporating both seismic and geodetic data. Crosses are outliers which are not 
included in the regression. 
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Figure 3.10: Probability of accepting the null hypothesis of cascading behavior for various time 
windows using models incorporating seismic data, geodetic data, and both. Horizontal rule 
represents 95% confidence level, below which the null hypothesis must be rejected. For short 
time windows (4 seconds or less) seismic data biases the inversion toward deterministic 
behavior. For time windows 5 seconds or longer geodetic data favors deterministic behavior. 
Seismic probability is the log-average of 100 subsamples of 60 seismic inversions to make the 
population size comparable to the geodetic and joint populations. 

 

 

 
Figure 3.11: Initial vs. final magnitude within a 2 second time window for (a) nonlinear inversion 
methods [Cotton and Campillo, 1995; Ide and Takeo, 1997; Ji et al., 2002] and (b) linear 
inversion methods [Olson and Apsel, 1982; Hartzell and Heaton, 1983; Satake, 1987; Yoshida 
and Koketsu, 1990; Sekiguchi et al., 2000; Tanioka and Satake, 2001]. Crosses are outliers 
which are not included in the regression. The best-fit relations are statistically indistinguishable 
from one another. 
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Figure 3.12: Initial vs. final magnitude within a 2 second time window for selected events in the 
dataset which are represented by more than three models. Black dots show the mean of each 
event’s models, and the best-fit line is based on these means. 
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4.1. Abstract 
Recent observational studies indicate scaling of some properties of early 

P-wave arrivals with the final magnitude of earthquakes. These studies 
suggest the possibility that the early rupture history of a given earthquake 

may influence the behavior of the rupture at later times and farther away on 
the fault. We test a hypothetical physical mechanism by which such 

influence might be mediated on the fault plane, by simulating this 
mechanism using 2D and 3D dynamic fault models and determining whether 

the hypothesized behavior occurs under realistic fault conditions. 
We hypothesize that the intensity of the early rupture, as approximated 

by the amplitude of shear stress near the focus, imparts more or less energy 
to the rupture front, and that this intensity either enables the rupture to 

overcome unfavorable barriers down-fault, or inhibits it from so doing. We 

use a Genetic Algorithm to search over 11 parameters for the fault 
properties that are conducive to the transmission of rupture energy down 

the fault. We find that the hypothesized behavior emerges after only a few 
search iterations, and examine the fitness function over 9 of the 11 

parameters to evaluate whether this behavior is physically realistic. 
We find that the fitness function is well-behaved and well-constrained 

over the majority of the search parameters, and that most of the optimal 
parameter values agree well with prior studies which address those 

parameters. We find however that in order for the hypothesized behavior to 
occur the fault must exhibit significantly stronger velocity-weakening 

behavior than has been previously observed in the lab. Thermal 
pressurization or flash heating may cause faults in the field to exhibit 

velocity-weakening more similar to the values we find, but further modeling 
incorporating these effects is required to definitively determine whether the 

hypothesized mechanism is physically realistic. Additionally, several of the 

parameters appear to need very specific values to support the hypothesized 
behavior, and this tuning is unlikely in nature. This may be due to the 

manner in which the search algorithm converges, and further modeling is 
required to determine whether this is a real effect. 

4.2. Introduction 
Recent observations of the spectral character of P-waves [Olson and 

Allen, 2005; Lockman and Allen, 2005; Lockman and Allen, 2007; Wurman 

et al., 2007; Lewis and Ben-Zion, 2008] suggest that there is some 
information in the early seismic arrivals that may be correlated to the final 

magnitude of the event, and that in many cases this information is available 

before the rupture has completed. Wurman et al. [in review] find a statistical 
correlation between early moment release in kinematic slip inversions and 

their final size. These data pose the question of whether the early rupture 
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history of an earthquake can influence the development of rupture down-

fault, and to what degree that influence extends. 
A large number of prior observational studies are at odds over whether 

small earthquakes are distinguishable from large ones. Wyss and Brune 
[1967] used teleseismic data to distinguish 7 progressively larger subevents 

making up the 1964 Alaska earthquake, suggesting a cascading rupture. 
Abercrombie and Mori [1994] similarly found that the 1992, Mw 7.3, Landers 

earthquake was preceded by two subevents, first an Mw 4.4 followed by an 
Mw 5.6 subevent. Kilb and Gomberg [1999] compared the record of an initial 

subevent of the 1994 Northridge, CA earthquake to records of nearby small 
earthquakes and found them to be similar, suggesting a lack of scale 

dependence. However Umeda [1990, 1992] found evidence of a region near 
the earthquake focus which he termed the “bright spot.” He identified early 

seismic phases in broadband waveforms which he correlated with the 
formation of the bright spot. His observations indicated that these early 

phases do scale with the size of the event. Mori and Kanamori [1996] 

concluded that there were no magnitude-dependent precursory phenomena 
in the 1995 Ridgecrest, CA earthquake sequence. Ellsworth and Beroza 

[1998] observed nucleation phases for the same Ridgecrest events that did 
scale with magnitude, although they found that these nucleation phases did 

not argue conclusively for either self-similar or scale-dependent rupture. 
Similarly, while Abercrombie and Leary [1993] used borehole data to 

examine the source dimensions of earthquakes between M -2 to 8 and found 
self-similar behavior, Iio [1992, 1995] showed that there is an initial slow 

slip phase that preceded 69 microearthquakes in Japan, and that the 

duration of this phase is scale dependent. Beroza and Ellsworth [1996] found 

that many earthquakes exhibit an initial phase of low moment rate 
compared to the rest of the earthquake, which they termed the seismic 

nucleation phase. They observed this phase for 48 earthquakes of M 1.1 to 
8.1 and also found that the size and duration of this phase scale with the 

event magnitude. Sato and Mori [2006] found by applying the model of Sato 

and Kanamori [1999] that the initiation crack size does not significantly vary 
for events of M 3.5 to 7.9, but Nakatani et al. [2000] found that the 

amplitude of early P-waves for events of M 0.3 to 2.1 does scale with the 
final magnitude. 

Olson and Allen [2005] hypothesized that the influence of early rupture 
on the size of an earthquake is mediated by the intensity of the early 

rupture. A higher stress concentration at the focus of the earthquake 
generates a stronger early rupture phase, and that phase imparts sufficient 

energy to the rupture to overcome barriers on the fault surface and produce 
a large earthquake. Conversely, an area of lower stress around the focus 

generates a comparatively weak early rupture, and the rupture may not gain 
enough energy to overcome the same barriers, and stops before becoming a 

large earthquake. Henceforth we use the term “nucleation” to describe the 
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early dynamic (radiative) rupture history of the event, rather than a long-

term (quasistatic) aseismic nucleation. We test the feasibility of this 
hypothetical model by simulating dynamic ruptures on faults with 

heterogeneous initial shear stress, varying the stress near the focus while 
holding the stress constant elsewhere on the fault. We use a Genetic 

Algorithm to search over a large parameter space for conditions under which 
these simulations exhibit a correlation between the initial near-focus stress 

and the final size of the rupture, and test whether these conditions are 
realistic thus supporting the hypothesis, or they are unrealistic, thereby 

refuting it. 

4.3. Method 
We use a multi-domain spectral boundary integral code [Dunham, 2005; 

Noda et al., 2009] to simulate dynamic fault ruptures in 2D and 3D with 

heterogeneous initial shear stress conditions (following the work of 
Ripperger et al. [2007]) on faults with rate-and-state friction laws. The 

models have some basic properties in common, shown in Table 4.1 (elastic 
moduli, grid and time spacing, and clamping stress), and differ in 11 

parameters (Table 4.2): four controlling the stress distribution (correlation 
length ac, Hurst exponent H, mean shear stress , and standard deviation of 

shear stress ); five rate-and-state parameters (reference friction f0, direct-

effect coefficient a, evolution-effect coefficient b, characteristic slip-

weakening distance L, and reference velocity V0); and two controlling the 
size and stress of the overstressed area (also referred to as the “plug”, see 
Figure 4.4) that initiates rupture (Rplug, plug). The rate-and-state parameters 

are used in the friction law [Ruina, 1983]: 
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where V is the slip velocity and  is the state variable, which evolves 

according to: 
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The large number of parameters to search over makes a direct search of the 
entire parametric space impossible, so we employ a Genetic Algorithm (GA) 

scheme [Stoffa and Sen, 1991; Sambridge and Drijkoningen, 1992] to 
search the parameter space for models that exhibit a dependence of the final 

rupture size on the early rupture history. We refer to this as “favored” 
behavior, insofar as we are first attempting to simulate the hypothesized 
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behavior without regard to realism. The test of this hypothesis occurs when 

we examine the parametric values found by the GA search to evaluate 
whether this hypothesized behavior can occur under realistic conditions. 

The GA method is designed to emulate the behavior of living populations. 
An initial population of models is generated by randomly picking parametric 

values within a search range, and each of the models is tested and 
evaluated for fitness. When all the individuals of the initial population have 

been evaluated, the next generation of models is generated by blending the 
parametric values (the “genes”) of two of the initial models at a time. The 

higher the fitness of a given model, the more likely it is to be allowed to 
“breed” into the next generation of models. The fitness function can be 

simple or quite complex, and in this case the evaluation itself is very 
computationally expensive. Because GA requires a large population of 

models to test, it is not as efficient at finding the optimal solution as a 
Simulated Annealing method [Liu et al., 1995; Beaty et al., 2002]. As we 

explain below, we are less interested in the single optimal solution than we 

are in the behavior of the fitness function over the range of possible values 
for each parameter. Simulated Annealing only evaluates one model at a 

time, and would not sample the model space as well as GA, so we choose to 
employ the latter method. 

The GA search process is illustrated in Figure 4.1 through Figure 4.3. 
Each generation of models has 30 individual models (“individuals”, Figure 

4.1), and each individual is used to generate 10 stochastic stress 
distributions (“realizations”, Figure 4.2) using the method of Ripperger et al. 

[2007] and the parameters ac, H,  and  (Table 4.2). This yields 300 

different fault models with 300 different shear stress distributions. We then 

find the point of greatest shear stress on each fault and set that to be the 
point of nucleation by overstressing it with a cosine function of radius Rplug 

and magnitude plug and allowing the model to rupture spontaneously. We 

approximate varying the “intensity” of nucleation by taking the stress in the 
nucleation region, defined as the area surrounding the nucleation site, within 
the contour defined by the cutoff stress:  

 
   minminmax  Ccutoff  

(4.3) 
 

 
where C is a constant equal to 0.5 for the 2D case and 0.65 for the 3D case. 

We scale the nucleation region according to the relation: 
 
  cutofforigcutoffscaled K    

(4.4) 
 

 
with K varying in 10 equal increments from 10% to 100% (Figure 4.4). Each 

of these increments is referred to henceforth as a “step.” Note that for 
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extremely small values of ac and large values of Rplug, it is possible that the 

overstressed region (the “plug”) extends beyond the nucleation region 
bounded by cutoff. There is no constraint on this condition within the search 

algorithm, but in practice we find that models with such short correlation 
lengths do not perform well, and the GA search selects against such models. 

In all the models that exhibit favorable behavior, the overstressed plug is 
completely contained within the nucleation region. 

We choose to use GA with elitism, meaning the 2 best individuals from 
the previous generation are copied exactly to the next generation, to avoid 

losing the best solution in the next generation. The individuals are bred 
using roulette selection, where the probability of an individual breeding is 

proportional to its share of the total fitness of the population. When two 
individuals (A and B) breed they produce two children (a and b) with 

complementary combinations of the parents’ genes (Figure 4.3). It is typical 
in GA methods to assign a likelihood (termed the crossover probability) that 

parent A’s genes will end up in child b’s genome and vice-versa. This 

probability ranges from about 60% to 100% [Stoffa and Sen, 1991; 
Sambridge and Drijkoningen, 1992], and we find that our algorithm 

converges fastest for simple problems with a crossover probability of around 
85%. The results of the search are not affected by this probability, only the 

rate at which the search converges. Most GA schemes use a binary genome 
(i.e., a given gene is either “on” or “off”), but we choose to use a numeric 
genome where genes can have any value within a range. Therefore we have 
to consider two types of heredity: a direct inheritance of one or the other of 

the parents’ genes, and a blended inheritance of some linear combination of 
both parents’ genes. Given a crossover, we allow an even chance that a 
gene will be directly inherited or blended. Thus, there is a 15% probability 
that parent A will pass a gene to child a, a 42.5% chance that parent B will 

pass the gene to child a, and a 42.5% chance that child a’s gene will be a 
linear combination of the genes from both parents. Child b’s genes are the 
complement of child a’s, so if child a receives a gene from parent B, child b 

will take the same gene from parent A. If child a receives a gene that is 40% 
from parent A and 60% from parent B, then child b will have 60% from 

parent A and 40% from parent B, and so on. There is also a 4.55% chance 
that a given gene will mutate to a random value within the search space. 

This probability yields an average of one mutation in every other individual 
(1 over 11 genes times 2 individuals), and prevents the GA search from 

falling into a local minimum in the fitness function. 
The fitness function itself tests 8 properties of each realization, 

summarized in Table 4.3. If the result of the test is positive, the value of 
each test is added to an individual’s score. If the test result is negative, the 

score is not changed. Positive values indicate favored behaviors, and 
negative values indicate disfavored behaviors. For example, if the rupture 

propagates beyond the nucleation region (Figure 4.4) this is considered 
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favorable behavior (though not extremely so), while if the rupture size grows 

by more than 80% in any stress step this is considered strongly favorable 
behavior, and if such growth occurs between two or more steps, it is 

considered very favorable behavior. On the other hand, any rupture 
propagating at greater than the P-wave speed is considered unphysical and 

therefore strongly unfavorable. If the rupture never becomes self-sustaining 
(i.e., never propagates beyond the overstressed plug) this is also 

unfavorable behavior. If the rupture is still ongoing at the end of the 
simulation time, or if the entire model has ruptured by the end of the 

simulation, we consider this to be a runaway rupture, which is a somewhat 
unfavorable behavior (the entire model should never rupture within the 

simulation time unless there is super-P rupture velocity, but the check is 
included as a safeguard). If the rupture jumps forward and initiates a 

secondary rupture ahead of the primary rupture front, this is considered 
slightly unfavorable behavior. This is not because the behavior is unphysical, 

but because it adds complexity to the evaluation of the model by a 

computer. There is an additional penalty of -30 to models that failed to run 
altogether due to the parameter combination causing the simulation to 

become numerically unstable. Each realization can get a score between -30 
and +22, though typical scores range from -15 to +15. The total score of 

each individual is the sum of the scores of its 10 realizations, and typically 
ranges from -150 to +150. This score is normalized by a factor of 150, and 

the individual’s fitness is 10 to the power of this value. This yields positive 
values of fitness ranging over approximately 2 orders of magnitude. Since 

each individual starts with a score of 0 (i.e., a fitness of 100 = 1), any 
individual with favorable traits will have a fitness greater than 1, and any 

unfavorable individual will have a fitness less than 1. 
This method introduces a bias to the model output, in that we are 

explicitly selecting for behavior which shows a correlation between initial 
shear stress and final size of the event. For this reason, the existence of 

models that exhibit this behavior is necessary but not sufficient to support 

the hypothesis. To further support the hypothesis we evaluate the resulting 
parameter values themselves in three ways: 

 Regularity: is the fitness of the models a smooth, well-behaved 
function of a given parameter, or does the fitness vary irregularly 

as the parameter varies? 
 Constraint: do high-fitness models exhibit a wide range of 

parametric values, or are they constrained to only a narrow range 
of values for the given parameter? 

 Correctness: do high-fitness models exhibit the same or similar 
parametric values to those found by preceding field and lab studies, 

or are they very different? 
In general, the more regular the fitness function, the better constrained, and 

the more the parametric values agree with previous studies, the more well-
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supported the hypothesis becomes. In particular, the values of the rate-and-

state parameters are extensively studied and provide a good reference point 
for comparison. That is, if we see models that exhibit the favored behavior 

only under unrealistic frictional conditions, this is a strong argument against 
the hypothesis. 

4.4. Modeling in 2D 
We ran the GA search over 20 generations (of 30 models each) in a 2D 

space, on a line fault of 400 km length with a grid spacing of 100 m. 

Although a line fault behaves differently from a planar fault in a full 3D 
space, this preliminary step is important for several reasons. First, it verifies 

that the search algorithm converges to the behavior of interest in a 
reasonable amount of time, and allows us to adjust the fitness scoring 

algorithm relatively quickly. The 2D model search completes one generation 

within 20 hours or less, whereas the 3D model search takes as many as 11 
days to complete a single generation. By starting with the 2D search we are 

able to set up and debug the scoring algorithm over the course of a few days 
rather than a few months. 

Second, the 2D models can be larger and run for longer simulation times 
than the 3D models, while still remaining computationally tractable. Because 

the MDSBI code requires periodic boundary conditions, the model size must 
be significantly larger than the size of the desired ruptures. For a 400 km 

model, the P-wave propagates around the model in 33 seconds, allowing for 
a 30 second simulation. By contrast, the 3D models can only be 60 km by 60 

km, with only about a 6 second simulation. The use of 2D gives the rupture 
greater opportunity to propagate beyond the influence of the artificial 

nucleation, and in general allows for a greater variation in scale than do the 
smaller 3D models. 

Finally, the optimum set of parameters from the 2D search can be used 

as a starting point for the more computationally expensive 3D modeling. 
This bootstrapping approach potentially saves several generations and many 

weeks of search time and allows the 3D search to converge almost 
immediately. 

Within about 16 search generations the 2D models begin to exhibit a 
dependence of final magnitude with the stress level of the nucleation region. 

This behavior is widespread after 20 generations. When considering all 20 
generations plus the zeroth generation (630 individuals in total), 23.5% 

have fitnesses greater than 100.5, indicating significantly favorable behavior. 
Figure 4.5 shows a typical example of rupture size varying with stress level 

through 4 out of the 10 steps of a particular stress realization. The actual 
parameter values for this individual are listed in Table 4.4. The black traces 

show the rupture time of each point on the fault with units on the left x-axis. 
The blue traces show the initial shear stress on the fault, with units on the 



 

67 

right x-axis. When the stress is below about 30% of maximum (step 3), only 

the nucleation asperity ruptures. This is about 4 km of the length of the fault 
and can be seen in the upper left of Figure 4.5. When the nucleation stress is 

scaled to 50% of maximum (step 5, upper right of Figure 4.5) an additional 
asperity ruptures to the right of the nucleation. When the nucleation is 

scaled further to 80% (lower left of Figure 4.5) an additional asperity 
ruptures, and finally at 100% of the original shear stress, a fourth asperity 

ruptures (lower right of Figure 4.5). 
It is clear from Figure 4.5 that at least in one example the final 

magnitude of an earthquake is strongly dependent on the amount of stress 
encountered by the early rupture, even when stress on the rest of the fault 

is held constant. However, this example shows a single realization of a single 
individual in a single search generation. The question remains whether this 

is a widespread behavior even among models with the same parameter 
values as the model in Figure 4.5. We can assess this by comparing the final 

magnitude of each event to the magnitude of the same event after some 

fraction of the rupture duration. Figure 4.6 shows the final magnitude of 100 
realizations of stress using the parameter values of the individual 

represented in Figure 4.5 and Table 4.4. The final magnitude is plotted 
against the initial magnitude after 0.4 seconds of rupture. Each realization is 

represented by 10 points, one for each stress step. 
If the models in Figure 4.6 were insensitive to the stress level in the 

nucleation region, these points would have a slope around zero. Note that 
the blue data points represent models that release 97% or more of their 

final magnitude within the first 0.4 seconds. Because the initial magnitude in 
these models is effectively saturated (initial magnitude can never exceed 

final magnitude) we exclude these data from the least-squares regression 
shown in Figure 4.6. We calculate this slope using only the black data points 

to avoid artificially increasing the slope of the best-fit line. As is apparent 
from Figure 4.6, we determine that the slope of the points is greater than 

zero with 95% confidence using a one-sided t-test. This indicates that the 

final magnitudes of the individual models are responding nonlinearly to small 
perturbations in the initial magnitude. This behavior is in agreement with 

results from the analysis of kinematic slip distributions [Wurman et al., in 
review], i.e. a large difference in final magnitude corresponds to an 

observable but smaller difference in the early moment release. The strongly 
positive slope of the data indicates that the behavior observed in Figure 4.5 

is quite common. 

4.5. Modeling in 3D 
We take the 20th generation results from the 2D modeling and apply them 

as the “zeroth” generation for modeling the behavior in 3D. Because the 
parameter values by the 20th generation are quite homogeneous, we take 9 
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individuals from this generation with scores less than 100.5 and replace them 

with new individuals with random parameter values from within the search 
space. This is done to allow for the possibility that the best parameter values 

in 2D are not the same in 3D, but as a practical matter we observe that 
these new individuals perform quite poorly, and are selected out within 2 

generations. This suggests that the choice of bootstrapping from 2D to 3D is 
appropriate, and reduces (though it does not eliminate) the possibility of a 

better solution somewhere in the search space. 
As with the 2D modeling, each search generation is composed of 30 

individuals with 10 iterations per individual. Due to limits on computational 
power and the added dimension, the models are reduced to 60 km x 60 km 

at 100 m grid spacing, rather than 400 km on a side as in the 2D case. Due 
to the smaller fault size the models can only simulate 6.32 seconds of 

rupture time, at which point the P-wave begins to intersect the S-wave 
across the periodic boundary conditions, potentially affecting the rupture in 

an unrealistic fashion. The cutoff stress coefficient C in Eq. 4.3 is 0.65 rather 

than 0.5 as in the 2D case. This is necessary because the connectivity 
between grid points is greater on a 2-dimensional fault plane, so that if the 

cutoff is set as in the 2D case the contour often encloses half or more of the 
fault plane. On the other hand, if the cutoff level is set too high our ability to 

affect the intensity of nucleation is constrained, since we can only vary the 
stress in this region between its original value and the cutoff value. By 

setting the cutoff at 0.65, we strike a balance between small, contained 
nucleation regions and having enough ability to affect the nucleation 

intensity. 
Because the parameter values for the 3D search are bootstrapped from 

the 2D results, the models exhibit a rupture size that is dependent on the 
early stress magnitude from the zeroth generation. Out of 180 individuals in 

five search generations plus the zeroth generation, 42.2% exhibit 
significantly favorable behavior, defined as fitness greater than 100.5. In 

general the optimal parameter values in the 3D search are unchanged from 

the 2D search because of this bootstrapping, but the parameters that are 
less well-constrained in the 2D search do migrate somewhat in the 3D 

search. Notably the correlation length ac becomes somewhat shorter in the 
3D search, as does the critical slip-weakening length L. This is discussed in 

more detail in the following section. Figure 4.7 shows an example of a 
realization that exhibits a dependence of rupture size on the initial stress 

level. The colors indicate the initial shear stress on the fault, warm colors 
indicating high stress asperities (up to ~50 MPa) and cool colors indicating 

barriers. The superimposed contours show rupture time in 0.2 second 
intervals. Similar to Figure 4.5, when the nucleation stress is less than about 

20% (upper left of Figure 4.7) only the nucleation asperity ruptures, but as 
the stress is scaled up to 40% (upper right of Figure 4.7), 70% (lower left), 

and finally 100% (lower right), a second, third and fourth asperity rupture 
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as well. The specific fitness and parameter values of this individual are 

shown in Table 4.4. 

4.6. Comparison of Parametric Values 
It is likely that a particular parameter value is necessary to a high-fitness 

model but not sufficient by itself. Therefore the fitness when plotted against 
a single parameter may have a great range of values for a single value of 

the parameter. If we take the maximum fitness over a narrow range of 
values for the given parameter we can identify those values which allow for 

high-fitness behavior as opposed to those values which preclude it. Figure 
4.8 shows the individual value/fitness pairs for the nine parameters 

controlling friction and stress distribution, with lines representing the 
maximum fitness at each value for the parameter. Black points and lines 

show the 2D results, while blue points and lines show the 3D results. Note 

that we examine the quantity b – a rather than b, as the difference between 
the state variable and the rate variable describes the degree to which the 

fault friction is velocity-weakening [Tullis and Weeks, 1986; Marone, 1998; 
Scholz, 1998; Rice et al., 2001]. As stated in the previous section, the 

optimal parameter values for the 3D search are very similar to those for the 
2D search because they were bootstrapped from the last generation of the 

2D search. This is particularly true of the well-constrained parameters , , 
f0, V0, a and b (Figure 4.8c-h). However there is some migration in the 

values of the parameters ac (Figure 4.8a) and L (Figure 4.8i) to shorter 
length scales. The correlation length ac shows good fitnesses in the 2D 

search from 250 km down to about 50 km. The 3D search shows good 
fitnesses around 50 km but not at longer correlation lengths, and exhibits a 

new peak around 30 km as well. This is likely due to the physical extent of 
the fault being much smaller in the 3D search: only 60 km on a side as 

opposed to 400 km for the 2D search. This makes correlation lengths longer 

than about 50 km (i.e., longer than the fault itself) unusable as there is only 
one asperity and one barrier on the entire fault plane. The same trend is 

observed in the slip-weakening length L, with the 3D search losing fitness at 
slip-weakening lengths greater than about 18 cm, and gaining a new peak 

around 7 cm. Contrary to the correlation length, it is not clear why this 
should be true for the slip-weakening length. There is no obvious physical 

reason for shorter slip-weakening lengths to be favored on the smaller 
faults, since all the length scales are much smaller than the size of the fault 

anyway. The grid spacing is also constant at 100 m for both the 2D and 3D 
spaces. The physical significance of this result is not clear, and further study 

may be necessary to shed light on it. 
The results outlined in the previous sections are necessary but not 

sufficient to support the hypothesis. While demonstrating that a relationship 
between early rupture history and final magnitude is physically possible for 
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some combination of parameters, the observations do not conclusively 

confirm the hypothesis. To test the hypothesis in a falsifiable fashion, we ask 
the three questions outlined in the Method section: 

 Whether the fitness surface for the search is well-behaved 
(regularity) 

 Whether those parameter values are very narrowly defined 
(constraint) 

 Whether the observed behavior occurs under realistic parameter 
values (correctness) 

In this analysis we ignore the two model parameters Rplug and plug as they 

have no physical significance outside this modeling exercise. The question of 

regularity can be applied to all nine physical parameters, but the questions 
of constraint and correctness are best applied to parameters for which we 

have some knowledge of the range of accepted values. Of the nine 
parameters, only the mean shear stress and the five rate-and-state 

parameters (a, b, f0, V0, and L) can be compared to values found in previous 

field and lab studies. 

4.6.1. Regularity 

Because of the high dimensionality of the parameter space, the regularity 
of the fitness surface in any single dimension is very difficult to evaluate. 

The fitness surface will only be regular along any parameter if that 
parameter exerts a very strong influence on the overall fitness of the model, 

to the point where it dominates the signal from the other dimensions. Thus 
an instructive way to inspect the regularity is by considering the maximum 

fitness as illustrated by the solid lines in Figure 4.8. 
The stress-related parameters ac and H (Figure 4.8a and b) show very 

irregular behavior, with many peaks and valleys in the maximum fitness. 
The same is true of the slip-weakening distance L (Figure 4.8i), but the six 

remaining parameters (Figure 4.8c-h) behave reasonably well, with only one 
major peak in the fitness curve, and one or two smaller peaks that are 

typically supported by only one individual. While the fitness surface is well-

behaved in the majority of the dimensions, the irregularity along the three 
parameters ac, H and L requires further examination. In this examination it 

is instructive to first look at the degree of constraint of these and other 
parameters. 

4.6.2. Constraint 

It is immediately apparent that the parameters ac, H and L are also the 

least constrained of all the parameters, as they have the broadest range 
over which high fitness values can be found. In particular H appears to be 

equally favored across the entire search space, except possibly for values 
greater than approximately 2.2. In this context it is possible that some of 

the irregularity observed in these three parameters is due to the fact that 
not all values of ac, H and L occur alongside favorable values of the other 

parameters, though there are too few data points to test this in a statistically 
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meaningful fashion. If this is the case, however, it is likely this would lead to 

the observed narrow valleys in the fitness curves (Figure 4.8a, b and i). In 
contrast, broader valleys might be expected if there were values of these 

parameters which actually discouraged high-fitness behavior. It is important 
to note that the three parameters which are least well-constrained in the 

Genetic Algorithm search are also those which are least well-constrained 
observationally (as detailed in the next section). 

The remaining six parameters (Figure 4.8c-h) are quite well constrained, 
to the point where the high-fitness peaks for , f0, a and b – a are nearly 

delta functions. This may be due to the manner in which the Genetic 
Algorithm converges on the best solution, or it may be due simply to the fact 

that these parameters have to be very finely tuned to enable the nucleation 
energy to influence the rupture over long distances. If the latter is the case 

this would argue against the hypothesis, as it is unlikely that the mean shear 
stress in the crust is so homogenous, or that the friction parameters a and b 

are uniform among varied rock types. A directed search around these 

parameters is required to determine whether this fine tuning is really 
necessary. 

4.6.3. Correctness 

Of the nine parameters plotted in Figure 4.8 only the latter six are at all 

constrained by observational data. The shaded regions in Figure 4.8d-i show 
the approximate range of values for mean shear stress [Choy, 1995; Mayeda 

and Walter, 1996; Ide and Beroza, 2001] and the five rate-and-state 
parameters [Dieterich, 1978; Rice, 1983; Tullis and Weeks, 1986; Scholz, 

1988; Blanpied et al., 1991; Dieterich and Kilgore, 1994; Dieterich and 
Kilgore, 1996]. The parameter L is rather poorly constrained in nature 

(Figure 4.8i), varying from the scale of approximately 50 cm in the field [Ide 
and Takeo, 1997; Mikumo et al., 2003; Wibberley and Shimamoto, 2005] to 

microns in the lab [Tullis and Weeks, 1986; Ohnaka and Shen, 1999]. The 
mean shear stress on real faults (Figure 4.8d) has not been directly 

observed except for in a mere handful of cases (e.g. the SAFOD borehole, 

[Hickman and Zoback, 2004; Tembe et al., 2010]), but its value can be 
constrained to be on the order of 3 to 30 MPa from indirect observations of 

seismic stress drop in earthquakes [Choy, 1995; Mayeda and Walter, 1996; 
Ide and Beroza, 2001]. The values of f0 and a and b – a (Figure 4.8e, g and 

h) are principally constrained by laboratory studies [Dieterich, 1978; Rice, 
1983; Tullis and Weeks, 1986; Scholz, 1988; Blanpied et al., 1991; Dieterich 

and Kilgore, 1994; Dieterich and Kilgore, 1996] and are not directly 
observable in the field either. The value of V0 (Figure 4.8f) is generally taken 

to be approximately equal to plate motion rates. As there are no direct 
observations of stress on faults other than at a few disparate points, there is 

no constraint on the spectral character of stress distribution (ac and H), or of 
the magnitude of its variation (). 
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Four of the six parameters are optimal at realistic values. The fact that V0 

is about one order of magnitude too large is of some concern, but in fact V0 
is a reference velocity and has limited physical significance, since the values 

of a and b can be adjusted slightly (less than 0.2 log units) to compensate 
for this and achieve the same friction with more realistic V0. Of greater 

concern is the significant difference between observed values of b – a and 
the optimal value in Figure 4.8h. This suggests that in order for the fault to 

display the observed behavior it must be much more strongly velocity-
weakening than is commonly observed in the lab. There has been some 

recent work on the effects of flash heating of fault materials and thermal 
pressurization of pore fluids [Wibberley and Shimamoto, 2005; Noda et al., 

2009], both of which may increase the degree of velocity-weakening on real 
faults as opposed to lab studies. However, there is no analytical solution for 

the effect these mechanisms would have on our results. Absent such a 
solution, the stronger-than-expected velocity-weakening argues against the 

hypothesis being realistic, though not definitively so. 

4.7. Conclusions 
Using a Genetic Algorithm search over 11 parameters we were able to 

find a set of models which exhibit a correlation between the stress 

encountered by the early rupture and an event’s final magnitude. This 
behavior exists both in a 2D space on a linear fault, and in 3D space on a 

planar fault. In general the results occur with the same parameter values in 
both 2D and 3D space, though there is a slight shortening in the correlation 

length and the slip-weakening distance for faults in 3D. This may be an 
artificial product of using smaller faults in 3D. The Genetic Algorithm fitness 

curve is largely well-behaved and the optimal parameter values are well-
constrained. 630 individual models were tested in the 2D case, and 180 

models were tested in the 3D case. In each case, a large proportion of the 

individuals exhibit favorable behavior to some degree (23.5% in the 2D 
case, and 42.2% in the 3D case). For those parameters which have been 

addressed in prior studies, the optimal values we find are largely in 
agreement with these prior studies. The exception is the degree of velocity-

weakening in the friction law, expressed in the value of b – a in the rate-
and-state friction law of Ruina [1983]. We find that much stronger velocity-

weakening behavior is needed than is found in lab studies of typical fault 
rocks. This presently argues against the hypothesis being realistic, but 

further modeling is needed which incorporates the effects of thermal 
pressurization and flash heating, which may reduce the necessary velocity-

weakening to realistic values. Additional modeling must be done to 
determine if several of the parameters must be very finely tuned in order to 

support the hypothesized behavior, as such fine tuning is unlikely in nature. 
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In general, the correlation of the final magnitude with some parameter of 

the early rupture history is consistent with various observations that certain 
properties of early P-waves vary with earthquake magnitude [Olson and 

Allen, 2005; Lockman and Allen, 2005; Lockman and Allen, 2007; Wurman 
et al., 2007; Lewis and Ben-Zion, 2008], but whether the behavior modeled 

in this study is a realistic explanation of the seismic observations remains 
unanswered. Also unaddressed is the specific mechanism by which the 

intensity of the early rupture phase is modified, since the artificial scaling of 
near-focus stress is simply a proxy for that intensity. Finally, it is necessary 

to demonstrate that whatever physical mechanism drives the intensity of 
nucleation also affects the properties of the P-wave in a manner consistent 

with seismic observations. However, the behavior hypothesized in these 
models is an important first step toward positively identifying the physics 

that generate these seismic observations. 
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4.9. Tables and Figures 
 

Physical Parameters Common to All Models 

Parameter Symbol Value 

Rigidity  3.204x1010 N/m2 

S velocity Vs 3464.1 m/s 
Clamping stress n 120 MPa 

Grid spacing dx 100 m 
Time interval dt 0.008 sec 

Table 4.1: Physical parameters of modeled faults and simulation parameters. These do not vary 
from model to model. 

 
Parameters in Search Space 

Parameter/gene Symbol Range 

Correlation length ac [100, 103.5] m 
Hurst exponent H [-1, 3] 

Mean shear stress  [106, 108.5] Pa 

Stress deviation ratio  [10-2, 100] 
Baseline friction f0 [0.4, 0.8] 
Rate coefficient a [10-3, 10-1] 

State coefficient ratio b/a [100, 102] 
Critical distance L [10-1.5, 100.5] m 

Reference velocity V0 [10-13, 10-3] m/s 
Plug radius Rplug [100, 1500] m 

Plug stress ratio plug/ [10-1, 101] 

Table 4.2: Genes in the Genetic Algorithm genome, their symbolic representation, and the range 
of values they are allowed to take in the search process. Ranges indicated as a power of 10 
indicate that the parameter is encoded in log form in the search. 

 
Behavioral Tests in Fitness Evaluation 

Test Value 

Rupture propagated out of nucleation zone +2 
Final size 80% greater than previous stress step +5 
Multiple size increases in the same realization +15 

Fault still rupturing at end of simulation -6 
Super-P rupture speed -15 

Entire model is ruptured -6 
Rupture never became self-sustaining -10 

Secondary rupture initiates ahead of rupture front -3 

Table 4.3: Fitness tests to which model output is subjected and value associated with passing 
each test. Positive values represent desirable behaviors, and negative values are undesirable 
behaviors. 

 
Parameter values for example individuals 

Parameter 2D (Figure 4.5) 3D (Figure 4.7) 

ac  53.8 m 31.7 m 
H -0.095 0.414 
 21.5 MPa  21.5 MPa 

 0.247 0.278 

f0 0.651 0.651 
a 0.0054 0.0054 

b/a 6.50 6.45 
L  15.4 cm  6.94 cm 
V0  0.155 m/s 0.162 m/s 

Rplug 462 m 642 m 
plug/ 4.02 4.45 
Fitness 13.6 13.6 

Table 4.4: Values of the search parameters and fitness of the two individuals represented in 
Figure 4.5 (2D case) and Figure 4.7 (3D case). The values for the 2D case are also used to 
generate Figure 4.6. 
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Figure 4.1: Nomenclature used in the Genetic Algorithm search. Each parameter is represented 
by a single gene, and the 11 different genes together make up the complete genome of a single 
individual. Each generation of the search is composed of 30 individuals with different genomes. 
The “zeroth” generation is made up of randomly selected parameter values, and subsequent 
generations have parameter values derived from the previous generation’s genes. 

 

 

 
Figure 4.2: Illustration of the derivation of models from individual genomes. Each individual is 
used to create 10 random realizations of stress using the genes for the 4 stress parameters ac, H, 
, and . A cosine-shaped plug of radius Rplug and amplitude plug is superimposed on the point of 

highest stress in each realization. For each realization, this nucleation asperity is then scaled 
down in 10 equal steps as described in Figure 4.4. All realizations and steps have the same rate-
and-state friction law defined by the genes for the 5 friction parameters f0, a, b, L and V0. 
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Figure 4.3: Illustration of the ways in which genes get passed from parents to children. Gene X 
is copied directly from each parent: child a gets the X gene from parent A, and child b gets the X 
gene from parent B. Gene Y is blended: child a gets 40% of the Y gene from parent A and 60% of 
the Y gene from parent B, while child b gets 60% of parent A’s gene and 40% of parent B’s gene. 
Genes W and Z are copied directly from the respective parents with no alteration, but a random 
mutation has occurred in the Z gene of child b, and its value is randomized. 

 
 

 
Figure 4.4: Illustration of scaling the nucleation stress. The point of highest shear stress in the 
model is identified, and a cosine-shaped plug of radius Rplug and amplitude plug is superimposed. 

A contour is taken around the plug at a set cutoff stress (in the 2D modeling this is halfway 
between the maximum and minimum stress, in the 3D modeling it is 65% of the way to the 
maximum stress). The stress in the “nucleation region” within this contour is then scaled in 10 
equal increments of 10% down to the cutoff stress level. The dashed line shows the lowest stress 
step and the solid line shows the highest stress step, equal to the original stress level. 
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Figure 4.5: Example of model exhibiting the hypothesized behavior. Black trace shows the time 
of rupture with units on the left axis, and blue trace shows the initial shear stress with units on 
the right axis. At low nucleation stress an area of only ~4 km has ruptured (upper left), and with 
progressively higher nucleation stress more of the fault ruptures until, at the full value of 
nucleation stress, ~16 km of the fault has ruptured. 

 

 

 
Figure 4.6: Final magnitude of 100 realizations of the best individual in the 2D search, plotted 
against initial magnitude (defined as magnitude after 0.4 seconds of rupture). Blue points have 
an initial magnitude greater than 97% of the final magnitude, and are excluded from the 
regression. The best-fit slope using only the black points is greater than zero at 95% confidence, 
indicating widespread dependence of final magnitude on the early rupture in these models. 
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Figure 4.7: Example of a 3D model exhibiting the hypothesized behavior. The color field 
represents the initial shear stress, and the contours represent rupture time in 0.2 second 
increments. When nucleation stress is scaled down, only the nucleation region ruptures (upper 
left). As the nucleation stress is scaled up progressively, a second, third and finally fourth 
asperity ruptures when the stress is at its full value. 
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Figure 4.8: The fitness of all the individuals in the 2D search (black points, 630 individuals) and 
the 3D search (blue points, 180 individuals) as a function of each of 4 stress-related parameters 
(a-d) and each of 5 friction-related parameters (e-i). Maximum fitness envelopes are plotted as 
black lines (2D search) and blue lines (3D search). Where previous work constrains the possible 
values of the parameters, the range of possible values is shown as a light shading (d-i). 
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5. Conclusion 
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We now have two lines of evidence suggesting that earthquakes are not 

purely cascading phenomena, and that the early history of rupture exerts a 
degree of influence on the final magnitude of an event. The first, the 

observation that the amplitude and spectral content of P-waves scale with 
event magnitude, is in agreement with prior studies [Allen and Kanamori, 

2003; Olson and Allen, 2005; Lockman and Allen, 2007; Lewis and Ben-
Zion, 2008] that show this behavior at a variety of scales and in different 

tectonic contexts. The second line of evidence, a statistical observation that 
the early slip history of kinematic inversions scales with event magnitude, is 

an independent study that corroborates the seismic observations and 
supports deterministic behavior, at least in aggregate statistics, with a high 

degree of confidence. 
With these two lines in hand, we test the hypothesis that this aggregate 

determinism is driven by variations in the intensity of the early rupture 
phase, which impart more or less energy to the rupture front and thus affect 

its ability to overcome barriers further along the rupture. We simulate 

ruptures with dynamic models of 2D and 3D spaces, and search for the 
hypothesized behavior using a Genetic Algorithm. We find that the 

hypothesized behavior occurs under realistic conditions for the most part, 
though it requires a greater degree of velocity-weakening behavior than is 

generally observed in lab friction experiments. This velocity-weakening 
behavior may be generated in the field by flash heating of fault materials 

and thermal pressurization of pore fluids, but these effects need to be 
accounted for in the modeling before definitively supporting the hypothesis. 

We are now a few steps closer to answering the question of whether 
earthquakes are deterministic or cascading phenomena. However, much 

work remains to be done in this field. In terms of the observational data, a 
great deal must be done to improve the statistical significance of the 

observed scaling, especially at large magnitudes. This is difficult because of 
the small number of large earthquakes that occurs each year, few of which 

occur in the vicinity of high-quality regional seismic networks. As far as 

modeling the physics of the observed scaling, many questions remain 
unanswered, such as the specific nature of the “intensity” of the early 
rupture phase and what determines this intensity. Finally, whatever specific 
physical mechanism is hypothesized to drive the determinism of earthquake 

ruptures, this mechanism must be able to generate the observed effects on 
the properties of P-waves. 

The extant questions about the physics of earthquake rupture are no 
longer merely academic exercises. The advent of P-wave-based Earthquake 

Early Warning systems makes earthquake source studies into an eminently 
practical field, with significant implications regarding the applicability of 

these warnings to large events with long, complex rupture histories. We are 
rapidly approaching the point where a thorough understanding of the physics 

of rupture will make it possible to eke out a few precious extra seconds of 
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warning, or to converge on ground motion estimates with greater confidence 

and smaller errors. The answers to questions of source physics may effect 
greater savings of life and property in the near future. There is no better 

time to study these processes, because today these questions are perhaps 
more important than any others in modern seismology.  
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