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E A R T H Q U A K E - I N D U C E D P R E S S U R E S O N A R I G I D 

W A L L S T R U C T U R E 

J. H. W o o d * 

SUMMARY 

This paper describes the application of linear elastic theory to 

estimate the earthquake-induced soil pressures on a wall forming part 

of the structure of a power station founded on rock. 

Analyses showed that the Mononobe-Okabe assumptions would not be 

applicable for this relatively rigid wall structure and it was found 

that elasticity theory gave greater forces and moments than would be 

obtained by using the Mononobe-Okabe method. The extent to which 

deformations of the structure and its foundations influence the wall 

pressures was investigated. It was found that even for this relatively 

rigid structure and foundation, the displacements resulting from the 

inertia of the wall structure can produce a significant increase in the 

total forces acting on the w a l l . 

1. INTRODUCTION 

The behaviour of wall structures during 

earthquakes can be broadly classified into 

three categories defined by the maximum 

stress condition that develops in the soil 

near the w a l l . The soil may remain 

essentially elastic, respond in a signif-

icantly nonlinear manner or become fully 

plastic. The rigidity of the wall and its 

foundations will have a strong influence 

on the type of soil stress condition that 

develops. It is well known that flexible 

structures, such as cantilever w a l l s , 

displace sufficiently under the action of 

gravity forces alone to produce a fully 

plastic stress condition in most soils. 

For rigid walls on rock or pile foundations 

the soil stresses may remain essentially 

elastic under combined gravity and earth-

quake forces. The pressures on basement 

walls in buildings are often influenced 

by the dynamic properties of the building 

since the inertia forces acting on the 

structure may produce significant displace-

ments of the wall relative to the surround-

ing soil. Even relatively small wall 

displacements can produce appreciable 

changes to the soil pressures acting on 

the w a l l . 

An essentially exact formulation of 

the interaction of wall structures and the 

supported soil during earthquakes yields 

a highly intractable problem governed by 

three-dimensional wave equations for a 

nonlinear inhomogenous medium. Exact 

solutions are not possible and even if 

numerical methods such as the finite 

element m e t h o d are used it is necessary to 

m a k e simplifying assumptions. The develop-

ment of m o r e sophisticated computer 

programmes w i l l enable m o r e exact analyses 

to be attempted; however, the degree of 

accuracy obtainable is limited because the 

basic input parameters cannot be precisely 
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specified. Many soil-retaining structures 

will not be of sufficient importance to 

warrant more than a very basic soil invest-

igation and only in exceptional circumstances 

would a soil investigation be sufficiently 

detailed to enable a good prediction of 

the soil behaviour under dynamic loading. 

Uncertainty exists regarding the magnitude 

and frequency composition of incoming 

earthquake waves at any particular site. 

At the present time the nature of the m e c h -

anism generating the waves is not precisely 

known and no satisfactory method exists for 

predicting the modifying effects of the 

geology along the travel p a t h s . Even if 

generation and modification of the earth-

quake waves could be accurately modelled, 

uncertainty would exist regarding the 

relative location of possible epicentres 

for major earthquakes. In v i e w of the 

limitations in the basic input parameters, 

the estimation of earthquake-induced 

pressures by approximate m e t h o d s can be 

frequently justified. However, it is 

important to account for wall displacements 

and use a method appropriate for the stress 

condition that developes in the soil. 

The most generally accepted approach 

for estimating earthquake-induced pressures 

is the Mononobe-Okabe method 

( 3 , 4 , 5 ) 

which 

is based on an approximate plasticity theory 

and is essentially an extension of the well 

known Coulomb method for static pressures. 

It is assumed that the wall deformations 

are sufficiently large to induce a fully 

plastic stress condition in the soil near 

the wall. This assumption is unlikely to 

be satisfied for building basement walls 

or other rigid wall structures founded on 

firm soil or rock and for these cases a 

method based on elasticity theory is likely 

to be more appropriate. 

This paper describes the application 

of a number of approximate elasticity 

methods to compute earthquake-induced 

pressures on a soil-retaining wall in the 

Castaic power station, California. The 
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Mononobe-Okabe assumptions were not satis-

fied for this example and comparisons made 

between the Mononobe-Okabe and elasticity-

results indicated that the Mononobe-Okabe 

approach would underestimate the total 

force and moment on the w a l l . .In applying 

elasticity theory to the power station wall 

it was necessary to make a number of 

simplifying assumptions regarding the input 

earthquake motion, the soil behaviour and 

the deformations of the structure and its 

foundations. In particular, it was assumed 

that the earthquake ground shaking could be 

represented by a known horizontal accelera-

tion function acting at the rock foundation 

level. For convenience the acceleration 

function was represented by a smoothed 

acceleration response spectrum. 

2. CASTAIC POWER STATION 

The Castaic power station was designed 

and constructed as a joint venture by the 

City of Los Angeles and the California 

State Department of Water Resources. The 

plant is a 1,250,000 kilowatt reversible-

turbine hydro-electric facility located 

approximately 70 km northwest of downtown 

Los Angeles and about 18 km from the San 

Andreas fault. A typical cross-section 

of the powerhouse, which shows the extent 

of the soil retaining function of one face 

of the structure, is shown in Fig. 1. 

Details of the structure are shown in Fig. 

2. 

Preliminary studies showed that because 

of the rock foundation and the rigid nature 

of the wall structure, a relatively good 

approximation for earthquake-induced 

pressures could be obtained by assuming 

rigid wall behaviour. In the following 

sections solutions are obtained for both 

perfectly rigid-wall behaviour and for 

the case where the structure was permitted 

to undergo elastic rotation on its found-

ation. 

3. RIGID WALL ANALYSIS 

Earthquake induced wall pressures were 

computed for the rigid wall case using a 

static finite element method, a normal m o d e 

dynamic finite element method and an 

analytical normal mode solution for a 

related problem. 

The finite element m e s h used for the 

dynamic analysis is shown in Fig 3. A 

finer m e s h with 1•52 m by 1.52 m elements 

in the vicinity of the wall was used for the 

static solutions. The finite element 

analyses were undertaken for both assumptions 

of smooth and fully bonded contact between 

the w a l l and soil. The other boundary 

conditions assumed are shown in Fig 3. 

Details of static and normal mode 

a n a l y t i c a l solutions for a related problem 

are given by Wood . These solutions are 

for the case of a simple rectangular boundary 

configuration w i t h smooth contact between 

the elastic soil and the wall boundary. 

The geometry and boundary conditions of the 

related problem are shown in Fig 4. 

Soil properties were obtained by 

triaxial testing of the backfill material 

and the following average values were 

adopted for the analyses; 

Youngs Modulus E = 48 M P a 
P o i s s o n 1 s Ratio v = 0.4 ~ 
Unit weight y = 1920 kg/m 

The analytical solution was evaluated 

assuming that the prototype problem could 

be represented by an approximate equivalent 

rectangle of soil having a geometric ratio 

| = 1 . 6 7 . 

The static pressure distributions for 

a one-g horizontal body force and the signif-

icant modal pressure contributions obtained 

from the dynamic analyses are plotted in 

Fig 5. The modal pressure distributions 

have been normalised so that the aljebraic 

summation of all the modal contributions 

gives the static solution for a horizontal 

one-g body force. The modal contributions 

normalised in this manner are referred to 

as the static-one-g modal pressure distrib-

utions . It should be noted that the 

maximum earthquake induced m o d a l pressures 

can be readily obtained by scaling the 

static-one-g contributions by response 

factors from the earthquake acceleration 

spectrum. Gravity induced pressures are 

not included in the plotted results. 

The natural frequencies of the modes 

that gave significant contribution to the 

wall pressure distributions are given in 

Table 1. 

Maximum earthquake-induced pressure 

distributions were computed using the 

Response Spectrum method, and Housner's 

10% damped velocity spectrum given in 

References 1 and 5. The effects of the 

higher modes were included by using a 

"rigid" mode having a pressure distribution 

the difference between the appropriate 

static solution and the sum of the two 

modal contributions for the bonded wall 

and the three contributions for both the 

smooth wall solutions. This "rigid" m o d e 

distribution was assumed to contribute at 

an acceleration of 0.33 g (that is the 

peak ground a c c e l e r a t i o n ) . Plots of the 

pressure distributions obtained by taking 

the root-mean-square sums and the algebraic 

sums of the modal contributions (including 

the "rigid" mode) are given in Fig. 6. The 

large difference between the rms and the 

algebraic sums of the modal pressures for 

the smooth wall cases is due to the 

relatively similar magnitude of two of the 

modal contributions. In the bonded contact 

case most of the pressure response comes 

from a single mode and thus the difference 

between the pressures summed by the two 

methods is relatively small. Previous 

studies showed that near t values of 2.0 

the relative magnitude H of the m o d a l 

pressure contributions of the analytical 

solution were quite sensitive to the value 

of the h parameter. Better agreement 
H between the bonded and the smooth 

contact solutions would be expected for 

values of equivalent t greater than 2.5 and 

for equivalent h
 H values between 0.5 

and 1.5. H In these ranges the 

relative participation of the m o d a l 

contributions becomes less sensitive to 

changes in the geometry and boundary 

conditions. 

For cases in which a significant 

difference occurs between the rms and 
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algebraic sum it would appear reasonable 

to use for design a pressure distribution 

intermediate between the two results or to 

at least consider the consequence of an 

unfavourable combination of the m o d e s . 

If it is assumed that the soil 

satisfies the Mohr-Coulomb failure criterion 

then the horizontal stress required to 

produce failure in the soil is approximately 

o max 
x 

Y H 

= Kp (1 - |) (1) 

in which Kp = passive earth-pressure 

coefficient. By combining the gravity 

horizontal pressures on the wall with the 

maximum earthquake pressures given in 

Fig. 6 it is apparent that soil failure 

is only likely for ^ greater than 0.9. 

Consequently the assumption of linear 

elastic behaviour of the soil appears 

satisfactory for this example. 

Forces and moments on the wall were 

computed for the smooth contact analytical 

solutions by integration of the pressure 

distributions given in Fig. 5. These 

values are compared in Table 2 with forces 

and m o m e n t s computed by the M o n o n o b e -

Okabe method and with forces and moments 

computed for vertical gravity effects. To 

compute the Mononobe-Okabe values the 

usual assumption of a triangular pressure 

distribution with maximum pressure at the 

base of the wall was m a d e . The angle of 

internal friction of the soil was taken as 

35° and zero vertical acceleration assumed. 

For these assumptions Seed and Whitman (4) 

give the following approximate relationship 

for the earthquake force increment on the 

w a l l . 

A P 
A E 

(2) 

factory first approximation for many 

problems. It can also be seen that the 

earthquake forces and moments are of the 

same order of magnitude as gravity effects. 

4. ROTATING WALL ANALYSIS 

A preliminary study indicated that the 

small horizontal displacements of the 

powerhouse structure under earthquake loads 

would result mainly from the rigid body 

rotation of the structure on its rock 

foundation. In order to derive an analytical 

solution for the dynamic behaviour including 

the effects of wall rotation the idealized 

problem shown in Fig 8 was studied. The 

foundation rotational stiffness per unit 

length is represented by a spring of 

stiffness k and the dissipation associated 

with the rotational deformation of the 

foundation is represented by a dashpot w i t h 

damping coefficient c w . By replacing the 

boundary forcing by d 1 A l e m b e r t body forcing 

the displacement equations of motion of 

the elastic soil can be written in vector 

form as 

Lu(x,y,t) = pu (x,y,t) + cu(x,y,t) + p u b ( t ) 

(3) 

in which 

L = linear operator w i t h respect to 

the spatial co-ordinates 

f u (x,y, t)) 

u (x,y, t) = \ > ,vector of the d i s -

( v(x, y, t)J placement components 

u and v 

f u b ( t ) 

,vector of displacements 

on the rigid boundary 

Y H 

c = damping coefficient 

p = mass density of soil 

in which 

AP A E = active wall force increment 

due to horizontal earthquake 

load 

k ^ = horizontal earthquake 

coefficient 

The forces and moments from the 

M o n o n o b e - O k a b e method are lower than the 

values o b t a i n e d by the other m e t h o d s . 

Because of the rigid nature of the wall 

and foundation, and because the soil is 

expected to remain essentially elastic the 

M o n o n o b e - O k a b e method is not suitable for 

this problem. The discrepancy between the 

M o n o n o b e - O k a b e method and the elasticity 

solutions will increase for values of h 

greater than 1.67. This is illust-

rated in Fig 7 by plots of forces and 

m o m e n t s obtained from a static theory of 

elasticy solution. The results show that 

forces on a rigid wall can be expected to 

increase w i t h increasing £i and that this 

increase is significant H for ^ up to 5. 

The results given in Table 2 indicate 

that the earthquake forces and m o m e n t s 

from the static theory of elasticity 

solution tend to be conservative and so 

this a p p r o a c h can be used to give a satis-

By superposition it is readily shown that 

the general solution of equation (3) can 

be expressed as 

u(x,y,t) = u r ( x , y , t ) + u f ( x , y , t ) ( 4 ) 

in which 

u_r (x,y, t) = rigid-wall solution; that is, 

solution for u(0,y,t) - 0 

u^(x,y,t) = forced-wall solution; that is, 

solution of equation (3) w i t h 

u_k (t) = £, for forcing of the 

wall boundary by the horizontal 

wall displacement u(0,y,t) from 

the general solution of equation 

(3) 

The equation of motion for the wall structure 

may be written as 

I 6(t) + c H 2 6 ( t ) + k H 2 0 ( t ) + m h u,(t) 

W W W W C D 

- M r ( t ) - M f ( t ) = 0 ( 5 ) 

in which 

I = moment of inertia of wall about the 
w , 

base 

m = mass of wall structure 
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h c = height of center of gravity of wall 
structure above the base 

r 
< r ( t ) = J o y\Ln±r < x'Y't) l dy, 

dynamic moment 

x=0 on rigid wall 

M f ( t ) = Jq y [l u f (x,y,t)l dy, moment on 

x=0 dynamically 

forced wall 

Lp = linear operator defined by 

G x ( x , y , t ) = L p u(x,y,t) 

a x = stress in x direction 

A unit length of structure is implied 

for the constants in expression (5) and 

for M r and M^. The moments are assumed to 

be positive when acting in the clockwise 

direction. 

Let the Fourier transform of the 

function u^(t) be defined as 

u b ( o O = % i ! b ( t ) e "
i a ) t dt (6) 

Using this definition the Fourier transform-

ation of equation (5) can be written as 

[-o)2I + iooc H
2

 + k H
2 l e ( o ) ) + U(oj)m h 

* - W W W ~ * D W C 

M r(o)) - M f (OJ) = 0 ( 7 ) 

(A bar over the symbol is used to denote a 

transformed variable.) The transformed 

moments can be expressed as 

- - [ni gti - Mi. (w)J u K(co) 

a t \ L W C r J D / t n \ 
6 ( O J ) = — — — — ~ (10) 

gw I 1 - —=• + 2ic — - - — x 

^ w w L 2 ^w 03 2^ J 
w 

W w I 
w w 

The transformed total wall moment M^COJ) can 

be expressed as 

M T ( O J ) M S F M ^ ( O J ) G (OJ) M ^ ( O J ) u g(oj) 

_ _ _ - M - + ~ M g 

sr sr sf sr ^ 

in which 

( 1 1 ) 

M s f ~ moment on statically forced wall 
s for unit rotation 

M = moment on rigid-wall from one-g 
static horizontal body force 

Let 

M ^ ( O J ) 

M ^ ( O J ) 

_ _ 

r 1(co) + i r 2 (OJ) 

f 1(o)) + if 2(oj) 

( 1 2 ) 

The functions (w) and r 2 (w) are the real 

and imaginary parts of the complex-amplitude 

of moment ratio for harmonic base forcing 

of a rigid-wall. The functions f ̂ (w) and 

f2(w) are the real and imaginary parts of 

the complex-amplitude of moment ratio for 

a harmonically-forced rotating w a l l . T h e s e 

functions have been evaluated by Wood ^ ) 

for a range of the significant p a r a m e t e r s . 

_ _ u, (OJ) 

M (OJ) = M :
 (OJ) — 

r r g 

M f (OJ) = M f (OJ) 0 ( O J ) 

( 8 ) 

in which 

M ^ (OJ) = complex-amplitude of steady-state 

moment on rigid-wall for one-g 

amplitude base forcing 

M£(w) = comp1ex-amp1itude of steady-state 

moment for harmonic wall-forcing 

of unit rotational amplitude 

Let 

OJ = 
w 

/k IT 
/ w 

(9) 

Substitution of expressions (10) and 

(12) into (11) gives 

M T ( O J ) ; ( f l + i f 2 ) ( i - M ; r ( r i * ir 2)} 

L (i 
OJ 

~ 2 

{r1 + i r 0 ) 

) + 2ic M s f ( f l + i f 2 ) 

(13) 

in which 

M 

M 
sf 

sf 

sr 

w w 

sr 
m w g h c 

c H 
w 

C w 2OJ I 
w w 

Rearrangement of equation (7) and substit-

ution of equations (8) and (9) gives 

d 

sf 

d 

sr 

Separating the numerator and d e n o m i n a t o r of 

expression (13) into real and imaginary 

parts gives 
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M T U ) [ ' i 
M r - r, 
s 1 

(1 

2 

— ) 
T 

W 

+ i l f 2 M s 
- r 2 (1 - 4 ) 

w " i i b (GO) 

X — (14) 

(1 -
- * s f f l > i ( 2C — - M d . f . ) 

b w a) sf 2 
w 

Or 

M T(03) 

height of center of gravity above base. 

M T(u)) 

u b ( w ) 

(15) 

The time history of the total wall 

moment can be computed by taking the inverse 

transform of expression (15). That is 

- ; U, ( w ) � . 
/ \ b io)t , 

M T ( O J ) — - — e doj (16) 

Thus to evaluate M T ( t ) it is necessary to 

compute the Fourier transform of the base 

acceleration and to compute the inverse 

transform of the product specified in 

expression (16). The Fourier transformation 

and the inverse transformation can be readily 

evaluated using a Fast Fourier Transform 

computer programme. 

Frequently an estimate of the maximum 

earthquake-induced wall moment or pressure 

distribution is sufficient information for 

design p u r p o s e s . Estimates of the maximum 

forces and pressures can be obtained using 

random v i b r a t i o n theory and this approach 

requires considerably less computation than 

evaluation of complete time-histories using 

the Fourier transform method. From random 

vibration theory the variance of the total 

wall moment can be expressed as 

3

M 
� J 0 

|M^(OJ) G(a>) dw (17) 

in which 

2 
s^ = v a r i a n c e of the total wall moment 
M 

G ( O J ) = power spectral density of earthquake 

acceleration (assumed to be random 

G a u s s i a n process with Zero m e a n ) . 

|M£(a>) is defined by expressions (14) and 

(15) 

h c = 18.3 m 

moment of inertia about base, I 

(660 m 2 ) w 

length of structure = 128 m 

The functions r-j_ (w) , r 2 (w) , f^ (w) and 

f2(w) were taken from the results given by 

Wood for the case of h - 2.0 and v = 

0.4. The solution obtained for the modulus 

of the complex-amplitude of total moment is 

compared in Fig. 9 with the modulus of the 

complex-amplitude of the rigid-wall moment. 

The dimensionless frequency used in the plot 

is the forcing frequency divided by the 

frequency of the lowest pure shear m o d e of 

an infinite elastic stratum with the same 

depth and elastic moduli as the soil behind 

the w a l l . Rotation of the structure reduces 

the rigid-wall moment in the dimensionless 

frequency 0 to 1.25. At dimensionless 

frequencies between 1.25 and 5.5 the total 

moment is greater than the rigid-wall 

moment and the maximum difference between 

the moments occurs close to the natural 

frequency of the structure ( Q = 4 . 9 ) . 

The variance of the total wall moments 

was evaluated using expression (17) and an 

earthquake power spectral density function 

approximately equivalent to Housner's 10% 

damped velocity spectra (see References 2 

and 5 ) . From the properties of the normal 

distribution a value of 2.5 times s M will 

not be exceeded in an earthquake at a 

probability of 0.988. The P = 0.988 wall 

moments were computed to be 

Rigid Structure M T / Y H-

Rotating Structure M / Y H
W 

0.076 

0.083 

Thus the maximum earthquake induced 

wall moment is greater for the rotating 

structure case by about 9 % . 

5. ROTATING WALL APPROXIMATE ANALYSIS 

A statistical estimate of the maximum value 

of the w a l l moment can be found from the 

value of s 2 and the properties of the normal 

d i s t r i b u t i o n . 

Estimates of the power station dynamic 

parameters and foundation m o d u l i were made 

from the design data. The steady-state 

complex-amplitude response function for 

total m o m e n t given in expression (14) was 

evaluated using the following values; 

natural angular frequency of structure 

(rigid body rotation) 

Approximate dynamic soil pressures may 

be estimated by decomposing the problem into 

two idealized uncoupled dynamic problems 

and superimposing the maximum pressures 

computed for each case by taking an rms sum. 

The decomposition into the two separate 

problems is shown diagramatically in Fig. 

10. In applying this approximation it is 

assumed that only weak dynamic coupling 

exists between the wall structure and the 

soil body. This will be the case when the 

lowest natural frequencies of the soil body 

differ significantly from the lowest natural 

frequencies of the structure. 

u = 2 5 . 1 rad/s 
w 

damping, C w = 5.0% 

weight of structure, m = 
2.2 x 10° kg/m 

Problem I. Only the d 1 A l e m b e r t body forcing 

of the soil layer is considered in this part 

of the solution. If the structure is relat-

ively rigid an acceptable Problem I solution 

can be derived from rigid-wall dynamic 
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solutions. An improvement to the rigid-wall 
solution can be made by computing the 
deflection of the structure under the maximum 
rigid-wall dynamic pressure and adjusting 
the solution in accordance with this 
deflection. 

Problem II. Only the d 1 A l e m b e r t forcing 

on the structure is considered in this part 

of the solution. A good approximation for 

the wall pressures can be obtained in many 

cases by considering the participation of 

the first mode of vibration of the structure. 

If the first m o d e shape is approximately 

linear the solutions given by Wood (5) for 

harmonically forced rotating walls may be 

applied to give a direct solution. The 

solution for the moment on a harmonically 

forced rotating wall bounding an elastic 

soil layer with geometric parameter t = 

20.0 is shown in Fig 11. (This H 

solution is satisfactory for all t values 

greater than 1 0 ) . The moment H 

components plotted have been made dimension-

less by dividing by the static moment. The 

forcing frequency has been converted to 

dimensionless form by dividing by the 

frequency of the fundamental pure shear mode 

of an infinite stratum of the same depth 

and with the same elastic moduli as the 

elastic soil body. 

In most cases the fundamental frequency 

of the structure will not be significantly 

modified by the restraint imposed by the 

soil in contact with the w a l l s . 

The three lowest dimensionless natural 

frequencies of the soil body in the example 

under discussion (h. = 2.0, v= 0.4) are 1.85, 

2.41 and 3.94 and H compare with a value of 

4.91 for the rigid body rotation of the 

structure. Thus, significant coupling 

between the structure and the soil body is 

unlikely and the approximate method is 

suitable. 

A satisfactory Probelm I moment M _ for 

the present example can be evaluated 

using the rigid wall assumption. The rigid-

wall moment computed using the Response 

Spectrum method and the rms sum of the modal 

contributions can be expressed in dimension-

less form as M j / Y H 3 = 0.071. The maximum 

rotational response of the structure was 

computed using Housner's 5% damped relative-

velocity spectrum. From this rotation and 

the harmonically forced rotating wall 

solutions the Problem II dimensionless moment 

was evaluated to be M j j / Y H 3 = 0.031. 

Using the rms sum of M j and M J J a total 

maximum wall moment of M T / Y H 3 = 0.078 was 

obtained; that is, a 10% increase in the 

rigid-wall moment. 

6. CONCLUSIONS 

(1) Because of the complexity of the dynamic 

interaction of wall structures during earth-

quakes and the lack of precision with which 

the basic input parameters are known, exact 

solutions for earthquake-induced pressures 

cannot be obtained. Approximate analyses 

may yield satisfactory solutions for design 

provided that the simplifying assumptions 

are appropriate. 

(2) The M o n o n o b e - O k a b e method will give 

satisfactory approximate solutions for many 

wall structures. However, the basic 

assumption of sufficient wall displacement 
to produce a fully plastic stress condition 
in the soil must be satisfied. The method 
is suitable for relatively flexible walls 
and cases where the structure can displace 
along failure planes in the surrounding 
soil. 

(3) The Mononobe-Okabe m e t h o d may not be 

suitable for rigid walls on rock or pile 

foundations and for basement w a l l s in 

building structures. Approximate solutions 

for many rigid wall problems can be obtained 

by using the theory of elasticity. 

(4) Displacements resulting from inertia 

forces acting on the structure should be 

considered. Relatively small displacements 

can produce significant m o d i f i c a t i o n to the 

pressure distribution. Influences produced 

by inertia forces on the structure can be 

readily considered in elasticity m e t h o d s . 

(5) Static analyses using elasticity 

theory will give reasonable approximations 

for earthquake pressures on relatively 

rigid low walls that do not have appreciable 

m a s s . 

(6) A satisfactory estimate of the maximum 

earthquake-induced pressures and forces on 

basement walls in buildings on relatively 

rigid foundations can often be m a d e by 

taking an rms sum of values computed for 

the assumption of perfectly rigid wall 

behaviour and values from a forced-wall 

solution evaluated for the response of the 

first mode of vibration of the structure. 
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TABLE 1. 

F.E.Bonded 

N A T U R A L F R E Q U E N C I E S 

F . E . S m o o t h Analytical 

Mode* 

1 

6 

Freq. Hz 

1. 82 

3.68 

M o d e * 

1 

2 

7 

Freq. Hz 

1.68 

2.00 

3.85 

Mode 

1,1 

1,2 

1,3 

Freq. Hz 

1.58 

2.14 

3.42 

Mode number in order of increasing frequency as given by the 
finite element analyses. 

TABLE 2. 

F O R C E S A N D M O M E N T S 

Rigid wall Smooth Contact, „ = 1.67, v 0.4 

Method of 
Computation 

F o r c e / y H M o m e n t / y H~ 

Response Spectrum, 10% damping, 

rms sum 

Response Spectrum 10% damping, 

absolute sum 

Static Solution for k, = 0.33 g 

(elastic, analytical) 

Mononobe-Okabe for k. 0.33 g 

(triangular pressure distribution) 

V e r t i c a l Gravity 

(elastic, analytical) 

0.136 

0.231 

0.215 

0.124 

0.333 

0.076 

0.122 

0.116 

0.041 

0.111 



1 8 2 

F I G U R E 1 : C A S T A I C P O W E R S T A T I O N . T Y P I C A L C R 0 S S - S E C T I O N . 

F I G U R E 2 : C A S T A I C P O W E R S T A T I O N U N D E R C O N S T R U C T I O N , 

S H O W I N G S O I L B A C K F I L L I N G B E I N G P L A C E D A G A I N S T W A L L O F S T R U C T U R E . 
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A y ( v ) 

r x y =0 
or v =o 

FIGURE 3: FINITE ELEMENT MESH FOR DYNAMIC ANALYSIS. 

FIGURE 4: RIGID WALL PROBLEM. 



1 8 4 



1 8 5 

F I G U R E 7: F O R C E A N D M O M E N T O N S M O O T H R I G I D W A L L P R O D U C E D B Y A O N E - G 

S T A T I C H O R I Z O N T A L B O D Y F O R C E . E L A S T I C S O I L L A Y E R , L E N G T H S , H E I G H T = H . 

wall 

i I w i m w ) 

F I G U R E 8: R O T A T I N G W A L L P R O B L E M . - -
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Cf l STA IC POWER S T A T I O N . WALL MOMENTS. 

L /H = 2 . 0 P O I S S O N S RAT IO = 0 . 4 

ex 
az 

LU O 

ED 

K(w)|/M s r 

| M ' T(O> ) | / M S R ( T O T A L ) 

| M T ( O J ) | / M s r 

' r M | / M S R ( R I G I D ) 

J_ 
0. 1. 5. 

2. 3. 4 . 

DIM„ FREQUENCY * X2 
F IGURE 9. COMPLEX -AMPL ITUDES OF M O M E N T RATIOS. TOTAL M O M E N T A N D R IGID WALL C O M P O N E N T . 

//////A 
/ 

-Structure 

^ E l a s t i c Soil 

ob(t) 

B A S I C P R O B L E M : F O R C I N G O N R I G I D B O U N D A R Y 

r

/ / / / / / / 
/ / 
/ / 

/ / 
/ / 
/ / 
/ / 
/ / 
/ / 
/ / 
/ / 
/ / 
/ 

/ 

P R O B L E M 

mu b ( t ) ^ 

U 
P R O B L E M U 

F IGURE 10: A P P R O X I M A T E D Y N A M I C A N A L Y S I S . 

MOMENT ON ROTATING- WALL 

L/H = 20.0 POISSONS RATIO = 0.3 DAMPING = 10% CVELOCITY) 

0. 1. 2. 3. 4. 5. 

DIM. FREQUENCY XI 
F IGURE 11: C O M P L E X - A M P L I T U D E S OF M O M E N T RATIO ON HARMON IALLY FORCED S M O O T H ROTATING W A L L . ™ = 2 0 , 9 =0.3-


