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[1] We compare 2-D, quasi-static earthquake nucleation on rate-and-state faults under
both ‘‘aging’’ and ‘‘slip’’ versions of the state evolution law. For both versions mature
nucleation zones exhibit 2 primary regimes of growth: Well above and slightly above
steady state, corresponding respectively to larger and smaller fault weakening rates. Well
above steady state, aging-law nucleation takes the form of accelerating slip on a patch of
fixed length. This length is proportional to b�1 and independent of a, where a and b are the
constitutive parameters relating changes in slip speed and state to frictional strength.
Under the slip law the nucleation zone is smaller and continually shrinks as slip
accelerates. The nucleation zone is guaranteed to remain well above steady state only for
values of a/b that are low by laboratory standards. Near steady state, for both laws the
nucleation zone expands. The propagating front remains well above steady state, giving
rise to a simple expression for its effective fracture energy Gc. This fracture energy
controls the propagation style. For the aging law Gc increases approximately as the square
of the logarithm of the velocity jump. This causes the nucleation zone to undergo
quasi-static crack-like expansion, to a size asymptotically proportional to b/(b�a)2. For
the slip law Gc increases only as the logarithm of the velocity jump, and crack-like
expansion is not an option. Instead, the nucleation zone grows as an accelerating
unidirectional slip pulse. Under both laws the nucleation front propagates at a velocity
larger than the slip speed by roughly m0/bs divided by the logarithm of the velocity jump,
where m0 is the effective elastic shear modulus. For this prediction to be consistent
with observed propagation speeds of slow slip events in subduction zones appears to
require effective normal stresses as low as 1 MPa.
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1. Rate-and-State Background

[2] Although the modern rate- and state-dependent fric-
tion equations have been in use for over 2 decades, their
implications for earthquake nucleation on deformable faults
remain unclear. In their simplest and most common form,
the frictional strength t is written as

t ¼ s f * þ a ln
V

V*
þ b ln

V*q

Dc

" #

; ð1Þ

where s is the effective normal stress, here assumed
constant, and f * and V* are reference values of the friction
coefficient and sliding velocity (for a notation list see
Table 1). The rate-dependent part of the strength, propor-
tional to the logarithm of the sliding velocity V and the

constitutive parameter a, is thought to reflect a thermally
activated Arrhenius process involving the breaking of
atomic bonds at contact points bridging the sliding surface
[Rice et al., 2001]. The state-dependent part of the strength,
proportional to the logarithm of the state variable q and the
parameter b, is more mysterious, ‘‘state’’ being more
difficult to observe than sliding velocity, but q is thought
to reflect the product of the true contact area and the
intrinsic strength of those contacts.
[3] Two empirical equations for the evolution of q, first

formalized by Ruina [1983], are in common use. These are

_q ¼ 1� Vq

Dc

Aging lawð Þ; ð2Þ

_q ¼ �Vq

Dc

ln
Vq

Dc

Slip lawð Þ; ð3Þ

where Dc is a characteristic slip distance. We refer to the
first as the ‘‘aging law’’ because at zero slip speed q
increases as elaspsed time. Under the second law _q = 0
when V = 0; that is, q evolves with slip alone. Both laws
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exhibit steady state behavior ( _q = 0) when Vq/Dc = 1. If one
interprets Dc as a typical contact size [Dieterich and
Kilgore, 1994], then at steady state q represents a typical
contact lifetime Dc/V. Because of this, and because of the
behavior at V = 0 for the aging law, q is sometimes thought
of as contact age [e.g., Dieterich and Kilgore, 1996].
However, even for the aging law this simple interpretation
breaks down if Vq/Dc differs from 0 or 1.

[4] In the vicinity of steady state, ln(Vq/Dc) � Vq/Dc � 1
and the two laws are asymptotically identical. Far from
steady state this similarity disappears. Figure 1 shows the
stress evolution during hypothetical velocity-stepping
experiments, of the sort that experimentalists conduct but
with much larger velocity jumps, for both laws. The surface
was sliding with velocity V1 and state q1 prior to the jump,
and the subsequent velocity V2 is chosen to produce ratios

Table 1. Notation

Parameter Description

a; b Coefficients of the rate-and-state direct and evolution effects
CW�1 Coefficient of fixed-length nucleation (equations (19) & (23))
CW	1 Coefficient of crack-like nucleation (equations (33) & (37))
C0 Coefficient of slip-law nucleation (equation (42))
Dc Characteristic slip distance in the evolution law
G Energy release rate
Gc Fracture energy
h* Classical estimate of the nucleation length (equation (11))
k; k* Stiffness; effective crack stiffness
kcr Critical stiffness for instability
L Half-length of the nucleation zone
Lb Dieterich nucleation length scale (equation (12))
Lv Fixed nucleation half-length (equation (22))
Lmin Minimum nucleation half-length (equation (11))
L1 Asymptotic nucleation half-length (equation (32))
R Length of the slip-weakening region
t* Time of instability
V Slip speed
Vbg Slip speed that at steady-state would and give rise to the ambient shear stress
Vmax Maximum slip speed behind the propagating front
Vprop Propagation speed of the nucleation front
W Width of the slip-law pulse (tip to peak slip)
x0 Distance behind the propagating front
d Slip distance
dc Critical slip distance in fracture energy expression
G ln(Vmaxqi/Dc); proportional to Dtp-r
q State variable in rate-and-state friction
qi Value of q ahead of the propagating front
m0 m (anti-plane strain) or m/(1 � n) (plane strain), where m is shear modulus and n is Poisson’s ratio
W Vq/Dc; a measure of proximity to steady state
s Normal stress
t Shear stress
t1 Shear stress that would act in the absence of slip
Dt Average stress drop in the nucleation zone
Dtp�r Strength drop at the propagating front

Figure 1. Plots of normalized stress as a function of normalized slip, for step velocity increases (solid
lines) and decreases (dashed lines) of 1–4 orders of magnitude, for (a) the aging law and (b) the slip law.
Stresses are relative to the future steady state value. For the aging law the curves for step decreases of 2–
4 orders of magnitude appear indistinguishable, but they intersect the vertical axis at the same values of
Dt as for the slip law.
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q1/q2 of ±1–4 orders of magnitude, where q2 � Dc/V2 is the
future steady state value (these are equivalent to velocity
jumps of ±1–4 orders of magnitude if at the time of the
jump the surface had been sliding at steady state). For
constant V2 equations (2) and (3) can be integrated to yield

q ¼ q2 þ q1 � q2ð Þe�d=Dc Aging lawð Þ; ð4Þ

q ¼ q2 q1=q2ð Þexp �d=Dcð Þ
Slip lawð Þ; ð5Þ

where d is slip since the velocity jump. Substituting into (1),
relative to the future steady state value t2 the stress is

t � t2 ¼ bs ln 1þ q1 � q2ð Þe�d=Dc

q2

� �

Aging lawð Þ; ð6Þ

t � t2 ¼ bs ln q1=q2ð Þe�d=Dc Slip lawð Þ: ð7Þ

Independent of the evolution law, the stress immediately
following the velocity jump exceeds the future steady state
value by bq ln(q1/q2) (independent because the steady state
values are the same and as of yet there has been no
evolution).
[5] For the aging law the following approximations

accurately describe the stress evolution following large
velocity increases and decreases, respectively:

t � t2 � bs ln q1=q2ð Þ � d=Dc½ ; q � q2; ð8Þ

t � t2 � bs ln 1� e�d=Dc

h i

; q � q1: ð9Þ

The asymmetric response (Figure 1a) derives from the
relative importance of time-dependent healing. For large
velocity increases V2q1/Dc � 1, the constant term in (2) is
initially negligible, q evolves with slip but not time, and t
decreases linearly with slip according to (8). For large
velocity decreases V2q1/Dc � 1 , so q initially evolves
linearly with time and substantial evolution occurs over slip
distances d/Dc � 1.
[6] It has long been recognized that velocity-stepping

experiments exhibit rather symmetric behavior in response
to velocity increases and decreases, consistent with the
slip law [e.g., Blanpied et al., 1998]. However, in other
ways this law is deficient. Using a servo-control system
to alter the effective stiffness of their testing apparatus,
Beeler et al. [1994] found evidence that the frictional
surface heals with time, rather than with ever-decreasing
slip rate, during ‘‘slide-hold-slide’’ experiments. In addi-
tion, Dieterich and Kilgore [1994] observed microscopi-
cally that the true contact area increases with time during
the stationary contact of two surfaces, presumably as a
result of time-dependent deformation of asperities. Be-
cause the slip law is unable to account for this observed
time-dependence, it appears that the aging law has
become the law of choice among modelers over the last
decade. It is also the case that most velocity-stepping
experiments have been restricted to jumps of a single

order of magnitude, where the asymmetric response of the
aging law is somewhat subdued. However, our simula-
tions suggest that it is the response of the fault surface
near to and well above steady state that most strongly
influences nucleation, and not the response well below
steady state where the slip law appears to be inadequate.
The response well above steady state is important because
growing nucleation zones impose large and abrupt veloc-
ity increases in areas that were previously nearly locked,
e.g., as a result of a prior earthquake. As we will show,
the effective fracture energy of such a nucleation front is
well-approximated by the area under the appropriate
curve in Figure 1. This fracture energy in turn controls
the nucleation style, which may differ markedly for the
two evolution laws (Figure 2).
[7] Equations (1)–(3) have received considerable atten-

tion in the context of spring-block sliders ( _t= k[V* � V],
where k is the spring stiffness, V* is the load-point velocity,
and dots denote time derivatives). For the aging law, a
necessary but not sufficient condition for instability, in the
sense that neglect of inertia leads to infinite slip speeds, is
that a < b; that is, that the surface be steady state velocity
weakening. Ranjith and Rice [1999] showed that for arbi-
trary perturbations from steady state, instability also
requires that the spring stiffness be less than a critical value
given by

kcr ¼
s b� að Þ

Dc

: ð10Þ

Because the two laws are asymptotically identical near
steady state, for infinitesimal perturbations from steady
sliding the same kcr applies to the slip law. However,
nonlinear stability analysis for the slip law indicates that for
sufficiently large perturbations instability is possible for k >
kcr [Gu et al., 1984]. This property of the slip law has
implications for nucleation on deformable faults, even under
slow background loading, because the evolving nucleation
zone provides its own large perturbation.
[8] The concept of a unique critical stiffness does not

have a simple extension to deformable faults. Nonethe-
less, the following dimensional estimate is instructive.
The effective stiffness at the center of a 2-D elastic crack
(the stress drop for a given slip) is k* � Dt/d = m0/2L,
where 2L is the crack length and m0 is the shear modulus
m for anti-plane strain and m/(1 � n), where n is
Poisson’s ration, for plane strain. Setting this k* equal
to kcr for a spring-block slider leads to the following
estimate for the minimum half-length of a nucleation zone
capable of instability:

Lmin 	
1

2

m0Dc

b� að Þs : ð11Þ

To within a constant coefficient this is the critical size h*
introduced by Rice [1993]. Somewhat surprisingly, in a
numerical study of the aging law Dieterich [1992] found
that nucleation zones localized to a fixed length that scaled
as b�1, rather than (b�a)�1, when Vq/Dc was much greater
than 1. For Vq/Dc closer to steady state, on the other hand,
the nucleation zone expanded during the approach to
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instability. Because the following terms occur repeatedly in
this paper, we define

Lb �
m0Dc

bs
; ð12Þ

W � Vq

Dc

: ð13Þ

For W > 1 the fault is above steady state and would weaken
at constant slip speed, whereas for W < 1 the fault is below
steady state and would strengthen at constant slip speed.
Throughout this paper we use ‘‘steady state’’ to mean W = 1,
without implying anything about the slip speed relative to
the driving or plate rate.
[9] Rubin and Ampuero [2005a] obtained analytical esti-

mates for the nucleation length and time-to-failure for
deformable faults obeying the aging law. They identified
two regimes, distinguished by the behavior of W: Well
above steady state (W � 1) everywhere, the regime em-
phasized by Dieterich [1992], and well above steady state
only at the margins of the nucleation zone, with sliding
being slightly above steady state (W ^ 1) in the interior.
Well above steady state, nucleation localizes to a fixed
length close to Lb, as found by Dieterich. A separable
solution for this regime shows that only for a/b < 0.3781
does W increase during the approach to instability. For larger
values, W is eventually driven down to an a/b-dependent

value near 1. In this regime nucleation zones expand quasi-
statically and asymptotically approach a value proportional
to [b/(b � a)]2Lb, although how closely they approach this
value before reaching dynamic slip speeds depends upon
the loading conditions.
[10] Laboratory values of a/b are typically larger than 0.5,

and a reasonable median value appears to be 0.9 even on
velocity-weakening surfaces [Kilgore et al., 1993; Blanpied
et al., 1998 using a/(b1 + b2) for their 2-state-variable fits of
the latter]. Near the base of the seismogenic zone, where
loading rates are high and many large earthquakes seem to
nucleate, a/b is expected to be close to 1 if, as is believed,
this region marks the transition from velocity-weakening to
velocity-strengthening behavior. The nucleation length for
a/b = 0.95 can exceed that of the fixed-length solution by a
factor of 100. For lab values of a and b (	0.01) and Dc near
the upper end of laboratory measurements (	100 mm
[Marone, 1998]), such a nucleation zone could be more
than 1 km across, raising the possibility that it could be
detected remotely. However, this large size is directly
traceable to the large area beneath the aging law stress-
displacement curves in Figure 1a. As was noted by
Nakatani [2001], this prediction of the aging law is
contradicted by laboratory experiments. Therefore in this
paper we explore the slip law, which we find exhibits the
same two general nucleation regimes, if not the same
behavior. We begin by briefly reviewing and slightly
extending the aging law results of Rubin and Ampuero,
because these are useful for interpreting the slip law

Figure 2. Snapshots of normalized slip (top panels) and slip speed (bottom) for two simulations
identical in all respects except that the left panels use the aging law and the right panels the slip law. a/b =
0.95. The normalizing length scale Lb � m0Dc/bs. The grid spacing is Lb/74; initial and boundary
conditions and material parameters are otherwise identical to those in Figure 3.
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simulations. The latter have proven to be more resistant
to simple analytical approximations.

2. Numerical Method

[11] In the quasi-static limit we equate the frictional
strength with the fault stress, which is partitioned into a
boundary condition t1 and an elastic component tel due to
nonuniform slip. In two dimensions the static elastic stresses
are proportional to the Hilbert transform H of the along-
fault slip gradient d0:

t xð Þ ¼ t1 xð Þ þ tel xð Þ ¼ t1 xð Þ þ m0

2
H d0½  xð Þ ð14Þ

Equating (1) and (14) and differentiating with respect to
time yields

a
_V

V
þ b

_q

q
¼ _t

s

1
þ m0

2s
H V 0½ : ð15Þ

The parameters s, a, b, and _t1 are taken to be constant and
uniform. Equations (15) and (2) or (3) are solved using the
numerical scheme of Rubin and Ampuero [2005a]. For
growing nucleation zones the propagating front remains
well above steady state, with the result that the smallest
length scale to be resolved numerically scales roughly as Lb
for the aging law and Lb divided by the logarithm of the
velocity jump for the slip law. For the slip law at near-
dynamic speeds this is much smaller than the critical cell
size h* 	 m0Dc/s(b-a) introduced by Rice [1993] (by a
factor of 	100 for a/b = 0.75). We settled on grid spacings
of Lb/50�Lb/150, which for the aging law is finer than
necessary. Simulations were carried out in double precision
because for the slip law single precision sometimes gave
rise to asymmetric nucleation from symmetric initial and
boundary conditions. We use Dc = 400 mm, m0 = 11.56 GPa,
s = 100 MPa, and b = 0.01. As we present results with
lengths normalized by Lb and slips by Dc these choices are
largely irrelevant (they influence the simulations only
through the scaling of the initial or boundary conditions).

3. Aging Law Nucleation

3.1. Well Above Steady State

[12] For low values of a/b, the nucleation zone accelerates
at fixed length while maintaining W � 1 (e.g., Figure 1 of
Rubin and Ampuero [2005a]). The latter observation moti-
vates approximating the aging law (2) as

_q ¼ �W ð16Þ

[Dieterich, 1992]. The similar appearance of successive
velocity profiles suggests a separable solution of the form

V x; tð Þ ¼ Vo tð ÞV x=Lð Þ; jxj < L;

V x; tð Þ ¼ 0; jxj � L;
ð17Þ

_tel x; tð Þ ¼ Vo tð Þ m
0

2L
_T x=Lð Þ; ð18Þ

where L is the fixed effective crack length, the velocity
distribution V is a function of dimensionless position x/L,
normalized such that V(0) � 1, and _T is the elastic
stressing rate. Substituting (16)–(18) into (15), Rubin and
Ampuero [2005a] obtained a solution with the following
properties:
[13] (1) For slip speeds large enough that the remote

loading rate is negligible ( _tel� _t1), Vo evolves according to

_Vo

V 2
o

¼ b

a
1þ Lb

2L
_T 0ð Þ

� �

1

Dc

� CW�1

Dc

; ð19Þ

with solution

Vo tð Þ ¼ Dc

CW�1

t* � t
� ��1

; t* � Dc=CW�1Vo 0ð Þ: ð20Þ

For CW�1 > 0, infinite velocities are reached at a finite time
t*.
[14] (2) V and _T are determined by using elasticity to solve

V ¼ 1� Lb

2L
_T xð Þ � _T 0ð Þ
h i

; x � x

L

	

	

	

	

	

	 � 1; ð21Þ

an eigenvalue problem that has solutions for all values of
the dimensionless nucleation length L/Lb. Adding the
constraint that the stresses outside the nucleation zone
remain finite, expressed as a stress intensity factor equal to
zero, fixes L and CW�1 to the unique values

Ln � 1:3774Lb; ð22Þ

CW�1 � 0:3781
b

a
: ð23Þ

[15] (3) For _tel � _t1, the evolution of W is given by

W x; tð Þ
W x; 0ð Þ ¼

Vo tð Þ
Vo 0ð Þ


 �1�V xð Þ=CW�1

: ð24Þ

Equation (24) shows that W decreases with increasing slip
speed for V(x)/CW�1 > 1. Because V is maximal at the crack
center, W decreases most rapidly (if at all) at x/L = 0.
Substituting V(0) = 1 and (23) into (24), the nucleation zone
remains well above steady state until instability only for

a

b
< 	 0:3781: ð25Þ

[16] It is instructive to compare (24) to the corresponding
expression for a spring-block slider with stiffness k. Sub-
stituting into (15) _q = �Vq/Dc and _t = �kV (the latter
assuming negligible load-point velocity) leads to CW�1 =
(b/a)[1�kDc/bs]. Equation (24) then becomes

W tð Þ
W 0ð Þ ¼

V tð Þ
V 0ð Þ


 �1�as= bs�kDcð Þ
: ð26Þ
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Examination of the exponent in (26) shows that the classical
requirement for instability of a spring-block slider, k � kcr =
(b�a)s/Dc, is identical to the requirement that W not
decrease with increasing slip speed. For a deformable fault
that is well above steady state, the interaction of the friction
law with elasticity gives rise to an a/b-independent
nucleation length with a maximum stiffness that is less
than kcr for a/b < 0.3781, and more than kcr for a/b >
0.3781. This stiffness, reached at the crack center, is
0.6219(bs/Dc).

3.2. Near Steady State

[17] We view the gross behavior of the nucleation zone as
a competition between elasticity, which tends to smooth
velocity variations and hence promote expansion, and the
effective slip-weakening of the friction law, which favors
localization. For W � 1 these two tendencies apparently
remain in balance and the nucleation zone accelerates at
fixed length. For a/b > 0.3781, W increases as the fault
passes through steady state from below, but then decreases
as the nucleation zone begins to localize (because its
effective stiffness is too large). As W approaches steady
state, the slip-weakening rate in the interior of the nucle-
ation zone decreases, tipping the prior balance in favor of
elasticity, and the nucleation zone expands in a crack-like
fashion.

[18] Figure 3 shows an example for a/b = 0.8. For a
quasi-uniform stress drop Dt within the interior of the
nucleation zone (Figure 3d), the mechanical energy release
rate G is

G ¼ p

2

L

m0 Dt2: ð27Þ

[Lawn, 1993]. The velocity jump experienced by material at
the edge of the nucleation zone is sufficiently abrupt that the
effective fracture energy Gc is essentially the area under the
stress-vs.-displacement curves in Figure 1a. From equation
(8), well above steady state the slip weakening rate is
constant, bs/Dc, so the effective slip-weakening distance dc
increases linearly with the near-tip peak-to-residual stress
drop Dtp-r. This leads to

Gc ¼
Dtp�rdc

2
¼ Dc

2bs
Dt2p�r: ð28Þ

Setting G = Gc and solving for the instantaneous nucleation
length L,

L ¼ Lb

p

Dtp�r

Dt


 �2

: ð29Þ

Figure 3. Snapshots from a simulation with a uniform initial slip speed of 10�9 m/s, an initial W
randomly distributed between 0 and 1 on a grid spacing of 0.1 m (	Lb/46), and _t1 = 10�2 Pa s�1. a/b =
0.8. (a) Slip speed, (b) state, (c) Vq/Dc, and (d) normalized stress change from the far-field average; for
clarity Figures 3c and 3d show only every other profile. Note that while the nucleation zone expands
these quantities are quasi-uniform in the interior, that W is quasi-constant as well, and that q is not much
perturbed until the arrival of the peak stress.
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[19] Accounting for the quasi-constant value of W in the
nucleation zone (Figure 3c) leads to

Dt ¼ s b� að Þ ln V=Vbg

� 

� b ln Wð Þ
� �

; ð30Þ

Dtp�r ¼ bs ln Vqi=Dcð Þ � lnW½  ; ð31Þ

where Vbg is defined as the hypothetical background
velocity which at steady state would give rise to the
ambient stress t1, and qi is the (relatively unperturbed)
value of state ahead of the propagating nucleation front
(Figure 3b). In the limit of large slip speeds the ln(W) terms
in (30) and (31) may be neglected, and ln(Vqi/Dc) � ln(V/
Vbg). Thus the ratio Dtp�r/Dt approaches b/(b�a), and the
nucleation length is predicted to approach a limiting value
L1 given by

L1 ¼ Lb

p

b

b� a


 �2

: ð32Þ

[20] A constant W implies _V /V + _q/q = 0. With _q = 1�W

this leads to

_V

V 2
¼ 1� W

�1

Dc

� CW	1

Dc

: ð33Þ

Thus equation (20) from section 3.1 describes V(t), but with
a new definition of the constant. Substituting � _V /V for _q/q
in (15), writing �Vk* for _t and rearranging leads to

_V

V 2
¼ k*

s b� að Þ ; ð34Þ

equating this with (33) shows that the stiffness needed to
maintain the given W is

k* ¼ s b� að Þ
Dc

1� W
�1

� 

: ð35Þ

Note that this is smaller by the factor (1 � W
�1) than the

critical stiffness for instability given in (10), but equals the
critical stiffness for a spring-block slider with zero load-
point velocity, as can be derived directly from equation (33)
of Ranjith and Rice [1999].
[21] Rubin and Ampuero [2005a] neglected expansion of

the nucleation zone and equated k* with m0/2L1, appropri-
ate for a crack of fixed length L1. More properly, with d =
2LDt/m0, V = (2/m0)(L _Dt + _LDt), so

k* ¼
_Dt

V
¼ m0

2L1

L

L1
þDt

_Dt

_L

L1

� ��1

: ð36Þ

We find that with Gc proportional to Dtp-r
2 , changes in Dt

and L are coupled such that the increased stiffness that
comes from a smaller nucleation zone is offset, analytically
to first order, by the decrease that comes from expansion
(Appendix A). Thus the bracketed expression remains close
to unity, and k* varies by much less than L/L1. This helps
explain Rubin and Ampuero’s observation that time-
dependent simulations begin tracking the predicted W quite
closely well before L reaches L1 (Figure 4), and, as this is
only a first-order result, their observation that the feedback
maintaining the stiffness given by (35) is imperfect.
[22] Equating (35) with m0/2L1 (now with greater justi-

fication) and combining with (32) leads to

CW	1 � 1� W
�1 � p

2

b� a

b
: ð37Þ

From (20), the time remaining to instability (t* � t) is
C�1Dc/V(t), or

t* � t ¼ 2

p

b

b� a

Dc

V tð Þ : ð38Þ

Well above steady state, on the other hand, the comparable
expression for the fixed-length solution is (from (20) and
(23))

t* � t ¼ 2:645
a

b

Dc

V tð Þ : ð39Þ

Figure 4. (a) Normalized nucleation length, defined as
half the distance between the peaks in elastic stressing rate,
and (b) log(Vq/Dc), as functions of slip speed for 3
simulations with a/b = 0.8. The overall trend is for slip
speed to increase with time. Dashed curve is for the
simulation of Figure 3; dotted curve is for the identical
conditions but with the initial W reduced by 4 orders of
magnitude; solid curve is for a peaked load on an otherwise
uniform surface initially slightly below steady state. The
dashed and dotted lines labeled L1 and W refer to the
predicted values for this a/b from equations (32) and (37).
Note that W matches the prediction even for L/L1 < 0.5,
reflecting the near-constant stiffness in (36). In Figure 4b,
the upper and lower dashed lines parallel trajectories of
constant stress and state, respectively.
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Except for a/b very near to either 0 or 1, the time remaining
to instability is of the order of Dc/V in both nucleation
regimes.
[23] Equation (32) for L1 provides an excellent fit to

the largest nucleation lengths in the simulations of Rubin
and Ampuero [2005a] (their Figure 8a). For some bound-
ary and initial conditions, on the other hand, the nucle-
ation zone was smaller and still expanding when
elastodynamic speeds were reached. A few examples are
shown in Figure 4 for a/b = 0.8. The solid curve, which
asymptotes to the predicted L1 before a little complexity
sets in, is for a locally peaked initial load on an otherwise
uniform surface. The dashed curve is for the simulation
of Figure 3, and the dotted curve is for the identical
conditions but with the initial values of q reduced by 4
orders of magnitude. In general, as in Figure 4, we find
that the minimum value of L reached during a simulation
decreases as the maximum value of W reached during the
onset of nucleation increases, although never to a value
smaller than Ln, and that L at a given slip speed
decreases as this Wmax increases because this delays the
approach to the W ^ 1 solution.

4. Slip Law Nucleation

4.1. Well Above Steady State

[24] For W � 1, so that the aging law becomes _q �
�W, the two evolution laws differ by the factor ln(W).
When substituted into (15), the resulting equations differ

only in that bln(W) in the slip law replaces b in the aging
law:

a
_V

V
� b ln Wð Þ V

Dc

¼ _t

s
Slip lawð Þ; ð40Þ

a
_V

V
� b

V

Dc

¼ _t

s
Aging law;W � 1ð Þ: ð41Þ

Because of the logarithm, the factor ln(W) in (40) may be
regarded as a slowly varying correction to b in (41). Since
Ln for the aging law is inversely proportional to b, for the
slip law the nucleation zone can be expected to be smaller
by roughly ln(W). Well above steady state, then, the
nucleation zone slowly shrinks. This is shown in Figure 5a
for a/b = 0.5. The dashed lines show Ln, and the bold dotted
lines Ln/ln(W), with W evaluated at the center of the
nucleation zone. The agreement with the numerical
simulations is reasonably good, but because of the non-
constant ln(W) this scaling is not exact.
[25] The acceleration of slip is also somewhat different

under the two laws. For the aging law in this regime _V /V2 =
CW�1/Dc, where the constant CW�1 is given by equation
(23). For the slip law it is _V /(V2lnW) that remains
approximately constant (Figure 6), as might have been

Figure 5. (a) and (b), Snapshots of slip speed and Vq/Dc from a slip-law simulation with a/b = 0.5; all
other conditions are identical to those in Figure 3. Vertical dashed lines in Figure 5a indicate the
nucleation length from the aging-law fixed length solution. The dotted lines are smaller by ln(W), with W

evaluated in the center of the nucleation zone. Figures 5c and 5d, The same but for a/b = 0.6. W in the
interior begins to decrease before being increased by the stressing rate from the accelerating right margin.
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anticipated by substituting blnW for b in (19). By analogy
with the aging law, we can define the (approximately)
constant

C0 ¼ Dc

_V

V 2 lnW
: ð42Þ

From the identity _W/W = _q/q + _V /V and the definition of the
slip law,

_W

W
¼

_V

V
� V

Dc

lnW: ð43Þ

Combining (42) and (43) and integrating leads to

W

W0

¼ V

V0


 �1�1=C0

; ð44Þ

where W0 and V0 are initial values. This is analogous to
equation (24) for the aging law, so we expect the regimes W
� 1 and W ^ 1 to again be separated by C0 = 1. We find
empirically that C0 for the slip law exceeds CW�1 for the
aging law at a given a/b (Figure 6b), implying that the
transition to the W^ 1 regime occurs at larger a/b for the slip
law, and also thatC0 approaches 1 more gradually thanCW�1.
Together with the fact that C0 is slightly variable during any
given simulation (Figure 6), this means that the transition to
the W^ 1 regime for the slip law occurs over a modest range
of a/b. For the initial and boundary conditions of Figure 5 the
transition begins between a/b = 0.5 and 0.6 (Figure 5c),
whereas for 2 different manifestations of a locally peaked
stress on an otherwise uniform surface it occurs for a/b
between 0.6 and 0.7 (Figure 6b).

4.2. Near Steady State

[26] As with the aging law, for sufficiently large a/b the
stiffness of the developing nucleation zone is large enough
that the interior is either driven down toward or never gets
far above steady state, and elasticity causes the nucleation
zone to expand. Also, as with the aging law, the fault
undergoes a sudden velocity increase as the edge of the
nucleation zone sweeps by, with the result that the effective
fracture energy is given to a good approximation by the area
under the slip-vs.-displacement curves in Figure 1b. Inte-
grating equation (7) to infinite slip distances yields

Gc ¼ bs

Z 1

0

ln
Vqi

Dc


 �

e�d=Dcdd ¼ bsDc ln
Vqi

Dc


 �

; ð45Þ

integrating to only 3Dc recovers 95% of this value. That the
fracture energy increases only as ln(V) while the energy
release rate grows as (ln V)2 (equations (27) and (30)) means
that, unlike the aging law, crack-like expansion is not an
option. That is, in the limit of large slip speeds the energy
balance G = Gc for a hypothetical equilibrium crack
becomes L(ln V) = constant, indicating that acceleration of
slip is incompatible with growth of the nucleation zone.
[27] We find instead that nucleation takes the form of a

unidirectional slip pulse. Examples are shown in Figure 7
for a/b = 0.8, 0.9, and 0.95. The initial and boundary
conditions are identical for each panel; the direction of
pulse propagation is presumably determined by the initial
heterogeneity. Except for the slip-weakening zone, over the
region the pulse has propagated the stress increases quasi-
linearly with distance behind the propagating front (Figure 7,
row 3). Such a stress distribution is consistent with elasticity,
in that it represents a plausible smoothing of the 1/r stress
perturbation associated with a dislocation. In conjunction

Figure 6. (a) Dc
_V /(V2lnW) as a function slip speed,

evaluated at the center of the nucleation zone, for a/b =
0.5 and 0.6. Solid curves are for the simulations in Figure 5;
the curve for a/b = 0.6 reaches a minimum of 1.01 before
leaving the W � 1 regime. Dashed curves are for a locally
peaked load on an otherwise uniform surface below steady
state, subjected to a constant remote stressing rate. The
curve for a/b = 0.6 reaches a minimum of 1.04 and remains
in the W � 1 regime. (b) Numerically determined values of
C0 = Dc

_V /(V2lnW) as a function of a/b, for 2 series of
simulations with a locally peaked load on an otherwise
uniform surface. The two simulations were designed to
access a range of W(V). The vertical bars indicate the full
range of C0 for slip speeds 10�3 < V < 104 m/s. In general
the difference between the two simulations is smaller than
the variability within either, as with the a/b = 0.5 examples
in Figure 6a. For a/b = 0.7 the simulations have left theW� 1
regime. For comparison, the dashed curve shows CW�1 =
Dc

_V /V2 = 0.3781b/a for the aging law, expected to be
applicable for a/b < 0.3781, while the dotted line shows
CW	1 = (p/2)(1 � a/b), applicable for larger a/b.
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with the friction law, such a stress distribution also requires
that the pulse accelerate to instability. To see this, consider a
hypothetical steady state pulse with a stress distribution
t(x0) and slip distribution d(x0) that are independent of time,
with x0 being distance behind the tip. Then from the tail of
the slip-weakening region to the location of peak slip _t is
positive, while V, always positive, is proportional to the slip
gradient d0, and _V , proportional to d00, is negative. With
reference to equation (40), the second term on the left (the
b _q/q term) is negative when W > 1, as for the examples in
Figure 7, and even if W were less than 1 this term would be
negligible near the peak slip, as d0 (that is, V) approaches
zero. The _V /V term, on the other hand, is negative wherever
the slip distribution is concave downward. Thus equation
(40) cannot be satisfied by a steady state pulse. For _t to be
positive, _V must be positive, and this requires some com-
bination of an ever-increasing slip gradient or propagation
speed, either of which implies acceleration to instability.
[28] Note that although these nucleation zones are cer-

tainly pulse-like in a practical sense, they are not pulses in
the strict sense of Perrin et al. [1995], who required V = 0 at

some distance W behind the propagating front. Freund
[1979] introduced slip pulses with a velocity distribution
of the form V(x0) / [(W � x0)/x0]1/2, where x0 is distance
from the tip. Such pulses possess a discontinuity in dV/dx
but no stress singularity at the healing front (x0 = W). The
pulses in Figure 7 are similar but possess a smoother
‘‘healing’’ front, followed by an exponentially decaying
tail. Within the tail the slip speed is low enough that _q/q
is negligible, and _V is determined by a local balance
between a _V /V and the positive _t/s that comes from prop-
agation at the tip.
4.2.1. Pulse Shape
[29] In this section we use the estimated fracture energy to

characterize the shape of the pulse front; in the following we
use this to estimate the propagation speed. Near a crack tip
but outside the slip-weakening zone,

d � 4
ffiffiffi

p
p

ffiffiffiffiffiffi

Gc

m0

s

ffiffiffiffi

x0
p

ð46Þ

Figure 7. Snapshots from slip-law simulations with a/b = 0.8 (left column), 0.9 (middle column), and
0.95 (right column). Initial and boundary conditions are as in Figures 3 and 5, but using a smaller grid
spacing of 3 cm (	Lb/150) to adequately resolve the nucleation front. Top row, slip velocity; second row,
normalized slip accumulated since the first velocity snapshot; third row, normalized stress change; fourth
row, Vq/Dc.
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[Lawn, 1993]. Substituting the fracture energy from (45)
and using the maximum slip speed Vmax as the relevant
velocity scale, (46) becomes

d

Dc

� 4
ffiffiffi

p
p ln

Vmaxqi

Dc


 �1=2
x0

Lb


 �1=2

: ð47Þ

That is, slip is expected to increase as the square-root of the
distance behind the tip and to scale as [ln(Vmaxqi/Dc)]

1/2.
Figure 8a shows d/Dc as a function of x0/Lb for all slip
profiles in Figure 7 corresponding to Vmax � 10�5 m/s (for
a/b = 0.8) and Vmax � 10�6 m/s (for a/b = 0.9 and 0.95).
The propagating front is identified as the interpolated
location of peak stress. Slip has been offset to zero at the
front, and the slip profiles for a/b = 0.8 and 0.9 have been
reversed so that all the pulses apparently move to the left.
As suggested by (47), Figure 8b further normalizes the slip
by [ln(Vmaxqi/Dc)]

1/2, where qi is the largely unperturbed
value of q ahead of the propagating front. Whereas
successive snapshots in Figure 8a increase in amplitude,

the scaled profiles in Figure 8b decrease toward a relatively
stable slip distribution over greater and greater distances
behind the tip. The bold dashed curve shows the normalized
slip estimate (4/p1/2)(x0/Lb)

1/2 from (47). The close agree-
ment with the numerical profiles near the propagating front
indicates that the fracture energy estimated from (45) is
appropriate despite the non-constant velocity behind the
front.
[30] In general, for a fracture tip propagating at equilibrium

Gc ¼ G / Dt2W ; ð48Þ

where the stress drop Dt acts over the length scale W. We
find that for the examples of Figure 7 the fracture energy
balance Gc / ln(Vmaxqi/Dc) is maintained by increasing Dt
within the pulse approximately as ln(Vmaxqi/Dc)

1/2 while the
pulse width W (from tip to maximum displacement) remains
roughly constant (e.g., at 	5Lb for a/b = 0.95 and 	1.5Lb
for a/b = 0.9). This is consistent with the slip amplitude
increasing roughly as [ln(Vmaxqi/Dc)]

1/2, as in Figure 8b.
Both the pulse width and slip amplitude increase as a/b
approaches 1.
[31] Despite the quasi-regular appearance of the veloc-

ity and slip profiles in Figures 7 and 8, we have thus far
been unable to derive analytic approximations for the
pulse width or slip amplitude as functions of a/b. Related
to this, perhaps, there is more than one style of pulse
capable of satisfying the fracture energy balance. Figure 9
shows examples where the initial conditions consist of a
locally peaked stress on an otherwise uniform surface,
subjected to a constant background loading rate. The
simulations differ in a/b and in the length scale of the
initial stress perturbation. In Figures 9a–9d, the slip
amplitude remains roughly constant while the front con-
tinually steepens. In this case the fracture energy balance
is maintained by increasing Dt within the pulse as
	ln(Vmaxqi/Dc) while W shrinks as 	(ln[Vmaxqi/Dc])

�1.
In Figures 9e–9h, both the maximum slip and the pulse
width increase very nearly as ln(Vmaxqi/Dc), so the slip
pulse appears nearly self-similar. The fracture energy
balance is maintained by increasing W as 	ln(Vmaxqi/Dc)
while Dt remains essentially unchanged. For both pulse
styles, however, the near-tip slip profile retains the scaling
of equation (47) (Figure 8c).
[32] These differences in style are necessarily sensitive to

the ambient conditions along the fault. For example, in
Figure 7 (row 4) the minimum value of W behind the pulse
tip is quasi-constant; this is also true of the example on the
right in Figure 9 and, to a slightly lesser extent, of the
example on the left. We find also that the slip speeds at
these minima are a quasi-constant fraction of Vmax. From the
friction law this leads to dtmin/d(ln Vmax) � constant, where
tmin is the stress minimum behind the tip (this occurs very
close to the location of the minimum W). However, for
dtmin/d(ln Vmax) � constant to be consistent with values of
Dt that scale as various powers of ln(Vmaxqi/Dc) (i.e., 0, 1/2,
or 1) places requirements on the ambient stress. For exam-
ple, for Dt to be independent of Vmax, as for the quasi-self-
similar simulation in Figure 9, the ambient stress must
decrease in parallel with dtmin/d(ln Vmax); that this is the
case can be seen in Figure 9g.

Figure 8. (a) Normalized slip as a function of distance
behind the pulse tip for all snapshots in Figure 7 with Vmax >
10�5 m/s (for a/b = 0.8) and Vmax � 10�6 m/s (for a/b = 0.9
and 0.95). Slip has been offset to zero at the tip, and the
horizontal axis has been reversed for a/b = 0.8 and 0.9.
Dashed lines are for a/b = 0.95; red lines for a/b = 0.9. (b)
The same slip profiles further normalized by G

1/2 �
[ln(Vmaxqi/Dc)]

1/2. The bold dashed line shows the estimate
from equation (47). (c) The same as Figure 8b but for the
simulations of Figure 9 with Vmax > 10�7 m/s.
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4.2.2. Propagation Velocity
[33] Close examination of the slip profiles shows that the

length R of the slip-weakening region is shrinking. Dimen-
sionally,

R 	 dc
m0

Dtp�r

ð49Þ

[Rice, 1980], where dc is the effective slip-weakening
distance. Because Dtp-r increases roughly as ln(Vmax/Vbg)
while dc is effectively fixed (Figure 1b), R decreases as
[ln(Vmax/Vbg)]

�1. In addition, because the stress profiles in
Figure 1b are scaled versions of one another, the location of
any particular d � dc scales by this same factor. This is
shown in Figures 10a and 10b by the extent to which the
slip profiles superimpose when the horizontal axis is
stretched by ln(Vmaxqi/Dc). Moreover, Figure 10e, which
rescales all the slip profiles of Figures 8b and 8c, shows that
very near the tip this shape is universal. The factor
ln(Vmaxqi/Dc) here ranges from about 10 to more than 20.

Thus while the scaling of equation (47) and Figure 10a
applies on a length scale that is somewhat less than the
pulse width, on the still smaller scale of the slip-weakening
region the scaling of Figure 10b applies. This shrinking of
the slip-weakening region is what necessitates a very fine
spatial grid to resolve slip-law nucleation fronts at large slip
speeds.
[34] We can formalize the above, and as a corollary

estimate the pulse propagation velocity, by writing that
within the slip-weakening region

d x; tð Þ
Dc

¼ s xð Þ; ð50Þ

where s is a function of dimensionless scaled position x,
defined as

x � x0

Lb
ln
Vmaxqi

Dc

; ð51Þ

Figure 9. Snapshots of log slip speed (top row), normalized slip (second row), and normalized stress
change from the local average (third row), for simulations with a/b = 0.9 (left column) and 0.95 (right).
The initial conditions consist of a uniform state and a locally peaked, slightly asymmetric velocity over a
length scale of [b/(b-a)]Lb, such that the fastest grid point is slipping at steady state. In Figure 9d, the slip
profiles corresponding to Vmax � 10�7 m/s in Figure 9b have been shifted so that the tip sits at (0, 0) and
the horizontal axis stretched by G � ln(Vmaxqi/Dc) (equation (51)). In Figure 9h, the slip profiles
corresponding to Vmax � 10�7 m/s in Figure 9e have been normalized along both axes by G, and suggest
an approach to self-similarity.

B01302 AMPUERO AND RUBIN: RATE-AND-STATE EARTHQUAKE NUCLEATION

12 of 21

B01302



with x0 being distance behind the front. Differentiating with
respect to time, the slip speed is

V

Dc

¼ ds

dx

dx

dt
¼ ds

dx

Vprop

Lb
ln
Vmaxqi

Dc

þ x
_Vmax

Vmax

ln
Vmaxqi

Dc


 ��1
" #

;

ð52Þ

where Vprop is the pulse propagation velocity and _Vmax �
dVmax/dt. The first term in brackets represents the contribu-
tion from the translation of a time-invariant slip profile, and
the second the contribution from a slip profile that steepens
with time behind a stationary tip (due to the increasing Vmax;
in these examples _qi/q is negligible compared to _Vmax/Vmax).
The rate of increase of Vmax is slow enough that in all our
simulations the slip speed is dominated, by at least 1–2
orders of magnitude, by the translation and not the
steepening of the front (Appendix B). Dropping the latter
term and evaluating (52) at V = Vmax yields

Vprop

Vmax

� 0:75
m0

bs
ln
Vmaxqi

Dc


 ��1

; ð53Þ

where the coefficient 0.75 is the inverse of ds/dx taken from
the numerical simulations at V = Vmax, occuring at x 	 0.7
(Figure 10).
[35] Equation (53) suggests that Vprop increases with Vmax

but is independent of a/b. Thus the very different appear-
ances of the pulses in Figure 7 are due not to slower

propagation with decreasing a/b, but to more rapid acceler-
ation of slip (so that there is less time for propagation, at the
same Vprop, between neighboring slip speeds). This is
confirmed in Figure 11, which shows that plots of Vprop

versus Vmax for the 5 simulations in Figures 7 and 9 are
indistinguishable once the pulse is well-developed. The
values of qi at the conclusion of these simulations vary by
a factor of 	10, but at large Vmaxqi/Dc this amounts to
differences in the logarithmic factor of only 10%.
[36] The essentials of equation (53) can be derived more

transparently by starting with the assumption of a time-
invariant slip profile [e.g., Ida, 1973]. In this case the
maximum slip speed is given dimensionally by dc/(R/Vprop),
where the denominator is the timescale for passage of the
slip-weakening zone. Substituting (49) for R leads to

Vprop

Vmax

	 m0

Dtp�r

	 m0

bs
ln
Vmaxqi

Dc


 ��1

: ð54Þ

For m0 = 40 GPa, s = 40 MPa, b = 10�2, and the inverse
logarithm of order 10�1, Vprop/Vmax is of order 104. The
middle expression in (54) shows that this result is
independent of the evolution law, as this affects only the
path to steady state and not the total strength drop. In
Appendix B we generalize the more complete equations
(50)–(53) to fracture energies that scale as (ln[V/Vbg])

n. By
comparing the result for the aging law to an estimate
derived by differentiating the time-dependent nucleation
length, we gain insight into why, in the simulations of Rubin

Figure 10. (a)-(d), Slip and velocity profiles for all the snapshots with a/b = 0.95 and Vmax � 10�6 m/s
in Figure 7. (a) Normalized slip, scaled as suggested by equation (47), and (c), normalized slip speed, as
functions of normalized distance behind the pulse tip. Dashed curve in Figure 10a shows the expected
value of (4/p1/2)(x0/Lb)

1/2. (b) and (d), Normalized slip and slip speed as functions of normalized distance
from the tip, with the latter stretched by G � ln(Vmaxqi/Dc) (equation (51)). The collapsing of all the
profiles from Figures 10a and 10c shows that this is the appropriate scaling within the slip-weakening
region. (e) Normalized slip as a function of scaled distance from the tip for all the slip profiles from
Figures 8b and 8c, showing the universality of the near-tip slip profile. The cluster that deviates the most
is for a/b = 0.8 in Figure 7. (f) The stress profiles corresponding to the slip profiles of Figure 10e, scaled
from a peak value of 1 to a minimum of zero.
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and Ampuero [2005a], Vmax near the margin of the
nucleation zone becomes substantially larger than V in the
interior as a/b approaches 1.
[37] Equation (54) can also be used to judge whether the

assumption of quasi-static elasticity is violated sooner by
locally high slip speeds or by propagation of the slip pulse
at near the shear wave speed. We can define Vdyn as the slip
speed at which the local ‘‘radiation damping’’ term, _trad =
_Vm/2cs [Rice, 1993], becomes more important than the
direct velocity effect in equation (15); the result is Vdyn =
2as cs/m, where cs is the shear wave speed. Substituting into
(54) yields

Vprop=cs
Vmax=Vdyn

� a

b
ln
Vmaxqi

Dc


 ��1

: ð55Þ

Because the logarithm may exceed 20 by the time Vmax

approaches Vdyn (with Dc/qi approximated as Vplate and Vdyn

of order 0.1 m/s), we expect the applicability of quasi-static
elasticity to be limited by the magnitude of the local slip
speed rather than the propagation speed. Of course, other
processes, such as frictional heating, may become important
at even lower speeds [e.g., Segall and Rice, 2006].
4.2.3. Time to Instability
[38] For the simulations of Figure 7, Figure 11 shows that

plots of the time remaining to instability (t* � t) vs. Vmax

have slopes that are indistinguishable from �1, implying
_Vmax/Vmax

2 = constant, just as in both aging law regimes.
These curves are offset such that at the same Vmax lower
values of a/b reach instability sooner, as for the aging law.
Qualitatively, following the arguments of section 4.2, this is
consistent with the larger stress gradients behind the pulse
tip for smaller a/b (Figure 7, row 3). That is, because the
pulse propagation speed at a given Vmax is independent of a/
b, a larger stress gradient implies a larger _t, which in turn
requires a larger _V /V.
[39] For the simulation of Figure 9e, d(ln Vmax)/dL =

constant (the snapshots are plotted at equal increments of
log Vmax and show equal translations of the pulse front).
Combining this with (53) shows that for this simulation
( _Vmax/Vmax

2 )ln(Vmaxqi/Dc) = constant. For the simulation of
Figure 9a, ( _Vmax/Vmax

2 )[ln(Vmaxqi/Dc)]
�1 � constant, remi-

niscent of the W� 1 regime for the slip law. Note, however,
that unlike the aging law in both regimes and the slip law
for W � 1 there is no fixed point that accelerates in this
fashion; the point currently slipping at Vmax has just been
added to the pulse front.
[40] Compared to the total duration of nucleation, the

slip-law pulses may be short-lived. For the simulation with
a/b = 0.8 in Figure 11, (t* � t) is within 10% of Dc/Vmax.
Thus if the pulse develops at Vmax	 10�6m/s, as in Figure 7,
it would persist for 400 s for Dc = 400 mm or 10 s for Dc =
10 mm. For the larger values of a/b in Figure 11, the pulses
begin at somewhat lower slip speeds and might last 10–100
times longer. Missing from this analysis is a detailed
understanding of how the initial conditions determine the
slip speed at the onset of pulse formation, although this is
certainly related to the decrease in W in the interior of the
nucleation zone. The potential importance of the pulses is
that they might be the only phase of quasi-static nucleation
observable by near-source instruments.
4.2.4. ‘‘Nucleation Length’’ in Relation to the Critical
Stiffness for Instability
[41] For the aging law, the region where the slip speed is

well above background is more-or-less comparable to the
region that is being elastically unloaded. This rough equiv-
alence is generally assumed in any attempt to estimate the
nucleation length from the critical stiffness of a spring-block
slider. For the slip law in the near-steady state regime, this
equivalence breaks down. At any moment only the tip of the
slip pulse is being unloaded, on a spatial scale that varies
from about 6 to 9 times Lb/ln(Vmaxqi/Dc) as a/b varies from
0.8 to 0.95.
[42] The shrinking of the unloading region can also be

viewed in terms of the competition between elasticity
and slip-weakening. From equations (8) and (7), the instan-
taneous slip-weakening rate following a large step increase
in sliding velocity is a constant bs/Dc for the aging law,

Figure 11. Log Vprop (ascending curves) and time to
instability (t*�t) (descending curves) for the 5 simulations
of Figures 7 and 9, as functions of log Vmax. The scatter in
Vprop at low slip speeds occurs before the nucleation zone is
well developed. The two merging bold-dotted curves give
the estimates of Vprop from (53) assuming values of qi of 10

6

and 108 s, and show the insensitivity of Vprop/Vmax to this
parameter (qi typically increases from a few times 106 to a
few times 107 s over this range of Vmax). The 3 solid curves
of (t*�t) correspond, from lowest to highest, to a/b = 0.8,
0.9, and 0.95 in Figure 7; these end with slopes of �1
(lower dashed line), implying _Vmax/Vmax

2 = constant. The
dotted and dashed curves of (t*�t) correspond to a/b = 0.9
and 0.95 in Figure 9.
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but is larger than this by ln(Vmaxqi/Dc) for the slip law
(Figure 1). The increase in slip weakening rate with
increasing Vmax is what promotes continued localization
under the slip law. It is tempting to relate this also to the
fact that slip-law spring-block sliders can reach instability
for an arbitrarily large stiffness, given a sufficiently large
perturbation from steady state [Gu et al., 1984]. Such
perturbations can of course be imposed externally, but
Figures 7 and 9 show that they also arise naturally from
nucleation itself, as the approaching slip pulse imposes a
large stress perturbation on the fault immediately ahead.
Once the slip-weakening zone passes by, this region
continues to accelerate to instability (driven in part by
the increasing stress due to slip near the current front), but
much more slowly than the region at the front of the pulse
where W is extremely large. Something similar happens in
the W � 1 regime, in that large values of W arising
spontaneously during nucleation allow the nucleation zone
to shrink to sizes several times smaller than that antici-
pated from a linear stability analysis.

5. Relation to Slow Transients

[43] Recently, periodic slow slip events have been iden-
tified near the base of the seismogenic portion of subduction
zones in Cascadia and southwest Japan [Dragert et al.,
2001; Obara and Hirose, 2006]. Well-documented exam-
ples have total slips of 	1–2 cm, extend several tens of
kilometers down-dip, migrate along strike at rates of order
10 km/day, and have periodicities of 	6–14 months. These
events are of interest both from a seismic hazards standpoint
and as a target for rate-and-state friction models. Liu and
Rice [2005] observed ‘‘slow slip events’’ near the seismic/
aseismic transition in 3-D numerical simulations using the
aging law. The events were apparently constrained against
instability because of prior earthquakes that had ruptured
the full extent of the seismogenic region. The downdip
extent of the transition from fully velocity-weakening to
velocity-neutral behavior, about 5 km, was larger than both
the fixed-length nucleation length 2Ln and the ‘‘classical’’
minimum length for instability Lmin, but smaller than the
asymptotic crack length 2L1 (	10 km even in the fully
velocity-weakening region). In principle the former could
allow for nucleation while the latter might prevent accel-
eration to instability. For example, Ampuero and Perfettini
[ms in preparation] ran cycle simulations with a velocity-
weakening patch of length 2L embedded in a larger
velocity-strengthening region, driven by a constant far-
field velocity. They observed ‘‘periodic slow slip events’’
for Lmin ] L ] L1 and instability (maximum slip speed
limited by radiation damping) for L ^ L1. Our own
simulations (unpublished), using a geometry more akin
to a subduction zone (a velocity-weakening patch bordered
by one locked and one velocity-strengthening region, as
was carried out previously by Liu and Rice [2007] indicate
that the corresponding boundaries are closer to 2Lmin and
2L1. Thus the expected range of patch lengths large
enough for nucleation but too small for instability
increases roughly in proportion to b/(b - a), which
becomes unbounded in the limit of velocity-neutral slip.
Similar behavior occurs also in simulations using slip law,

but over a much narrower range of patch lengths, as can
be surmised from Figure 7.
[44] The slow events in the work of Liu and Rice [2005]

had maximum slip speeds of 	10�8–10�7 m/s, roughly 1–
2 orders of magnitude above background, and propagated
along strike at velocities of 	10�4–10�3 m/s. Thus the ratio
Vprop/Vmax was roughly 104. The ratio m0/bs at the propa-
gating front was 2 � 104. For Vmaxqi/Dc 	 101–102 the
predicted ratio Vprop/Vmax from (54) is 0.9–0.45 � 104.
This factor of 2 or so agreement could be fortuitous, in that
for slip speeds only 1–2 orders of magnitude above
background the near-tip slip profile might not yet have
reached its asymptotic distribution, but it is nonetheless
encouraging.
[45] To consider a natural example, the August 1999

Cascadia event had 	2 cm of slip over a downdip extent
of 50 km, and propagated 	300 km at Vprop 	 6 km/day
(	0.07 m/s) [Dragert et al., 2001]. The maximum slip
speed is not well constrained. The geodetic signal at
individual GPS stations lasted from 6–15 days, yielding a
nominal slip rate V 	 2 � 10�8 m/s (2 cm/106 s), but if the
slip speed were as peaked as for the slip-law examples in
this paper, or the aging-law examples with a/b ^ 0.9 in
Rubin and Ampuero [2005a], the peak value could be
several times larger and for slip at 30–40 km depth would
likely be unresolved by surface stations. Arbitrarily multi-
plying the nominal value by 5 yields a maximum slip speed
of Vmax 	 10�7 m/s, about 102 times the plate convergence
rate, and a ratio Vprop/Vmax of 	0.7 � 106. With m = 30GPa,
b = 0.01, and Vmaxqi/Dc approximated as the ratio of the slip
rate to plate rate (the logarithm makes the result rather
insensitive to this estimate), equation (54) indicates that this
ratio of Vprop/Vmax implies an effective normal stress s of
1 MPa. Although this is a very small value, it is of the same
order as that advocated by Liu and Rice [2007] to match the
observed 14-month periodicity of the Cascadia events. They
argue that such small effective stresses might be produced
by dehydration reactions in the subducting plate.
[46] Other rate-and-state considerations point to low ef-

fective stresses as well. The slip/length ratio is given by d/
2L 	 Dt/m0; to reach 2 cm of slip over a length scale of
50 km requires a very low stress drop of 0.016 MPa for m0 =
40 GPa. Approximating the rate-and-state stress drop as
s(b� a)ln(V/Vbg), and takingV/Vbg� 102 and (b�a)� 10�3,
implies s = 3.5 MPa. Stabilizing slip over a patch size of tens
of kilometers is also aided by low values of s, as all the
relevant length scales are proportional to s�1. Using the
aging law as an example, requiring 4L1^ 50 km and
taking b � 10�2, (b�a) � 10�3, and Dc � 40 mm yields s =
0.5 MPa. While these three estimates of s are not identical,
they are encouragingly close, given their order-of-magnitude
nature, and uniformly low.

6. Which Evolution Law?

[47] Neither the aging nor the slip law matches all the
available laboratory friction data. However, our simulations
suggest that it is the behavior of the fault surface in the
vicinity of and well above steady state that controls nucle-
ation, and here the slip law seems clearly superior. Nakatani
[2001] summarizes evidence that the effective slip-weakening
distance following a velocity increase does not increase
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with the magnitude of that increase. Bayart et al. [2006]
describe more recent experiments on synthetic quartz
gouge showing that velocity jumps of 1 and 2 orders of
magnitude yield slip-weakening curves that are simply
scaled versions of one another, behavior that is consistent
with the slip law but not the aging law (Figure 1). Even the
general observation that it is more difficult to stabilize large
velocity jumps than small jumps on velocity-weakening
surfaces in the laboratory is consistent with a slip-weaken-
ing rate that increases with the magnitude of the velocity
jump, behavior that is predicted by the slip law but not the
aging law.
[48] Beeler et al. [1994] found evidence for time-

dependent, as opposed to slip-dependent, healing in slide-
hold-slide experiments that access slip speeds and values of
W that are considerably smaller than those typical of
velocity-stepping tests. Such behavior, which is inconsistent
with the slip law, is likely to be important during the
interseismic period. Except insofar as this influences the
slip speed and the degree of heterogeneity along the fault as
it passes through steady state from below, however, it is not
apparent that this would significantly influence nucleation.
Of the three relevant length scales that have been identified
thus far — Ln, Lmin or h*, and L1 — none make reference
to behavior well below steady state. Rather, their analytic
approximations depend upon the behavior well above
steady state (Ln), near steady state (Lmin), or a combination
of well above steady state at the margins and near steady
state in the interior (L1). If an evolution law that permits
time-dependent healing during the interseismic period is
desired for earthquake cycle simulations, ad-hoc approaches
are available. These include the ‘‘composite’’ law of Kato
and Tullis [2001], which combines the slip law with healing
at low slip speeds, or a linear combination of the two laws
with more weight attached to the slip law [Sleep, 2005].
Sleep [2006] also presents micromechanical arguments out-
lining the conditions under which either the aging or slip
law might apply.

7. Summary and Conclusions

[49] The slip and aging laws exhibit the same primary
regimes of nucleation. Well above steady state, when Vq/Dc

� 1, the two laws are qualitatively similar. Under the aging
law nucleation zones accelerate while maintaining a fixed
length that is independent of a/b. Slip law nucleation zones
are smaller than this by roughly ln(Vq/Dc), and slowly
shrink as instability is approached. For both laws, however,
laboratory values of a/b favor nucleation near steady state,
and here their behaviors differ markedly. This difference is
controlled by the behavior at the propagating front(s), which
remain well above steady state. That the fracture energy
increases as [ln(V/Vbg)]

2 for the aging law means that
nucleation takes the form of a quasi-statically expanding
crack, whereas the increase as [ln(V/Vbg)]

1 for the slip law
gives rise to an accelerating slip pulse.
[50] This difference is profound. For the aging law, with

a/b = 0.95, Dc = 100 mm, and an effective normal stress of
tens of MPa, the nucleation zone could be 1 km across,
raising the possibility that it could be observed remotely.
For the slip law this seems unlikely, the region of largest slip
speeds being of order 100 times smaller. The smaller slip

distances during slip-law nucleation (e.g., Figure 2) also
seem likely to make thermal pressurization of pore fluid less
important for the slip law than for the aging law [e.g., Segall
and Rice, 2006].
[51] Dropping the effective normal stress to 	1 MPa, as

advocated by Liu and Rice [2007], could increase the
aging law nucleation length to tens of kilometers. The
large disparity between L1 and either Ln or Lmin for the
aging law, particularly as a/b approaches 1, implies that
there is a significant range of fault lengths capable of
hosting slow slip events; that is, fault lengths large enough
for an event to nucleate but too small for it to reach
instability.
[52] Although for the slip law we have no analytical

expression for a length scale comparable to L1, our
simulations suggest that the range of fault lengths permit-
ting slow slip events for the slip law would be much less.
By the same reasoning, any physical process that increases
the effective fracture energy of the nucleation front with
increasing slip speed more rapidly than (ln[V/Vbg])

2 would
increase the range of fault lengths permitting such behavior.
One plausible mechanism is inelastic dilation coupled with
pore pressure reduction; because pore pressure recovery
depends upon time and not slip, the effective slip-weaken-
ing distance in this case could increase quasi-linearly with
slip speed, rather than logarithmically.
[53] For both laws, migrating nucleation fronts have a

ratio of propagation speed to maximum slip speed of order
(m0/bs)(ln[Vmax/Vbg])

�1. The two velocities are related
through the near-tip slip gradient, which is of order
Dtp�r/m

0.
[54] Three-dimensional simulations indicate a complete

carry-over of the behaviors seen in 2-D, with the slip-law
pulses originating from either a mode-II or mode-III
margin of the parent nucleation zone [Rubin and
Ampuero, 2005b]. For the aging law, the transitional
value of a/b in 3-D is 	0.195, roughly half that in 2-
D, and for the slip law, with modest heterogeneity along
the fault the transition seems to begin by a/b = 0.4. Thus
to the extent that laboratory evolution laws and rate-and-
state parameters can be safely applied to the Earth, slip-
law pulses might be the favored form of nucleation on
natural faults. It must be borne in mind, however, that
this requires extrapolation of experimental observations to
much larger velocity increases than have ever been
achieved in the laboratory, and that even within the range
covered by experiment neither law satisfies all the data.
Our simulations demonstrate how remarkably different
nucleation can appear using two evolution laws that have
each been advertised as ‘‘adequate’’ at some level.

Appendix A: Stiffness of the Expanding Aging-law
Nucleation Zone

[55] That W is quasi-constant in the interior of the
growing aging-law nucleation zone implies that the effec-
tive stiffness is a constant given by equation (35). The
ability of the nucleation zone to maintain (approximately)
this stiffness even as it expands seems surprising, but
derives from interaction of elasticity with the friction law,
as outlined below.
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[56] Equation (36) for the stiffness at the center of a crack
with a uniform stress drop can be rewritten as

k* ¼ m0

2L
1þDt

_Dt

_L

L

� ��1

: ðA1Þ

Taking the logarithm of (29), which combines the criterion
for equilibrium crack growth with the aging-law estimates
of Dt and Dtp�r, and then differentiating leads to

Dt

_Dt

_L

L
¼ 2

_Dtp�r

Dtp�r

Dt

_Dt
� 2 : ðA2Þ

With W constant, equations (30) and (31) lead to

_Dtp�r

_Dt
¼ b

b� a
; ðA3Þ

so (A2) becomes

Dt

_Dt

_L

L
¼ 2

b

b� a

Dt

Dtp�r

� 2 ¼ 2

ffiffiffiffiffiffiffi

L1
L

r

� 2 ; ðA4Þ

where the second equality makes use of the ratio Dt/Dtp�r

from (29) and (32). Substituting (A4) back into (A1), we
obtain

k* ¼ m0

2L
2

ffiffiffiffiffiffiffi

L1
L

r

� 1

" #�1

: ðA5Þ

This function has a broad minimum at L = L1, implying
that k* remains close to m0/2L1 even for L/L1 considerably
less than 1 (Figure A1a).
[57] That W remains quasi-constant all the way to the slip-

weakening zone implies that k* remains close to m0/2L1
over this entire region as well. For a stationary crack, the
stiffness near the margins is greater than that at the center
(the slip is less for a given stress drop), but propagation
decreases the stiffness at the ends more than that at the
center and these two effects tend to cancel. From equation
(28) of Rubin and Ampuero [2005a], the slip speed within a
growing crack subjected to a uniform but time-varying
stress drop is

V xð Þ ¼ � 2

m0
_DtL 1� x2

L2


 �1=2
"

þDt _L 1� x2

L2


 ��1=2
#

: ðA6Þ

Dividing by _Dt and making use of (A4) leads to

k* xð Þ ¼ � m0

2L1

"

L

L1
1� x2

L2


 �1=2

þ 2

ffiffiffiffiffiffiffi

L

L1

r

� L

L1


 �

� 1� x2

L2


 ��1=2
#�1

; ðA7Þ

where the bracketed expression now represents the devia-
tion of the stiffness from the value needed to maintain the
given W. Figure A1b plots this expression as a function of x/
L1 for 4 values of L/L1: 0.25, 0.5, 0.75, and 1. The curve
for L/L1 = 1 shows the increase in k* near the margins of a
stationary crack, while the others show the decrease near the
margins of a propagating crack. The solid symbols indicate
a distance of Lb behind the crack tip for a/b = 0.8 (triangles)
and 0.9 (squares); (A7) is not expected to be accurate closer
to the tip than this because of the nonuniform stresses within
the slip-weakening region, which (A6) neglects. The
tendency for points interior to this to plot near unity is
indicative of the ability of the crack to maintain a near-
constant and uniform stiffness as it grows. That this ability
deteriorates as L/L1 approaches 1, especially for larger a/b,
may explain much of the complexity seen in the simulations
of Rubin and Ampuero [2005a]. This complexity increased
with both a/b and L/L1.
[58] Equation (33) of Ranjith and Rice [1999] can be

rewritten to show that the trajectory W = constant marks the
stability boundary for a spring-block slider with zero load
point velocity. In light of this, the above considerations

Figure A1. (a) Solid line, effective stiffness at the center
of the growing nucleation zone, k*(0), normalized by the
value for a crack of fixed half-length L1, as a function of
normalized nucleation length L/L1 (equation A5). The
broad minimum near 1 shows that k*(0) remains much
closer to m0/2L1 than to m0/2L (dotted line). (b) Normalized
stiffness as a function of position x/L1, for L/L1 = 0.25,
0.5, 0.75, and 1.0, showing that k* remains close to m0/2L1
over most of the growing nucleation zone as well (equation
A7). Triangles and squares indicate a distance Lb behind the
nucleation front for a/b = 0.8 and 0.9, respectively; larger
values of x lie near or within the slip weakening region
where equation (A7) is inappropriate.
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suggest what might happen when a growing aging law
nucleation zone encounters barriers spaced more closely
than 2L1. Because it can no longer expand and L < L1, the
nucleation zone stiffness will exceed the critical value
needed to maintain the current W. It will then follow a
trajectory of lesser acceleration than the W = constant case
and (ultimately) deceleration to slip speeds low enough that
the background loading rate again becomes important. For
some of the initial and boundary conditions examined by
Rubin and Ampuero [2005a], the nucleation zone reached
elastodynamic speeds before L reached L1. However, for
the cycle simulations of Ampuero and Perfettini [manuscript
in preparation], with a velocity-weakening region of length
2L embedded in velocity-strengthening surroundings,
elastodynamic speeds were not reached except for L >
L1.

Appendix B: Velocity of the Nucleation Front

[59] Here we generalize the expression for Vprop/Vmax to
fracture energies that scale as (ln[V/Vbg])

n, and discuss the
implications of two independent estimates of Vprop for the
aging law. We continue to assume that the total strength
drop is independent of the evolution law, so

Dtp�r ¼ bs ln
Vmaxqi

Dc

; ðB1Þ

but allow for different slip-weakening distances

dc ¼ PDc ln
Vmaxqi

Dc


 �n�1

; ðB2Þ

where P is some constant coefficient (e.g., 1 for the aging
law, for which n = 2). We assume that within this slip
distance Dt/Dtp�r is a function only of d/dc (as is strictly
true for the slip law [n = 1], and true for the aging law while
W � 1). From (49), the length of the slip-weakening zone is

R ¼ aPLb ln
Vmaxqi

Dc


 �n�2

; ðB3Þ

where the coefficient a depends upon the functional form of
Dt/Dtp�r; for linear slip-weakening, as for the aging law,
a 	 0.7.
[60] Provided the requirement of a small slip-weakening

zone is met, equations (B2) and (B3) lead to

d x; tð Þ
Dc

¼ A tð Þs xð Þ ; ðB4Þ

with

A tð Þ � ln
Vmaxqi

Dc


 �n�1

; x � x0

Lb
ln
Vmaxqi

Dc


 �2�n

; ðB5Þ

where x0 is distance behind the tip, so 0 � s � P and 0 � x
� aP. Differentiating (B4),

V

Dc

¼ _Asþ A
ds

dx

dx

dt
: ðB6Þ

Evaluating this at V = Vmax and neglecting _qi/qi in relation to
_Vmax/Vmax,

1 ¼ n� 1ð Þ ln
Vmaxqi

Dc


 �n�2
Dc

_Vmax

V 2
max
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s xmð Þ

þ ds

dxm

"

Vprop

Vmax

m0

bs
ln
Vmaxqi

Dc
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þ 2� nð Þxm
 

Dc
_Vmax

V 2
max

!

� ln
Vmaxqi

Dc


 �n�2
#

; ðB7Þ

where xm denotes the location of V = Vmax and ds/d xm the
slope at that point. The first term in brackets on the right
represents the contribution from the translation of a time-
invariant slip profile; when this term dominates,
equation (54) is recovered (ds/dxm is of order a�1). The
first term on the right, equal to zero for the slip law, is due to
the increasing amplitude of slip within slip-weakening zone.
The second term within brackets, zero for the aging law,
comes from the steepening of the slip gradient due to
shrinking of the slip-weakening zone. For the slip law
simulations of Figure 7, we find empirically that (Dc

_Vmax/
Vmax
2 ) is constant and decreases from 0.9 to 0.05 as a/b

increases from 0.8 to 0.95. As xmds/dxm 	 0.9, this term
contributes less than 10% of the total for Vmaxqi/Dc > 104,
even for the smaller a/b.
[61] For the aging law, note that because both Dtp�r and

dc increase linearly with (Vmax/Vbg), R is time-invariant
(equation (49)). For the aging-law simulation of Figure 3,
Figure B1b superimposes the stresses near the rightmost tip
for the 19 snapshots shown in Figure B1a, scaled to vary
from a peak value of 1 at the tip to 0 at the center of the
nucleation zone. For Vmax/Vbg ^ 103–104 the length of the
slip weakening zone asymptotically approaches 	0.75Lb.
Substituting the aging-law fracture energy into (46), the
equivalent of equation (47) for the slip profile of the
propagating front is

d

Dc

�
ffiffiffi

8

p

r

ln
Vmaxqi

Dc


 �

x0

Lb


 �1=2

: ðB8Þ

Figure B1e shows d/Dc divided by ln(Vmaxqi/Dc) as a
function of distance behind the propagating front, for the
same 19 snapshots. The solid lines show the right tip, the
dashed lines the left (reversed for comparison), and the thick
dashed line the estimate (8/p)1/2(x0/Lb)

1/2 from (B8). As
suggested by Figure B1b, after about the 4th snapshot the
normalized slip asymptotically approaches the same
distribution. Outside the slip-weakening region, the dashed
line provides a good fit to the slip profiles if it is shifted to
intersect the horizontal axis near the center of the slip-
weakening region. Within the slip-weakening region, the
scaling of the axes shows that the fracture energy
requirements are satisfied by increasing the slip amplitude
over a fixed length scale, rather than (as for the slip law) by
reaching the same slip over an ever-diminishing length
scale.
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[62] Figures B1c and B1d indicate that for the aging law
xm 	 0.5, s(xm) 	 0.6 and ds/dxm 	 1.6. Inserting these
values and n = 2 into (B7) leads to

Vprop

Vmax

� 0:6 1� 0:6Dc

_Vmax

V 2
max


 �

m0

bs
ln
Vmaxqi

Dc


 ��1

: ðB9Þ

Noting that the slip speed is quasi-uniform over the interior
of the nucleation zone, we might approximate _Vmax/Vmax

2 as
_V /V2, so from (33) and (37), (B9) becomes

Vprop

Vmax

� 0:6 1� 0:6
p

2

b� a

b
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m0

bs
ln
Vmaxqi

Dc


 ��1

: ðB10Þ

The ‘‘1’’ within the parentheses represents the relative
contribution from propagation of a time-invariant slip
profile, while the term proportional to (b�a)/b represents

the relative contribution from the increasing slip amplitude.
The latter approaches zero as a/b approaches 1. Because
0.6p/2 	 1, the entire coefficient in parentheses is very
nearly a/b.
[63] The ascending curves in Figure B2 show Vprop vs.

Vmax for the two ends of the nucleation zone in Figure B1,
starting from when the zone begins to expand. Note that the
factor of 	2 difference in Vprop is almost entirely accounted
for by a comparable difference in Vmax behind the fronts, a
difference that presumably is controlled by the heteroge-
neous conditions along the fault. Similar behavior is seen in
Figure 9d of Rubin and Ampuero, where the difference
between the fronts is closer to an order of magnitude. Note
also that the curves in Figure B2 are nearly identical to those
of Figure 11 for the slip law, as predicted by the similar
coefficients in (B10) and (53). The horizontal curves in

Figure B1. (a), Velocity profiles from Figure 3 with Vmax � 10�8 m/s. (b), Shear stress, scaled from a
peak value of 1 to zero at the center of the nucleation zone, as a function of normalized distance behind
the right tip for all the profiles in Figure B1a. By the fourth profile the slip-weakening region
asymptotically approaches 	0.75Lb. (c) Slip speed normalized by that at the center of the nucleation
zone. (d) Normalized slip gradient (d/Dc)/(x

0/Lb) for the same profiles, showing the maximum at 	0.5Lb
that coincides with the peak slip velocity. (e) Normalized slip, divided by G � ln(Vmaxqi/Dc), as a function
of distance behind the right (solid) and left (dashed, and reversed for comparison) tips of the nucleation
zone. Bold dashed curve indicates the prediction of (B8).
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Figure B2 show Vprop normalized by the prediction of
(B10); the agreement is quite good.
[64] It should be noted that the aging-law propagation

velocity can also be estimated by differentiating the expres-
sion for the time-dependent nucleation length. Inserting
equations (30) and (31) into (29) leads to

L ¼ Lb

p

b

b� a


 �2 ln Vqi
Dc

� lnW

ln V
Vbg

� b
b�a

lnW

" #2

; ðB11Þ

where V is the quasi-uniform slip speed within the
nucleation zone, qi is the relatively unperturbed value of q
ahead of the propagating front, and Vbg is the hypothetical
sliding velocity that at steady state would give rise to the
ambient stress (that which would act in the absence of the
nucleation displacements). The bracketed term asymptoti-
cally approaches 1 in the limit of large V. We find that in our
simulations it approaches this value from below, so that L
approaches L1 from below, but we are unsure how general
this result is.
[65] As _L = Vprop for symmetric growth, differentiating

(B11) and using (33) and (37) for _V /V2 leads to
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V
¼ b

b� a
ln
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� a
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lnW
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ffiffiffiffiffiffiffi
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V
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 ��2

:

ðB12Þ

This expression differs from equation (B10) for Vprop/Vmax

by the leading coefficient (including the a/b terms) and an
extra (ln[Vqi/Dc])

�1. To some extent these differences can
be accommodated by modest differences between V and
Vmax, as seen in our aging-law simulations. Comparing
(B12) and (B10) leads to

V

Vmax

� 0:6
a

b
1� a

b

� �

ln
Dc

Vbgqi


 �

� p

2

� ��1
ffiffiffiffiffiffiffi

L1
L

r

ln
V

Vbg

; ðB13Þ

where we have evaluated the relatively insignificant term
alnW/(b�a) in the limit as a/b approaches 1. The (1�a/b)
term shows that, at fixed L/L1 and ln(V/Vbg), Vmax/V
increases strongly as a/b approaches 1, which qualitatively
is consistent with Figures 9a and 10 of Rubin and Ampuero
[2005a] and other unpublished results in which Vmax/V
increases, during the crack-expansion phase of nucleation,
from maximum values of 	1.1 for a/b = 0.7, to 	1.5 for a/b
= 0.8, to 	6 for a/b = 0.9, and to 	14 for a/b = 0.95.
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