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Abstract

Earthquake phase association algorithms aggregate picked seismic phases from a network of seismome-
ters into individual earthquakes and play an important role in earthquake monitoring. Dense seismic
networks and improved phase picking methods produce massive earthquake phase data sets, particularly
for earthquake swarms and aftershocks occurring closely in time and space, making phase association a
challenging problem. We present a new association method, the Gaussian M ixture M odel Association
(GaMMA), that combines the Gaussian mixture model for phase measurements (both time and ampli-
tude), with earthquake location, origin time, and magnitude estimation. We treat earthquake phase
association as an unsupervised clustering problem in a probabilistic framework, where each earthquake
corresponds to a cluster of P and S phases with hyperbolic moveout of arrival times and a decay of
amplitude with distance. We use a multivariate Gaussian distribution to model the collection of phase
picks for an event, the mean of which is given by the predicted arrival time and amplitude from the
causative event. We carry out the pick assignment for each earthquake and determine earthquake pa-
rameters (i.e., earthquake location, origin time, and magnitude) under the maximum likelihood criterion
using the Expectation-Maximization (EM) algorithm. The GaMMA method does not require the typical
association steps of other algorithms, such as grid-search or supervised training. The results on both
synthetic test and the 2019 Ridgecrest earthquake sequence show that GaMMA effectively associates
phases from a temporally and spatially dense earthquake sequence while producing useful estimates of
earthquake location and magnitude.

1 Introduction

Earthquake catalogs are fundamental products that are widely used in seismology to study and model
various aspects of seismicity. Extensive efforts have been made to generate more complete catalogs with
many more smaller earthquakes and more precise location and magnitude estimates. These high-resolution
high-precision catalogs have the potential to reveal relationships among earthquakes and illuminate active
structures that would otherwise remain hidden (Waldhauser & Schaff, 2008; Hauksson et al., 2012; Yoon
et al., 2015; Ross, Trugman, et al., 2019; Park et al., 2020; Tan et al., 2021; Beroza et al., 2021). A
standard earthquake-monitoring workflow from seismic waveforms to earthquake catalogs includes several
tasks, including earthquake detection, phase picking (Allen, 1978), phase association (Yeck et al., 2019),
earthquake location (Klein, 2002), and magnitude estimation (Richter, 1935).

The phase picking step detects seismic phases such as P-wave and S-wave phases at each seismic station.
The phase association step aggregates these phases from multiple stations of a seismic network into separate
groups associated with each earthquake. Earthquake location and magnitude are then estimated from the
associated phase information, i.e., arrival time and amplitude. The resulting catalog can be further enhanced
through template matching (Gibbons & Ringdal, 2006; Shelly et al., 2007; Peng & Zhao, 2009) or subspace
projection (Harris & Dodge, 2011; Barrett & Beroza, 2014) that use the detected earthquakes as templates
to re-scan the waveforms and detect small earthquakes with similar waveforms.

The phase picking step has been significantly improved by deep-learning-based pickers that learn from
manual picks labeled by analysts to detect millions of phase picks from raw seismic waveforms (Ross et al.,
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2018; W. Zhu & Beroza, 2018; Mousavi et al., 2020). The rapidly growing volume of automatic picks and
the ongoing growth of seismic networks makes developing effective phase association methods crucial. Phase
association has not yet received the attention that has been devoted to other earthquake monitoring tasks.
Association methods based on back-projection are most commonly used in classic earthquake monitoring
systems, such as GLASS3 (Yeck et al., 2019), Earthworm (Friberg et al., 2010), and SeisComP3 (Weber
et al., 2007). These approaches usually deploy a grid-search and back-project phase picks based on the
expected moveout with distance. An earthquake and its initial location is declared based on the number of
phase picks inside a spatial grid that are consistent with a candidate location. Although back-projection-
based association is robust and effective, its performance is limited for dense earthquake sequences when
earthquakes occur so closely in time and space that interpreting the maxima resulting from back-projection
becomes problematic. Studies have continued to focus on improving the grid-search and back-projection
approach for different scenarios (Draelos et al., 2015; Gibbons et al., 2016; Zhang et al., 2019). Meanwhile,
several new approaches have been proposed to solve the earthquake phase association using: graph theory
(McBrearty, Gomberg, et al., 2019), the RANSAC algorithm (Woollam et al., 2020; L. Zhu et al., 2021),
and deep learning (Ross, Yue, et al., 2019; McBrearty, Delorey, & Johnson, 2019; Dickey et al., 2020).
When combined with the rapid development of phase picking methods, better association methods have the
potential to improve significantly the overall performance of earthquake monitoring pipelines.

We propose an association method based on a Bayesian Gaussian mixture model, which is an unsuper-
vised machine learning method for clustering (Bishop, 2006) that has been widely used in different research
fields, such as image processing (Permuter et al., 2006), speech recognition (Reynolds & Rose, 1995), and
earthquake studies (Ross et al., 2020; Seydoux et al., 2020). Earthquake phase association can be treated as
an unsupervised clustering problem, with groups of phase picks, in time and space, arising from a discrete set
of earthquake origins. We combine the Gaussian mixture model with earthquake location, origin time, and
magnitude estimation, so that the GaMMA method can cluster phase picks based on the physical constraints
of arrival time moveout and amplitude decay with distance. Phase amplitude information is often neglected
because it can be difficult to account for in conventional association methods; however, GaMMA is designed
such that it can use phase arrival time, phase-type identification, and amplitude information for association
while simultaneously estimating the underlying event source characteristics (i.e., location and magnitude).
Moreover, GaMMA does not require extra association steps of grid-search or supervised training. These
attributes make GaMMA an appealing approach to address the challenges arising in processing of large
numbers of automatic picks in earthquake monitoring workflows.

2 Method

The objective of earthquake phase association is to post-process a large collection of phases picked on
individual seismic stations and cluster them into groups of seismic phases originating from a same earthquake
event, so that subsequent earthquake characterization tasks can be performed on individual events. Phase
arrival times from the same earthquake follow a hyperbolic moveout that is determined by the hypocentral
distance and the Earth model (i.e. seismic wave speed). This moveout allows association algorithms to
distinguish between phases from different earthquakes. In this work, we extend the association problem by
using both phase arrival time and phase amplitude information. On average, the phase amplitude scales with
earthquake magnitude and decays with the hypocentral distance. Thus, the amplitude provides additional
information to improve phase association. We formulate the association problem as follows: Given N seismic
phases (xi, yi, zi, ti, ai), i.e., arrival time ti and amplitude recorded ai at the i-th seismic station located at
(xi, yi, zi), we seek to group these phases into K earthquakes and estimate the underlying source parameters
(xk, yk, zk, tk,mk), i.e., location (xk, yk, zk), origin time tk, and magnitude mk of the k-th earthquake.

We solve this association problem using the Gaussian mixture model (Permuter et al., 2006), which is an
unsupervised clustering method that groups N data points into K clusters by maximizing the probability
that these N data can be explained by a mixture of K Gaussian distributions.

We incorporate the physical constraints on phase arrival time and amplitude into a Gaussian mixture
model to make it suitable for our association problem. Figure 1 illustrates how we model the Gaussian dis-
tributions to calculate the probability of the sequence of phases generated by the two causative earthquakes.
The mathematical details of GaMMA are explained in the following sections.
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P-wave travel-time

S-wave travel-time

Associated earthquake

Gaussian distribution

Figure 1: Gaussian Mixture Model for Association. The GaMMA method models Gaussian distributions
based on the theoretical phase travel-time and amplitude and uses the Expectation-Maximization (EM)
algorithm to update iteratively: phase assignment, earthquake source parameters, and the mean and standard
deviation of Gaussian distribution. This iteration converges to the correct phase assignment and earthquake
source parameters to solve the association problem. Note that we use both phase arrival time and amplitude
information to model the Gaussian distributions.
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2.1 Bayesian Gaussian Mixture model

We cast the association problem in a probabilistic framework where we use a Gaussian mixture distribution
to model the probability of each phase pick:

p(xi) = wi

K∑
k=1

φkN (xi|µk,Λ−1k ) (1)

N (xi|µk,Λ−1k ) =
1

(2π)n/2
|Λk|1/2 exp

(
−1

2
(xi − µk)TΛk(xi − µk)

)
(2)

K∑
k=1

φk = 1 (3)

where xi represents a phase pick including arrival time, phase type, and amplitude (ti, ai) values at the
i-the station. φk is the mixture component coefficient of the k-th earthquake. N represents a Gaussian
distribution, and µk is the mean of the Gaussian distribution. µk represents the theoretical phase arrival
time and amplitude (t̂ik, âik) on each i-th station, determined by the k-th earthquake. Λk is the precision
(inverse covariance) matrix of the Gaussian distribution. wi is the phase picking quality score between [0,
1]. n is the number of feature dimensions, which is 1 if only time information is used or 2 if both time
and amplitude information are used. Based on the Gaussian mixture distribution, we can calculate the
probability of a set of recorded phases (x1, x2, ..., xN ). We assume these observations (X) are independent
and identically distributed (i.i.d.), then the log likelihood function is given by:

log (p(X|φ, µ,Λ)) =

N∑
i=1

log

(
wi

K∑
k=1

φkN (xi|µk,Λ−1k )

)
(4)

We can find the assignment from N phase picks to K earthquakes, which is the goal of association, and the
corresponding earthquake source parameters by maximizing the log likelihood of (4).

A limitation of the Gaussian mixture model formulation is that we need to assume the number of un-
derlying earthquakes K. To address this unknown, we implement the Bayesian Gaussian mixture model
(Bishop, 2006), which uses variational inference to calculate approximate posterior distributions for the
parameters of a Gaussian mixture distribution. Three conjugate priors are introduced. In particular, we
use a Dirichlet prior for the mixture component coefficient, p(φ) = D(α0) (Ferguson, 1973), which con-
trols the concentration of mixture components; a Gaussian prior for the mean conditioned on the precision,
p(µk|Λk) = N (m0, β0Λk); and a Wishart prior for the precision, p(Λk) = W(W0, ν0) (Wishart, 1928), which
controls the estimation of covariance. The Bayesian model penalizes parameters that are away from the
priors, which balances data fitting and model complexity. The mixture components (i.e., earthquakes) that
do not contribute to the explaining the data (i.e., picks) will have approximately zero mixture coefficients so
that we can choose a large number of components in the mixture model without over-fitting. In practice, we
can initialize the space with many redundant earthquake hypocenters, and the Bayesian GMM suppresses
unnecessary sources to infer a accurate number of earthquakes with associated picks.

2.2 Expectation-Maximization (EM) algorithm

We use the the Expectation-Maximization (EM) algorithm to solve the maximum likelihood estimation of
p(x). To consider the physical constraints on phase arrival time and amplitude for association, we incorporate
the estimate of earthquake location, origin time, and magnitude into the EM algorithm. We then iteratively
update the assignments from picks to earthquakes in the E-step and optimize the earthquake parameters in
the M-step:

E-step:

γik =
φkN (xi|µk,Σk)∑K
k=1 φkN (xi|µk,Σk)

(5)

where γik is the probability that phase pick xi, i.e., arrival time ti and wave amplitude ai, is generated by
the k-th earthquake.
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M-step:

1. Effective number of picks assigned to the k-th earthquake:

Nk =

N∑
i=1

γik (6)

φk =
Nk
N

(7)

2. Earthquake location, origin time, and magnitude of the k-th earthquake:

minimize
(xk,yk,zk,tk)

l(xk, yk, zk, tk) =

N∑
i=1

γikL
(
ti, t̂ik(xk, yk, zk, tk)

)
(8)

mk =
1

Nk

N∑
i=1

γikF ′a(ai, dik) (9)

3. Theoretical travel time, amplitude, and statistics of residuals:

µk =

[
t̂ik
âik

]
=

[
Ft(xk, yk, zk, tk)
Fa(mk, dik)

]
(10)

Λ−1k =
1

Nk

N∑
i=1

γik(xi − µk)(xi − µk)T (11)

where L is a loss function of the residuals between the picked phase arrival time ti and the theoretical
arrival time t̂ik from the k-th earthquake. Minimization of the loss function l gives an estimate of the
earthquake location and origin time (xk, yk, zk, tk). mk is the magnitude of the k-th earthquake. Ft represents
the function used to calculate theoretical phase arrival time t̂ik. Fa represents the function to calculate
theoretical phase amplitude âik based on earthquake magnitude mk, and F ′a represents the function to
estimate earthquake magnitude using phase amplitude. dik is the distance from the k-th earthquake to
i-th seismic station. Here we decouple the optimization of earthquake magnitude (Equation (9)) from the
optimization of earthquake location and time (Equation (8)). We use arrival times to constrain earthquake
location and use phase amplitudes to constrain earthquake magnitude. Note that although we decouple the
two optimizations, the precision matrix (Equation (11)) considers the correlation between arrival time and
amplitude residuals. In this way, both arrival time and amplitude information are used for the association
process of clustering picks among earthquakes (Equation (5)).

For the Bayesian Gaussian mixture model, we add another stage in the M-step to update the posterior
parameters:

αk = α0 +Nk (12)

βk = β0 +Nk (13)

mk =
1

βk
(β0m0 +Nkµk) (14)

W−1
k = W−1

0 +NkΛ
−1
k +

β0Nk
β0 +Nk

(µk −m0) (µk −m0)
T

(15)

νk = ν0 +Nk (16)

The E-step is modified as:

γik ∝ π̃kΛ̃
1/2
k exp

{
− D

2βk
− νk

2
(xn −mk)

T
Wk (xn −mk)

}
(17)

ln Λ̃k =

D∑
i=1

ψ

(
νk + 1− i

2

)
+D ln 2 + ln |Wk| (18)

ln π̃k = ψ (αk)− ψ(α̂) (19)
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where α̂ =
∑
k αk and ψ is the digamma function (Abramowitz & Stegun, 1964). The explanation of these

updating rules is detailed in Bishop (2006)’s textbook.

2.3 Earthquake location and magnitude estimation

The iteration of the EM algorithm both updates the clustering of picks based on earthquakes and optimizes
the corresponding earthquake source parameters. We focus on efficient association rather than accuracy of
earthquake source parameters, which can be realized once phases are properly associated, so we choose two
basic approaches to estimate approximate earthquake locations and magnitudes. We optimize Equation (8)
with a Huber loss function (Huber, 1992) as the target to reduce the effect of outliers:

Lδ(t− t̂) =

{
1
2 (t− t̂)2 for |t− t̂| ≤ δ
δ
(
|t− t̂| − 1

2δ
)
, otherwise.

(20)

where the hyper-parameter δ is set to 1 second in this test. For this proof-of-concept study, we use a uniform
velocity model to calculate the theoretical phase travel-time:

t̂ik(xk, yk, zk, tk) = Ft(xk, yk, zk, tk) =
dik
v

+ tk (21)

We then solve the minimization of Equation (8) using the BFGS algorithm (Fletcher, 2013). Advanced
earthquake location algorithms and complex velocity models can also be applied to solving Equation (8) but
at a higher computational cost.

To estimate earthquake magnitude in Equation (9), we use a linear relationship between log phase
amplitude and earthquake magnitude:

m̂ik = F ′a(ai, dik) = c0 + c1 log ai + c2 log dik (22)

Station correction terms can been added to consider site effects, i.e. site amplification factor (Münchmeyer
et al., 2020). Based on the measured phase amplitude type, e.g., displacement, peak ground velocity, or peak
ground acceleration, we can choose from among the Richter empirical magnitude relationship (Richter, 1935),
the Richter simulation-based prediction (Al-Ismail et al., 2020), or a simplified ground motion prediction
equations (Picozzi et al., 2018) for Equation (22).

3 Results

We demonstrate the performance of GaMMA first on a synthetic example and then on six days of data from
the 2019 Ridgecrest, California earthquake sequence.

3.1 Synthetic test

We first created a synthetic experiment to demonstrate the association results of GaMMA. We generated a
sequence of phases including both P- and S- phases from six earthquake events. To model the errors that
exist in real data, we added a 0.5s random error in the phase arrival times and scaled the phase amplitude
(peak ground velocity (PGV)) by a random factor between 0.3-3. We further added 30% false positive
picks at random times. In total, 178 P- and S-phase picks from 40 stations were used for association (left
panels of Figure 2). We used a simplified ground motion prediction equation of PGV from Picozzi et al.
(2018)’s work: logPGV = −2.175−1.68 logR+0.93M , where R is hypocentral distance and M is earthquake
magnitude. The ground truth result is shown in the middle panels of Figure 2. The symbol size represents
the relative size of phase amplitude and earthquake magnitude. We conducted two association tests using
in the first test only the arrival time information (Figure 2(a)) and in the second test both the arrival time
and amplitude information (Figure 2(b)). The same parameters and initialization were used for both cases.
For each we initialized the earthquake locations at the center of research area and uniformly distributed
the earthquake origin times. The association results are shown in the right panels of Figure 2. At least
five of the six true earthquakes are successfully associated in both tests. However, the sixth event in the
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lower right corner of Figure 2(a, b)(ii) (marked in brown) is successfully associated only when amplitudes
are used in conjunction with travel times (Figure 2(b)(iii)). Without amplitudes (Figure 2(a)(iii)), the result
includes multiple incorrect event associations marked by colors pink and purple. This occurs because the P-
phases of this event have arrival times that overlap with another distant event’s moveout (the event marked
in red) and could be mistakenly associated with this distant event. The extra information provided by
amplitude adds the necessary extra constraint on distance, in addition to time, that allows the sixth event
to be associated correctly. The test with amplitude information also correctly estimates the earthquake
magnitudes. This synthetic experiment demonstrates that GaMMA benefits from using both the time and
amplitude information in the association process.

3.2 Test on the 2019 Ridgecrest earthquake sequence

We next applied the GaMMA method to part of the 2019 Ridgecrest earthquake sequence to evaluate its
performance on a real earthquake sequence. We focused on the initial six days of the sequence when a large
number of earthquakes occurred and migrated from the southwest-striking fault to the northwest-striking
fault. We applied the PhaseNet model (W. Zhu & Beroza, 2018) to extract picks from waveforms of “HH,”
“BH,” “EH,” and “HN” channels of 23 stations of the “CI” network within 1 degree of the location (-
117.504W , 35.705N). We measured the PGV value over a 8s window after the phase arrival time. We
then associated the detected 651,994 P-picks and 686,291 S-picks using the GaMMA method. We used a
uniform velocity model with vp = 6 km/s and vs = vp/1.75 for earthquake location estimation and a simple
ground motion prediction equation as above for earthquake magnitude estimation. Because we used such
a simple moveout behavior, we do not expect the earthquake locations to be highly accurate, but they are
close enough for successful association, given the relatively short source-receiver distances involved.

Figure 3 shows the statistics of the 34,791 associated earthquakes from 598,218 P-picks and 633,010 S-
picks, leaving 53,776 P-picks and 53,281 S-picks unassociated. We also plotted the 9,873 earthquakes in the
SCSN catalog (SCEDC, 2013) for comparison. Both the associated earthquake locations and magnitudes
agree with the SCSN catalog (Figure 3(b) and (c)). Figure 4 shows an association example with a dense
sequence of picks occurring during a 8-minute period. GaMMA associates 32 events during this period, while
there are only 3 events in the SCSN catalog and 22 events in Ross, Idini, et al. (2019)’s template matching
catalog. Figure 5 shows the residual distributions of the associated earthquake location and magnitude
compared with the SCSN catalog. The statistics of mean, standard deviation (STD), and median absolute
error (MAE) can be found in Table 1. The covariance matrix in Figure 5(d) shows that most of the associated
earthquakes have small residuals of phase arrival time and amplitude, indicating that the phase picks match
well with the theoretical values determined by the causative earthquakes found by association. These location
and magnitude estimates can be further improved through the application of established earthquake location
and magnitude algorithms once the picks have been associated.

We compared the catalog generated by GaMMA with three state-of-art catalogs (Ross, Idini, et al.,
2019; Liu et al., 2020; Shelly, 2020). Table 2 shows the earthquake numbers in these catalogs during the
same period. In each of these cases we assumed these catalogs as ground truth and analyzed whether
the earthquakes they contain are also detected in GaMMA’s catalog within a 5s window. Based on the
recall rate, more than 95% of earthquakes in the catalogs of SCSN, Liu et al. (2020), and Shelly (2020)
are successfully associated by GaMMA. The low precision and F1-score are due to the large number of new
earthquakes associated by GaMMA. To verity whether these new earthquakes are reasonable, we compared
the magnitude distributions of the four catalogs (Figure 6). Most of these new earthquakes associated
by GaMMA have a small magnitude and follow the Gutenberg–Richter magnitude-frequency relationship
(Gutenberg, 1956), which suggests that they may be legitimate detections of real earthquakes. Figure 7
shows seismic waveforms of six newly detected events in Figure 4. We can see clear earthquake signals in
these examples. Meanwhile, these signals are relatively weak and can only be detected at a few stations.
Comprehensive comparison among these catalogs is a subject of future research.

4 Discussion

The Gaussian mixture model (GMM) is an effective and widely used unsupervised learning method for
clustering. We have combined the GMM with earthquake location and magnitude estimation to develop a

7



0 100 200 300 400 500
Time (s)

0

250

500

750

1000

1250

1500

1750

2000

Di
st

an
ce

 (k
m

)

(i)

P/S phase picks
Picks

0 100 200 300 400 500
Time (s)

(ii)

Ground truth
Associated picks
Earthquakes

0 100 200 300 400 500
Time (s)

(iii)

GaMMA prediction
Associated picks
Earthquakes

(a)

0 100 200 300 400 500
Time (s)

0

250

500

750

1000

1250

1500

1750

2000

Di
st

an
ce

 (k
m

)

(i)

P/S phase picks
Picks

0 100 200 300 400 500
Time (s)

(ii)

Ground truth
Associated picks
Earthquakes

0 100 200 300 400 500
Time (s)

(iii)

GaMMA prediction
Associated picks
Earthquakes

(b)

Figure 2: Synthetic example: (a) association using only time; (b) association using both time and amplitude.
The left panels plot the P- and S-phase picks. The middle panels are plots of the ground truth of association
result. The unassociated false positives are plotted in grey. The circle size represents phase amplitude and
the cross size represents earthquake magnitude. The right panels show the association results of the GaMMA
method. Note that some phases in the lower right corner of panel (a)(iii) are mis-associated with another
distant earthquake marked in red, because these phases can fit the moveout of both events. Amplitude
information provides an extra constraint in distance that resolves this ambiguity as shown in panel (b)(iii).

Table 1: Statistics of residual distributions in Figure 5

Error ∆x (km) ∆y (km) ∆z (km) ∆t (s) ∆m
Mean -0.85 0.45 10.75 -0.35 -0.064
STD 2.61 2.11 3.80 0.80 0.235
MAE 2.13 1.53 10.75 0.62 0.154
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Figure 3: Association results of the Ridgecrest dataset: (a) associated earthquake frequency, (b) associated
earthquake magnitude, (c) associated earthquake location. Note that because we use a uniform velocity
model during association, we do not expect the earthquake locations to be accurate, but they are close
enough for effective association.

Table 2: Comparison with other catalogs

Catalog
SCSN
(9,873)

Ross et al. (2019)
(29,384)

Liu et al. (2020)
(15,421)

Shelly (2020)
(16,778)

GaMMA
(34,791)

Recall 0.973 0.737 0.987 0.955
Precision 0.336 0.765 0.576 0.552
F1-score 0.499 0.751 0.727 0.699
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Figure 4: An example of association results from a dense sequence of phase picks starting at time 2019-07-
08T00:00:00 (UTC). GaMMA associates 32 events during this period, while there are only 3 events in the
SCSN catalog and 22 events in Ross et al. (2019)’s template matching catalog.

novel seismic phase association method (GaMMA). We treat earthquake phase association as a clustering
problem that aims to cluster phases based on the causative earthquakes. There are several advantageous
features of this unsupervised learning approach. First, GaMMA does not require grid-search or training
commonly used in other association methods. Second, GaMMA can flexibly consider phase arrival time,
amplitude, P/S type, and pick quality. While it is difficult for conventional association methods to consider
phase amplitude information, GaMMA can easily include phase amplitude information both to improve
association and to estimate earthquake magnitude. Finally, GaMMA optimizes the association result in a
probabilistic framework and estimates the covariance of time and amplitude residuals. These advantages
suggest that GaMMA is a promising approach for improved earthquake phase association, which is in turn
an important component of improved earthquake monitoring.

We note that there are several limitations of GaMMA that need to be considered. First, the time com-
plexity of the Gaussian mixture model scales with O(K ·N), where K is the number of clusters (earthquakes)
and N is the number of samples (phase picks), so the computational cost could become prohibitive for a long
earthquake sequence. In practice, however, it is straightforward and effective to segment a long sequence
into relatively shorter windows to improve the association speed by processing data in parallel, as phases
that are separated by a certain time interval (depending on the source-receiver distance) cannot come from a
single earthquake. In this work, we used the DBSCAN algorithm (Schubert et al., 2017) to divide picks into
sub-windows for association. The example in Figure 4 shows one sub-window from the seven hour sequence.
Second, the clustering results of the Gaussian mixture model are affected by the initialization state. In this
work, we used a simple strategy to initialize the earthquake locations uniformly in time and space. The
number of initialized earthquakes is proportional to the ratio between the number of phase picks divided and
the number of stations. This simple strategy worked well in the experiments described above. Improving
initialization strategies has the potential to increase the association performance further. Third, GaMMA
ensures that one pick is only assigned to one earthquake, while conventional back-projection methods may
attribute one pick to several earthquakes; however, GaMMA does not consider station-based constraints,
such as that only one pair of P- or S-picks from one station is assigned to each earthquake. McBrearty,
Gomberg, et al. (2019) accounts for this constraint using a constrained ILP (integer linear programming)
solution in their association method, and there is a strong correspondence between that technique and our
technique. One potential solution that would allow introduction of the station-based constraint is to add a
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(a)

(d)

(c)

(b)

Figure 5: Residuals of (a) associated earthquake location, (b) origin time, and (c) magnitude compared with
the SCSN catalog. (d) The components of the covariance matrix of travel-time and amplitude residuals
estimated by GaMMA.
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Figure 6: Comparison of magnitude distribution.

(a) (b) (c)

(d) (e) (f)

Figure 7: Waveforms of six newly detected events that are not Ross et al. (2019)’s template matching catalog
in Figure 4. M is the associated earthquake magnitude. Σ11 and Σ22 are the variances of associated phase
time and phase amplitude respectively. These earthquakes have a small magnitude and can only be detected
at a few stations. We can also see a missed earthquake event at around 2019-07-08T00:02:03 in (b).
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normalizing scheme similar to Equation (5) over stations. Finally, GaMMA assumes that the residuals of
pick time or amplitude follow a Gaussian distribution. This assumption is not accurate for false positive
picks. Adding a mixture component of background uniform distribution to account false positive picks might
be a helpful extension to be considered in future research (Melchior & Goulding, 2018).

5 Conclusions

We have developed a new association method based on a Bayesian Gaussian mixture model, GaMMA,
which solves the phase association problem as an unsupervised clustering problem. To consider the physical
constraints of phase arrival time and amplitude with earthquake location and magnitude, we incorporate
optimization of earthquake location and magnitude into the Expectation-Maximization (EM) algorithm
commonly used for solving the Gaussian mixture model. GaMMA, thus, can use both arrival time and
amplitude information to cluster picks from the same earthquake and simultaneously estimates both the
earthquake location and magnitude from each cluster of picks. The experiment results on both synthetic
tests and the 2019 Ridgecrest earthquake sequence demonstrate the effectiveness of the GaMMA method in
associating a dense sequence of P- and S-phase picks. GaMMA provides an unsupervised learning approach
to solve the challenging phase association problem resulting from the increasingly wide applications of deep-
learning-based phase pickers. The improved performance of GaMMA can associate more earthquakes from
massive automatic phase picks, thus enriching earthquake catalogs and improving earthquake monitoring.
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