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Abstract We study dynamic rupture propagation on flat faults using 2D plane
strain models featuring strongly rate-weakening fault friction (in a rate-and-state
framework) and off-fault Drucker–Prager viscoplasticity. Plastic deformation bounds
stresses near the rupture front and limits slip velocities to ∼10 m=s, a bound expected
to be independent of earthquake magnitude. As originally shown for ruptures in an
elastic medium (Zheng and Rice, 1998), a consequence of strongly rate-weakening
friction is the existence of a critical background stress level at which self-sustaining
rupture propagation, in the form of self-healing slip pulses, is just barely possible. At
higher background stress levels, ruptures are cracklike. This phenomenology remains
unchanged when allowing for off-fault plasticity, but the critical stress level is
increased. The increase depends on the extent and magnitude of plastic deformation,
which is influenced by the orientation of the initial stress field and the proximity of the
initial stress state to the yield surface.

Introduction

As recent laboratory experiments have shown, the fric-
tional resistance toslipdecreasesdramaticallyatcoseismic slip
rates (Tsutsumi and Shimamoto, 1997; Tullis and Goldsby,
2003a, 2003b; Prakash and Yuan, 2004; Di Toro et al.,
2004; Hirose and Shimamoto, 2005; Beeler et al., 2008). This
is referred to as dynamic weakening. One consequence of
strongly rate-weakening friction laws is that for a range of
initial stress conditions, ruptures occur as self-healing slip
pulses instead of as cracks (Cochard and Madariaga, 1994,
1996; Beeler andTullis, 1996; Zheng andRice, 1998; Lapusta
andRice, 2003; Noda et al., 2009). The same phenomenology
applies when other dynamic weakening mechanisms, such as
thermal pressurization of pore fluids, act in concert with
strongly rate-weakening friction laws (Noda et al., 2009).

For uniform prestress conditions, the rupture mode is
primarily determined by the background shear stress on the
fault, τb. According to the understressing theory of Zheng
and Rice (1998) for ruptures in elastic solids, there exists a
critical background stress level, τ pulse, below which ruptures
cannot take the form of cracks. No conclusive statement can
be made about rupture mode for τb > τpulse, but it is seen in
numerical experiments that self-sustaining slip pulses occur
within a narrow range of τb around τ pulse (Zheng and Rice,
1998; Noda et al., 2009). The range is generally around
10% of τ pulse for the friction law used in this work; a more
complete theory that helps to quantify the occurrence of
pulses is given by Zheng and Rice (1998). This phenome-
nology is also observed for shear ruptures in the laboratory
(Lykotrafitis et al., 2006). It is expected that natural faults

are most likely to host ruptures soon after stresses on the fault
first reach the minimum level that permits propagation,
provided that nucleation events are sufficiently frequent.

Several lines of reasoning suggest that natural earth-
quakes occur in the self-healing rupture mode. Seismic inver-
sions show that the duration of slip at a particular point on
the fault is much shorter than expected from cracklike
models (Heaton, 1990). In their simulations of ruptures with
laboratory-based friction law parameters, Noda et al. (2009)
have also found that only pulselike ruptures exhibit the
observed scaling between slip and rupture length. Cracklike
ruptures produce about an order ofmagnitude toomuch of slip
for a given rupture length.

Additional evidence supporting dynamic weakening of
natural faults comes from measurements of stress levels and
heat flow around major faults. For laboratory-based param-
eters, the critical stress level separating pulses and cracks in
an elastic medium is ∼0:2–0:3 times the effective normal
stress, far less than initial stress levels that are conventionally
assumed in rupture modeling (e.g., Harris et al., 2009).
Furthermore, almost all slip occurs at even lower stress levels
than the already low τb, thus minimizing the production
of heat during frictional sliding. Dynamic weakening thus
offers a possible explanation for the lack of measurable heat
flow anomalies around the San Andreas fault (Brune et al.,
1969; Lachenbruch and Sass, 1980; Saffer et al., 2003) and is
consistent with direct measurements and inferences of the
stress state surrounding the San Andreas fault (Zoback et al.,
1987; Hardebeck and Michael, 2004; Hickman and Zoback,
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2004). A more detailed discussion of these issues is given by
Noda et al. (2009).

Existing theory and models dealing with strongly rate-
weakening friction laws have thus far been restricted to rup-
tures in an elastic medium. But those models predict extreme
stress conditions and unreasonably high slip velocities near
the rupture front. For example, the simulations by Noda et al.
(2009) predict peak slip velocities exceeding 100 m=s and
fault-parallel strains of order 0.1. Prior to these conditions
being reached, the material surrounding the fault will begin
to deform inelastically with associated dissipation of energy.

The occurrence of inelastic deformation is expected on
the basis of fault zone structure. The central fault core,
consisting of ultra-cataclasites that host the slip surface, is
surrounded by a broader damage zone extending ∼10–100 m
from the core. Rocks within the damage zone exhibit frac-
tures at a variety of scales ranging from microcracks to
macroscopic secondary faults showing evidence of shear slip
and/or opening. Whether damage zones are formed by the
stress concentrations around propagating rupture fronts or
are relicts of the long-term fault maturation process through
linkage of joints and microcracks remains unresolved.
Mitchell and Faulkner (2009) and references therein provide
a thorough geological characterization of fault damage zones
and discussion of these issues.

Regardless of how damage zones form, the fractures
contained within them will be activated by sufficiently high
stresses during dynamic rupture along the main fault. We
account for the associated inelastic deformation using the
framework of continuum plasticity, with appropriately
chosen yield functions and flow rules (such as the Mohr–
Coulomb or Drucker–Prager formulations) (e.g., Rudnicki
and Rice, 1975; Jaeger et al., 2007). Recently these have
been used in earthquake models (Andrews, 2005; Ben-Zion
and Shi, 2005; Duan and Day, 2008; Templeton and Rice,
2008; Viesca et al., 2008; Ma and Beroza, 2008).

The purpose of this study is to investigate how rupture
dynamics with strongly rate-weakening friction laws (but
neglecting thermal pressurization), and in particular the
understressing theory of Zheng and Rice (1998), generalizes
when accounting for off-fault inelastic deformation. Further-
more, while in this study our focus is on rupture propagation
on flat faults, we consider in a companion study (Dunham
et al., 2011) the influence of fault roughness. When model-
ing slip on nonplanar surfaces, it is essential to consider
plasticity to bound the otherwise unreasonable stress pertur-
bations that develop around bends in the fault profile. The
present study thus provides the basic framework upon which
the investigation of rough faults can be built.

Model Description

We study rupture propagation using 2D plane strain
models (Fig. 1). The fault surface is the plane y � 0, which
obeys a strongly rate-weakening friction law encapsulated in a
rate-and-state framework. We allow for inelastic deformation

of the material surrounding the fault using Drucker–Prager
viscoplasticity. The medium is assumed to be homoge-
neous and infinite in extent, and is governed by momentum
conservation,

ρ
∂vi
∂t � ∂σij

∂xj ; (1)

for density ρ, particle velocity vi, stress σij, and the
constitutive response,

∂σij

∂t � Lijkl�_ϵkl � _ϵpkl�: (2)

Lijkl is the tensor of elastic moduli, _ϵij � �1=2��∂vi=∂xj�
∂vj=∂xi� is the total strain rate, and _ϵpij is the plastic strain rate.
The elastic strain rate is thus _ϵkl � _ϵpkl, such that (2) is simply
the time derivative of Hooke’s law. Assuming isotropic elastic
properties, Lijkl_ϵkl � K_ϵkkδij � 2G�_ϵij � δij_ϵkk=3� for bulk
modulus K and shear modulus G. The S wave speed is cs ����������
G=ρ

p
.We consider a Poisson solid, for which Poisson’s ratio

is ν � 1=4, and the P wave speed is cp � ���
3

p
cs. The equa-

tions governing the evolution of plastic strain will be dis-
cussed shortly.

Strongly Velocity-Weakening Fault Friction

The steady state friction coefficient used in this work
features the extreme velocity-weakening response seen in
recent experiments (Tsutsumi and Shimamoto, 1997; Tullis
and Goldsby 2003a, 2003b; Prakash and Yuan, 2004; Di
Toro et al., 2004; Hirose and Shimamoto, 2005; Beeler et al.,
2008). The particular form we use is

fss�V� � fw � fLV�V� � fw
�1� �V=Vw�n�1=n

; (3)

with slip velocity V, weakening velocity Vw, fully weakened
friction coefficient fw, and a conventional low-velocity fric-
tion coefficient

fLV�V� � f0 � �b � a� ln�V=V0�: (4)
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Figure 1. Plane strain model with right-lateral slip on a planar
fault (y � 0). The medium is loaded with a spatially uniform stress
state, with the direction of maximum compression inclined at the
angle Ψ to the fault.
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Here, a is the direct-effect parameter, b is the state-evolution
parameter, and f0 and V0 are the reference friction coeffi-
cient and slip velocity, respectively. The form of equation (3)
is such that fss�V�≈ fLV�V� for V ≪ Vw and fss�V�≈ fw
for V ≫ Vw. Laboratory experiments suggest that
Vw ∼ 0:1 m=s and fw ∼ 0:2. The abruptness of the transition
between the two limits is controlled by the parameter n; the
original flash-heating model (Rice, 1999; Beeler and Tullis,
2003; Rice, 2006; Beeler et al., 2008) emerges in the
n → ∞ limit. Finite values of n smooth the onset of strongly
rate-weakening behavior. We prefer, for numerical accuracy,
to have a smooth transition, so we choose n � 8 in this work.

Purely rate-weakening friction laws cannot be used
because they can lead to mathematically ill-posed problems
or unphysical phenomena (Rice et al., 2001). Instead, we
follow Noda et al. (2009) by encapsulating the steady state
response (equation 3) in the experimentally motivated frame-
work of rate-and-state friction in the slip law form (Rice,
1983):

f�V;Θ� � aarcsinh
�

V

2V0

eΘ=a

�
(5)

and

dΘ
dt

� �V

L
�f�V;Θ� � fss�V��; (6)

in whichΘ is the state variable. The fault strength τ , which is
always equal to the shear stress acting on the fault, is

τ � f�V;Θ�σ; (7)

where σ is the normal stress on the fault (taken to be positive
in compression).

Off-Fault Inelastic Response

The off-fault material is idealized as a Drucker–Prager
elastic-plastic solid; we consider both rate-independent plas-
ticity and viscoplasticity. The Drucker–Prager model, which
is closely related to the Mohr–Coulomb model, describes
inelastic deformation in brittle solids arising from frictional
sliding of fractures and microcracks (Rudnicki and Rice,
1975; Templeton and Rice, 2008). The shear yield stress
depends on the mean stress, with sensitivity determined by
the internal friction coefficient of the material. It is also pos-
sible to include cohesion, but we neglect it in this study under
the assumption that the material surrounding the fault has
been highly damaged in previous events. The yield function
is thus

F�σij� � �τ � μσkk=3; (8)

in which �τ � ����������������
sijsij=2

p
is the second invariant of the devia-

toric stress tensor sij � σij � �σkk=3�δij, σkk=3 is the mean
stress, and μ is related to the internal friction coefficient.
When F�σij� < 0, the material response is elastic. See
Figure 2a.

We do not explicitly consider pore fluids in this study,
though the stresses appearing in equations (7) and (8) should
be the effective stresses if the medium is saturated with fluids.
However, Viesca et al. (2008) have shown that the undrained
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Figure 2. (a) Drucker–Prager yield condition with no cohesion.
The initial stress state is marked with a filled circle. (b) Viscoplastic
stress-strain history at a constant strain rate, _γ, for the case of pure
shear deformation at constant mean stress. Response is linear elastic
until stresses reach the yield stress, �μσ0

kk=3. Stresses then exceed
yield; asymptotically, the additional stress above yield is η _γ for
viscosity η. (c) Relaxation of stress to the yield surface, over a time-
scale ∼η=G (G is shear modulus), in the absence of additional
strain.

2298 E. M. Dunham, D. Belanger, L. Cong, and J. E. Kozdon



poroelastic response can be accounted for in exactly the
framework we use, provided that certain parameters in the
yield function and flow rule are modified appropriately.

A scalar measure of the shear plastic strain rate is the
equivalent plastic strain rate, λ, which is defined as λ ���������������
2 _epij _e

p
ij

q
for deviatoric plastic strain rate _epij � _ϵpij�

�_ϵpkk=3�δij. The equivalent plastic strain, γp, is thus defined
through λ � dγp=dt. During rate-independent plastic flow,
λ is determined such that stresses lie exactly on the yield
surface, that is, F�σij� � 0. Plastic flow is partitioned
between the various components of the plastic strain rate ten-
sor by the flow rule

_ϵpij � λPij�σij�; (9)

with Pij�σij� � sij=�2�τ� � �β=3�δij; β determines the
degree of plastic dilatancy, that is, the ratio of volumetric to
shear plastic strain.

Under certain stress conditions, a material undergoing
plastic deformation may become unstable to shear localiza-
tion (Rudnicki and Rice, 1975). Localization is commonly
observed in brittle materials loaded under compression.
However, the rate-independent form of Drucker–Prager plas-
ticity is known to be mathematically ill-posed if conditions
permit localization, with the consequence that numerical
solutions of these equations will not converge with mesh
refinement. This is clearly illustrated in the context of
dynamic rupture propagation by Templeton and Rice (2008).
Andrews (2005) used a numerical viscoplastic-type regular-
ization algorithm to obtain solutions free of localization.
Others have simply employed the rate-independent form
and acknowledged that localization in their numerical solu-
tions was limited by the employed grid spacing (Duan and
Day, 2008; Templeton and Rice, 2008; Viesca et al., 2008).

In our work, we adopt a formulation of viscoplasticity
that is known to be well-posed mathematically (Perzyna,
1966; Loret and Prevost, 1990; Sluys and de Borst, 1992).
The formulation permits localization, but limits the localiza-
tion process so that numerical solutions converge with mesh
refinement. In this model, stresses are permitted to exceed
the yield surface, and the additional stress above the yield
surface (a scalar measure of which is F�σij� > 0) obeys a
viscous rheology. Stresses that exceed the yield condition
relax back toward the yield surface in the absence of addi-
tional loading, and asymptotically flow at a stress level that
increases with the applied strain rate. At a sufficiently high
strain rate, the initial response is effectively elastic.

Mathematically, during plastic flow the yield condition
F�σij� � 0 is replaced with

ηλ � F�σij� (10)

for viscosity η. Figure 2 illustrates properties of the visco-
plastic response. The viscoplastic relaxation times we use
in this work are chosen to be smaller than any other charac-

teristic timescale in our problem, but large enough to be
resolvable by the finite timestep used to integrate the discre-
tized equations. Our choice of this rheology and the specific
parameter values is motivated by the necessity of well-
posedness for convergent numerical results. Efforts, such
as those by Bhat et al. (2010), to formulate physically based
constitutive laws that capture the rate dependence of inelastic
deformation in brittle materials are needed.

Substituting the flow rule of equation (9) into Hooke’s
law in equation (2), and writing the resulting equation along
with equation (10), gives the complete set of equations
that determine the evolution of stress for a given strain rate
history:

∂σij

∂t � Lijkl�_ϵkl � hλiPkl�σij�� (11)

and

ηλ � F�σij�; (12)

where hλi � λ for λ > 0 and zero otherwise (this formula-
tion simply accounts for the lack of plastic flow when
stresses are below yield).

The numerical method used to solve these equations is
described in the Appendix.

Initial Conditions and Model Parameters

We assume a spatially uniform prestress field, σ0
ij. We

fix σ0
yy � �σ0, the stress component responsible for the

normal stress acting on a planar fault, and vary both σ0
xy �

τb and σ0
xx. The latter is specified in terms of the angle, Ψ,

between the maximum principal compressive stress and the
fault surface y � 0, defined through the relation

σ0
xx �

�
1 � 2σ0

xy

σ0
yy tan�2Ψ�

�
σ0
yy; (13)

(see Fig. 1). Following Templeton and Rice (2008), the
initial out-of-plane normal stress is taken to be the average
of the two in-plane normal stresses: σ0

zz � �σ0
xx � σ0

yy�=2.
This stress component is only relevant during plastic flow
and, for this particular choice, the Drucker–Prager yield
function coincides with the Mohr–Coulomb condition (a cor-
respondence that generally ceases once plastic flow ensues).

As given in Table 1, the material properties and initial
stresses are representative of those at seismogenic depths,
and parameters of the friction law (with the exception of
state-evolution distance L) are similar to those used by Noda
et al. (2009), who selected them from a compilation of
laboratory data. The state-evolution distance, L, provides a
slip scale that is used to nondimensionalize lengths and times
as discussed shortly. For estimating hazard from large
earthquakes, L is typically regarded as a free parameter
that is selected to model rupture propagation at a desired
scale. With this in mind, we provide dimensionalized units
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corresponding to faults of length ∼100 km, though the requi-
site value of L is far larger than that inferred from laboratory
experiments.

For the steady state friction law (3) with our chosen
parameters, the critical background stress τpulse, as defined
by Zheng and Rice (1998), is τ pulse � 0:2429σ0

(� 30:6059 MPa for σ0 � 126 MPa). The corresponding
characteristic slip velocity during steady sliding, Vpulse, is
that at the intersection of fss�V�σ0 and the radiation-
damping line just tangent to this curve: Vpulse � 1:5474 m=s.

While rate-and-state friction laws do not have well-
defined peak and residual strengths, τp and τ r, we can
estimate them as follows. At the rupture front, the shear
stress is assumed to increase from the background value, τb,
to the peak strength, τp, with negligible state evolution. The
direct-effect response gives

τp ≈ σ0�a ln�Vp=V0� �Θini� � τb � aσ0 ln�Vp=V ini�;
(14)

whereΘini and V ini are the initial state variable and initial slip
velocity, respectively, and Vp is the peak slip velocity at the
rupture front. The residual strength is approximated as

τ r � fss�Vpulse�σ0; (15)

giving τ r � 0:1864σ0 (� 23:4864 MPa).
Next we relate Vp to the strength drop, τp � τ r, assum-

ing a radiation-damping elastodynamic response:

Vp ≈ 2cs�τp � τ r�=G: (16)

We fix the static friction coefficient, τp=σ0, at 0.7 for all
simulations by selecting Θini � 0:4367.

Assuming an exponential slip-weakening process at the
rupture front (a fairly good approximation for the slip law),
we can estimate the fracture energy as Γ≈ �τp � τ r�L. By
holding τp and τ r fixed as we vary τb, we also roughly pre-
serve the spatial extent of the state-evolution region at the
rupture front in the limit of vanishing rupture velocity, R0,
which we approximate using the formula (for Poisson’s ratio
of 1=4) given by Palmer and Rice (1973):

R0 ≈ 3π
4

GΓ
�τp � τ r�2 ≈

3π
4

GL

τp � τ r
: (17)

We nondimensionalize length and timescales using R0 and
R0=cs, respectively, but we also provide dimensional scales
in our plots by choosing L such that R0 � 300 m. Particle
and slip velocities are normalized by csΔτ=G and 2csΔτ=G,
respectively, where Δτ � τ pulse � τ r.

We use a uniform grid spacing Δx � R0=16 (and in
some cases R0=32 or R0=64 as part of refinement tests, see
insets in Fig. 3). This prevents the contamination of our
results by spurious oscillations. The computational domain,
at the lowest resolution, is spanned by 4801 × 2402 grid
points, and is terminated with absorbing boundary conditions
(specifically, the amplitudes of the characteristic variables
associated with waves entering the computational domain
normal to the boundary are set to zero).

We use a nonzero η in the viscoplastic rheology to
ensure well-posed numerical simulations that converge with
mesh refinement. The model, as defined, has two character-
istic timescales: the viscoplastic relaxation time, η=G, and

Table 1
Physical Properties and Model Parameters

Parameter Symbol Value

Material Properties
Shear modulus G 32.04 GPa
Shear wave speed cs 3:464 km=s
Poisson’s ratio ν 0.25
Drucker–Prager internal friction parameter μ sin�arctan�0:7�� � 0:5735

Drucker–Prager plastic dilatancy parameter β μ=2 � 0:2867
Drucker–Prager viscosity η 0:1GR0=cs � 0:2775 GPa · s

Friction-Law Parameters
Direct effect parameter a 0.016
Evolution effect parameter b 0.02
Reference slip velocity V0 1 μm=s
Steady state friction coefficient at V0 f0 0.7
State-evolution distance L 0.2572 m
Weakening slip velocity Vw 0:17 m=s
Fully weakened friction coefficient fw 0.13

Initial Conditions
Normal stress on flat fault σ0 126 MPa
Background shear stress τb variable
Initial state variable Θ�t � 0� 0.4367

Other
Characteristic extent of state-evolution region R0 300 m
Critical background shear stress τpulse 0:2429σ0 � 30:6059 MPa
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the characteristic wave transit time across the state-evolution
region, R0=cs. The latter also characterizes the timescale over
which frictional weakening occurs at the rupture front. When
the dimensionless ratio ξ � �η=G�=�R0=cs� ≪ 1, then plas-
ticity is important even during the rapid weakening process at
the rupture front. Otherwise, the material response around
the rupture front is effectively elastic. Except for a brief
exploration of the role this parameter plays in rupture behav-
ior, we use ξ � 0:1.

Ruptures are nucleated by instantaneously applying, at
t � 0, a Gaussian-shaped shear stress perturbation on the
fault centered at x � 0. The amplitude of the nucleating
perturbation is 2τ pulse; its width (the standard deviation of
the Gaussian profile) is R0. Ruptures are made unilateral by
making the fault velocity-strengthening some distance to the
left of the nucleation zone. Specifically, we increase a line-
arly with distance from 0.016 to 0.024 in the region
�40R0 < x < �20R0 and set a � 0:024 for x < �40R0;
Vw is similarly increased by 5 m=s over the same region.

As τb is varied relative to τ pulse in the simulations, we
keep the static friction coefficient, τp=σ0, fixed at 0.7 by
varying V ini. The initial velocity field in the medium is
piecewise constant (it is discontinuous across y � 0) and
solely in the x direction; that is, we set vx�t � 0� �
�V ini=2 for the material above and below the fault, respec-
tively, and vy�t � 0� � 0. The initial slip velocity, together
with the resolved shear and normal stress, is required to
satisfy the friction law (7). That equation is solved for the
initial value of the state variable.

Ruptures on Flat Faults

In simulations of rupture propagation in linear elastic
solids with strongly rate-weakening friction laws (e.g., Noda
et al., 2009), slip velocities can become extremely large
(∼300 m=s) at the rupture front; these are associated with
fault-parallel strains of ∼0.1 and unreasonably large fault-
parallel stresses. The occurrence of off-fault plasticity limits
these stresses, and peak slip velocities drop to ∼10 m=s,

consistent with the estimates of Sleep (2010). To the extent
that our simulations indicate self-similar rupture growth, this
bound is expected to be independent of earthquake magni-
tude. Figure 3 shows representative time histories of slip
velocity and shear stress at a point on the fault for both elastic
and elastic-viscoplastic off-fault response.

We next explore the role of the prestress orientation, Ψ,
and background stress, τb, on the distribution of plastic strain
and rupture mode. As found by Templeton and Rice (2008)
and Viesca et al. (2008) in their studies with slip-weakening
friction, plastic strain accumulates almost instantaneously
across a discontinuity surface emanating from the rupture
front. This is also true for our models with strongly velocity-
weakening rate-and-state friction, though the jump is
smoothed by the finite viscoplastic relaxation time. Figure 4
confirms another conclusion of Templeton and Rice (2008)
and Viesca et al. (2008): Unless Ψ is quite low, plastic strain
occurs on the extensional side of the fault (specifically, the
side of the fault for which the direction of fault-parallel
displacement is opposite to the propagation direction).

As τb is increased, self-sustaining ruptures are first seen
for τb slightly larger than τ pulse; they take the form of slip
pulses. At higher levels of τb, the rupture mode is expected
to switch to cracklike. This transition does occur, but is pre-
ceded by another form of slip pulse that is generated in
response to arrest waves triggered by the forced termination
of the rupture front propagating in the�x direction as it enters
the velocity-strengthening portion of the fault. This mecha-
nismforgeneratingpulselike ruptures iswell known (Johnson,
1990). These rupture modes are illustrated in Figure 5.

We next quantify how the critical stress level required
for rupture propagation is altered by plasticity. This is done
by varying Ψ and determining, for each Ψ, the minimum τb
(to an accuracy of about 0.5 MPa) at which self-sustaining
propagation is first observed. The results, presented in
Figure 6, illustrate that the critical stress level increases
with Ψ, particularly for Ψ > 40°. This can be understood
as follows.
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Figure 3. Time histories of (a) slip velocity and (b) shear stress for self-healing slip pulses in elastic and elastic-viscoplastic solids,
at x � 87:4R0 (� 26:25 km), for Ψ � 50° and τb � 0:2857σ0. Time is relative to rupture front arrival time, trup�x� (defined as the time
at which slip first exceeds the state-evolution distance). Insets compare elastic-viscoplastic solutions at different levels of numerical resolu-
tion; the L2 (root mean square) error of the solution with Δx � R0=16 is about 1%. The color version of this figure is available only in the
electronic edition.
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Varying Ψ alters the proximity of the prestress state to
the yield surface. Following Templeton and Rice (2008), we
quantify this as the closeness-to-failure ratio �τ 0=��μσ0

kk�, as

illustrated graphically in Figure 2a. Figure 7a shows this ratio
for σ0

xy � τpulse as a function of Ψ. Similarly, prestress con-
ditions in ��τ ;�σkk=3�-space are shown in Figure 7b for the
two ruptures in Figure 4. For Ψ below ≈5° or above ≈70°,
the prestress state violates the yield condition; such prestress
states cannot exist.

Numerical experiments indicate that as Ψ approaches
≈70°, the extent of the region experiencing plastic strain
increases greatly. This is because only slight stress perturba-
tions (of the proper sign) are required to induce plastic flow.
The associated increase of energy dissipation during plastic
flow explains why τb must be substantially higher for self-
sustaining rupture propagation at high values ofΨ, as seen in
Figure 6.

By considering the prestress state alone, one might
expect this effect to also occur for very low values of Ψ,
but this is not seen. We can understand why by considering
how stress in the vicinity of the rupture front evolves in
��τ ;�σkk=3�-space as the rupture passes. The stress is the

Figure 4. Distribution of plastic strain, γp, for (a) Ψ � 10° and (b) Ψ � 30°, at time t � 216:5R0=cs (� 18:75 s). Except for very small
Ψ, plastic strain occurs exclusively in the extensional quadrants (slip is right-lateral). The extent of plastic strain increases for Ψ > 30° (not
shown). Plastic strain can be normalized by τp=2G � 1:38 × 10�3. For both cases, the background stress, τb, is slightly above that required
for self-sustaining slip-pulse rupture propagation. Note factor of 20 exaggeration in y direction. The color version of this figure is available
only in the electronic edition.

τb/σ0 = 

0.4127
0.3492
0.2857
0.2698

x (km)

sl
ip

, δ
 (

m
)

−30 −15 0 15 30 45 60
0

10

20

30

0

38.88

77.76

116.6
−100 −50 0 50 100 150 200

x/R0

y/R0

δ/L

(a)

(b)

−9 −6 −3 0 3
0

1

2

3
×10−3

y (km)

pl
as

tic
 s

tr
ai

n,
 γ

 p  

−10 10−20 0

γ 
p /

(τ
p /

2G
)

0

0.73

1.45

2.18
Ψ = 50˚

Ψ = 50˚

τb/σ0 = 

0.4127
0.3492
0.2857

x = 30 km

   = 100R0

Figure 5. (a) Profiles of slip with time interval 17:32R0=cs
(� 1:5 s) for Ψ � 50°, illustrating the transition in rupture mode
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this, ruptures take the form of self-healing slip pulses
(τb=σ0 � 0:2857 and 0.3492 in figure). At higher τb=σ0, ruptures
would be cracklike for uniform friction-law parameters, but arrest
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At even higher τb=σ0, ruptures become cracks (not shown).
(b) Cross-sectional profile of plastic strain at x � 100R0

(� 30 km); the spatial extent of plastic strain is roughly propor-
tional to slip. The color version of this figure is available only
in the electronic edition.
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sum of the prestress and the stress perturbation due to slip:
σij � σ0

ij �Δσij. While σ0
ij depends on Ψ, we assume for

purposes of comparison that Δσij does not. A simple model
for Δσij is the nonsingular semi-infinite steady state crack
model of Poliakov et al. (2002), which features a linear
decrease in stress from τp to τ r over a distance R. The
off-fault response is linear elastic. We calculate the stress
histories predicted by this model at points on either side
of the fault. These are shown in Figure 7b for prestress states
corresponding to the two ruptures shown in Figure 4. The
histories are quite similar to those observed in the actual
simulations.

For Ψ � 30°, a point on the extensional side of the rup-
ture experiences increasing �τ and decreasing�σkk=3, both of
which bring that point closer to the yield surface. On the
compressional side of the fault, while �τ increases so does
�σkk=3, and the yield condition is never reached. The stress
histories are similar for larger values of Ψ. Plasticity is
consequently limited to the extensional side of the rupture,
consistent with Figure 4b.

In contrast, for Ψ � 10° a point on the compressional
side of the rupture is driven to failure by a large increase
in �τ ; the increase in �σkk=3 is insufficient to prevent plas-
ticity. On the extensional side of the fault, the decrease in
�σkk=3 is not accompanied by the increase in �τ that occurs
for Ψ ≥ 30°, and the yield surface is not reached. Plasticity
occurs on the compressional side of the fault for these very
low values of Ψ, as seen in Figure 4a.

Decomposing the mean stress into the initial mean stress
and a perturbation, σkk=3 � σ0

kk=3�Δσkk=3, we see that
the perturbation to mean stress depends only on Δσij and
is independent of the prestress. However, if we perform a
similar decomposition for the deviatoric stress invariant,
�τ � �τ 0 �Δ�τ , the nonlinearity of �τ (as defined following
equation 8) introduces a dependence of Δ�τ on Ψ. This
explains why Δ�τ is quite different for the two values of Ψ
shown in Figure 7b, while Δσkk=3 is identical. Further dis-
cussions of stress fields near the tips of propagating ruptures
are given by Poliakov et al. (2002) and Rice et al. (2005).

We close with a discussion of the influence of the vis-
coplastic relaxation time, η=G, relative to the wave transit
time across the state-evolution region (which is also the
state-evolution time), R0=cs, on rupture behavior. Figure 8
shows the distribution of plastic strain for several values
of the dimensionless ratio ξ � �η=G�=�R0=cs�. We set
β � 0 (no plastic dilatancy) in order to promote shear loca-
lization (Templeton and Rice, 2008). When ξ ≪ 1, the
off-fault response is effectively rate-independent, and shear
localization features are observed that are sensitive to the
numerical discretization employed (a manifestation of ill-
posedness of the problem). For these specific parameters,
the localization features are present for ξ ≤ 0:03 but vanish
abruptly for ξ ≥ 0:04. When ξ ≫ 1, the material response
around the rupture front is effectively elastic, and both the
rupture speed and peak slip velocity increase. The simulation
results in this work (with the exception of those in Fig. 8)
are for ξ � 0:1. Plasticity is thus important within the state-
evolution region at the rupture front, but there are neither
localization features nor issues with convergence of the
numerical solution under mesh refinement.

Conclusions

The occurrence of off-fault plasticity influences rupture
dynamics on strongly rate-weakening faults in several ways.
Stresses and slip velocities are bound to reasonable values at
the rupture front, and there is an associated increase in the
amount of energy dissipated during propagation. The loca-
tion and extent of plastic strain is consistent with that found
by Templeton and Rice (2008), in that it occurs almost
exclusively on the extensional side of the fault except when
the maximum principal compressive stress is inclined at a
very shallow angle to the fault surface.

Strongly rate-weakening friction laws give rise to self-
healing slip pulses in elastic solids for background stresses
around a critical level (Zheng and Rice, 1998). We find that
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Figure 7. (a) Proximity of prestress state to yield surface, as
defined by Templeton and Rice (2008); shown for σ0

xy � τpulse.
Prestress states having Ψ less than≈5° or greater than≈70° violate
the yield condition and are thus precluded. (b) Prestress and yield
surface in ��τ ;�σkk=3�-space, for σ0

xy � 0:2540σ0 as in Figure 4.
Also shown are predicted stress histories at points in extensional
(dashed) and compressional (solid) quadrants using semi-infinite
crack model of Poliakov et al. (2002) for Ψ � 10° and 30°. Arrows
indicate direction of increasing time. Extent of strength drop region
at rupture front is R; rupture velocity is vr � 0:85cs. The color ver-
sion of this figure is available only in the electronic edition.
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this remains the case when plasticity is taken into account,
but the critical stress level is increased by plasticity. The
magnitude of the increase depends strongly on the prestress
orientation, in particular when the angle between the max-
imum compressive stress and the fault surface exceeds
40°–50°.

This study is the first of a two-part exploration of rupture
dynamics on strongly rate-weakening faults with off-fault
plasticity. The second part (Dunham et al., 2011) extends
this work to nonplanar faults, with a particular emphasis on
understanding the connection between fault roughness and
high-frequency ground motion.
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Appendix

Numerical Method

The governing equations, (1), (11), and (12), form a
system of first-order partial differential equations with an
algebraic constraint. For uniform material properties, they
can be written as

∂q
∂t �

∂Gx�q�
∂x � ∂Gy�q�

∂y � hλiS�q�; (A1)

ηλ � F�q�: (A2)

Here, q is a vector containing velocities and stresses. The
“fluxes” Gi (so-called because ∂Gx�q�=∂x� ∂Gy�q�=∂y
is the divergence of the flux) are functions of material proper-
ties and q, and hλiS�q� is a source term that is nonzero only
during plastic flow.

The domain is discretized with a uniform mesh, and all
components of velocity and stress are defined at each grid
point (i.e., we do not use a staggered grid). Having all of
the stress components at the same location greatly simplifies
integration of the plasticity equations. The spatial derivatives
are approximated using a summation-by-parts finite differ-
ence method (Kreiss and Scherer, 1974, 1977; Strand, 1994;
Mattsson and Nordström, 2004); boundary conditions are
enforced weakly using the simultaneous approximation term
technique (Carpenter et al., 1994). This method is provably
stable, even with nonlinear rate-and-state friction laws, and
the scheme is high-order accurate (Kozdon et al., 2009).
Specifically, the method is fifth-order accurate in the interior
and third-order accurate near the boundaries; the entire
scheme is globally fourth-order accurate (Gustafsson, 1981).
A detailed description of the method for linear elasticity is
given by Kozdon et al. (2011).

Timestepping equations (A1) and (A2) present a partic-
ular challenge due to the algebraic constraint. For simplicity
of notation, we write these equations, after discretization of
the spatial derivative terms and incorporation of the bound-
ary conditions through penalty terms [both are combined into
the single term E�Q�]:

dQ

dt
� E�Q� � hΛiS�Q� (A3)

and

ηΛ � F�Q�; (A4)

where Q is a vector containing the values of velocity and
stress at all grid points and similarly for Λ. The equations
are identified as a system of differential-algebraic equations
(DAE). The particular form for rate-independent plasticity,
which arises when η � 0, is that of an index 2 DAE (Hairer
and Wanner, 2004). The choice of η > 0 can be viewed
mathematically as a regularization procedure (Ascher and
Lin, 1997) that reduces the index of the DAE to 1; this per-
mits (A4) to be solved explicitly for the algebraic variable Λ.
Substituting the result into (A3) yields the system of ordinary
differential equations (ODE)

dQ

dt
� E�Q� � hF�Q�i

η
S�Q�: (A5)
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The η → 0 limit is a singular one, and the ODE becomes
increasingly stiff in this limit, necessitating the use of at least
partially implicit timestepping methods. Such methods are,
of course, required for the rate-independent equations; other-
wise, the constraint equation could not be strictly enforced.
However, it is highly desirable to explicitly evaluate the elas-
tic term E�Q�, as this involves calculating spatial derivatives
and would become prohibitively costly if done implicitly.

A variety of approaches can be used to solve equa-
tions (A3) and (A4). We focus entirely on one-step proce-
dures, which update the fields from time tn to tn�1 � tn�
Δt, namely, from Qn to Qn�1. The first, and perhaps sim-
plest, method to do this is based on a first-order operator-
splitting procedure. One first solves the elastic problem,

dQ

dt
� E�Q� � 0; (A6)

over the time interval tn to tn�1 to update Qn to Q	. An
explicit timestepping method is most efficient; we use both
third- and fourth-order low-storage Runge–Kutta methods
(Williamson, 1980; Carpenter and Kennedy, 1996). Low-
storage refers to the fact that only two storage units are
required for each field; these are repeatedly overwritten at
each internal Runge–Kutta stage. This substantially reduces
memory requirements as compared with traditional Runge–
Kutta methods.

We remark that it is necessary to use Runge–Kutta meth-
ods with at least three internal stages; this is the minimum that
is required to have a stability region that contains the imagi-
nary axis (e.g., Kreiss and Scherer, 1992). This is needed
because several of the eigenvalues of the Jacobian of the
ODE, �∂E=∂Q, are almost purely imaginary (as is typical
for wave-propagation problems with minimal dissipation).

Next, using Q	 as the initial condition on Q at time tn,
one solves

dQ

dt
� hΛiS�Q� (A7)

and

ηΛ � F�Q�; (A8)

over the time interval tn to tn�1 to obtainQn�1. Note that this
problem involves only fields defined at a particular grid
point, which greatly simplifies the solution. The simplest
numerical method to solve this problem is the first-order
implicit Euler discretization:

Qn�1 �Q	

Δt
� hΛn�1iS�Qn�1� (A9)

and

ηΛn�1 � F�Qn�1�; (A10)

which requires the solution of these coupled nonlinear equa-
tions forQn�1 and Λn�1. For the Drucker–Prager model, this
is readily done in closed form, permitting the efficient updat-
ing of the fields.

An alternative to the operator-splitting procedure that
retains high-order accuracy during either elastic or plastic
response (but has overall first-order accuracy due to the
abrupt switching between elastic and plastic behavior), is to
use coupled implicit-explicit (or additive) Runge–Kutta
methods. For rate-independent plasticity, we found the third-
order half-explicit Runge–Kutta method of Brasey and Hair-
er (1993), which is designed specifically for index 2 DAEs, to
be highly efficient. We have also successfully used several of
the high-order methods proposed by Kennedy and Carpenter
(2003). None of these methods are written in a low-storage
form and hence increase memory requirements.

For the grid spacings used in this study, the predominant
source of error comes from approximating the spatial deriva-
tives of fields in the termE�Q�; itmakes little differencewhich
time-integration method we use. Hence, we default to the
simplest operator-splitting method in this work, but we do
note that on certain test problems at high resolution, the
coupled implicit-explicit methods give superior performance.
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