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Summary. The space and time characteristics of earthquake sequences, in- 
cluding a main shock, aftershocks and the recurrence of major shocks in a 
long time range, are investigated on a frictional fault model with non-uniform 
strengths and relaxation times, which is subjected to a time-dependent shear 
stress. Aftershocks with low stress drop take place successively in spaced 
regions so as to fill the gaps which have not yet been ruptured since the main 
shock, while those with high stress drop occur in and around the regions left 
unruptured during the main faulting. The frequency decay of aftershocks 
with time follows a hyperbolic law with the rates p consistent with observa- 
tions. There are good linear relations in logarithmic scales for source area 
versus frequency and seismic moment versus frequency of the generated after- 
shocks. The b-value obtained in the present experiments appears slightly 
larger than that for observations. It was found that more heterogeneous distri- 
bution of the fault strength give smaller p and larger b-values. The recurrence 
of major shocks, particularly of very large shocks with high stress drop, is often 
preceded by a completely silent period of activity or very low activity with a 
small number of foreshocks. The major shocks take place successively in 
adjacent unruptured regions and sometimes show slow-speed migrations. 
These results provide explanations to various observations of earthquake 
sequences. 

1 Introduction 

It is widely accepted that earthquakes are the result of sudden shear faulting under 
increasing tectonic stress. Elastic dislocation models as well as crack models have so far been 
successfully applied to account for some of the general features of the faulting process. It 
now appears, however, that more realistic physical models are required to incorporate 
several important features of seismic faulting, which are often observed in the field and 
sometimes suggested also by laboratory experiments. These are: (1) initiation, spreading and 
stopping mechanism of rupture, (2) stick-slip instability of faulting, (3) radiation of high 
frequency seismic waves in the near-field, (4) non-uniform distribution of fault displace- 
ments, (5) occurrence of earthquake sequences - foreshocks, main shock sometimes 
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followed by multiple shocks, and aftershocks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- on the same fault, (6) frequency decay law 
of aftershocks, (7) magnitude-frequency relation for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall shocks on the fault, (8) aseismic 
slip including pre-seismic and post-seismic fault movements, and so forth (e.g. Nur 1978). 

We have investigated, in a previous paper (Mikumo & Miyatake 1978), the dynamical 
rupture process on a three-dimensional frictional fault, and have been able to provide 
satisfactory explanations to some of the above features by introducing, in a stochastic way, 
non-uniform distributions of static frictional strength with a finite shear stress into the fault. 
These non-uniformities may arise from heterogeneous structure and properties of fault 
gouge, irregular shape, local bending, the degree of contact of asperities on the fault surface, 
inhomogeneous pore pressures around there and so forth. Inhomogeneous shear stress 
distribution should also be taken into consideration in fault dynamics, but this results 
mainly from past fault slips. It is reasonable, therefore, to consider non-uniform strength as 
a basic property of the fault, although its details are not known directly from observations 
and surveys. Several investigators have also noticed the importance of heterogeneity and 
attempted to take it into their models (e.g. Dieterich 1972a; Knopoff, Mouton & Burridge 
1973;Das & Aki 1977;Nur 1978; Israel & Nur 1979). 

In the present paper, we will focus our attention particularly to the occurrence of earth- 
quake sequences on the frictional fault. It has been shown (Mikumo & Miyatake 1978) 
that the final fault displacements and residual stresses after the main rupture have large 
variations if the frictional strength is heavily non-uniform, and that in some extreme cases 
there remain unruptured regions around which high stresses are concentrated. It has been 
also pointed out that these post-seismic situations could generate succeeding earthquakes 
under some conditions. 

The mechanisms of aftershock occurrence proposed so far include: time-dependent 
creep recovery of rocks (Benioff 1951), transient stress recovery combined with time- 
dependent friction (Dieterich 1972a, b, 1978), the decrease in the shear strength of rocks 
due to pore fluid flow (Nur & Booker 1972) together with consolidation reloading (Booker 
1974), time-delayed fractures of heterogeneous medium due to the weakening of the 
strength under concentrated stress (e.g. Mogi 1962b; Scholz 1968; Knopoff 1972) and stress 
corrosion cracking (Anderson & Grew 1977). Numerical simulations of aftershocks on one- 
dimensional models have been made with a viscous process (Dieterich 1972b; Cohen 1977) 
or with stress-induced crack nucleation (Rundle & Jackson 1977), but these one-dimensional 
models appear still incomplete to provide reasonable explanations to the actual mechanism 
of aftershocks. 

Here, we investigate numerically the entire process of earthquake sequences including a 
main faulting, aftershocks and the recurrence of major shocks sometimes with foreshocks 
in a long time range, by introducing time-dependent shear stress and strength into the three- 
dimensional fault described in the previous paper (Mikumo & Miyatake 1978). The main 
purpose here is: (1) to investigate what types of shocks are generated with different stress 
drops, fault displacements and source areas, (2) to see if these simulated shocks could 
explain some empirical laws usually experienced in actual observations, and (3) to look for 
explanations to seismic gap in time and space prior to the occurrence of large earthquakes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T. Mikumo and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. Miyatake 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFault model 

The model we use here is essentially the same quasi-three-dimensional fault as treated in our 
previous paper (Mikumo & Miyatake 1978), henceforth referred to as Paper I, which is 
subjected to an external shear stress. With the aid of a three-dimensional mechanical model 
equivalent to the present problem, we have obtained dynamical solutions for rupture 
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propagation and time history of stresses and slip displacements at discretized elements on 
the fault, taking into account the distribution of static and dynamic friction& stresses. After 
the main rupture over the fault, the initial shear stress drops nearly to the level of the 
dynamical frictional stress in the case of homogeneous or weakly non-uniform frictional 
strength, while the residual stress indicates large variations in the case of heavily non-uniform 
distribution of the strength. The frictional strength zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill also drop after the rupture in the 
slipped segments of the fault due to the decrease in static frictions (Dieterich 1972a) or 
due to the increase in pore fluid pressures (Nur zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Booker 1972; Booker 1974). 

Now we consider time-dependent recovery process of the shear stress and strength on the 
fault after the main faulting, in order to see how aftershocks and eventual shocks are 
generated under various conditions. Although there could be several possible mechapisms 
for the stress recovery, we think that a viscoelastic process represents a transient stress 
recovery due to creep of rocks (Dieterich 1972b) as well as of fault gouge material gr due to 
consolidation of porous medium (Booker 1974). 

We have considered several types of viscoelastic solids to approximate viscoelastic 
behaviour of fault gouge, but the one adopted here is a standard three-parameter linear solid, 
which includes a Maxwell element in parallel with an elastic spring. For this simple model, 
we have the following relation, 

(I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ru = k(ae + T&) (1) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIJ and E represent the stress and strain, k is the unrelaxed elastic modulus, r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi s  the 
relaxation time under a constant strain and a! implies a coefficient of the relaxed elastic 
modulus (e.g. Liu, Anderson & Kanamori 1976). For a complete, three-dimensional visco- 
elastic solid, the corresponding stress-strain relation may generally be written as, 

where h and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp are Lame’s constants, 0 is the dilatation, and 6 ,  is the Kronecker’s delta. 
As described in the previous paper, however, the model we consider here has a quasi- 

three-dimensional plate-like structure with a thickness of Az bounded above by a rigid 
boundary and at the base by the fault plane. In this model, we deal with five stress-strain 
components (k  = 1, 2; 1 = 1, 2, 3) on the fault (z = 0), assuming that uZz = 0 and w = 0 as 
z + 0. The purpose here is to see viscoelastic stress change on the fault after the main 
faulting in response to elastic strain change due to the faulting, on the condition that all 
fault elements stick to their displaced position being resisted by static frictions after the 
dynamic motion was completed. This condition implies that there is no creep displacement 
thereafter. For this purpose, we simply treat the stress-strain relation for each of small 
fault elements, as a quasi-static problem without going into the equation of motion. 
Equation (2) for this case may then be simply transformed into the following form, by 
differentiating it with respect to xI and summing them up, 

Fk may also be rewritten in the form of the right-hand side of equation (1) in Paper 1, and 
approximated by equations (2) and (4) there for discretized grid points. This means that if 
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500 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
we suppose such a three-dimensional mechanical model with mass and spring as schemati- 
cally depicted in Paper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFk(k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, 2) correspond to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx- andy-components of the elastic 
force per unit volume applied to a mass element located at (x i ,  y j )  on the fault plane. Fk 

changes during dynamic faulting due to slip motion of the concerned and adjacent fault 
elements, and this change may be regarded as a sudden force drop at t = Tin a longer time 
interval. &:,(k = 1, 2) indicate the corresponding viscoelastic force working on the element, 
which is resisted by the static frictional force after the faulting, in response to the input 
dynamic force change. 

The external shear stress is also no longer constant over a long time range, but assumed to 
increase linearly due to the increase in tectonic loading such as the drag force of plate 
movement. Taking into account this stress increase, the elastic force change after t = T may 
be expressed by two parts, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T. Mikumo and T. Miyatake 

Fi k ( t )  = Fk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0) t ck t , FZk (t) = - AFk .H(t - T )  (k  = 1,2) ( 5 )  

where Fk(0) indicates an unknown elastic force at t = 0, and AFk is the force change at 
t = T. ck, the increasing rate of the tectonic force, may be written as ck = pir, /(Az)2 in 
the present model, since the applied stress components uzx and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuyz in equation (3) in 
Paper I may be replaced by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,, = p(Uo + Ut - uij)/Az and a,,. = p( VO + v t  - uij)/Az. 

t = 0, T- and T, are taken some time long before, just before and right after the main 
faulting. The viscoelastic response & can be obtained by substituting each of the two parts 
in equation ( 5 )  into equation (3), 

&k ( t )  (1 - a)ck 7 + (YFk(0) + ack t = Fk (T-) + ack ( t  - T )  

@*k( t )= -aAFk - (1  -CX)AFk*eXp [ - ( t -  T)/7] 

Fk(<) = Flk (t)  F 2 k ( t )  

= & (T-) - AFk [a + ( 1 - (Y) . eXp {- ( t  - T)/7 } ] t olck ( t  - T) (k = 1,2). ( 6 )  

The force change AFk is taken positive here for the force drop due directly to the slip of 
the concerned fault element itself, and taken negative for the force rise resulting from the 
slip of adjacent elements. Equation ( 6 )  then indicates that for the slipped elements the 
dropped force will recover with time, whereas the concentrated high stress in the unruptured 
elements will be relaxed. If the force drops take place successively by N times in a form 

I 

N 

n = l  
- AFk,n * H ( t  - Tn) 

due to aftershocks at t = Tn(n = 1, 2,. . . , N )  within a time short compared with the 
relaxation time 7, the corresponding viscoelastic response may be expressed by, 

- N 

Fk(t)=@k((Ti-)-  A F k , n [ a + ( l  -a)eXp {-(b Tn)/7)-]  
n = l  

N 

- 1 ( 1  - O ~ ) A F ~ , ~ - ~ [ ~  - e x p ~ ( T n - T , _ 1 ) / 7 ) ] + a C k ( t - T ~ )  (k=1,2).  (7) 

Preliminary calculations show that the effects of the force drops at least three times before 
the rupture now in consideration should be taken into account (Miyatake 1978). 

On the other hand, the frictional strength that dropped in the slipped elements of the 
fault after the main faulting slowly recovers with time (Dieterich 1972a; Scholz, Molnar & 
Johnson 1972; Engelder, Logan & Handin 1975) probably due to creep at points of contact 
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on the fault surface Pieterich 1978). If this time-dependent process follows the experi- 
mental formula by Dieterich (1978), ps ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= & + A  log (Bt + l), the friotional strength zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
us(t) after a shock at t = T, may be written as, 

us(t)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu: + 60,  .log [B(t  - T,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 11 (8) 

where us(t) = p,(t)u,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu;=p;u, and 6u, =Au,  for a normal stress a,. p s ( t )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp: are the 
coefficients of static frictions at a time t and right after the rupture. A and B are numerical 
constants, and u: and 60, may be interpreted as the strength right after the rupture and its 
recovery rate, respectively. We assume that u: may also be written as u,” = C,. u,(T,-) by 
introducing a constant drop rate c d  with respect to the strength before the main faulting at 
t = TI.  However, if, instead, the weakening of the strength results from the increase in pore 
pressures due to fluid inflow around the fault (Nur & Booker 1972; Booker 1974), it will 
decrease slowly with time. 

Now we assume that when the viscoelastically recovering shear stress exceeds $he above 
time-dependent strength at a point on the fault, local slip will immediately take pl&e on the 
concerned element. The fracture criterion we use here is, R= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(I?? + ~;,‘)”‘2 Fs = u,( t ) /Az ,  

analogous to that in Paper I, where F i s  the resultant viscoelastic force and Fs represents the 
static frictional force. Once this condition is satisfied, slip motion begins but is resisted by 
the dynamic frictional force. After this moment the rupture initiating from that point 
propagates on the fault and is developed into an aftershock with a size specified by the 
distribution of the shear stress and strength at that time. This is the dynamic rupture process 
which can be calculated as in the previous paper (Mikumo & Miyatake 1978). 

3 Model parameters in numerical calculations 

The main physical parameters that control the generation process of aftershocks and subse- 
quent earthquake sequences are; static and dynamic frictional strengths us and (Id, the 
weakening and recovery rates of the static strength c d  and 6u,, the relaxation time 7, the 
coefficient of the relaxed elastic modulus a, and the increasing rate of the tectonic force 
Ck. The last parameter has a large effect on the recurrence of future earthquakes but not on 
the generation of aftershocks. This will be discussed separately in a later section. Some of 
these parameters may be non-uniformly distributed on the fault because of heterogeneous 
properties of fault gouge, and hence will be varied from place to place in the present model. 
Besides these, elastic constants h and p,  and Poisson’s ratio may vary depending on the 
location. Although there might be some physical relationship between these parameters, 
we deal with them as independent in our numerical calculations. 

Static frictional strength us is distributed normal-randomly with a minimum of 200 bar 
and standard deviations of 10-30 bar, and also with extremely high strength inclusions 
reaching 500-700 bar. This type of distribution is simply assumed on the basis of the 
Weibull’s distribution which can be found in some experimental studies on rock materials. 
Other types of distribution like Poisson’s may be possible, to account for the observed 
magnitude-frequency relation for actual earthquakes (Nur 1978). Dynamic frictional 
strength ud is assumed to be constant, 100 bar in most of our calculations, but varied 
between 100 and 120 bar in proportion to the static strength in some other cases. 

There could be several relaxation mechanisms for natural rocks existing in earth materials, 
and hence it may be more reasonable to consider the relaxation times 7 distributed over a 
broad band rather than represented by a single value. Some estimates for the distribution 
range between 10-104s (Liu et al. 1976), 2 x 10-’-2 x 10’s (Savage 1965), 102-104s 
(Lomnitz 1956; Dieterich 1972b) and 4 x 106s (It6 & Sasajima 1979). If, instead, we con- 
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sider consolidation reloading or dilatancy hardening of porous material due to fluid inflow 
around the fault as a possible mechanism for viscoelastic process (Booker 1974), the relaxa- 
tion time would correspond to the time required for fluid diffusion, say 1-10 days. For 
these reasons, we assume several different cases; one is a constant relaxation time between 
1.8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA03s (30 min) and 1.72 x lo5 s (2 days), and the other in uniform-randomly distributed 
times between l-103s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 x lo2-8.64 x 104s (15 min-1 day), 6 x lo2-4.32 x lo’s (10 min- 
5 days) and so on. 

The coefficient of the relaxed elastic modulus a specifies the upper bound of the 
recovered stress, as may be easily understood from equation (6). On the other hand, if the 
stress recovery is actually due to consolidation reloading, this process yields a stress rise of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P I  Aai (Booker 1974), where P = (1 - 2v)/2(1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv) with Poisson’s ratio v. Comparing the 
final stress in these two cases, a = 1 - 0, although the recovery rates are somewhat different. 
For rock material, most probable values for a range between 0.62 < a < 0.71 for 0.2 < Y < 
0.3 (or 1.63 < Vp/Vs < 1.89). From this evidence, we assume several cases with a constant 
a between 0.60 and 0.74, and also with uniform-randomly distributed values in this range. 

The weakening and recovery rates of the frictional strength may be estimated from 
experimental evidence by Dieterich (1972a, 1978). His results show that the coefficient of 
static friction p, increases by about 6-10 per cent during the time of stationary contact up 
to 105s, and that p:, A and B take values between 0.6-0.8, 0.01-0.03 and 1.0-2.0, 
respectively. These coefficients give u:= 180-240 bar and 6as = 3-6 bar if the normal 
stress is 300 bar. If we assume that its recovery rate can be linearly extrapolated to much 
longer time interval, the drop of the frictional strength Cd at the time of rupture would be 
about 25 per cent after 100 yr has elapsed. We tentatively use this as a starting value, but it 
was found that somewhat larger weakening rates are necessary to generate aftershocks in 
the case of high stress drops. 

The rigidity, density and the shear wave velocity are assumed to be constant, but 
Poisson’s ratio v is varied between 0.20 and 0.30. This means that P wave velocity Vp takes 
values between 5.2-6.0 km/s for Vs = 3.2 km/s. For other parameters, we use almost the 
same values as in the main faulting (Mikumo & Miyatake 1978); grid spacing h = A x  = Ay = 
0.5 km, fault length and width 2L = 2W = 20 km, time increment A t  = 0.05 s, or h = 1.0 km, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2L = 2W = 40 km, A t  = 0.1 s and A z  = 1 .O km. For numerical calculations of aftershock 
sequences, the time step has been taken as 30 min or 1 hr. 

#We have made a number of combinations of the above parameters, but only several 
representative cases are given in Table 1. Four examples of the distribution of static 
frictional strengths are also shown in Fig. l(a)-(d). These distributions are similar in the 
previous paper. Case M-1 1 has a number of high strength inclusions exceeding 500 bar and 
hence is most heterogeneous. Case M-21 follows this example and Case M-31 has rather 
smaller inclusions with higher strengths. In Case M-41 the strengths are weakly non-uniform 
with an average of 250 bar and standard deviations of 25 bar. 

T. Mikumo and T. Miyatake zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 Aftershock sequences 

In this section, several results of numerical simulations for aftershock sequences are 
presented, and compared quantitatively with various observations. 

4.1 S H E A R  S T R E S S  O N  T H E  F A U L T  

Temporal variations in the shear stress at several selected segments on the fault, which have 
been calculated from equation (7) for Case M-1 1 , are shown as an example in Fig. 2. The 
upper four diagrams show the stress behaviour on the segments that ruptured during the 
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Earthquake sequences on a frictional fault model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table 1. Parameters specifying frictional fault model. 

Model Relaxation Relaxed Shear strength zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
no. time coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(7 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) min-avr-max Drop 
rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( cd )  

min hr bar 

11* 
12* 
13* 
14 
15 
16 
17 

31* 
41* 
42 
51  
61 
71 

21* 

111* 

15-24 

15-120 
1 
12 

1-0.5 
1-120 

15 -24 
15-24 
15-24 

15-24 

15-24 
15-24 
15-24 
15-24 
15-48 

0.60-0.72 
0.66 
0.60-0.72 
0.66 
0.66 

0.60-0.72 
0.66 
0.6 0 0.7 2 
0.60-0.72 
0.60-0.72 
0.60-0.72 
0.60-0.72 
0.66 
0.60-0.72 

0.60-0.72 

200-319-576 
200-319-576 

200 -31 9-5 76 

200-319-576 

200-319-576 

200-319-576 

200-319-576 
200-306-590 
200 -298 -704 
200-280-365 
200-280-365 
200-330-841 
200-237-481 
200-334 -492 
200-319-576 

0.40 
0.40 
0.40 
0.45 
0.45 
0.40 
0.40 
0.40 
0.40 
0.45 
0.40 
0.40 
0.40 
0.40 
0.40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Inc. 
rate 

bar 

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.O 
3.0 
3 .O 
3.0 
3 .O 
3 .O 
3 .O 

3.0 
3.0 
3 .O 
3 .O 
3.0 
3.07 
3.07 
6.0 

(6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus) 

Indicates the cases shown in the inserted figures. 
t Initial stress is 205 bar. The cases without daggers have the initial stress of 198 bar. 

main faulting. It can be seen that the initial stress of 200 bar drops to several tens of bar at 
the time of the main shock and then recovers with time, although their recovery rates are 
different, depending on the relaxation time assigned there. Small stress drops of the order 
of 10 bar or less occur during successive aftershocks, and minor step-like stress jumps take 
place due to the slip of adjacent segments. The lower four stresses indicate those on the un- 
ruptured fault segments. The concentrated stress is gradually relaxed in the right side casc, 
and more slowly decreases after a slight jump in the second example. The first and 
third cases show sudden and large stress drops at the time of the largest aftershock that 
occurred within 1 hr. The latter examples suggest that aftershocks taking place in the un- 
ruptured regions would generally have a high stress drop comparable to that of the main 
faulting. 

4.2 G E N E R A L  P A T T E R N  O F  A F T E R S H O C K  SEQUENCES 

The patterns given in the next three figures illustrate different types of space and time 
distributions of aftershocks. The fault dimension shown here is 40 x 40 km and the size of 
each segment is 1 x 1 km. The upper left in Figs 3 and 4 shows the final rupture front at the 
main faulting, and numerals on the left side of each step indicate the elapsed time after the 
main shock. In Fig. 3 (Case M-12), there remain rather wide unruptured regions on the left 
side. After a large aftershock (not shown here) followed the main faulting within 1 hr, a 
second moderate-size aftershock with high stress drops of about 100 bar takes place in this 
region, which was evidently initiated from the periphery of the stopped rupture front due to 
high stress concentration, and spread outside into the unruptured area. As time goes on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto 
4-6 hr later, several small unruptured segments also slip. 
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Earthquake sequences on a frictional fault model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA505 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, zoo-J 
10 20”  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 2 0  

Figure 2. Time variations of the shear stress at several selected segments of the fault. Numerals in a 
bracket indicate the x- and y-coordinates of the segment. 

M-12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 

4 20 

Figure 3. Space and time patterns of aftershocks for Case M-12. Numerals in the left-side of each time 
step indicate the elapsed time (in hr) after the main faulting. Fault dimension; 40 X 40 km, segment size; 
1 X 1 km. (The same explanations apply to Figs 4 , 5 , 6  and 7.) 
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506 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. Mikumo and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. Miyatake zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M-  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA31 

0 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 8 

4 12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 4. Space and time patterns of aftershocks for Case M-31. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In Fig. 4 (Case M-31), the main rupture reached the prescribed fault boundary, leaving 
small unruptured segments inside. Small-size aftershocks take place 2 hr later around these 
segments, and one aftershock with low stress drop of 10 bar occurs 4 hr later in a rather 
wide region surrounded by the aftershocks at 2 hr. Several moderate-size aftershocks take 
place successively with time in spaced regions. Fig. 5 (Case M-41) gives an example in the 
case when the distribution of the frictional strength on the fault is weakly non-uniform and 
all segments of the fault have been ruptured at the time of the main shock. Only very small 
shocks occur 1 hr later. A large event at 8 hr appears to trigger four shocks at 9 hr in the 
surrounding regions and then to develop 10 hr later into the largest shock but with low stress 
drops of 10--15 bar. This type of sequence seems unlikely to occur in actual earthquakes, 
suggesting that the fracture strengths may be more heterogeneous than assumed here. 

4.3 TEMPORAL V A R I A T I O N S  IN SPATIAL  DISTRIBUTION O F  A F T E R S H O C K S  

We investigate more closely temporal variations of spatial pattern of aftershocks with a time 
step of every 30 min or 1 hr after the main faulting up to 30 hr later. 
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Earthquake sequences on a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfrictional fault model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M-41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA507 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

4 

7 

9 

. 
, 

! 

10 

Figure 5. Space and time patterns of aftershocks for Case M-41.  

Fig. 6(a) and (b) show one example, where there are again unruptured regions in the 
left-side and in a bay on the top. A large event with high stress drops of 70-100 bar, which 
might be called a multiple shock, occupies 1 hr later a major part of the unruptured regions, 
while several low-stress drop aftershocks take place in the ruptured area. It is obvious from 
this case together with Case M-12 that total aftershock area extends outside with time. This 
phenomena seems consistent with observations (e.g. Mogi 1968a). It may also be seen that 
fault segments successively slip after 1 hr to fill spaced gaps as time goes on. Aftershock 
activity gradually decays after lOhr, and their stress drops, slip displacements and source 
areas appreciably decrease with time. The average stress drop and displacement for 
moderate-size aftershocks are about 15 bar and 10 cm, respectively. 

Another example (Case M-21) is given in Fig. 7(a) and (b). The main faulting covered 
almost entire fault plane, but partly leaves small unruptured regions near the boundary. A 
moderate-size rupture initiates 1 hr later from the periphery of a small unruptured region on 
the left-top. The stress drop is again very large, exceeding 150 bar. We notice rather large 
number of wider-size aftershocks between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 and 9 hr, as compared with Case M-1 1, which 
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508 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. Mikumo and T. Miyatake zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M - l  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 5 10 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 I I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h r  

2 7 12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 0 13 

4 9 14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a) 

Figure 6. Temporal variations in the spatial distribution of aftershocks for Case M-1 1 . Time step is taken 
every 1 hr. 

have stress drops of the order of 20-30 bar. The number and source size of aftershocks 
gradually decrease after 10 hr, with intermittent occurrence of minor shocks. Fig. 7(c) 
shows the total area occupied by all aftershocks that occurred up to the indicated time. It 
is immediately noticed that the occupied area rapidly increases with time and almost covers 
the entire fault plane of the main shock within the time somewhat longer than the maximum 
relaxation time. Another important feature is that aftershocks at each time step generally 
take place in spaced regions so as to fill the gap which has not yet been ruptured after the 
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Earthquake sequences zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon a frictional fault model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA509 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M-l I 

25 
15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 

16 21 26 

17 22 27 

18 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA23 28 

19 24 2 9  

main faulting. These features might naturally be expected from re-adjustments of the shear 
stress on the fault plane. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.4 STATISTICS O F  AFTERSHOCK SEQUENCES 

Some statistics of the simulated aftershock sequences are investigated in relation to the 
model parameters, and compared with that for observations. The frequency decay of after- 
shocks with time is shown for three different cases in Fig. 8(a), (b) and (c). It can be seen in 
the left-side of each figure that the number of aftershocks appears to decrease nearly in a 
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5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

hr 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3- 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T. Mikumo and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. Miyatake 

5 

7 

9 

10 

I I  

12 

13 

14 

M-21 

(a) 

Figure 7. Temporal variations in the spatial distribution of aftershocks for Case M-21. Time step is taken 
every 1 hr. 

hyperbolic form with some undulations; If these numbers at every 1 hr (in Cases M-1 1 and 
M-21) or every 3 hr (in Case M-13) are plotted in logarithmic scales, we have a nearly linear 
relation over the major part of the time interval except for very short and long ranges, as 
may be seen in the right-side. Slight downward deviations from the straight line around the 
longer time range may be due to the effects of the maximum relaxation time assigned here, 
which is 24 hr in Cases M-1 1 and M-21 and 1 2 0  hr (5 day) in Case M-13. The slope in the 
given three cases range between 1.1-1.4. Aftershock observations so far made indicate that 
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16 

17 

18 

19 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Earthquake sequences on a frictional fault model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA51 1 

M-21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
20 25 

21 2 6  

22  27 

23 2 8  

24 29  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 7 (b) 

their decaying rate usually follows the form of n(t)  = A / ( t  t qp which is called Modified 
Omori’s formula (Utsu 1961,1970) wherep and Care c0nstants.p for a number of observa- 
tions takes values between 1 .O and 1.5 (Utsu 1961, 1969; Mogi 1962a). The above formula 
has been derived from a probability theory by introducing fracture rates depending on time 
and location into a number of elementary areas in the aftershock source region (Utsu 
1970). This concept is essentially similar to our model. In the fluid pore pressure model 
(Nur zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Booker 1972; Booker 1974) the frequency decay is inversely proportional to the 
elapsed time, i.e. C = 0 and p = 1. The above numerical results from our model may well 
explain the above observations and also yields consistent results with the probability model 
and with the fluid flow model. It is to be noted that the constant decaying rate can be 
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T. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMikumo and T.  Miyatake zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA512 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

hr 

I 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 

I 
I 
4 

M-21 

I 

5 10 
I 

I 

6 I I  
I 

I 

7 12 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 

8 13 
I 

1 
I 

9 24 

hrs  

Figure 7 (6 )  

extended to 5 days or even longer so long as the relaxation times are uniform-randomly 
distributed up to the maximum value. However, if we assume a single constant relaxation 
time such as 1 hr (Case M-14), 12 hr (Case M-15), and 1 day or 5 day, the linearity can no 
longer hold. These results suggests that the relaxation time for fault gouge materials might 
take various values if the present viscoelastic relaxation mechanism is correct. 

Fig. 9 shows the source area of aftershocks and their cumulative frequency plotted in 
logarithmic scales. The cumulative frequency is defined by 
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Earthquake sequences on a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfrictional fault model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 8. Frequency of aftershocks with time. Left: linear scale, right: logarithmic scale. (a) Case M-11, 
(b) Case M-2 1, (c) Case M-13. 
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Figure 9. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASource area-cumulative frequency relation of aftershocks in three different cases. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb indicates 
the slope in log N-log S. 

where n(S)dS indicates the number of shocks with an area between S and S+dS. We im- 
mediately notice a good linear relation for all of the three cases shown here, withsomeminor 
fluctuations near the level of small numbers. A number of observational studies of major 
earthquakes (e.g. Kanamori & Anderson 1975) and aftershocks (e.g. Utsu & Seki 1955; 
Utsu 1961, 1969) has shown that there is a proportionality between the magnitude of earth- 
quakes and its source area, i.e. M - log S. If we combine this relation with the above results, 
the slope in logN - log S should give the well-known b-value. The slope ranging from 1.1 
to 1.4 shown in Fig. 9 seems somewhat larger than those observed over the world (e.g. 
Utsu 1971). 

In the present study, the fault displacements can be calculated for each segment of the 
aftershock source area, and hence the seismic moment can also be evaluated by definition 
from 

Mo = j p ( x ,  Y )  dx dY 

for each shock. The seismic moments thus obtained for the main faulting and the second (or 
third) largest shock in Case M-1 1 are 1.9 x and 4.6 x lo2' (or 5.3 x loM) dyne cm, and 
in Case M-21,  2.5 x and 3.6 x loM dyne cm, respectively. If the magnitude is pro- 
portional to log Mo, the difference in the magnitude between the main shock and the largest 
aftershock would be 0.6 (or 1.5) in Case M-1 1 and 1.8 in Case M-2 1 .  The first one seems too 

MOMENT (Mo) 

Figure 10. Seismic moment-cumulative frequency relation of aftershocks in Case M-11. b' indicates the 
slope in log N-log M,,. 
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small, indicating that the second largest shock in Case M-1 1 should be called a multiple event 
rather than the largest aftershock as mentioned in Fig. 6(a). If this is acluded, the 
magnitude difference in both cases appears consistent again with observations (Utsu 
1961, 1969). In Fig. 10, the seismic moments calculated for all aftershocks except for the 
multiple event are plotted against their cumulative frequency 

There is again a linear relation between them, and the slope gives the same value of 1.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as that in the log N-log S relation in Case M-1 1 . This indicates that the seismic moment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
MO is proportional to l ogs  in our model, and appears to give indirect support to the 
empirical relations M - log Mo - log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS (Utsu 196 1 ; Kanamori & Anderson 1975). 

One reason for the estimated b-value slightly larger than those in the observations might 
be attributed partly to the present quasi-three-dimensional model with a futed bhndary 
(Mikumo & Miyatake 1978) which would yield smaller fault displacements as compared 
with those in an infinite medium. However, this effect should be commonly included in all 
calculated displacements and hence the slope would not be greatly changed. 

Several natures of aftershock sequences are further discussed on the basis of numerical 
experiments together with some qualitative considerations. In the present model, the 
occurrence of aftershocks should be controlled by the relative magnitude of the shear stress 
with respect to the frictional strength. The relative levels are mainly governed by a 
coefficient of the recovered stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and the weakening rate of the strength C,. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ: and/or 
C, are too large, the shear stress cannot overcome the frictional strength, and no slips or 
aftershocks would be generated. For small values of a and/or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc d ,  the stress right after the 
main faulting exceeds the strength on all fault segments, and hence a large faulting 
immediately takes place over the entire fault. This implies that a dimensionless factor 
cd/( 1 - a) specifies the absolute number of aftershocks. 

The decaying rate of aftershocks with time, p ,  depends on the recovery rate 60, of the 
frictional strength relative to the relaxation time T of the shear stress. If 6 us increases for a 
certain distribution of T, the number of aftershocks rapidly decreases with time and hence p 
becomes larger. However, p does not change greatly for longer maximum relaxation time 
with a constant 6as, as can be seen in Cases M-11 and M-13 in Fig. 8(a) and (c). Further- 
more, a comparison in the distributions of the frictional strength in Fig. 1 indicates that 
more heterogeneous faults such as in Case M-11 gives a smaller value of p than in Case M-21. 
This is because it takes longer time to complete re-adjustments of the shear stress distribu- 
tion over the fault. 

The b-value for aftershock sequences may be affected by the dynamical rupture process 
of each aftershock, depending on how easily the source area could be extended. This 
naturally depends on the distribution of the frictional strengths, and is not seriously affected 
by other parameters. Figs 9 and 10 together with some other results not shown here reveal 
that more heterogeneous strengths yield large numbers of smaller aftershocks and hence 
lead to larger b-values. These natures seem consistent with the results from laboratory 
experiments on microfracturing in rock material (e.g. Mogi 1962b) and also with some after- 
shock observations in different crustal regions (e.g. Mogi 1963). Further numerical calcula- 
tions show that if dynamic frictional strengths are not constant but weakly non-uniform in 
proportion to the static strengths, b tends to be small (Miyatake 1979, in preparation). 
This trend may be explained by the effects of reducing heterogeneities of the stress drops 
and of the resulted shear stresses. 
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8 

b 

8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA121  133 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

0 
6 

12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 14 
4 

(a) 

Figure 11.  Space and time patterns zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof major shocks in the timerange up to 25 yr. Time step is indicated 
by yr. (Case M-11 1 slightly modified from M-1 1 .) 

5 Recurrence of major shocks 

It would be interesting to see if coming foreshocks and major shocks repeatedly occur on 
the present frictional fault during a long time range in a future, after the aftershock 
sequences have ceased. Aftershock activity gradually decays and finally ceases when the 
shear stress distribution has been re-adjusted and goes down below the level of the fracture 
strength on all segments of the fault. The only conceivable driving force that could generate 
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Figure 11 (b) 

future shocks on the same fault would be increasing tectonic shear stress which may result 
from the drag force of plate movements. This effect has been taken into consideration as 
ffck(t -- T I )  in equation (7). The increasing rate of the force c k  is related to the relative 
velocity U of plate movements as mentioned before. Since the velocity is of the order of 
U =  2 ~ 10 cm/yr for interplate fault planes, but would be much le$s than that for intra- 
plate faults, we take several values between 0.3--3.0 cm/yr, which yields the stress change of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u =  1 - 10 bar/yr. The smaller rate seems consistent with secular strain observations with the 
order of several p strains. 

Similar calculations are continued under the increasing tectonic stress up to the time scale 
of 30 yr after a 36-hr aftershock sequence. The time increment has been taken as 1 yr in a 
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first surveying trial, and subdivided successively back into finer intervals, 1/2, 1/4, 1/8 
and 1/12 yr. This is because the stress accumulated during a long time interval would break 
larger areas on the fault, if a widely spaced time increment is used. Preliminary calculations 
show that in most cases an interval of 1/4 yr or sometimes 1/8 yr is accurately enough to 
see the rupture pattern for 30 yr. Fig. 1 l(a) and (b) illustrates temporal variations in the 
spatial pattern of major shocks mostly at every 1/4-yr interval, where Uis taken as 0.5 cm/yr. 
Most of other parameters are fixed as in the aftershock calculation for Case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM-1 1, except 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT~~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2 day and 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus = 6 bar. In these figures, if the indicated time is skipped to longer 
than 1/4yr, no earthquakes actually take place during this period, and small shocks that 
occurred at intervals shorter than 1/4 yr are tentatively superposed at the next time step. 
Fig. 12 shows the number of shocks that occurred within 25yr (lower) and of their 
accumulated seismic moment (upper). The latter comes from a simple summation of the 

aftershocks. This may be regarded as the total strain energy released at the specified period. 
The approximate magnitudes converted from the accumulated moments by an empirical 
formula (Aki 1972) are indicated for the sake of reference at the left-end. 

Close investigations with Figs 11 and 12 reveal some interesting features of future earth- 
quake sequences. The first to be noted for this example is a complete silent period up to 
6 y r  after the main faulting and its aftershock sequence, excepting only one very small 
shock at 2 yr, as may be understood from Fig. 12. This is the period for which the once 
dropped and recovering shear stress does not yet reach the level of the frictional strength. 
Fig. 1 l(a) shows that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsmall shocks emerge 6 yr later and take place sporadically at 8, 10 and 
10.5 yr, but their activity is still low. These shocks might be regarded as foreshocks to a 
succeeding activity. The first active period starts at 11.75 yr and continues to 15 yr later, 
during which larger shocks with stress drops of 40-80 bar occur successively, as seen from 
Fig. 12. The rupture pattern shown in Fig. ll(a) appears rather randomly distributed 
particharly between 11.75 and 13.25 yr, but closer examinations indicate that all these 
shocks take place successively in adjacent spaced regions as in the case of aftershocks. 
Similar phenomena have been suggested in the simple mechanical model of Otsuka (1972). 
These shocks after 13.5 yr appear to move from the left-top to the right-side in Fig. 1 l(a), 
and this activity ceases with a large shock having stress drops of about 100 bar at 15 yr. 
There is a period of low activity between 15 and 17 yr, but small shocks during this period 
may again be foreshocks to the second largest shock at 17.75 yr, which has stress drops 
exceeding 100 bar. It is interesting to see again in Fig. ll(b) that the second high activity 
lasting to 19 yr clearly indicate migrations from the left-top to the right-bottom over about 
50 km within 2.5 yr. This speed may probably be associated with the increasing rate of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T. Mikurno and T.  Miyatake 

seismic moment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor each shock which has been evaluated in the same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAway as in the case of 

n n n n  n n  20 L1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA."S 

Figure 12. Time sequence of major shocks over 25 yr. Upper: accumulated seismic moment (EM, in 
logarithmic scale, units in dyne cm) against time; lower: number of shocks against time. 
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the shear stress and also with the recovery rate of the frictional strength but not certain at 
this moment. The succeeding 3 yr is the period of complete silence, which may be termed 
as seismic time-gap, as is clear from Fig. 12. After this period the largest shock with stress 
drop of about 120 bar and seismic moment of 5.6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx lo2’ dyne cm suddenly takes place in a 
spaced region which has not been ruptured since 14 yr and may be regarded as seismic space- 
gap. The third activity also shows a sort of migration and ceases at 25 yr. The above patterns 
would be somewhat changed if we take different parameters. 

Nevertheless, the important features revealed from the foregoing calculations are the very 
low activity sometimes with a small number of foreshocks or the complete time-gap prior 
to a large shock, the successive ruptures of space-gaps, and the slow migration of seismic 
activity, although all these are the phenomena on a single fault surface. However, if this 
fault plane could be extended and applied to an extensive region such as in plate boundaries 
along oceanic trenches, it might be possible to compare these phenomena with various 
observations. Precursory time gaps to a large earthquake, which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis preceded by foreshock 
activity in its surrounding regions, have been reported for several cases (e.g. Mogi 1969; 
Evison 1977; Ishida & Kanamori 1978). It has been also found that large seismic space- 
gaps for interplace earthquakes along oceanic trenches were successively ruptured in a long 
time interval (e.g. Mogi 1968b; Kelleher, Sykes & Oliver 1973; Kelleher & Savino 1975; 
Utsu 1974). Local southward migration of seismic activity along the Japan trench and global 
clockwise migration of great earthquakes along the circumPacific belt have also been 
reported (Mogi 1968c,d). There is a possibility that these observed earthquake phenomena 
mght be partially explained by some physical models similar to the present type of 
frictional faults with non-uniform strengths under inhomogeneous stress. However, the 
results we have shown here are only preliminary and await more studies before reaching a 
conclusion. 

6 Some additional remarks 

The present model has been introduced to approximate the viscoelastic behaviours of rock 
or gouge materials on the fault surface, which are due to various processes such as creep, 
fluid flow and consolidation. It has been shown in the foregoing sections that the uniform- 
randomly distributed relaxation times up to several days could account for the hyperbolic 
decay of aftershocks with time over the same period. It is found, however, (e.g. Utsu 1969) 
that aftershock activity following some great earthquakes decays with time-invariant rates p 

even over several tens of years. There is also some experimental evidence (e.g. It6 1974) that 
the relaxation time for long-term creep of virgin rocks could reach 100 yr. If we take into 
consideration these data, the present model would have to be somewhat modified. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn 
alternative would be the standard linear solid which is connected in series to another 
Maxwell element with much longer relaxation times. For this model, we have a relationship 
corresponding to equation (3), which can be solved in a similar way. In this case, however, 
the stress recovery due to this relaxation mechanism would be coupled to the increasing 
tectonic stress over a long time range and could have some effect on the time and space 
patterns of earthquake sequences. 

Another possible mechanism for aftershock sequences would be time-delayed stress 
corrosion or weakening of the fracture strength due to concentrated stress (e.g. Mogi 1962b; 
Scholz 1968; Knopoff 1972; Anderson & Grew 1977), which is similar to static fatigue or 
creep failure under a constantly applied stress. In this model, the time sequence of after- 
shocks depends primarily on a time-dependent weakening of the strength. From laboratory 
experiments on microfracturing of rocks, this weakening effect has been expressed in a form 
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5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(Mogi 1962b; Scholz 1968), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( l / k )  exp [ - p  {o(t )  - Sl], whereas a simpler form has 
been used in a one-dimensional simulation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdf/df = - {o(t )  - S 1 / r  (Rundle & Jackson 
1977). p ( t )  dt  is the transition probability of fracture and may be related to the weakening 
rate of the fracture strength df /d t  and the mean time to fracture ( t> as p(t)dt = l / ( t>  = df/dt. 
a(t)  and S are the stress and the ultimate strength and p ,  k and r are constants. It has been 
shown from the above empirical formula (Scholz 1968) that the number of shocks decreases 
inversely proportional to the elapsed time over appropriate time intervals. 

In our present fault model, high stress concentration remains after the main faulting 
around some unruptured regions with high strengths. If we consider the above effects of 
stress corrosion, all of these unruptured regions would soon break at an early stage after 
the main shock. The concentrated stress rapidly drops to the level of the dynamic frictional 
strength and would be smoothed out. After this time there would be almost no succeeding 
shocks taking place on the fault plane, unless the shear stress due to increasing tectonic 
loading could exceed again the fracture strength. From these considerations, the stress 
corrosion mechanism could generate aftershocks around the fault edges where high stresses 
are still concentrated, but may not be a predominant candidate to account for various 
processes on the fault plane. 

T. Mikumo and T. Miyatake 

7 Conclusions 

We have investigated the space and time characteristics of earthquake sequences on a three- 
dimensional frictional fault model, which has non-uniform frictional strengths and relaxation 
times and is subjected to a time-dependent shear stress, in a standard viscoelastic solid. In 
this model, aftershocks and the recurrence of major shocks in a long time range take place 
as dynamical ruptures on the fault, when the recovering shear stress after the main faulting 
exceeds a time-dependent fracture strength. The main conclusions we obtained are as 
follovfs: 

(1) Aftershocks take place successively in spaced regions on the fault so as to fill the gaps 
which have not yet been ruptured since the main shock, and sometimes in the regions left 
unruptured during the main faulting. The aftershock area used to extend outside with time, 
and finally covered almost the entire fault plane within a time somewhat longer than the 
maximum relaxation time. Aftershocks taking place in the unruptured regions have high 
stress drops comparable to that of the main faulting, while those in the ruptured regions 
have low stress drops due to minor readjustments of the shear stress. 
(2) The frequency decay of aftershocks with time follows a hyperbolic law with its 
exponent p ranging between 1.1-1.4, which may well explain a number of observations. 
The decaying rate p becomes smaller for more heterogeneous distribution of frictional 
strength on the fault, and larger for more rapid recovery of the weakened strength after the 
main faulting. A good linear relation holds for the source area-cumulative frequency and 
also for the seismic moment-cumulative frequency of the generated aftershocks. The 
b-value estimated from the relations are slightly larger than that from observations, but these 
are affected by fault properties. More heterogeneous frictional strengths give larger b-values. 
(3) There is a completely silent period of seismic activity before the recurrence of major 
shocks, after a sequence of aftershocks has ceased. The coming major shocks take place 
with high stress drop, successively in adjacent spaced gap regions and sometimes show slow- 
speed migration. The largest shocks in a series of activity are sometimes preceded by a 
complete time-gap or very low activity with a small number of foreshocks. 

The present frictional fault model provides some explanations to various observed 
phenomena on a sequence of earthquakes. 
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