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SYNOPSIS: 

The earthquake response of a simple soil-structure interaction system 
is discussed. The nonlinear hysteretic properties of the soil, on which 
the structure is founded, are modelled. It is found that the nonlinear 
soil behaviour leads to a reduction in the response of the structure. 

1. INTRODUCTION: 

The beginnings of this paper go back 
to a 1954 publication by Merritt and 
Housnerd) entitled: "Effect of 
foundation compliance on earthquake 
stresses in multistorey buildings". 
They investigated the response of multi-
storey buildings to earthquake acceleration 
records using an analogue computer. The 
buildings were modelled as linearly 
elastic with viscous damping, whilst the 
foundation material was linearly elastic. 
In the introduction to their paper Merritt 
and Housner make the following statement: 

"... the rotation of a building 
on its foundation may have a very 
considerable effect on lengthening 
the natural periods of vibration of 
the building, with a resulting 
decrease on the dynamic shears and 
moments throughout the structure. 
It is clear that as the foundation 
material becomes increasingly soft 
there will be a mitigating effect 
upon the stresses produced in the 
building." 

The results of their calculations 
verified these comments although, for 
the earthquake records used, it was noted 
that at certain values of the foundation 
compliance there was actually a slight 
increase in the actions induced in the 
building by the earthquake excitation. 

However the magnitude of the compliance 
effects was not great for likely foundation 
compliance values. Just prior to the 
conclusions of the paper they stated: 

"It appears that only very 
exceptionally would foundation 
yielding have a beneficial effect 
on earthquake stresses. To 
achieve this would require an 
exceptionally narrow building 
with a floating foundation on a 
very soft soil." 

(Since the behaviour of the foundation 
was modelled as linearly elastic, Merritt 
and Housner use the word 'yielding 1 as 
synonym for 'compliance'.) 
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At the time of writing this paper 
the above comments can be refined by remark-
ing that the response of a building to 
earthquake excitation is a function of 
the natural period of the structure in 
relation to the period (or periods) of 
the peak energy input in the earthquake 
motion. The softening effect of the 
foundation compliance lengthens the natural 
period of the soil-structure system. If 
this lengthening moves the period of the 
building system towards a period at which 
the input in the earthquake energy is 
larger, then the moments and shear forces 
induced in the building will be increased. 
Thus foundation compliance may increase 
or decrease the response of the structure. 
For the particular earthquakes used by 
Merritt and Housner the decrease in 
response was more notable than the increase. 

Merritt and Housner's pioneering 
work was followed about a decade later 
by a series of papers by Parmelee et al 
(2,3,4)^ A three degree of freedom 
system was analysed, one degree of freedom 
being associated with the structure and 
two with the foundation. The foundation 
material was elastic with viscous 
damping. Parmelee concluded that 
foundation compliance is likely to be 
significant only if the shear wave velocity 
of the foundation soil is less than 300 m/sec 
This is a slight relaxation of the 
conclusion reached by Merritt and Housner, 
but the impression is nonetheless given 
that foundation compliance may be of no 
more than modest significance for the 
response of buildings under earthquake 
excitation. A saturated clay having a 
shear wave velocity of 300 m/sec would have 
an undrained shear strength of about 100 kPa. 
Alternatively a dense sand under low 
confining pressure, or a medium to loose 
sand under higher confining pressure, 
would also have such a value of shear 

wave velocity. A clay having a of 100 kP 

is a relatively good foundation material. 
The use of^compensated foundation means 
that even multistorey buildings could be 
founded on soil with a good deal less 

than 100 kPa. Parmelee 1s criterion for 
significant elastic soil structure 
interaction thus looks as if it could apply 
to a reasonable range of feasible foundation 
conditions. In the case of dense sands 
similar comments apply, but for loose sands 
the possibility of liquefaction under 
cyclic loading requires either densification 
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or the use of a piled foundation. 

Since Parmelee 1s work in the middle 
to late sixties the topic of soil-structure 
interaction has continued to generate 
a steadily increasing literature, although 
the' contributions are generally still 
limited to elastic-viscously damped soil. 
The purpose of this paper is to consider 
in a simple way the effect of real 
soil behaviour rather than the linear-
viscous idealisation. An assessment is 
made of the likely significance of the 
nonlinear hysteretic behaviour of soil 
under earthquake loading by calculating 
the response of a simple structure to 
earthquake excitation. The structure 
consists of a tower with a lumped mass 
at the top. The foundation consists of 
two pad footings separated by a rigid 
foundation beam. The structure is shown 
in Fig. 4. The response of the soil 
beneath the footings is nonlinear, 
thus attempting to represent the real 
behaviour of the foundation material. 

2. REAL SOIL BEHAVIOUR 

A frequent idealisation used in 
earthquake engineering for the cyclic 
loading of soil, along with other 
engineering materials, is the linear 
elastic-viscously damped material. 
Viscous damping requires that the energy 
dissipation per cycle increases as the 
frequency of the loading increases. 
However, it has been demonstrated many 
times, for example Taylor(5)

f
 that for 

soil the energy dissipated per cycle is 
independent of the frequency of loading 
(at least over the range of frequencies 
of interest in earthquake engineering). 
Thus it is more appropriate to assume 
that the damping mechanism is hysteretic 
rather than viscous. Furthermore it 
is found that the amount of dissipation 
increases with the cyclic strain amplitude. 

It is also found that the stiffness 
of soil is a function of strain amplitude. 
At strains less than approximately 
10"^% the behaviour is linear and the 
strains recoverable. The shear modulus 
defined by this small strain behaviour 
is related to the shear wave velocity. 
As the strain amplitude increases there 
is a progressive decrease in the 
stiffness of the soil. 

It is possible to represent the 
stiffness and damping behaviour of soil 
with an apparent shear modulus and an 
equivalent viscous damping ratio, these 
terms are defined in Fig. 1. In Figs. 2 
and 3 data on the variation of these 
parameters with strain amplitude are 
presented for a wide range of soils. 
In Fig. 2 the limiting value of the shear 
modulus at low strains is apparent. In 
Fig. 3 the equivalent viscous damping 
values are plotted, at very small strains 
the damping approaches zero but at large 
strains the damping values are quite large. 
The information in these diagrams shows 
that at very small strains soil behaves 
essentially as an elastic material but 
as the strain amplitude increases there 
is increasing nonlinearity and also 
an increase in the hysteretic damping. 
The important point is that these two 

properties, stiffness and damping, are 
not independent as a change in one 
produces a change in the other. 

In Figs. 2 and 3 a solid line is 
plotted passing through the scattered data 
points. This has been generated by a 
mathematical model for soil stress-strain 
behaviour. The model is based on the 
idealisation that soil is a work hardening 
plastic material. The most attractive 
feature of the model is the small number 
of parameters needed to describe a given 
soil, and the fact that these can be 
obtained from routine tests. The curves 
in Figs. 2 and 3 are not an attempt to 
position a best fit curve through the 
data, rather they are intended to illustrate 
that the soil model can represent the strain 
dependent modulus and damping properties of 
soils. The lines may be recalculated for 
various initial conditions, such as 
overconsolidation and values of K . The 

o 
details of the model are discussed by 
Pender (.6,7,8) b The data in Figs. 2 and 
3 refer to soils which do not undergo 
liquefaction. Similarly the soil model 
does not describe liquefaction. 

This soil model is the basis for 
the calculation of the nonlinear soil 
behaviour beneath a loaded footing 
discussed below. 

3. CYCLIC LOADING OF A FOOTING RESTING 
ON AN ELASTIC HALF SPACE 

The dynamic behaviour of a footing 
resting on an elastic soil layer is often 
represented by an equivalent spring mass 
system with viscous damping. The major 
requirements in this modelling process are 
the values to be assigned to the spring 
stiffness, damping coefficients and 
magnitude of the mass. To this end 
considerable insight has been provided by 
the mathematical solution to the dynamic 
behaviour of a footing resting on an elastic 
half space. The details are discussed by 
Richart, Hall and Woods ( 9 ) and by 
Newmark and Rosenbleuth^O) ̂  The 
solution shows that it is possible to 
use a spring mass system to model the 
behaviour of a footing. However it is 
found that the stiffness coefficients are 
frequency dependent, but fortunately, for 
the range of frequencies of interest in 
earthquake engineering, the frequency 
dependence is slight. Thus it is 
common practice to use a spring and dash-
pot system having frequency independent 
stiffness and damping coefficients for mode11 
ing earthquake behaviour. This is 
illustrated in Fig. 5. 

For the vertical vibration of a 
rigid circular footing resting on the 
surface of an elastic half space the 
spring stiffness coefficient is given by: 

_ 4 G a 

1 - v (1) 

where K is the spring stiffness 
G is the shear modulus of the soil 
v is Poisson * s ratio for the soil 
a is the radius of the footing 

This stiffness is the same as the static 
stiffness of the footing. 
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Rosenbleuth and Newmark * ' give 
the following expression for the viscous 
damping coefficient that models the loss 
in energy from the footing by radiation: 

C = 1. 79/IT~pa3 (2) 

where p is the density of the soil. 

The magnitude of this damping coeff-
icient for vertical vibration is quite 
large, expressed in terms of the ratio 
of the value required for critical damping 
it is about 30-40%. 

A further feature of the modelling 
of a footing resting on a half space is 
the mass of the soil that vibrates in 
harmony with the footing - the so-called 
added mass. Richart and Whitman' 
have shown that for higher frequencies 
of excitation, such as might be associated 
with a machine foundation, the added 
mass is negligible. For the earthquake 
range of frequencies Newmark and Rosenbleuth 
d o r suggest that the following added 
mass be used: 

Madded - i' 5 0 p a 3 

the damping phenomenon is required. In 
section 2 the hysteretic damping 
discussed refers to the energy dissipated 
in deforming a small element of soil. 
This energy is thus dissipated internally 
and the damping is referred to as material 
damping. On the other hand when a footing 
is resting on the surface of a half space 
energy is lost from the region of the footing 
through radiation to infinity. This is 
discussed in section 3 and referred to 
as radiation damping, it is modelled as 
a viscous phenomenon. The behaviour of a 
footing on a layer of soil thus has both of 
these damping mechanisms present. In the 
soil close to the footing large material 
damping may be present. Energy not 
dissipated in this mechanism is then 
radiated away. 

The two springs in series in Fig. 6b -
can be reduced to an equivalent viscously 
damped spring. The stiffness and 
damping of this are given by: 

K = V ( k e + V ( 4 ) 

C = kc c e / ( k e + V ( 5 ) 

Equations (1), (2) and (3) provide 
a means for converting an analytically 
.complex problem that of the vibration^ 
of a rigid footing resting on an elastic 
half space, to the much simpler problem 
of the response of an equivalent spring-
mass-dashpot system. 

4. STRUCTURE-FOUNDATION MODEL 

where k and c are the stiffness and 
e e 

damping values for the spring 
representing the small strain 
behaviour of the soil 

k is the stiffness of the non-
n 
linear spring which incorporates 
the hysteretic damping 

The response of the idealised 
structure shown in Fig. 5 was calculated 
to an earthquake acceleration record. 
The intention was to keep the details 
of the structural model as simple as 
possible, whilst maintaining the suggestion 
of something that might be real. A 
flexible, elastic-viscously damped, tower 
with a lumped mass at the top is connected 
to a rigid foundation beam which is 
supported on two rigid circular footings. 
The spacing between the footings is such 
that there is no interaction between them. 
The total mass of the structure is dis-
tributed half and half between the tower 
mass and the foundation masses. 

The modelling of the behaviour of 
the soil beneath each of the footings is 
the main innovation introduced in this 
paper. The zone of soil immediately 
beneath the footing will deform nonlinearly. 
The soil further away will deform elastic-
ally . This idea is illustrated in 
Fig. 6. Stress path computations show 
that the zone of soil involved in non-
linear strains is about one footing 
diameter deep cf. the Appendix. The 
nonlinear spring in Fig. 6b incorporates 
the stiffness and the hysteretic damping 
illustrated in Figs. 2 and 3. In this 
paper no added mass is associated with 
the nonlinear springs. The linear 
viscously damped spring represents the 
small strain elastic behaviour of the soil 
remote from the footing, the radiation 
damping is simulated by the viscous 
damping element. 

At this point some clarification of 

The obvious means of calculation of 
k is the use of a finite element method. 
n 

This might be feasible for static 
loading but is too expensive for the 
calculation of response spectra. Rather 
a numerical version of the stress path method, 
has been developed which provides a 
simple method of evaluation of the 
footing stiffness. This is described in 
more detail in the Appendix. 

Having settled the details of the 
modelling of the soil beneath the footings 
the structure in Fig. 5 can be represented 
as shown in Fig. 7a. There are three 
degrees of freedom in this model: the 
horizontal displacement of the tower mass 
and the vertical displacement of the two 
foundation masses. The displayed shape 
of the structure is shown in Fig. 7b. 
The equations of motion for the system 
are: 

M 

2T ( m + 41 
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The terms in these equations are 
defined in Fig. 7. The stiffness 
and damping terms , and , C r are 

nonlinear and calculated from equations 
(4) and (5). An incremental method of 
solution for such nonlinear equations is 
described by Clough and Penzien^^)^ 
This was used to calculate the response 
of the system. The stiffnesses , 

and the damping values C^and C r are then 

tangent values at some point on the 
stress-strain loop. The value of k^ 
in equations (4) and (5) is the 
required tangent stiffness for the 
calculation of K„, K and Cn and C . 

I T I r 
It is readily evaluated from the stress 
path approach described in the Appendix. 
These stiffness values are evaluated at 
each time increment during the solution 
process. 

5. RESULTS 

The solution of equations (6) was 
obtained to the acceleration record of the 
Caltech CI synthetic earthquake, Jennings 
et a l ( ^ This is supposed to be 
representative of the motion in the 
epicentral region of a magnitude 5.5 to 
6 earthquake. The record has a length of 
12 seconds. The digitisation^ interval 
for the record is 0.025 sees. For the 
numerical solution each of these time 
steps was further subdivided into ten 
steps. The peak ground acceleration of 
the record is 0.068 g, it was scaled to 
provide a range of peak accelerations. 

The dimensions of the structure are: 
tower height 10 m, length of foundation 
beam 6 m, radius of footings 1 m, tower 
mass 37 Mg, foundation masses 18.5 Mg 
each. With a soil density of 2 Mg/m^ 
the added mass for each footing given 
by equation (3) is 3 Mg, which is small 
in relation to the other masses. The 
tower has a damping coefficient of 5% of 
critical damping. 

(a) Elastic response 

Elastic response spectra are plotted 
in Fig. 8. The ordinate in these 
spectra is the ratio between the peak 
value of the absolute acceleration of 
the tower mass to the peak ground accel-
eration in the earthquake record. It 
thus represents the magnification of the 
ground acceleration by the structure. 
These three spectra apply to elastic 
behaviour as the strains from the nonlinear 
soil model are set to zero. The spectra 
are for a rigid foundation, an elastic 
foundation with a shear wave velocity 
of 300 m/sec, and thirdly for an elastic 
foundation with a shear wave velocity 
of 100 m/sec. In each of these cases 
there is radiation damping from the footings 
with a damping coefficient calculated 
from equation (3). As expected from 
Parmelee's work there is very little 
difference between the spectra for a 
rigid foundation material and that for 
which the shear wave velocity is 300 m/sec. 
I n -+he o c < s e w i a e r e ~ + h & s : h e < i r v j ^ e \j€>.|oclt^ is iOO m/s 

there are noticeable differences for tower 
periods less than 0.6 sees. For some 
periods the response is markedly reduced 
and for others there is an increase. This 

confirms the comment made in the intro-
duction that the effect of the foundation 
flexibility depends on whether the period 
of the structure-foundation system moves 
toward or away from a period at which the 
energy in the earthquake record has a 
local maximum. 

(b) Nonlinear response 

In this case the footings are assumed 
to rest on an overconsolidated clay with 
an undrained shear strength of 50 kPa. 
If from Fig. 2 the ratio between the small 
strain shear modulus, G, and c is taken 
as 1500, the shear wave velocity is 
found to be 200 m/sec. The footings are 
so proportioned that the static factor of 
safety against bearing capacity failure is 
3.0. In Fig. 9 the response spectra for 
three different scalings of the earthquake 
record are compared with the spectrum for 
a rigid foundation. Although the relations 
between the individual spectra • are quite 
complex, particularly at low tower periods, 
it is clear that the nonlinear hysteretic 
behaviour leads to a substantial reduction 
in the response of the structure. As the 
peak ground acceleration increases the 
amplification of the ground acceleration 
decreases. This can be regarded as a 
natural base isolation phenomenon. For 
example with a tower period of 0.5 sees, 
the shear force induced in the tower when 
the soil behaves nonlinearly is 56% of 
that for the rigid foundation case with a 
peak ground acceleration of 0.07 g, and 
38% of that for the rigid foundation case 
when the peak ground acceleration is 
0.27 g. 

The maximum footing settlements for 
the record with a peak ground acceleration 
of 0.27 g are of the order of 12 mm. 
Thus the nonlinear effects demonstrated 
in Fig. 9 do not require large footing 
settlement. For the longer tower 
periods there is a tendency for uplift of 
one of the footings to occur. These 
points have not been plotted in Fig. 9. 
If a further degree of freedom was 
introduced to the system and horizontal 
displacement of the foundation beam 
allowed then additional nonlinear effects 
would be introduced and the nonlinear spectra 
would be further differentiated from the 
elastic-rigid base spectrum. The 
results in Fig. 9 lead to essentially the 
same conclusions as the experi mental 
work reported by Taylor et al on the 

cyclic behaviour of model footings on 
sand and clay. 

The spectra in Fig. 9 are 
associated with a static factor of safety 
of 3.0 for each of the footings. It is 
expected that the nonlinear behaviour 
of a footing would increase with 
decreasing static factor of safety. In 
Fig. 10 spectra are plotted for the case 
with the static factor of safety of the 
footings of 10.0 . It is clear that in 
this case the nonlinear strains are much 
smaller and hence the nonlinear spectra 
are very much closer to the elastic 
spectrum for a rigid foundation material. 

6. CONCLUSIONS 

Three conclusions are reached from 
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Fig. 7 : Idealisation of Soil-Structure Interaction Model 

in Fig. 4 
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Structure Interaction Model 
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the above results. 

Firstly for an elastic soil the 
magnitude of the added mass that vibrates 
in harmony with the footing is small in 
comparison with the structural masses. 
This will not be true for large footings. 

Secondly nonlinear behaviour of the 
soil beneath a footing results in a 
significant reduction in the response 
of the system. As the peak ground 
acceleration is increased this reduction 
is further enhanced, so that the moments 
and shear forces induced in the structure 
during a range of earthquakes of 
increasing severity do not increase in 
proportion to the increase in the peak 
ground acceleration. Furthermore the 
settlements of the footings resulting 
from nonlinear behaviour are quite modest. 

Thirdly the extent of the nonlinear 
effects is related to the static factor 
of safety of the footing against bearing 
capacity failure. It has been shown 
that substantial nonlinear behaviour is 
evident when the factor of safety is 3, 
but with a factor of safety of 10 the 
nonlinear effects, for the range of peak 
ground accelerations used, are much 
smaller. 
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Appendix: NONLINEAR FOOTING STIFFNESS 

As explained in section 4 the non-
linear footing stiffness was evaluated 
with a numerical version of the stress 
path method. 

The measured load settlement behav-
iour of a circular embankment on a layer of 
clay is reported by Hoeg et a l ( . Finite 
element computations by Graham (15) , using 
the soil model referred to in this paper. 
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produced a reasonable description of the 
behaviour of the embankment. The stress 
path method described here was found to 
give results in close agreement with 
Graham*s finite element results. The 
comparison is given in Fig. Al. The 
use of a finite element method to 
evaluate the nonlinear footing stiffness 
for the calculation of the response 
spectra in Figs. 9 and 10 would be 
extravagant, hence the need for the 
much simpler stress path approach. 

The main concept of the numerical 
stress path method was developed by Burland 
(16). In this it is assumed that the 
stresses induced in the soil due to surface 
loading are the same as those for elastic 
behaviour. Using this stress field, the 
soil strains are calculated with an 
appropriate soil model. Hira(1^) applied 
the soil model used in this paper to the 
method. 

Graham 1s^ 1 5^ finite element studies, 
and also many others, show that the 
vertical stress distribution in a 
nonlinear soil follows closely that in an 
elastic material under the same load 
conditions. However the horizontal 
stress change in the soil is somewhat 
greater in the nonlinear than in the 
elastic medium. This means that the 
settlements calculated by Burland' 1 6' 
and Hira(17) tend to be an overestimate, 
particularly as failure is approached. 
This problem was overcome herein by the 
use of a modified stress distribution in 
which a pseudo Poisson 1s ratio greater 
than 0.50 was used. Values of Poisson's 
ratio greater than 0.50 are not permissible 
for the solution of an elastic problem. 
However all that is required here is a 
stress distribution which satisfies 
equilibrium. This is not affected by 
the value of Poisson's ratio. 

The response of the circular footings 
to each load increment was evaluated as 
follows. All the calculations were 
done for a characteristic point one footing 
radius beneath the centre of the footings. 
This is where the nonlinear strain incre-
ments are maximum. Using a value of 
1.0 for the pseudo Poisson 1s ratio the 
stress increments are calculated. The 
soil model then gives the strain incre-
ment at that point. The strain increment 
is modified by an averaging factor to 
get the average strain for the soil 
contributing the nonlinear strains, i.e. 
over a depth equal to one footing diameter. 
(The value of the averaging factor and 
also the position of the characteristic 
point was found by some preliminary 
calculations in which the soil profile 
was divided into a number of thin 
layers and the stresses and strains 
calculated at the centre of each layer.) 
The calculation of the incremental 
nonlinear stiffness is then straight-
forward. Figure Al shows that this 
technique gives settlements which compare 
well with those obtained by nonlinear 
finite element analysis. 


