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[1] One of the challenging tasks in predicting near-source ground motion for future
earthquakes is to anticipate the spatiotemporal evolution of the rupture process. The
final size of an event but also its temporal properties (propagation velocity, slip velocity)
depend on the distribution of shear stress on the fault plane. Though these incipient
stresses are not known for future earthquakes, they might be sufficiently well characterized
in a stochastic sense. We examine the evolution of dynamic rupture in numerical models
of a fault subjected to heterogeneous stress fields with varying statistical properties. By
exploring the parameter space of the stochastic stress characterization for a large number
of random realizations we relate generalized properties of the resulting events to the
stochastic stress parameters. The nucleation zone of the simulated earthquake ruptures
in general has a complex shape, but its average size is found to be independent of
the stress field parameterization and is determined only by the material parameters and the
friction law. Furthermore, we observe a sharp transition in event size from small to
system-wide events, governed mainly by the standard deviation of the stress field. A
simplified model based on fracture mechanics is able to explain this transition. Finally, we
find that the macroscopic rupture parameters (e.g., moment, moment rate, seismic energy)
of our catalog of model quakes are generally consistent with observational data.

Citation: Ripperger, J., J.-P. Ampuero, P. M. Mai, and D. Giardini (2007), Earthquake source characteristics from dynamic rupture

with constrained stochastic fault stress, J. Geophys. Res., 112, B04311, doi:10.1029/2006JB004515.

1. Introduction

[2] The region close to active earthquake faults is the
most challenging to deal with in terms of seismic hazard
assessment. Not only is it the zone most likely to experience
strong shaking and severe damage, but it is also the region
with very large variability in observed ground motion
intensities (PGA) [e.g., Shakal et al., 2006]. While part of
the ground motion variability can be attributed to local site
effects and/or (de-) amplification of waves due to complex
geological structure, the contribution of earthquake source
complexity to this variability is still not fully understood.
[3] Despite an increasing number of strong motion

recordings in recent years, observations for the very near-
source region are still scarce, in particular for large earth-
quakes. Inferring the details of the source rupture process
and its effects on the resulting near-source motions is
therefore strongly limited by the available data; this is even
more accentuated when it comes to deducing statistical
properties of earthquake ruptures. Events like the 1999
Taiwan earthquake generated a wealth of recordings, but
this data set still contains information only about one single
realization of a large crustal thrust-faulting earthquake that
produced extensive surface faulting. On the other hand,
recent large strike-slip earthquakes, like the 1999 Izmit and

the 2002 Denali earthquakes resulted only in few near-
source recordings. Our ability to study earthquake source
complexity and to make statistically sound inferences about
its effects on near-source ground motions, using observa-
tions alone, is therefore limited.
[4] Nevertheless, inversion of seismic and/or geodetic

data of past earthquakes have inevitably shown that earth-
quakes are complex at all spatiotemporal scales [e.g.,
Hartzell and Heaton, 1983; Beroza and Spudich, 1988;
Wald and Heaton, 1994; Sekiguchi et al., 1996; Delouis et
al., 2002]. The potential origins of this imaged source
variability are heterogeneities in fault stress, heterogeneities
in material and friction parameters and complexity of the
fault geometry.
[5] This paper deals with the first possibility, i.e., with

heterogeneous stress distributions on the fault plane. Early
work on heterogeneous stress focused on generic cases, i.e.,
simple geometric configurations of high or low stress
patches [e.g., Day, 1982; Fukuyama and Madariaga,
2000]. A number of studies have successfully constructed
dynamic rupture models with highly heterogeneous stress
fields to reproduce data for past events [e.g., Miyatake,
1992a, 1992b; Beroza and Mikumo, 1996; Bouchon, 1997;
Olsen et al., 1997; Ide and Takeo, 1997; Nielsen and Olsen,
2000; Peyrat et al., 2001; Zhang et al., 2003]. These low-
resolution images of dynamic earthquake rupture allow us
to visualize stress heterogeneity on the fault plane, but they
still represent only particular realizations of source com-
plexity for a small number of earthquakes. They have not
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been used to attempt a more general, quantitative investi-
gation of stress heterogeneity and its effects on rupture
dynamics.
[6] Unfortunately, the parameters and quantities govern-

ing the dynamics of an earthquake (e.g., stress on the fault)
cannot be determined experimentally prior to an earthquake.
What might be estimated with sufficient accuracy, however,
are statistical descriptions of the stress field. Oglesby and
Day [2002] went in that direction by numerical modeling of
dynamic ruptures with various cases of strength variabilities
combined with heterogeneous stress, using random stress
fields that were constructed in a somewhat ad hoc manner.
Their work, however, did not attempt to statistically quan-
tify the effects of different parameterizations of stress
variability on the dynamic rupture process and the resulting
ground motions. In contrast, earlier work by Andrews
[1980, 1981] discusses static and kinematic stochastic
models of earthquake rupture, with stress heterogeneity
described by a power law decay of its wave number
spectrum, and their effects on the radiated wavefield.
Following this line of thought and adding some simplifying
assumptions (e.g., rupture geometry), Frankel [1991] estab-
lished some general connections between stress heteroge-
neity, the characteristics of far-field displacement amplitude
spectra and the frequency-size statistics of earthquakes. On
the basis of this approach, fractal descriptions of fault slip
have been used [e.g., Herrero and Bernard, 1994; Zeng et
al., 1994; Gallovic and Brokesova, 2004] for ground motion
simulation, while other studies estimate statistical parame-
ters to characterize the heterogeneity of slip [e.g., Mai and
Beroza, 2002; Lavallée and Archuleta, 2003; Liu-Zeng et
al., 2005; Lavallée et al., 2006] and relate those to the
faulting process.
[7] In the present study we employ a concise and quan-

tifiable statistical description of stress distribution in order
to examine the dynamic rupture behavior due to different
parameterizations of stress heterogeneity. The motivation
for this work stems from the preceding discussion and the
question of how heterogeneity in the initial stress conditions
on the fault plane affects rupture nucleation, propagation
and arrest. Under what general conditions does rupture
nucleate and propagate and exhibit properties similar to
observed earthquakes? Rather than focusing on single
events we carry out a large number of fully spontaneous
dynamic rupture simulations for many realizations of het-
erogeneous initial stress fields for a variety of stochastic
field parameters. This allows us to investigate ensemble
statistics of dynamic rupture under inhomogeneous stresses
and to determine general patterns in the response of this
system that can then be compared against analytical pre-
dictions and observations. It is important to point out that
we are not modeling seismicity evolution or full earthquake
cycles. Our statistical description represents ensemble sta-
tistics of possible fault zone states. These states can either
be determined by the maturity of the fault in terms of their
geological evolution [e.g., Wesnousky, 1988; Hillers et al.,
2007] or can be viewed as a particular state due to the
background seismicity just before an impending earthquake.
[8] In contrast to previous works with rather generic

characterizations of stress heterogeneity, we adopt a spectral
description of initial stress as a self-affine correlated random
field with a power law decay at high wave numbers. This

approach follows the characterization of slip in past earth-
quakes by Mai and Beroza [2002] and allows us to generate
many different stress patterns that differ in their details (i.e.,
for each realization) but are statistically identical. In choos-
ing this method, we vary the parameters describing the
fractal stress distribution, always retaining some common
characteristics of the different classes of heterogeneous
input stress fields. Moreover, instead of imposing a nucle-
ation point and size, we apply a simplified approach to
mimic tectonic loading, coupled to an algorithm for finding
the physically most consistent rupture nucleation region
(generally of geometrically complex shape).
[9] We point out that we also fix fracture energy for

simplicity since its scale dependency is still actively debated
[e.g., Abercrombie and Rice, 2005; Mai et al., 2006], and
its nonhomogeneous parameterization, in conjunction with
heterogeneous stress, yields a vast parameter space that
would be difficult to fully explore. Moreover, we instead
attempt to isolate and understand the effects of stress
heterogeneity on dynamic rupture before including (poten-
tially correlated) heterogeneous distributions of two (or
more) dynamic quantities into the modeling strategy.
Within the simplifying assumptions in our dynamic mod-
eling, our technique provides a fully self-consistent phys-
ical model for earthquake nucleation and propagation,
allowing us to investigate the statistics for a large number
of rupture simulations with different parameterizations of
stress heterogeneity.
[10] The paper is laid out as follows: In section 2 we

introduce the model setup, the numerical scheme, and the
stochastic characterization of heterogeneous stress we use.
We then present the results for various stress heterogeneity
parameterizations in terms of nucleation and propagation
behavior of a large set of model quakes; we then investigate
the resulting dynamic ruptures in terms of their overall
scaling properties, their moment rate functions and radiated
seismic energy. This enables us to infer which heterogeneity
characterization is perhaps the most plausible when com-
paring our simulations against observations. Our results
suggest that it should be possible to place constraints on
stress heterogeneity from independent observations which
potentially could help to infer general properties of the
rupture process of future earthquakes on a given fault.

2. Method

2.1. Model Setup

[11] To single out the effects of heterogeneity in shear
stress, we restrict our model to relative simplicity. We
consider a planar fault embedded in a homogeneous, elastic
full space. This setting can be treated numerically very
efficiently with a boundary integral method. The dynamic
rupture calculations presented here are performed using a
spectral boundary integral method coded by Dunham
[2005], following the methodology of Geubelle and Rice
[1995].
[12] The fault is rectangular and slip on the fault is

governed by a linear slip-weakening friction law (Figure 1).
The critical slip-weakening distance Dc is assumed to be
uniform over the whole fault, as are the static yield strength ts
and frictional sliding strength td. By fixing Dc in the slip-
weakening model, along with constant strength drop ts� td,
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we constrain fracture energy Gc and hence seismic radiation
to values roughly consistent for moderate size to large
earthquakes (MW � 6.4–6.8), representing a magnitude
range particularly important for near-source seismic hazard.
In contrast, small earthquakes generated via this approach
will be characterized by relatively high fracture energy,
resulting in rather low seismic radiation in the higher-
frequency range. However, since we focus on studying
earthquake dynamics for seismic hazard applications, we
deliberately accept the limitations our current modeling
strategy places on the smaller magnitude events.
[13] There is no free surface, but the fault is surrounded

by unbreakable barriers on all sides, which are modeled by
setting ts to a practically unreachable value.

[14] Following Ampuero et al. [2006], we adopt a spectral
description of initial shear stress as a self-affine correlated
random field with a power law decay at high wave numbers.
In the wave number domain the stress field is constrained to
a two-dimensional amplitude spectrum t(k), where k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2z
p

and kx, kz are the wave number components in
the x and z directions, respectively. In particular, the
spectrum has a plateau below a given corner wave number
kc, while above kc the decay is governed by the Hurst
exponent H [e.g., Voss, 1988; Mai and Beroza, 2002]:

t kð Þ /
k� 1þHð Þ
c ¼ const for k � kc

k� 1þHð Þ for k > kc:

8

<

:

ð1Þ

Particular random realizations are constructed in the Fourier
domain by specifying the amplitude according to equation (1)
and adding phase values consisting of random numbers
uniformly distributed between [0, 2p]. After performing the
two-dimensional inverse Fourier transform under the con-
straint of Hermitian symmetry, the resulting distributions
t(x,z) in the space domain (Figure 2) have an approximately
Gaussian distribution of amplitude values. The stress
distributions are then scaled to a given standard deviation
(std) controlling the absolute amplitude variations. Thus,
apart from the probability density function (pdf), the
random stress fields are controlled by the three parameters
H, ac and std, where ac denotes the correlation length ac =
2 p/kc. This parameter also appears in the spectral description
of von Karman fields adopted byMai and Beroza [2002] and

Figure 1. (a) Geometry of the problem. Slip is occurring
on a rectangular fault in the xz plane. (b) Linear slip-
weakening friction law. Once stress has reached the static
yield level ts, strength decreases linearly with slip, until it
reaches the dynamic frictional level td at the critical slip-
weakening distance Dc. The area under the curve represents
fracture energy Gc.

Figure 2. Illustration of random stress field generation. (top) Prescribed Fourier amplitude spectra for
three different combinations of Hurst exponent H and correlation length ac. Shown are one-dimensional
slices (at kz = 0) of the two-dimensional spectra t(kx,kz), normalized to max(t) = 1. (middle) Example
random realizations of initial stress for the wave number spectra given above. (bottom) Along-strike
profiles of the stress fields above. Profiles are taken at the center of the fault. Upper and lower dashed
lines indicate the yield and frictional stress level, respectively.
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Ampuero et al. [2006]. Variations of these three parameters
will be studied in the main part of this paper.
[15] Recent work by Lavallée and Archuleta [2003] and

Lavallée et al. [2006] suggests that slip and stress distribu-
tions on real faults may follow a non-Gaussian pdf with a
broader range of values. A more general class of pdf’s
allowing for the occurrence of extreme values is provided
by the Levy pdf [Lavallée et al., 2006]. However, the Levy
distributions are characterized by four parameters instead
of the two needed for a Gaussian distribution, thus consti-
tuting a higher degree of complexity. Considering the other
simplifying assumptions outlined above, we do not consider
it necessary to go beyond the simpler case of Gaussian
pdf’s in this study. In particular the assumption of uniform
strength drop limits the admissible range for extreme stress
drop values. Accordingly, initial tests with heavy tailed Levy
distributions yield either extremely large preslip values
(larger than Dc) due to very narrow stress peaks and/or
regions where stress is far below the frictional sliding
strength. Both cases are rather unlikely to appear on real
faults. Additional tests considering uniformly distributed
random stress values indicated no significant differences in
the model response compared to the case of Gaussian
distributions.

2.2. Loading and Nucleation

[16] In our modeling approach, we assume that tectonic
loading occurs as uniformly increasing shear stress on the
fault plane, raising the initial stress field to a critical state,
i.e., to a stress state where any further loading leads to
dynamic rupture propagation. In this context ‘‘dynamic’’
refers to propagation not driven by tectonic loading any-
more, but by the stress changes induced by the propagating
rupture itself. We further assume that nucleation can be
accurately described as a quasi-static process, also governed
by linear slip weakening. This case has been studied analyt-
ically for two-dimensional (2-D) in-plane and antiplane
ruptures by several researchers [e.g., Campillo and Ionescu,
1997; Uenishi and Rice, 2003]. One remarkable result of the
analysis by Uenishi and Rice [2003] is the existence of a
critical nucleation length, which depends only on thematerial
properties and the slope of the friction law, but not on the
particular shape of the stress function. For the in-plane
fracture mode this length is given by

an ¼ 1:158
m

1� n

1

W
: ð2Þ

where m and v are the shear modulus and Poisson ratio of the
medium, respectively. For the antiplane fracture mode the
term 1� v has to be dropped. The slope of the slip-weakening
friction law is defined asW= (ts� td)/Dc, where ts and td are
the static and dynamic frictional strength, respectively.
[17] Some results for special cases of 3-D ruptures were

given by Uenishi and Rice [2004], but there is no analytical
solution available for the general 3-D case. Here, we
approximate the loading process by finding the critical state
of stress (i.e., the last stable stress state just prior to dynamic
instability) through an iterative procedure. It involves dy-
namic rupture calculations for small subsections of the fault
plane and is described and discussed in detail in Appendix A.
It is important to note that the procedure employed neglects
the effects of quasi-static preslip and therefore tends to

underestimate the size of the nucleation zone while over-
estimating the critical load (i.e., the increase in stress neces-
sary to reach the critical stress state), affecting therefore also
the actual values of stress in our numerical results. We have
recently developed an improved algorithm to correctly solve
the quasi-static problem associated with uniform tectonic
loading, including preslip and the resulting stress redistribu-
tion (to be presented in a forthcoming paper). Initial results
show that our general conclusions are not affected by the bias
introduced by the approximating procedure used throughout
the present paper.

3. Parameters and Nondimensional Quantities

[18] To characterize and generalize the properties of the
dynamic rupturing process, we explore the space of param-
eters quantifying the stochastic shear stress, while the
frictional parameters and the fault geometry are kept con-
stant. The general parameters which are not varied in this
study are listed in Table 1. We will discuss our results in
terms of the following nondimensional quantities:
[19] First, the Hurst exponent H controls the high wave

number falloff of the stress spectrum. It is related to the
fractal dimension D by D = E + 1 � H, where E is the
Euclidean dimension, and hence for our 2-D distributions
D = 3 � H. We consider H = 0, 0.5, 1, equivalent to

t k > kcð Þj j / k�1; k�1:5; k�2: ð3Þ

This is the same range as discussed by Andrews [1980] for
his static stochastic fault model, where jt(k)j / k�1 is
required for strict geometrical self-similarity of the ruptures
with stress drop being independent of rupture size. By
fitting focal mechanism data of earthquakes in southern
California, Smith [2006] estimated a 1-D falloff exponent of

0.8 for stress, equal to a 2-D falloff jt(k)j / k�1.3 or a
Hurst exponent of H � 0.3, which lies within the range of
our parameterization.
[20] The second quantity is given by the ratio av/ac of the

nucleation length av to the correlation length ac of the stress
field. As a proxy for the nucleation length we use the
critical length for 2-D in-plane rupture as given by
equation (2). For the parameters listed in Table 1 the
nucleation length is therefore av � 1153 m. For the correla-
tion length ac = 2 p/kcwe choose one value on the order of the
whole fault length (ac = 33.33 km) and one where the
correlation length is substantially shorter than the fault
dimensions (ac = 5 km), thereby yielding av/ac � 0.035 and
0.231, respectively.

Table 1. General Modeling Parameters Used in All Dynamic

Rupture Simulations Presented in This Papera

Parameter Symbol Value

Density r 2800 kg/m3

P wave velocity vp 6000 m/s
S wave velocity vs 3464 m/s
Critical slip-weakening distance Dc 0.2 m
Yield strength ts 24 MPa
Frictional sliding strength td 15 MPa
Grid spacing Dx 150 m
Time sampling Dt 0.013 s
Fault dimensions 15 � 30 km

aThe only exception being Figure 3, where some results for Dc = 0.4 m
have been added.
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[21] The ratio std/(ts � td) of the standard deviation of
the stress field to the total strength drop constitutes the third
nondimensional quantity. From the viewpoint adopted here
stress heterogeneity arises from previous seismicity. The
amplitude of stress concentrations at the edges of previous
ruptures is on the order of ts � td and the amplitude of
troughs due to dynamic stress overshoot are expected to be
less than 30% of ts � td. Then, with a fixed value of ts � td
and an approximately Gaussian distribution of stress values,
this would imply a value of std/(ts � td) smaller than
approximately 0.16. We cover a wider range by varying this
ratio from roughly 0.11 to 0.33 (ts � td = 9 MPa, std = 1, 2,
3 MPa), where the last case may lead to stress troughs
unrealistically far below the frictional strength.
[22] In addition, it proves insightful to consider a quantity

describing the average stress level at the critical stress state in
relation to the total strength drop.We use the nondimensional
ratio of average available stress drop to total strength drop

t0 ¼
t0 � td

ts � td

� �

; ð4Þ

where the angle brackets denote averaging across the fault
plane.

4. Properties of the Dynamic Rupture Process

[23] Let us now examine the characteristics of nucleation,
propagation and arrest for more than 400 dynamic rupture
models with variable degrees of stress heterogeneity. We will
first investigate the conditions of the critical load and the
associated stress levels. The size and shape of the triggering
patch, the initiation of rupture, its propagation style and the
stress-dependent size transition will be discussed. All these
parameters are generally only accessible in numerical simu-
lations, and cannot be easily inferred from observational data.

4.1. Critical Load

[24] The critical load Dtc
1 is defined as the amount of

stress which has to be added uniformly to reach the critical
stress state (see section 2.2 and Appendix A), starting from
a stress state at which the maximum of the shear stress
coincides with the yield strength. We expect to see a
dependence of the critical load on the ratio av/ac. The
smaller the nucleation length av is in relation to the
correlation length ac, the less loading is expected to be
necessary. For av � ac we empirically find the critical load
Dtc

1 to depend on the ratio av/ac as

Dt1c / std
an

ac

� 	 Hþ1ð Þ=2
: ð5Þ

Note that the critical load scales linearly with the standard
deviation of the stress field std, a result that follows from
dimensional analysis when slip is smaller than Dc, a typical
situation during nucleation. These relationships are depicted
in Figure 3, where results for a larger value ofDc (Dc = 0.4 m)
and thus a larger av are included to better illustrate the scaling
over a broad range. So if the statistical properties of the stress
field and the friction law are known or can be approximately
inferred from independent observations, these relationships

provide a good estimate of the amount of tectonic loading
necessary to initiate dynamic rupture and of the duration of
precursory aseismic slip.

4.2. Stress Level

[25] After the tectonic load is applied, stress on the fault is
in a critical state, where any additional loading will trigger
dynamic rupture. As mentioned in section 3, the average
stress level at this critical stress state is expressed by t0,
defined as the average ratio between stress drop and total
strength drop.
[26] Figure 4 depicts the dependency of this measure on

the statistical stress parameters. Two main features can be
identified: (1) Stress levels are higher for smaller values of
std/(ts � td), which is the expected behavior, because at the
critical stress state, for smaller std all points on the fault will
on average be closer to the yield stress than for larger std.
(2) Stress levels increase slightly with decreasing Hurst
exponent H. Stress levels from a reference 2-D analysis,
however, do not exhibit the latter dependency, so probably
the stress levels are biased toward higher values by our
approximative procedure of finding the critical stress state
(see section 2.2 and Appendix A).
[27] In either case, the average stress level at the critical

stress state is most strongly influenced by the quantity std/
(ts � td), i.e., by the amplitude of the stress heterogeneity.
In the following, the stress level will be shown to be a key
parameter in our model, controlling the propagation and
final size of the ruptures.

4.3. Triggering Patch

[28] As mentioned in section 2.2, the ruptures in our
simulations are triggered by a patch of the fault with stress
slightly above the yield level of the material. The individual
triggering patches are found through the iterative procedure
described in Appendix A and are ultimately determined by
the shape of each particular random realization of the initial

Figure 3. Scaling of critical load Dtc
1 with ratio av/ac and

H. Each symbol and its error bars represent the mean and
the standard deviation of 30 random realizations. Since
Dtc

1 is normalized by the standard deviation of the stress
field std, results for different std would plot almost exactly
on top of each other. Hence only the results for std = 1 MPa
are shown to improve clarity. Two data points appear for
each parameter set because results for Dc = 0.2 m and Dc =
0.4 m are displayed.
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stress function. As a first-order characterization of trigger-
ing patch size we use the radii of circumscribed and
inscribed circles (Figure 5). We find that the inner radius
is an approximately constant property over all the parameter
variations of the stress field. This confirms that nucleation
takes place on a common length scale, depending only on
the friction law and the material parameters, similar to what
has been shown for the 2-D cases [Uenishi and Rice, 2003].
The critical half lengths for the 2-D cases from equation (2),
as well as the critical elliptical radii from equation (A2) are
shown in Figure 5 for reference. It can be seen that the radii
of the inner fitting circles are coinciding roughly with the
critical half length of the in-plane case.
[29] In general, the outer radii show a larger variability

within each parameter set, and an increase with decreasing
Hurst exponent H. The latter reflects the transition from
close to circular to more complex patch shapes due to the
increase in small-scale complexity in the stress distributions.

4.4. Initiation of Rupture

[30] After triggering by the ‘‘initial kick’’ of the stress
increment in the triggering patch (see Appendix A), slip
velocities remain at rather low levels (<0.001 m/s) for some
time during which the size of the slipping region does not
change much. Eventually an exponential increase in slip
velocity marks the transition to fast dynamic propagation.
Figure 6 (top) illustrates this exponential seismic nucleation
phase (moment rate _M0(t)/ exp(smt)) predicted by Campillo
and Ionescu [1997] and Ampuero et al. [2002] and thoroughly
discussed by Ampuero and Vilotte [2003]. The characteristic
frequency sm of this phase is a robust and observable attribute
directly related to a frictional property: It is proportional to
the slip weakening rate W:

sm ¼ W=
m

2 vS

� 	

� 9:3Hz: ð6Þ

This attribute can be measured from the initial stages of the
waveforms in the same way as the dominant frequency wi

defined by Allen and Kanamori [2003] or Olson and Allen
[2005] for their early warning system strategy (Figure 6,
bottom). The dominant frequency wi at time step i of our
numerical simulation can be defined by

wi ¼
ffiffiffiffiffi

Ai

Vi

r

; ð7Þ

where Vi and Ai are the squared moment rate and moment
acceleration smoothed by a first-order Butterworth filter
with cut-off frequency f*. In recursive form,

Vi ¼ aVi�1 þ _M0

� �

i

2
; ð8Þ

Ai ¼ aAi�1 þ �M0

� �

i

2
; ð9Þ

where a = 1 � f *Dt and Dt is the time-stepping interval.
We take f * = 1 Hz after Allen and Kanamori [2003].
Shortly after slip has reached Dc, the dominant frequency

Figure 4. Average stress level t0 versus Hurst exponent H
for three different standard deviations. Each symbol and its
error bars represent the mean and the standard deviation of
30 random realizations. Note the strong influence of the
standard deviation.

Figure 5. (top) Examples of obtained triggering patches
(black) and their circumscribed (light gray) and inscribed
(dark gray) circles. (bottom) Radii of circumscribed and
inscribed circles. Plotted are the mean radii for 30 random
realizations of each parameter set (x axis) with error bars of
one standard deviation. Solid lines indicate the two 2-D
nucleation half lengths for the mode II and mode III cases
given in equation (2) and the following discussion, while
dashed lines mark the critical elliptic radii of equation (A2).
The inner radius is not strongly dependent on the stress field
parameterization.
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reaches a maximum. As shown by the histogram in Figure 6
(bottom), measuring sm as the frequency at these local
maxima yields a distribution of sm values spanning
approximately 4–9 Hz with a peak around 7 Hz. These
values are lower than the value given by equation (6), which
would be asymptotically reached for rupture sizes many
times larger than the initial nucleation size. In our case, slip
reaches Dc and nucleation ends before the dominant
frequency has reached its asymptotic value, at slipping
zone sizes of roughly 2–3 times the size of the triggering
patch. According to Favreau et al. [2002] (in particular their
Figure 10), for a quasi-elliptical slipping patch 2–3 times
larger than the critical size the dominant frequency is
expected to be roughly 0.6–0.7 times the asymptotic value
sm, which is in agreement with our numerical observations.

4.5. Rupture Propagation Style

[31] One important constraint on the rupture behavior is
the choice of the fixed fault size. Since the fault is
surrounded by unbreakable barriers, rupture is forced to
stop once it hits the fault boundaries. This imposes upper
limits on the final size and seismic moment of the events,
but also affects rupture propagation: If the rupture nucleates
close to one of the boundaries, it will encounter the barrier
much earlier on one side than on the other. This effectively
leads to unidirectional, occasionally pulse-like, rupture

propagation as illustrated in Figure 7. Crack-like propaga-
tion prevails for small events not reaching the fault borders
and for large events with hypocenters at the center of the
fault plane. Conceptually, the propagation style of the pulse-
like events can be placed somewhere between classical
cracks and self-healing slip pulses. This has been previously
recognized by Johnson [1990] as a possible mechanism of
creating the short slip rise times that have been inferred for
real earthquakes [Heaton, 1990]. Interestingly, all seven
earthquake source models cited by Heaton [1990] exhibit
a distance of the hypocenter from the fault boundary of only
about 10–30% of the total fault dimension, hence favoring
unidirectional propagation. In our simulations, the width of
the slipping zone (i.e., ‘‘pulse width’’) and the rise time of
slip are still large compared to the examples given by
Heaton [1990]. However, the largest part of pulse width
and risetime is related to very slow slip velocities, so it
might be difficult for waveform inversions to distinguish
our pulse-like ruptures from self-healing pulses.
[32] The hypocenter position with respect to the fault

boundaries is the controlling factor regarding unidirectional
or bidirectional propagation. This is in good agreement with
results obtained by McGuire et al. [2002], who found that
unidirectional propagation dominates for crustal strike-slip
events and who were able to explain this observation by a
model with hypocenters uniformly distributed over a fault
with fixed size, comparable to our simulation setup.

4.6. Stress-Dependent Size Transition

[33] For all values of the average stress level t0 higher than
a threshold value, the dynamic rupture cannot be stopped by
the stress fluctuations and results in a system-wide event.
For lower average stress levels we observe a transition to
smaller event sizes. This is illustrated in Figure 8, where
the average stress level was varied by changing the
standard deviation of the initial stress distribution. On
average, this transition occurs at average stress levels of 0.3,

Figure 6. (top) Moment rate functions for all simulations
aligned at the time t0 = 0 where moment rate first reaches
1016 N m/s. The gray line represents scaling / exp(sm t) for
reference. (bottom) Dominant frequency of the moment rate
functions over time. The histogram illustrates its distribu-
tion at the (local) maxima.

Figure 7. Snapshots of slip velocity on the fault plane for
typical examples of (a) crack-like and (b) pulse-like
propagation styles. Black stars indicate hypocenters; white
areas are not slipping.
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as shown in Figure 9, in which rupture area is plotted as
a function of t0 for H = 1 and ac = 5 km. For other
values of H we obtain similar plots, whereas for the cases
with ac = 33.33 km the transition is less clearly visible,
because the size of the ‘‘smaller’’ events below the transi-
tion is still comparable to the whole fault size. To stop
propagating ruptures in our simulations the stress amplitude
variations have to be so large that some areas of the fault
have initial stress below the frictional strength. On real
faults such areas can result from dynamic overshoot of
previous events or from aseismic creep. However, this
appears to be plausible only, if these areas constitute a
minor fraction of the total fault area and overshoot is less
than about 30% of the total strength drop. The threshold
value of t0 = 0.3 translates to roughly 20% of the fault area
being below frictional strength.
[34] Let us explore how final event size is related to the

statistical stress parameters averaged over a large ensemble
of simulations. We start with an analysis of a mean stress
field obtained by averaging over 10,000 random realiza-
tions, aligned at their individual maxima. This mean stress
fields basically consist of a single peak, the shape of which
depends on the autocorrelation function of the individual
random realizations. The height of the peak is determined
by the standard deviation. The results for this mean field can
serve as a reference for the single realizations. The results
are overlain in Figure 9 and labeled as ‘‘mean field.’’ They

highlight the sharpness of the transition to system-wide
events.
[35] However, not all events seem to follow the trend

outlined by the reference field. A closer look reveals that
near the transition additional effects like dynamic triggering
and crack interaction become important. These can lead to
complex rupture patterns, disconnected slip patches and
larger final rupture sizes than predicted by the mean field
analysis.
[36] Furthermore, we evaluate the rupture size predictions

of a static crack model, based on expressions for circular
mode I cracks (see Appendix B). This simplified model is
an extension of similar 2-D models discussed by Ampuero
et al. [2006], who highlighted the role of the stress hetero-
geneity amplitude for the transition from moderate to
system-wide events. The results of the current simplified
3-D model are included in Figure 9 (labeled ‘‘circular’’).
The model slightly underpredicts the rupture area below
the transition but in general the transition itself is well
captured.

5. Implications for Observable Macroscopic
Properties

[37] Previously, we have analyzed the properties of the
dynamic rupture process using quantities that are in general
only accessible in numerical simulations. However, our
approach also allows us to calculate earthquake source
parameters that can be inferred from seismic observations.
We therefore investigate these macroscopic source param-
eters, computed for the large number of dynamic rupture
models and relate them to observations. For the source-
scaling analysis of small and large events, recall that the
model constraints on fracture energy limit the possible range

Figure 8. Contours of rupture front (black lines) plotted
every second, superimposed on a gray scale map of (t0 �
td)/(ts � td) across the fault. In these three simulations the
average stress level t0 was varied by using different values
for the standard deviation of the initial stress (std = 3, 2.5,
and 2 MPa in Figures 8a, 8b, and 8c, respectively). All other
parameters are the same in these three examples.

Figure 9. Ruptured area for all simulations with H = 1 and
ac = 5 km plotted versus average stress level t0, which was
varied by changing the standard deviation of the initial
stress. Rupture area is normalized by fault size. Triangles
represent runs where the initial stress is the mean of 10,000
individual realizations, aligned at their stress maximum. For
these averaged stress functions the sharp transition from
small to system-wide ruptures is clearly visible. Circles
indicate predictions for the mean stress fields of a simplified
model assuming circular mode I cracks.
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of rupture behaviors and seismic radiation, decreasing in
particular the generation and emission of high-frequency
energy.

5.1. Seismic Moment and Radiated Energy

[38] The events in our simulations span a range of seismic
moments of roughly 2.5 orders ofmagnitude (
7� 1016–4�
1019 N m). Figure 10 displays the scaling of rupture area
with seismic moment. Rupture area S here is defined as all
the fault area with slip larger than 1% of the maximum slip.
We observe a scaling given approximately by S / M0

2/3,
comparable to the constant stress drop scaling of observed
seismicity [e.g., Kanamori and Anderson, 1975; Wells and
Coppersmith, 1994]. At the upper end, the rupture area
saturates at the fixed fault size. For a few simulations the
assumption of the fixed fault size is relaxed. The fault is
enlarged by 9 km in each direction (i.e., from 15 � 30 to
33 � 48 km in total) and the unbreakable boundaries are
replaced by stress functions slowly decreasing (over 1.5 km)
to a negative stress drop value of 10% of the total strength
drop. In these cases (gray circles in Figure 10) the M0

2/3

scaling persists.
[39] The total energy Er radiated by the rupture process

can be calculated during our simulations in a straightfor-
ward manner (see Appendix C). As can be seen in Figure 11,
we find that radiated energy scales approximately linearly
with seismic moment for all events smaller than the whole
fault, thus implying constant apparent stressDsa (the ratio of
radiated energy to seismic moment, multiplied by the shear
modulus Dsa = m Er/M0). For events spanning the entire
fault, radiated energy scales roughly as Er / M0

3, which
translates into strongly increasing apparent stress for
increasing magnitude. This is generally not observed in
real data, and is an effect of the increased radiation due to
the abrupt stopping at the unbreakable boundaries (see
section 5.2. for further discussion).

5.2. Moment Rate Spectra

[40] From our simulations we can readily extract time
histories of the total moment release rate. Some examples of
moment rate functions for different events are shown in
Figure 12. We calculate Fourier amplitude spectra of the
moment rate functions which were all zero padded to 213 =
8192 samples to enhance frequency resolution. From the
spectra we obtain their corner frequency fc and falloff
exponent n using the expression [e.g., Abercrombie, 1995]

W fð Þ ¼ W0

1þ f =fcð Þn ð10Þ

and solving for the best fitting set of W0, fc and n. For n = 2
this expression is the spectral shape proposed by Brune
[1970]. Fitting is performed in a least squares sense on the
logarithm values of the spectrum to reduce biasing by the
large values at low frequencies. The fitting range was
restricted to frequencies between zero and

fmax ¼
vs

4Dx
¼ 3464m=s

4� 150m
� 5:77Hz; ð11Þ

where Dx is the spatial grid sampling and vs is the shear
wave velocity of the medium. Numerical noise is clearly
observed in most cases for frequencies larger than 9 Hz, so
we are confident that the fitting procedure is not biased by
these high-frequency oscillations. Figure 13 shows ampli-
tude spectra of the example moment rate functions from
Figure 12 plus the corresponding fitted spectra.
[41] In all cases the plateau value W0 of the spectrum

obtained in the fitting process exactly reproduces the
seismic moment M0 computed from the final slip distribu-
tion. The estimated corner frequencies for all events are
plotted as a function of seismic moment in Figure 14a. They
scale with seismic moment approximately as fc / M0

�1/3 as
expected for crack models of rupture. We cannot find a

Figure 10. Plot of rupture area versus seismic moment. Note
the saturation in the scaling relation at the fixed size of the
fault plane at 15 � 30 km = 450 km2 (dashed line). A few
simulationswere performed on a larger fault plane (gray circles).
Reference lines are drawn for a scaling of area / M0

2/3.

Figure 11. Scaling of radiated energy with seismic
moment for all simulations with ac = 5 km. Reference
lines are drawn in gray to highlight the change from Er /
M0 to Er / M0

3 when the fixed fault size is reached at
around M0 = 1019 N m. This change in scaling is partially
due to enhanced radiation, when rupture is stopped abruptly
at the fixed fault boundaries.
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systematic deviation from this scaling for the pulse-like
ruptures, in accordance with the interpretation that these
events are not self-healing pulses. An alternative explana-
tion could be, as mentioned above, that the width of the
‘‘pulse’’ is too large to yield a corner frequency significantly
different from that of a crack-like rupture.
[42] Figure 14b displays the results for the spectral falloff

exponents. For all the events spanning thewhole fault size, the
exponent n is roughly 2–2.5. For smaller events, however, we
find significantly higher exponents, clustering around n = 3,
corresponding to a steeper high-frequency falloff.
[43] As pointed out by Madariaga [1977], high-frequency

radiation is dominated by strong changes in rupture velocity
and a lower bound for the spectral falloff exponent is given
by n = 2 for sudden jumps in rupture velocity, e.g.,
instantaneous stopping of a crack occurring simultaneously
along its front. Madariaga [1977] also notes that for abrupt,
but not simultaneous stopping, the exponent n will become
higher. In addition, Dahlen [1974] considered a crack
model including self-similar nucleation and smooth stop-
ping for which he derived a high-frequency asymptotic
limit with n = 3.
[44] These findings offer a consistent explanation for the

different spectral falloffs of our simulated ruptures. Nucle-
ation in our model is similar for small and large events and
it is a slow and smooth process, not expected to generate
significant high-frequency radiation. The small events are
strongly affected by our simplistic assumption of constant
fracture energy. Their fracture energy is relatively high
compared to the energy available to drive the rupture and
the events are therefore characterized by unusually low
average rupture velocities of roughly 20% of the shear
wave velocity. In addition, they stop early and smoothly
by propagating into regions of the fault with low initial
stress. Thus, overall, the small events experience no strong
changes in rupture velocity and little high-frequency radi-
ation is excited. In contrast, the large events accelerate to
higher average rupture velocities before they are abruptly
stopped by hitting the unbreakable boundaries, exciting
strong stopping phases that increase the high-frequency
radiation.
[45] We have repeated a number of simulations in which

the unbreakable boundaries are replaced by a slowly decay-

ing stress field. These tapered stress fields also stop the
ruptures, but over a broader zone and thus more gently.
Compared to their untapered counterparts, these events
show increased spectral exponents of 2.5–3 (gray circles
in Figure 14b). This confirms that a large part of the high-
frequency radiation in our dynamic simulations originates
from abrupt stopping of the ruptures at the fault boundaries.
[46] In addition, the larger ruptures might generate radi-

ation by repeated acceleration and deceleration due to the
heterogeneity in initial stress. However, we do not observe
systematic changes of the exponent n with the parameters
describing the stress distribution. Probably because most
of the ruptures hit the unbreakable boundaries and the
resulting stopping phases mask differences in radiation
during propagation.
[47] Also, the abrupt fluctuations of rupture velocity

required for sustained high-frequency radiation (n = 2) are

Figure 12. Typical examples of moment rate functions for one of the smallest and one of the largest
events.

Figure 13. Spectra of moment rate functions for the
examples in Figure 12. Their best fitting model spectra are
overlain in light gray, along with the corresponding values
of corner frequency and spectral falloff. The vertical dashed
line marks the upper limit of the spectral fitting procedure of
roughly 5.8 Hz.
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less efficiently generated by stress heterogeneities than by
heterogeneities of fracture energy, which are not included
here. The reason is that, whereas Gc enters the ‘‘crack tip
equation of motion’’ by its local value, stress drop contributes
as a weighted spatial average through the integral defining
the stress intensity factor. More singular stress distributions
than the ones considered here, such as stress concentrations
at the edges of previous events, might be required to generate
high-frequency radiation [Madariaga, 1983].

5.3. Hypocenter Location and Slip Distribution

[48] In general, the distributions of final slip in our
simulations reflect the heterogeneity of the initial shear
stress. In particular, stress fields with high Hurst exponent,
long correlation length and small standard deviation yield
‘‘smoother’’ distributions, while ‘‘roughness’’ of slip
increases with lower Hurst exponent, shorter correlation
length and larger standard deviation of stress.

[49] All events not reaching the fault boundaries consist
of a single slip patch with the hypocenter located within the
region of highest slip (i.e., within the zone of slip d larger
than 2/3 of the maximum slip dmax), often directly coincid-
ing with the location of dmax. For the larger events the
artificially imposed fault boundaries become important. If
ruptures nucleate in the central part of the fault (more than
5 km distance from any boundary), the hypocenters are still
close to the region of highest slip and in more than 95% of
the events hypocentral slip is larger than 2/3dmax. In
contrast, hypocenters located very close to the boundaries
(distance to boundary < 2 km) are in general more remote
from the location of largest slip and only 
7% of these
events have hypocentral slip d > 2/3dmax. However, for
most of these events hypocentral slip is still large (88%
have 1/3dmax < d < 2/3dmax). So overall the stress load
determined hypocenter positions in our simulations are
compatible with the hypocenter locations in imaged finite
source rupture models [Mai et al., 2005], where it is found
that hypocenters are located within or close to regions of
large slip.

6. Discussion

[50] Let us investigate how our numerical simulations
compare against analytical predictions and observations of
real earthquakes.

6.1. Nucleation

[51] In this study we have assumed that linear slip-
weakening friction is also the governing process during
quasi-static nucleation. Our results on nucleation agree well
with and extend earlier studies based on the same assump-
tion [e.g., Campillo and Ionescu, 1997; Favreau et al.,
2002; Uenishi and Rice, 2003; Ampuero and Vilotte, 2003].
In particular the common length scale of the nucleation zone
(section 4.3) and the exponential growth during the nucle-
ation phase (section 4.4) match well the expectation.
[52] Olson and Allen [2005] observed a magnitude de-

pendency of the dominant frequency measured from the
first three seconds of seismograms, which cannot be
explained by our assumed constant W. It may require a
power law nonlinear slip-weakening model [Cochard et al.,
2006] or a fault with heterogeneous Dc where larger events
show some tendency to nucleate in regions of longer critical
slip distance (as defined in rate-and-state friction models
[Hillers et al., 2006, Figure 14]).

6.2. Rupture Arrest

[53] We find that the average final sizes of the ruptures
are predicted reasonably well by a simplified model based
on fracture mechanical considerations of circular mode I
cracks (section 4.6 and Appendix B), constituting a three-
dimensional extension of the 2-D model by Ampuero et al.
[2006]. This simplified model may serve as a guide in
choosing stress parameterizations for future scenario calcu-
lations, e.g., for a given target event size.

6.3. Fracture Energy

[54] In our present approach, both strength drop and Dc

are constant and hence fracture energy (i.e., the energy
dissipated at the tip of the rupture) is also uniform across the

Figure 14. Spectral parameters of moment rate functions
for all simulations plotted against seismic moment.
(a) Corner frequencies. They show the expected scaling
with seismic moment of fc / M0

�1/3 indicated by the black
reference scaling line. (b) Spectral falloff. Note that the
small events and the smoother stopping large events with
stress tapered at the edges (gray circles) show falloff
exponents n clearly higher than 2.
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fault plane and independent of rupture size. However,
several studies have indicated a scale dependence of fracture
energy [e.g., Ohnaka, 2003; McGarr et al., 2004; Mai et al.,
2006]. Though the origin and the details of this scale
dependence are still a subject of ongoing debate, it is clear
that the assumption of homogeneous fracture energy is a
strong simplification. We consider it justified from the
viewpoint that an integral aspect of our work is to explore
and demonstrate ways of dealing with stochastic descrip-
tions of stress in a generic sense and to estimate the first-
order response of a complex system. The simulations
presented in this paper should thus be understood as a
starting point for more refined and complex modeling to be
guided by and to be built on the current results.
[55] Several ways of including scale-dependent fracture

into numerical simulations have been suggested: Aochi and
Ide [2004] proposed a renormalization approach, while
Andrews [2005] demonstrated that the scale-dependent
nonelastic behavior off the fault plane can be mimicked
by simply limiting the slip velocity in an elastic medium.
Other ways to include scale-dependent fracture energy in
our simulations could be a parameterization of Dc depend-
ing on hypocentral distance and/or stress heterogeneity or
the use of a slip-weakening friction law in which strength
continues to drop as a small power of slip as suggested by
Abercrombie and Rice [2005].
[56] We expect the following changes to our results for

scale-dependent fracture energy. The rupture velocity and
the seismic radiation properties of the smaller events will
better match observational data. Moreover, we expect it to
become easier for ruptures to stop with smaller amplitude
variations in initial stress and fewer areas (or none) of initial
stress below td.
[57] Finally, we would like to point out that including

systematic scale dependencies of Gc into the analysis of
Appendix B is straightforward. The scale dependencies
discussed in recent literature [e.g., Abercrombie and Rice,
2005; Andrews, 2005] would yield a transition in event size
similar to the one described above, but at a different average
stress level (see Appendix B).

6.4. Slip Pulses

[58] Heaton [1990] pointed out that in many source
inversions of real earthquakes slip rise times have to be
significantly shorter than the overall event duration to
obtain an acceptable fit to the recorded seismograms. As
an explanation, Heaton [1990] proposed a model in which
velocity-weakening friction results in self-healing pulses of
slip propagating over the rupture plane. As discussed in
section 4.5, despite crack-like rupture propagation modes
are prevailing in our simulations, some of the events show
pulse-like features resulting from nucleation close to the
fault boundaries. Assuming that because of their limited
resolution, waveform inversions might not be able to
distinguish between these pulse-like ruptures and self-
healing pulses, this mechanism could offer an alternative
explanation for the short rise times of slip inferred for real
earthquakes. Alternatively, extending our current model
with some healing mechanism is expected to enhance the
generation of rupture pulses, probably with even shorter
rise times.

6.5. High-Frequency Radiation

[59] Our results on the spectral falloff underline the
importance of the stopping of earthquake ruptures. Do they
just slow down gently, or come to a halt abruptly? Our
simulations document how these different mechanisms lead
to variations in the high-frequency falloff. The spectral
falloff with n = 3 of the smallest simulated events is
generally not observed for real earthquakes in this magni-
tude range, but is probably a result of the assumed scale
independence of fracture energy. However, this case (frac-
ture energy being large compared to the strain energy
driving the rupture) may in some cases occur at a much
lower magnitude level. Studies on microearthquakes
recorded at borehole stations do indeed show a certain
variability in the spectral falloff exponents. Abercrombie
[1995] states that n = 2 represents a good average, but also
notes that the individual falloff exponents show a significant
scatter up to around n = 3.5. A similar range of values for n
was reported by Venkataraman et al. [2006]. In one area
they even found a systematic increase in falloff exponents
with decreasing event size.

6.6. Fault Boundary

[60] In general, all our simulated events yield macroscop-
ic rupture properties in a physically reasonable range.
However, the scaling relations of these properties are only
compatible with observational data for events smaller than
the whole fault size. For the whole fault events the un-
breakable fault boundary has been shown to strongly affect
the scaling of area, moment and radiated energy. Hence
replacing this strong discontinuity in strength by a more
gradual change will improve the match of observed scaling
relations.

6.7. Plausible Stress Characterization

[61] For stress distributions with the lowest standard
deviation (std/(ts � td) � 0.1) we always obtain whole
fault events with supershear rupture propagation over much
of the fault plane. Such an abundance of supershear prop-
agation is not observed in real earthquakes, rendering these
stress models implausible in conjunction with the assump-
tion of homogeneous fracture energy. If fracture energy is
heterogeneous, however, a stress distribution with small-
amplitude variations or even homogeneous stress also can
produce globally subshear ruptures, as demonstrated by Ide
and Aochi [2005]. On the other hand, extremely high values
of the standard deviation (std/ (ts � td) >0.4) always lead to
the rupture of a single high-stress patch, not being able to
propagate to a neighboring patch. These single asperity
ruptures generate a single isolated slip patch, not compara-
ble to many of the imaged slip distributions of large earth-
quakes. Our results therefore suggest that (at least in the
simplistic case of homogeneous fracture energy) a standard
deviation of stress in the intermediate range is most plau-
sible. As shown in section 4.6, the most complex rupture
behavior (including dynamic triggering and rupture jump-
ing) is observed close to the stress-dependent transition in
event size.
[62] The stress distributions with correlation length on the

order of the total fault dimension also yield slip distributions
with a single high-slip patch only. Therefore correlation
lengths substantially smaller than the fault size are needed
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to generate the complexity in imaged slip distributions with
multiple high-slip patches [e.g., Mai and Beroza, 2002].

7. Conclusions

[63] We have investigated the effects of correlated ran-
dom initial stress on dynamic earthquake rupture. This work
establishes links between statistical properties of these stress
fields, the governing friction law on the fault and macro-
scopic rupture properties. Although the details of the actual
stress field on a real fault are not accessible to direct
measurement, its statistical properties might be reasonably
well estimated. Our results provide insights into how these
statistical characterizations of fault stress affect the overall
rupture behavior and seismic observables. In this context,
not only the average macroscopic rupture properties, but
also their variability, will be important input to scenario
calculations for improved seismic hazard estimates in the
near-fault region.

Appendix A: Approximation of Tectonic Loading

[64] As noted in section 2.2, we approximate tectonic
loading and quasi-static nucleation by an iterative proce-
dure. We start with a heterogeneous stress distribution t(x,z),
where the maximum of the stress distribution has just reached
the static yield level ts of thematerial. Themain task is to find
the critical load Dtc

1, which is the amount of tectonic stress
increaseDt1 necessary to bring the fault to the critical stress
state at the onset of dynamic instability. Our method of
finding Dtc

1 consists of the following steps:
[65] 1. A starting value for Dt1 is chosen.
[66] 2. The set of grid points is determined for which the

original stress t(x,z) plus the tectonic load exceeds the static
yield stress level of the material; that is, we find all grid
coordinates x, z for which t(x,z) + Dt1  ts.
[67] 3. Within the set of grid points found in step 2 we

search for connected clusters of points. Two grid points are
defined as connected if they are direct neighbors either in
the x or z directions. The largest cluster is defined as the one
containing the most grid points and will be termed the
‘‘triggering patch.’’ At all points belonging to the triggering
patch, shear stress will be set to a small value ttrig above the
yield stress to initiate rupture in the dynamic simulation.
The value of ttrig should be sufficiently small to still be in
accord with the notion of nucleation originating from
quasi-statically growing slipping zones. On the other hand
it does not have to be smaller than daily variations of stress
superimposed on the tectonic load, where Coulomb stresses
from Earth tides can be of the order of a few kPa [Cochran
et al., 2004]. Still, the choice of ttrig is somewhat arbitrary
and we have experimented with different values between
0.1 and 10 kPa. Since results only varied slightly, we have
chosen ttrig = 10 kPa for all the results presented in this
paper.
[68] 4. To avoid simultaneous triggering at multiple

locations, stress is set to a small value treduce below yield
stress at all remaining points found in step 2 which do not
belong to the triggering patch. Since preslip at those points
is expected to be small, stress should not have dropped very
much at those points and we use a value of treduce = 10 kPa

for all our simulations. However, we do not expect a strong
influence for variations of this value.
[69] 5. We carry out a dynamic simulation with the

resulting shear stress. To save computation time, the simu-
lation is restricted to a small subsection (9 km � 9 km) of
the fault surrounding the triggering patch and to 
5 s
simulated time. After this duration, in all our simulations
either slip has stopped completely on the whole fault or a
slip velocity threshold of 0.001 m/s has been exceeded,
indicating continued rupture expansion.
[70] 6. If slip velocity during this simulation has not

reached the threshold value of 0.001 m/s, we start over at
step 1 with an increased value of Dt1. If the slip velocity
threshold has been exceeded, we start over at step 1 with a
decreased value of Dt1.
[71] Employing this procedure iteratively, we finally

obtain the smallest load that still leads to sustained rupture,
i.e., an approximated value of the critical load Dtc

1. Using
this critical load, we go through steps 2–4 of the above
procedure to obtain the critical state of the stress field. This
stress distribution is used as the initial stress t0(x,z) in the
dynamic rupture computation on the entire fault. Rupture
in this whole-fault dynamic simulation is triggered by the
small increment ttrig above yield stress inside the triggering
patch.
[72] We test the scheme described above, first for one of

the 3-D cases treated analytically by Uenishi and Rice
[2004]. The stress function is pure shear in the in-plane
direction (x) and is given by

t x; zð Þ ¼ ts �
1

2
x2 þ 1

1� n

� 	2

z2

" #

: ðA1Þ

According to Uenishi and Rice [2004], for homogeneous
loading of this stress function, the slipping patch always has
an elliptical shape with constant aspect ratio. For v = 0.25
they provide the following approximate values of the
critical elliptical radii ae and be:

2 ae � 2:598 m
W
;

2 be � 1:951 m
W
;

ðA2Þ

Applying our loading procedure (with grid spacing Dx =
150 m and triggering stress ttrig = 10 kPa) to this stress
function, we compare the obtained results with the theo-
retical prediction, as shown in Figure A1. The size of the
triggering patch is smaller than predicted (elliptical radii of
approximately 0.8 ae and 0.8 be), whereas the critical load
Dtc

1 is overestimated by a factor of about 2. This is due to
the fact that our approximation neglects the effect of quasi-
static preslip. Stress starts to decrease at the location of this
quasi-static preslip, but at the same time stress is increased
in the surrounding regions, effectively leading to earlier
nucleation (i.e., with less loading necessary). If successively
smaller increments ttrig inside the triggering patch are used,
its size tends asymptotically toward the theoretical predic-
tion, but the overestimation of the critical load is increased.
So in choosing the triggering stress ttrig there is a trade-off
between the errors of the approximation of nucleation size
and critical load.
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[73] As mentioned in section 2.2 we have developed an
improved algorithm (to be presented in a forthcoming
paper) to compute the critical load. This enabled us to
perform a similar comparison also for the heterogeneous
stress distributions, where no analytical solution is avail-
able. We find that the critical load is overestimated by our
approximation procedure by factors ranging from 1.4 to 1.8
with an average of 1.6. This affects the ratio between stress
standard deviation std and average stress level t0 and
therefore the values in Figure 4 are slightly shifted upward
with respect to their true value. However, the scaling
relation of the critical load given by equation (5) remains
valid, as do the general results obtained in this paper.

Appendix B: Analysis of the Transition to
Runaway Ruptures

[74] We propose here a mechanical interpretation of the
transition from small to fault-wide earthquake sizes illus-
trated in Figures 8 and 9. This explanation is based on frac-
ture mechanics concepts and is largely inspired by the work
of Dyskin [1999]. It extends the discussion presented by
Ampuero et al. [2006]. A number of approximations aremade
that are ultimately tested by comparison to the average
properties of our dynamic simulations (Figure 9).

[75] The evolution of a slip-weakening crack with a rela-
tively small process zone can be fairly well described by
the Griffith criterion and small-scale-yielding fracture
mechanics. Upon arrest, the dynamic stress intensity
factor K shows damped oscillations around its static value,
generated by multiple wave diffractions along the rupture
front. In a rough approximation, the final earthquake size is
given by the following arrest criterion (e.g., in the mode II
direction):

1� n

2m
K0

2 ¼ Gc; ðB1Þ

where K0 is the static stress intensity factor and fracture
energy is given by Gc = (ts � td) Dc/2. Realistic rupture
fronts have complicated geometry, but for the sake of
mathematical tractability we employ the expression of K0

for circular mode I cracks. This approximation is justified
by our interest in statistically averaged properties arising
from isotropic stress drop distributions, and by considering
the anisotropy of the shear modes as a second-order effect.
For a crack of radius a and a heterogeneous stress drop Dt,
it is given in cylindrical coordinates (r,q) by Lai et al.
[2002], after Fabrikant [1989], as

K0 a; qð Þ ¼ 1

p
ffiffiffiffiffiffi

pa
p

Z 2p

0

Z a

0

Dt r;fð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � r2
p

a2 þ r2 � 2ar cos q� fð Þ r dr df:

ðB2Þ

Clearly, K0 fluctuates along the crack rim, but we will
assume that the arrest condition can be applied to the
average stress intensity factor

K0 að Þ ¼ 1

2p

Z 2p

0

K qð Þdq; ðB3Þ

which can be simplified to

K0 að Þ ¼ 1

p
ffiffiffiffiffiffi

pa
p

Z 2p

0

Z a

0

Dt r;fð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � r2
p r dr df: ðB4Þ

To estimate the average event-size we first compute K0(a)
by numerical integration of equation (B4) with an
ensemble-averaged Dt(r,q) obtained by averaging 10,000
realizations of the stress field aligned on their nucleation
point (or, approximately, on their maxima). We then apply
the arrest criterion (B1) to estimate the final radius a. Figure 9
shows a satisfactory comparison between this approach
(open circles), the dynamic simulations based on the
ensemble-averaged stress (black triangles) and the average
trends of the dynamic simulations based on individual
realizations of the stress field. In the remainder of this
appendix we quantify analytically the conditions for the
earthquake size transition.
[76] A crack that has grown considerably larger than the

correlation length of the heterogeneous stress field can be
modeled by a crack subjected to uniform loading by the
average stress drop hDti plus a pair of concentrated forces
F representing the excess of stress drop in the nucleation
area. We can obtain F numerically from our ensemble-

Figure A1. (top) Triggering patch (black) obtained
through the approximative loading procedure for the stress
function of equation (A1) compared to the theoretical
prediction (dark gray ellipse) for a grid spacing of 150 m.
(bottom) Stress profiles along the in-plane direction. Shown
are the initial stress (light gray), the correct critical stress
state including the drop of stress in the center due to quasi-
static preslip (dark gray) and the approximation of the
critical stress state (black). Dotted lines indicate theoretical
3-D nucleation length. Horizontal dashed line indicates
yield strength.
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averaged stress field (average of 10,000 realizations, aligned
at maxima) as

F ¼
ZZ

Dt � hDtið ÞdS: ðB5Þ

Alternatively, if we assume ac � av, the shape of the mean
stress field can be approximated by the autocorrelation
function of stress C, normalized by std2, and we can write

F ¼ Dt 0ð Þ � hDtið Þ
ZZ

C x; zð Þ dS; ðB6Þ

whereDt(0) is the stress drop at the hypocenter. Defining the
integral above as c(H) ac

2, with c(H) being dimensionless, and
again using ac� av to assumeDt(0)� ts� td, we can write

F ¼ ts � td � hDtið Þ c Hð Þ ac2: ðB7Þ

For the circular mode I crack with radius a the average stress
intensity factor resulting from F and hDti is

K0 ¼
F

p að Þ3=2
þ 2 hDti

ffiffiffi

a

p

r

: ðB8Þ

The two terms in (B8) have competing contributions, the first
decreases whereas the second increases as a function of a. We
find that K0 reaches a minimum

Kmin ¼ 8
F hDti3

2 3pð Þ3

 !1=4

; ðB9Þ

at the radius

amin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3F

2p hDti

s

: ðB10Þ

For a stable equilibrium crack to exist we need

Kmin � Kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mGc= 1� nð Þ
p

; ðB11Þ

which yields the following condition:

F hDti3 � 3pð Þ3
211

Kc
4 � 0:41Kc

4: ðB12Þ

Combining with (B7) the condition above can be written in
terms of hDti as

ts � td � hDtið ÞhDti3 � 3pð Þ3
211

K4
c

c Hð Þ a2c
: ðB13Þ

When (B13) is violated, the fault tends to generate runaway
ruptures. Introducing the nucleation half length of an in-plane
rupture,

an ¼
1:158

2

m

1� n

Dc

ts � td
; ðB14Þ

it can then be shown that the critical hDtic and amin are
given by

hDtic � ts � tdð Þ 3pð Þ3
29 1:1582 c Hð Þ

an
2

ac2

" #1=3

ðB15Þ

and

amin;c �
2

p
ac

1:158 c Hð Þ2 ac
an

" #1=3

; ðB16Þ

respectively. Considering the amount of simplifying
assumptions involved in the derivations above, these
estimates are in fair agreement with the results of our
dynamic simulations.
[77] If fracture energy scales with crack size as Gc �

Gc
0 + ga, it can be shown, by similar arguments to those

above, that a sharp transition to runaway rupture exists at
average stresses of order

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pmgð Þ= 2 1� nð Þð Þ
p

, which can
be higher than in the constant Gc case.

Appendix C: Estimation of Radiated Energy

[78] As shown by Kostrov [1974] and recently summa-
rized by Rivera and Kanamori [2005], the radiated energy
Er can be expressed through surface integrals over the fault
plane:

Er ¼
1

2

Z

S

t1ij � t0ij

� �

Dui nj dS �
Z

S

2 geff dS

�
Z t1

t0

dt

Z

S tð Þ
tij � t0ij

� �

D _ui nj dS: ðC1Þ

Here, S is the fault plane, and S(t) is the ruptured fault
surface at time t up to the trailing edge of the process zone.
The unit normal vector to the fault plane is vj. Initial and
final stress states are denoted by tij

0 and tij
1, respectively; and

Du and D _u are slip and slip velocity. The effective fracture
energy is geff and t0 and t1 are times before and after the
earthquake.
[79] Since the slip velocity D _u is zero outside the

currently rupturing zone S(t), we can evaluate the last
integral over the whole fault plane. By doing this, we also
include the process zone and thus the second term in
equation (C1). So what we are actually evaluating is

Er ¼
1

2

Z

S

t1ij � t0ij

� �

Dui nj dS

�
Z t1

t0

dt

Z

S

tij � t0ij

� �

D _ui nj dS: ðC2Þ

This form is more convenient for numerical evaluation than
the one proposed by Favreau and Archuleta [2003], which
is obtained from (C2) by integration by parts of the second
term. Because we are only simulating pure strike-slip
events, we further neglect the downdip slip components. We
therefore obtain the following simplified expression for Er,
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which can be conveniently evaluated numerically from the
quantities available during our simulations:

Er ¼
1

2

ZZ

x;z

t1 � t0
� �

Du1 dx dz

�
Z

t

dt

ZZ

x;z

t � t0
� �

D _u dx dz: ðC3Þ
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