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EARTHQUAKE SPATIAL DISTRIBUTION: THE

CORRELATION DIMENSION
Yan Y. Kagan?

! Department of Earth and Space Sciences, University of California, Los Angeles, California, USA

Abstract.

We review methods for determining the fractal dimensions of earthquake epi-

centers and hypocenters, paying special attention to the problem of errors, biases and
systematic effects. Among effects considered are earthquake location errors, boundary
effects, inhomogeneity of depth distribution, and temporal dependence. In particular, the
correlation dimension of earthquake spatial distribution is discussed, techniques for its
evaluation presented, and results for several earthquake catalogs are analyzed. We show
that practically any value for the correlation dimension can be obtained if many errors
and inhomogeneities in observational data as well as deficiencies in data processing are
not properly considered. It is likely that such technical difficulties are intensified when
one attempts to evaluate multifractal measures of dimension. Taking into account pos-
sible errors and biases, we conclude that the fractal dimension for shallow seismicity asymp-
totically approaches 2.20+0.05 for a catalog time span of decades and perhaps centuries.
The value of the correlation dimension declines to 1.8-1.9 for intermediate events (depth
interval 71-280 km) and to 1.5-1.6 for deeper ones. For plate tectonic deformation on the
time scale of millions of years, it is possible that the correlation dimension for shallow

earthquakes may increase to 2.6-2.7.
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KEYWORDS:
ods, Synthetic-earthquake catalogues
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1. Introduction

This paper continues our research into spatial patterns of
earthquake occurrence (Kagan & Knopoff 1978, 1980; Ka-
gan 198lasb; Kagan 1991a). In the last 5-10 years many
papers (see below) have been published which analyzed
both theoretical and phenomenological aspects of the scale-
invariant spatial features of earthquakes. Various values for
scaling exponents have been proposed. However, it is not
clear whether such diversity is due to real physical reasons
or is caused by data deficiencies and failure to consider the
properties of earthquake process.

In this paper we analyze the statistical distributions of
earthquake epicenters and hypocenters. Since this distribu-
tion exhibits scale-invariant properties, it is often called a
fractal spatial distribution (Kagan & Knopoff 1978, 1980;
Ogata & Katsura 1991; Kagan 1991a; Vere-Jones 1999;
Harte 1998, 2001; Bak et al. 2002) and is characterized by its
fractal and, in particular, correlation dimension, §. Several
sources of random and systematic errors as well as biases in
the dimension determination need to be considered first.

As a major tool in this study, we analyze a distribution
of distances between any event pairs in several earthquake
catalogs. Thus, we study the correlation dimension of earth-
quake spatial patterns. Studying distances has a certain ad-
vantage compared to the widely used box-counting methods
for studying fractal patterns. For example, southern Cal-
ifornia seismicity exhibits clear alignment along the plate
boundaries and the San Andreas fault system. It is pos-
sible, therefore, that cells oriented along the fault would
yield a different result compared to boxes selected along lat-
itude/longitude lines. In addition, the initial grid location
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and the size of the smallest and largest cells can influence
the box-counting algorithm (Molchan & Kronrod 2005).

The distances between events do not depend, as boxes
do, on the system coordinates and the grid selection. More-
over, distances can be defined on a surface of a 2-D (two-
dimensional) sphere. Box-counting on a spherical surface,
when analysis is extended over large spherical regions, can-
not be used without unknown modifications at present. This
is perhaps one reason why box-counting techniques have
been employed in relatively limited seismic regions like Cal-
ifornia (Geilikman et al. 1990; Bak et al. 2002; Molchan &
Kronrod 2005).

As we will see, investigating local catalogs presents serious
problems connected with boundary effects and the high spa-
tial inhomogeneity of the location accuracy and magnitude
threshold. These drawbacks are largely due to the spatial
boundaries of the catalogs, and are especially strong for net-
works situated on island chains like Japan and New Zealand
where station distribution is almost one-dimensional. There-
fore, we should compare results for local or regional catalogs
with studies of global earthquake catalogs in which the above
problems are significantly alleviated.

For example, Harte and Vere-Jones (1999) paired up the
events listed in the PDE and New Zealand catalogs and stud-
ied the difference in the tabulated solutions. They found
that earthquake epicenters in some regions are systemati-
cally displaced in one catalog relative to another, and earth-
quake depths are often also systematically different. This
effect is a natural consequence of different station distri-
bution in these catalogs, as well as different interpretation
methods. However, for global catalogs one should expect
less variation in location bias, and since in this work we are
not interested in real earthquake locations but in distances
between catalog solutions, global catalogs may have certain
advantages compared to local ones.

In particular, we are interested here primarily in the
hypocentral fractal pattern, since this pattern character-
izes physical properties of the earthquake rupture process.
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However, in many earthquake catalogs, unreliable source
depth information forces one to study epicentral distribu-
tion. Moreover, seismicity is usually concentrated in the
upper crust, corresponding to a narrow layer of 15-20 km
thickness. For distances exceeding that width, epicentral
and hypocentral moments converge (Section 5). Therefore,
we consider the interrelationship between these two distri-
butions and show how the epicentral fractal pattern can be
used to infer the value of the hypocentral correlation dimen-
sion, especially for large distances.

For distances comparable to the seismogenic depth inter-
val, the epicentral distribution may be strongly influenced
by projection effects which increase the estimate of the cor-
relation dimension for a set of epicenters. We calculate ap-
propriate corrections so that the biases can be more accu-
rately estimated. Similarly, the hypocentral moment func-
tion changes significantly when calculated for a seismogenic
layer at distances comparable to or exceeding its thickness.

In most studies of earthquake spatial distribution, loca-
tion and other errors have not been properly considered.
This oversight might explain the high values of fractal di-
mensions often reported and their great variability, findings
which do not reflect the physical and geometrical properties
of the earthquake fracture but rather indicate location and
projection errors peculiar to the catalogs studied.

The notable feature of the present investigation is its em-
phasis on analysis of the errors and systematic effects in
studying the correlation dimension. As we show, these ef-
fects are often so large that they may render the results of
any statistical analysis irrelevant, if these influences are not
noted.

In Fig. 1 we show epicenters in the catalog compiled by
Hauksson & Shearer (2005) (see Section 3 below) for the
period 1984-2002. The accuracy of the hypocenter loca-
tion is very high; in many cases the errors do not exceed
0.1 km. For the faults that are vertical or close to vertical,
such as the 1992 Landers (coordinates 34.20° N, 116.44° W
— see Kagan et al. 2008) or the 1999 Hector Mine (34.59° N,
116.27° W), earthquakes, the epicenters delineate the ma-
jor faults as well as subsidiary features. However, for the
1994 Northridge earthquake (34.21° N, 118.54° W), epicen-
ters form a cloud. This happens because the rupture plane
of the earthquake was far from vertical (Thio & Kanamori
1996).

We can compare Fig. 1 with the epicenter maps for the lo-
cal catalog for southern California for 1800-2005 (see Kagan
et al. 2006). This catalog combines historical and instru-
mental earthquake catalogs. Several features can be seen
in that catalog: although most aftershocks of the 1857 Fort
Tejon earthquake are likely to be missing, and the location
accuracy is low for historic earthquakes, the spatial distri-
bution is more uniform along the San Andreas fault than
similar distributions are for the catalogs of a more limited
time span.

The earthquakes in Fig. 1 show strong concentration in a
few clusters, often connected to the aftershock sequences of
strong events. This narrow clustering, as we will see, leads
to a decrease in the correlation dimension of earthquake dis-
tribution. On the other hand, the broad earthquake distri-
bution such as Fig. 1 in Kagan et al. (2006) produces a
larger value of that dimension.

Describing scale-invariant point patterns, like that shown
in Fig. 1, presents serious methodological and theoretical
problems, since the mathematical framework for analysis is
not yet completed. The first approach is to treat this pat-
tern as a stochastic point process (Vere-Jones 1999; Daley &
Vere-Jones 2003). For such a process the covariance measure

C> can be defined by

Ca(y —z) = m[mi(ylz) - m], (1)
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where m is a point mean density, and the conditional first
moment measure or the Palm intensity m; (y|z) is a function
of distance y — z (Kagan & Vere-Jones 1996). Moment m;
is proportional to the number of event pairs at various dis-
tance intervals measured for each point. In the earthquake
applications, mi(y|z) >> m for y — = small, and probably
impossible to determine from a finite data set, whether the
power decay relates to m;(y|z) directly, or to the difference
m1(y|lz) — m. For fractal distributions the moment m; has
a power-law dependence on distance R

mi(R) < R, (2)

Another approach is to use total counts of point pairs in
the analysis as they depend on their distance. This is usual
treatment of fractal point patterns whether they are encoun-
tered in phase space of strange attractors (see for example,
Nerenberg & Essex 1990 or Harte 2001) or in real space of
earthquake spatial distribution. In this work, depending on
dimensionality D of the space considered, we study the total
number of earthquake pairs at distance R

Np(R) « R°. (3)

Then the simplest estimate offisa straight line in a log-log
plot Np versus R, or

. _ 8[log Np(R)]
® = Th(egR) )

Because of different mathematical tools used in the analysis
of point patterns, the terminology is not yet stabilized. This
is the reason that in various papers (including ours) different
terms (like statistical moments or pair numbers, see Eqgs. 2
and 3) sometimes are employed to describe the earthquake
spatial patterns.

2. Simulating point spatial patterns

Simulating spatial distributions is often necessary in test-
ing formulas to estimate various dimensions of point pat-
terns and different biases caused by location errors and other
defects in earthquake data (see Section 4 below).

The non-fractal point distribution can be simulated by
placing points randomly in a region of a 2-D plane or 3-D
(three-dimensional) volume. The resulting point patternis a
spatial Poisson process. Ripley (1988) and Stoyan & Stoyan
(1994) discuss these simulations in more detail.

To simulate random points in a window in a sphere with
longitude limits z1 and z; and latitude limits y; and y2, we
use the following formula
and

®1 + Z1 % (2 — z1),
arcsin[Z; x (sin(yz2) — sin(y1)) + sin(y1)], (5)

r =

Yy =

where Z; are uniformly distributed random numbers in a
range (0, 1].

To create a point pair for a fractal point pattern, we use
Lévy flight pattern (Mandelbrot 1983). We put one point
at the center and use the truncated Pareto distribution to
simulate the position of a second. The probability density
function for the distance r is

8 8

Toax Toni 1o
P(r) = 22 4br 1= for Pmin < 7 < Tmax , (6)
Tmax — Trin

and the distribution function

(Tmin/r)a - (Tmin/rmax)a
1-— (Tmin/rmax)a
for 7rmin S r S Tmax (7)

®(r) =
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where 7min and rmax are the minimum and maximum dis-
tances, and § is the dimension of the pattern.

For the truncated Pareto distribution, we simulate dis-
tances as

T = Pmin {Z [1 — (Tmax/rmin)_a] + (Tmax/rmi“)_a}_l/a .
(8)

where Z is the same as in (5). The random point is then ob-
tained by simulating a normalized random 3-D vector with
Marsaglia’s (1972) algorithm (see also
http://mathworld.wolfram.com /SpherePointPicking.html)
and putting a point along the vector at the distance r.

The simulation methods described above have two disad-
vantages. The points can be too orderly (e.g., the pattern
of random points on a 2-D plane or spherical surface as
in Eq. 5). Or with the other simulation technique (6-8),
a direction from one random point to another is isotropi-
cally distributed in a 3-D space but accounts for position
of no other points. Earthquake point patterns clearly de-
viate from planar geometry: earthquake faults branch and
form en-echelon patterns and other complex shapes (Ka-
gan 1991a; Ben-Zion & Sammis 2003). On the other hand,
the fractal point structure exhibits obvious anisotropy (Ka-
gan 1981a;b); linear features in 2-D and planar in 3-D are
good approximations. Kagan (1982) and Libicki & Ben-
Zion (2005) created models of earthquake fault geometry
that try to capture such features of earthquake fault geome-
try. However, here we use only simple geometrical patterns
(Eqgs. 5-8). Therefore, our derived corrections for the bi-
ases and other deficiencies of earthquake catalogs should be
considered a first approximation.

3. Earthquake catalogs

Beginning in 1932, the CalTech (CIT) dataset (Hileman
et al. 1973; Hutton & Jones 1993) was the first instrumen-
tal local catalog to include small earthquakes (M > 3). In
recent years even smaller earthquakes have been included in
the catalog. Presently the magnitude threshold is about 1.5
(Wiemer & Wyss 2000).

The catalog of relocated earthquakes (Richards-Dinger &
Shearer 2000) contains 297,400 events for the period 1975-
1998. These events have been relocated using spatially vary-
ing station terms to improve the accuracy of relative loca-
tion. The median horizontal accuracy is 0.3 km and the
vertical uncertainty is about 0.7 km. These values are sig-
nificantly better then those for the CIT catalog, especially
during its early period.

The another relocated catalog for southern California was
produced by Hauksson & Shearer (2005) and Shearer et
al. (2005). They applied waveform cross-correlation to ob-
tain precise differential times between nearby events. These
times can then be used to greatly improve the relative loca-
tion accuracy within clusters of similar events. In many re-
gions, this new catalog resolves individual faults in what pre-
viously appeared to be diffuse earthquake clouds (see Fig. 1
and Fig. 7 in Shearer et al. 2005).

Richards et al. (2006) compare traditional methods of
earthquake location and discuss the advantages of modern
new location methods and their application for California
catalogs. They show that for these new methods the loca-
tion uncertainty is ten to hundred times lower than for old
catalogs based on seismic phase pick data.

The PDE (Preliminary Determination of Epicenters,
1999, and references therein) worldwide catalog is issued by
the USGS (U.S. Geological Survey). The catalog contains
more than 50,000 shallow earthquakes with mp > 5 from
1965 to 2004/1/1.
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4. Sources of error and bias in estimating
the correlation dimension

There is an extensive bibliography on statistical estima-
tion of the dimension (for example, Smith 1988; Nerenberg
& Essex 1990; Ogata & Katsura 1991; Pisarenko & Pis-
arenko 1995; Eneva 1996; Vere-Jones et al. 1997; Vere-Jones
1999; Harte 1998, 2001; De Luca et al. 1999, De Luca et
al. 2002; Molchan & Kronrod 2005, and references therein).
However, these publications insufficiently consider the sys-
tematic effects which largely influence estimation of the frac-
tal or scaling dimensions for earthquakes. Many of these
publications consider methods for estimating correlation di-
mension with little quantitative discussion of various biases,
which as we see later, may significantly alter the dimension
value even if evaluated by a seemingly eflicient statistical
method. Some of the above publications estimated several
effects using synthetic catalogs. As we discuss later in this
Section, such simulations are insufficient for understanding
various biases.

Smith (1988) and Nerenberg & Essex (1990) considered
boundary effect by calculating the correlation dimension for
a hypercube or a hypersphere. These region geometries are
not often encountered in earthquake statistics. De Luca et
al. (1999; 2002) investigated boundary bias and location
errors influence by simulation. Harte (1998, p. 602, see
also Harte 2001, his Section 11.3) discusses several effects
that may cause bias in the correlation dimension estimates:
“boundary effect, lacunarity, rounding effect, and noise or
location error”, but again these effects are only analyzed
by simulation. We consider lacunarity or intermittency of
spatial earthquake distribution as a natural consequence of
its statistical self-similar pattern, for other biases analytic
formulas are derived below to describe their influence.

These systematic effects are largely caused by geometri-
cal factors. Many stochastic geometrical problems for point
distribution in various figures are considered in

http://mathworld.wolfram.com/topics/GeometricConstants.html

(see also Wolfram 1999).

For some of these geometrical distributions we need to
make assumptions which are not fully realistic. As a rule
such assumptions are needed to obtain an analytic result.
More general distributions can be obtained by simulations.
However, theoretical expressions are still useful: firstly, they
often are sufficient to understand the extent of an error
or a systematic effect influence on results; secondly, the
closed-form solutions are needed to check simulation pro-
grams which may contain hidden flaws. The theoretical ex-
pressions below are usually represented in a form accessible
to computation by standard software packages: FORTRAN,
MATLAB, and MATHEMATICA. We list these expressions
below, starting with those affecting the estimate for small
distances between events (see also Kagan & Knopoff 1980;
Kagan 1991a).

4.1. The number of earthquakes in a sample

Clearly the é-value cannot be determined for distances
less than the smallest distance (rmin) between points.
Strictly speaking, the fractal dimension of a point set is zero
(Vere-Jones 1999), but § = 0 for r < rgin and should in-
crease for greater distances. Nerenberg & Essex (1990) call
this effect ‘depopulation’ and estimate the critical minimum
distance as

rmin = 2R x (1/N)'/P, (9)

where N is the number of points in the cube of size 2R, and
D is the dimension of embedding Euclidean space.
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Modern earthquake catalogs contain thousands and tens
of thousands of events. Thus, unless we are interested in
the distribution of only the strongest earthquakes, samples
are well ‘populated’. The distribution of events at small dis-
tances may be influenced by having too few earthquakes. As
we will see, this distribution is more likely strongly biased
by other effects.

4.2. Earthquake location error

The location error randomizes earthquake locations and,
as a result, the correlation dimension estimate § approaches
D for distances less than or comparable to the average lo-
cation uncertainty. In early catalogs, earthquakes and es-
pecially aftershocks, were often assigned a common location
and depth. This decision reduces the é-value (an example is
shown in Fig. 14 below).

We assume that earthquake location errors are normally
distributed and that errors for both points are independent
of each other. The obtained earthquake locations for close
events are most likely influenced by similar biases hence they
are not statistically independent. However, in this work we
measure the pairwise distances between earthquakes, thus
only relative errors influence the result.

The distribution of distance r between the two epicenters
or hypocenters whose actual separation is p obeys a “non-
central x-distribution” (Fisher 1928; Kendall & Moran 1963,
Chapter 5.19). Below we analyze this distribution for 3-D
and 2-D earthquake spatial patterns (hypocenters and epi-
centers).

4.2.1. Earthquake location error: the 3-D case

Horizontal error is usually much smaller than vertical er-
ror. However, the general case of unequal errors cannot be
analytically solved. If we assume for simplicity in a 3-D
case that horizontal and vertical location errors are equal,
the probability density of the 3-D non-central x-distribution
for hypocenters is

r (r — p)?
pﬁﬁm‘z

Both distances r and p are scaled by o. If p — 0, the
distance distribution becomes the Maxwell law, with prob-

ability density function
2 2 7'2
r —exp|l——].
T P 2

The Maxwell law corresponds to the distribution of vector
length in three dimensions, if the components of a vector are
statistically independent and have a Gaussian distribution
with the zero mean and the standard error o. For large p
distribution (10) becomes the Gaussian one (Fisher 1928,
p. 664). The density is shown in Fig. 2.

If we assume that hypocenters are distributed over a frac-
tal set with the dimension 4, then the number of events in
a sphere of the radius R, centered on one of the points, i.e.,
the number of pairs in the 3-D space, N3(R), is

blrle) = - exp—M](w)

2

#(r) = (11)

R oo
N3(R) « fdr f¢(7‘|p) p°tdp

R
/
= %I‘ (%) f r? exp (—;) 1P (%, %, ;) dr, (12)
0

where I' is a gamma function and ; /4 is the Kummer con-
fluent hypergeometric function (Abramowitz & Stegun 1972;
Wolfram 1999).
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For § = 3 the function ; F} (%, %, "7) is exp (;), and
for§d =2

3 r? 1 /z r? r
m(135) = L gen () et (35) w9

where erf(R) is an error function. Then

N3(R) « frerf(r) dr

= R\/g X exp [ — RZ/Z] + erf (%) [R? —1]. (14)
The ratio RN3(R)/Vr can be estimated as
RN;(R)/Va = 2 Ns(R)

2
= /Zx M + erf (%) [1-R?], (15
where Vg is a sphere volume. For other values of the di-
mension 4, the integrals (12) and Eq. (20) below can be
estimated numerically (Wolfram 1999).
Using (14) we estimate the correlation dimension for
§ = 2 in the presence of location errors as (4)

2 R erf (%)

N3(R)

§o_ 8log N3(R)]
8 (log R)

(16)

For large distances § — 2. For small values of the argument

erf (%) ~ R\/gxexp[—Rz/Z] x |:1—|—R?2:| (17)

(Abramowitz & Stegun 1972, Eq. 7.1.6). Hence putting (17)
in (16), we obtain that for small distances 5§ 3.

In Fig. 3 we show the dependence of § on the dis-
tance, both for simulation and computation according to
(16). In a synthetic catalog, we simulated 200,000 points on
a 500 x 1000 km plane fault and then perturbed the loca-
tion by adding the Gaussian errors. When calculating the
6-value, we compared the correlation function at distances
separated by a factor 21/% = 1.189.

4.2.2. Earthquake location error: the 2-D case

For the 2-D case of epicenters with location errors equal
to o, the non-central x-distribution density is

2 2
 exp (—" +e ) I (r0),

where Iy is the modified Bessel function of zero-th order. If
p — 0, the distance distribution becomes the Rayleigh law

2
r exp BERE

which is a distribution of vector length in two dimensions,
(¢f. Eq. 11).

As in the 3-D case, we assume that epicenters are dis-
tributed over a set with the fractal dimension §. Then the
number of the events measured over the Earth’s surface in
a circle of the radius R, again centered on one of the points,
i.e., the number of pairs in the 2-D space, N2(R), is

d(rlp) =

(18)

¢(r) = (19)

R oo

N;(R) « fdr f¢(7‘|p) p*ldp

0 0
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R
= 25/2_1 F (g) f r exXp (—;) 1F1 (%717 %) dT7 (20)
0

see (12).
Foré=1

1 2 2 4
A (30) = e (3) 0 (%),

and for § =2
ex ﬁ
Pl )

2
r
1F1 (1,1,?) =

In Fig. 4 we show the dependence of & on the scaled dis-
tance for hypocenters or epicenters displaced by the Gaus-
sian errors with the standard deviation 0. We compute &
according to (12) and (20). There is little difference be-
tween these curves as the underlying dimension of the point
pattern changes. In the 2-D case, however, the curves are
slightly displaced toward smaller values of the scaled dis-
tance.

(22)

4.3. Projection effect for epicentral scaling dimension

Assuming, for example, that hypocenters cover a fault-
plane (6§ = 2), the epicentral correlation dimension may fluc-
tuate from § = 1 to § = 2, depending on the dip angle of
a fault. Thus, for distances comparable to the thickness of
the seismogenic zone, the correlation dimension value should
depend on the style of the earthquake deformation pattern.
In the general case, projecting a 3-D distribution onto a 2-D
plane is called “grading” after Matheron (1971).

For illustrative purposes we have calculated the 2-D spa-
tial moment, assuming both that the original seismicity was
isotropic and the 3-D distance pair number function Ns(R)
is proportional to R®. Then a horizontal layer of seismicity
of thickness W is projected on a horizontal plane:

G(R) = RN:(R)/(nR?)

«(yn)fmr (W —R)(r? + h2)6—3)/2 gp (23)

oHs

This integral is a complex expression involving hypergeo-
metric functions.
For integer § simpler expressions can be found. For § =1

1=27 log (B)

GR) =W [2 arctan (A_l) - =

+Alog(4) ], (24)
where A = R/W and B = 4/1 + A2. For § = 2 we obtain
the corrected Eq. 3 in Kagan & Knopoff (1980)

G@):LW[BA1+AbgB+1 2(B® — A° —1)

A 34

(25)
And for 6 =3

G(R) = W

3A
— 26
= (26)

i.e., in this case the ratio (or an estimate of the correlation
dimension) does not depend on distance. This is expected
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since here projecting uniformly 3-D distributed hypocenters
on a surface is again a uniformly 2-D distributed pattern.

Using expressions (24-26) we can calculate an estimate
of the correlation dimension for the grading problem:

0 =1+ %. (27)
In particular for d =1
i - 2A [arctan (%) — Alog (%)] (28)
2 A arctan (%) — A?log (%) + log(B) '
for d =2
T R e
A2 log (M4B) 4 242145247 7
and for d =3
§=2. (30)

In Fig. 5 we show the dependence of § on the distance
scaled with the width of a seismogenic layer (W). Three
distributions of the points are assumed in the layer: with
§ =1; 8 =2; and § = 3 (i.e., uniform Poisson distribution).
The correlation dimension is determined for the projection
of the points on a horizontal plane (equivalent to the epicen-
ters). We display both theoretical values of the dimension
(Egs. 28, 29, 30, respectively) and the simulated values
again evaluated at distances separated by a factor /4,

The curves show the expected behavior: for small scaled
distances § — 6 —1 as the result of projection (Mandelbrot
1983), but for large distances 6 — § — 2. For the Poisson
point distribution in a layer, the point pattern projected on
a surface has a uniform § = 2.

4.4. Boundary effects

For practical measurements when the size (diameter) of
the set explored exceeds the distance r, the correlation func-
tion stops increasing. Nerenberg & Essex (1990) call this ef-
fect ‘saturation’ and estimate the critical minimum distance
as

re =R/(D+1). (31)
As in (9) 2R is the side of a cube and D is the embedding
dimension. If r > r, in the correlation function C(r), the
function is saturated: its value does not represent the scaling
effect of a point pattern.

For local and regional earthquake catalogs, the spatial
boundaries delineate the area of sufficient coverage. For dis-
tances comparable to the area size, the §-value estimate is
biased depending on how the fault system pattern relates
to the area polygon. If, for example, a narrow rectangular
box were oriented along the direction of the major faults or
perpendicular to them, this bias would significantly differ.

Below we consider a few simple cases where é can be an-
alytically derived. The distribution of the distances in more
complicated polygons and other figures can be obtained by
a simulation.

4.4.1. Boundary effects: a 2-D case

The simplest 2-D figure is a disk. For points in a disk of
diameter d, the distribution density for normalized distance

y = r/d between two random points inside is (Hammersley
1950)

(32)

16—: [arccos(y)—y\/l—yz] .
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The surface area for the box in Fig. 1is § = 233, 300 km?>.
Approximating it by a circle, we obtain its radius as
272.5 km. When calculating temporal correlation functions,
10% of the time interval is usually considered the upper limit
for reliable estimation. In southern California this would
suggest that for distances over 25-50 km, the § values are
more questionable.

Garwood (1947) and Ghosh (1951) propose formulas to
calculate the distribution density for distances r between
random point pairs in a rectangular box a x b for a > b:

d1(r) = [abﬂ'—Zr(a—l—b)—l—rz] for r < b,(33)

a? b?

¢2 (7') = a.42'l‘>2

[a\/rz — b2 — 1’2—2 —ar-+ab arcsin(b)]

forb<r<a, (34)

¢s(r) = 2% [a\/r2 — b +bv/r? —a? — L (a® + b +7?)

—ab arccos (%) + a b arcsin (3) ] ,

r

fora < r < +/a? + 2.

4.4.2. Boundary effects: 3-D case

Here, we discuss a distribution of distances in a horizon-
tal layer of width W in a 3-D space. This would correspond
to the average number of hypocenter pairs within a distance
R of an arbitrary point in a layer of uniformly distributed
seismicity. Three cases need to be considered: a sphere of
radius R not touching any layer boundary, a sphere inter-
secting only one boundary, and another intersecting both
boundaries.

For various distance ranges, we obtain three expressions.

For R < W/2

R
N3 (R) = 4m(W_2R)R® 2% [ (2R—h) (R+h)’dh
0

= =R (8W —3R). (36)
For W > R > W/2 as in (36)
W—-R
Ns(R) =2 [ (2R-2z)(R+2)’dz
0
R
.y [4R3—(R—z)2 (2R +2)
w/2
— (W+2R—-2) (R—W—i—z)z]dz
= =E W _3R). (37)
For R> W
w
N3(R) =% [ [4}23—(}2—};)2 (2R —h)
0
—(W+2R—h) (R—W-i—h)z]dh
= 7W? (RZ—WTz). (38)
For R < W the estimate of correlation dimension is
¢ 12(2W - R 12(2 —
5 - 1 ) _ 12( p)’ (39)

8W — 3R 8 —3p

(35)
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where p = R/W. For R > W it is

5 2 R? _
T Rz —W32je

Zp2
P> —1/6°

(40)

As expected, for p — 0 the hypocentral correlation dimen-
sion estimate 6 — 3 and for p — oo the dimension § — 2.

4.5. Inhomogeneity of earthquake depth distribution

Inhomogeneity of earthquake depth distribution influ-
ences the hypocentral fractal dimension. If this distribution
were in fact uniform over depth, the dimension estimate
would approach the real §-value for distances smaller than
the thickness of the seismogenic zone (see Egs. 39-40). Oth-
erwise, the apparent dimension value is effectively a convo-
lution of the scale-invariant distribution with a non-uniform
depth distribution.

We correct the hypocentral moment for the non-
uniformity of the earthquake depth distributions:

G(R) = RN (R)/(xR?)

« (2/R) frdr fK(z)(rz + zz)(a_s)/z dz.

Here, K(z) is the depth covariance function

K(z) = (AR)™? / N(h, h+ AR) N(h+ z, h+ z + Ah) dh,
1 (42)

where N(h, h + Ah) is the number of hypocenters in Ah
depth interval, h; and hy are depth limits: for example,
for global shallow seismicity, h1 = 0 and hy = 70 km. The
integrals in equations (41) and (42) can be evaluated numer-
ically for a known distribution N (k). The similarity between
(23) and (41) is not accidental, since C (W — k) is a correla-
tion function (C is a normalizing coeflicient) for the number
of hypocenters in a layer W, if hypocenters are distributed
uniformly over depth.

In Fig. 6 we display the distribution of the hypocenter
numbers for the Hauksson & Shearer (2005) catalog as well
as the correlation function (42). We used the magnitude
threshold M. = 3, since the depth accuracy of these earth-
quakes should be higher. Most of the correlation function
can be approximated by a linear function C (W — h) with
W = 13.5 km.

For d = 3, i.e., the Poisson 3-D distribution of hypocen-
ters with depth density N(h, h 4+ Ah), the pair number dis-

tribution is
R r
N3(R) = 4?71- /rdr/K(z)dz,
0 0

where S is the surface area spanned by a catalog. Putting
K(z) = C(W — z) in (43), corresponding to a covariance
function for a layer with uniform seismicity, we recover (36).
For distances longer than W/2, the covariance function can
be padded by zeros. Thus, we do not need to calculate more
complicated formulas (37) and (38).

In Fig. 7 we show two curves to account for depth inho-
mogeneity. One is based on the depth correlation function
(43); another uses Eqs. (36-38) to calculate pair numbers
in a layer with width 13.5 km. As Fig. 6 demonstrates, the

(43)
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correlation function of the hypocentral depth distribution
is well approximated by a linear fit. Hence, both curves in
Fig. 7 almost coincide.

In this figure as well as in several subsequent plots
(Figs. 8, 9, 11) we scale the number of earthquake pairs
Np by dividing the number by distance E or by its square
R?. This is done to reduce the size of the plots and simplify
them.

It may seem from Fig. 7 that we can correct for depth
inhomogeneity without Eqgs. 41-43. However, the depth
distribution in other earthquake catalogs may be more dif-
ficult to approximate by a uniformly distributed point pat-
tern. For example, in global catalogs of shallow earthquakes,
many events are assigned the depth of 10 and 33 km, making
the covariance function highly ‘spiky’.

4.6. Earthquake pattern depth influence

Earthquake depth influences the degree of seismic cou-
pling: it determines which part of the tectonic deformation
is released by earthquakes. Apparently, for shallow subduc-
tion and continental earthquakes, the coupling coefficient
is close to 1.0 (McCaffrey 1997; Bird & Kagan 2004). For
deeper earthquakes, most of the tectonic motion is accom-
modated by plastic deformation (Kagan 1999). In global
catalogs deep earthquake locations are more clustered than
those of shallow seismicity, and the é-value decreases (see
Kagan & Knopoff 1980; Kagan 1991a, and Fig. 18 below).

Wyss et al. (2004) attempted to determine the correla-
tion dimension for shallow earthquakes in a creeping section
of the San Andreas fault near Parkfield. They found that
the spatial earthquake distribution shows no scale-invariant
distance range. Hence the §-value is not well defined for this
region.

4.7. Temporal influence

For small time intervals, earthquakes are more clustered
and their correlation dimensions are smaller (Kagan 1991a;
Helmstetter et al. 2005). This is perhaps the most important
issue influencing the §-value estimate. The previous items
in this Section influence the estimate for a limited distance
range only and hence can be recognized and compensated, or
alternatively these distance ranges can be ignored in the cor-
relation dimension calculation. However, time dependence
extends over all distance intervals and cannot be that easily
corrected.

We have estimated the distribution of distances between
hypocenters N3(R), using the Hauksson & Shearer (2005)
catalog (Section 3). We have selected only M > 2 earth-
quakes relocated with an accuracy of ep (horizontal) and
€2 (vertical) smaller than 0.1 km. In the catalog, there are
82442 m > 2 earthquakes in the time period [1984, 2002],
out of which 33676 (41%) are relocated with €, < 0.1 km
and €, < 0.1 km (see also Helmstetter et al. 2005, their
Figure 5).

The distance number function of N3(R) between the
hypocenters is close to a power-law N3(R) « R’ in the
range 0.1 < R < 5 km. The correlation fractal dimension
(measured by least-square linear regression of log(R) and
log[N3(R)] for 0.1 < R < 5 km) is 6 = 1.5 (black lines in
Figures 8 and 9). The faster decay for R < 0.1 km is due to
location errors (Section 4.2.1), and the roll-off for distances
R > 5 km is due to the finite thickness of the seismogenic
crust (Section 4.4.2). For larger distances (R > 50 km), the
0 decrease is caused by catalog boundaries (Section 4.4.1).

To estimate the time dependence of the spatial distribu-
tion of inter-event distances, we have measured the distri-
bution Ns(R,t), using only earthquake pairs with an inter-
event time 7 in the range [t, t + dt] (Fig. 8). We have also
computed the distribution

T
N3(R,7 > t) :/ Ns(R,thdt', (44)
t

X-7

cumulated over all times larger than ¢ (only using events
with inter-event times larger than ¢ up to T = 2500 days,
see Fig. 9).

As the minimum inter-event time increases, the fraction
of small distances will decrease. For inter-event times larger
than 1000 days, the fractal dimension of the cumulative dis-
tribution N3(R,T > t) increases with ¢ from the value mea-
sured for the whole catalog (3 ~ 1.5) to a maximum value
close to 2. For N3(RA, t), ¢ increases between ¢ ~ 0 at times
t = 5 minutes up to 6 — 2 for t = 2500 days (Fig. 10). This
maximum inter-event time of 2500 days is long enough so
that earthquake interactions are relatively small compared
to the tectonic loading. Only an insignificant fraction of
earthquake pairs are triggering-triggered events. This value
6 = 2, measured for ¢t = 2500 days, can thus be interpreted
as approaching the fractal dimension of the active fault net-
work. R

However, Fig. 10 clarifies that  — 2 is not an asymptotic
limit for the correlation dimension. The §-value continues
to increase. The time interval for the Hauksson & Shearer
(2005) catalog (1984-2002) is too short for the 4 to reach
the final value. As we mentioned earlier, in a local catalog
the seismicity pattern for larger time intervals is strongly in-
fluenced by a few strong earthquakes and their aftershocks
(Section 1).

The results for global catalogs yield a better measure of
the asymptotic é-value. In such cases the range of the cor-
relation dimension change is also large. For shallow earth-
quakes, 9 varies from 1.2 to 2.1 (Table 2 in Kagan 1991a) for
time intervals of 1.0-8575 days. Furthermore, whereas the
results shown in Figs. 8-10 may be explained by a strong
spatial concentration of aftershocks for several large Califor-
nian earthquakes, Figs. 2 and 3 in Kagan (1991a) demon-
strate that this temporal effect is present in the PDE global
catalog, both the original and declustered one.

The great variability of the ¢-value with time intervals
is important. Whereas previous items (in Sections 4.1-4.6)
are discussed in spatial analyses of earthquake patterns (see
references in the Introduction section), little is done to ad-
dress the temporal aspect. Most likely, the full statistical
analysis of this problem would require taking into account
tectonic and seismic deformation rate in various types of
plate boundaries (Bird & Kagan 2004).

The strong dependence of the correlation dimension on
time contradicts the widely used Aki’s (1981) hypothesis
of connection between the b-value of the Gutenberg-Richter
law (Bird & Kagan 2004) and the §-value. Indeed, the b-
value is largely independent of time (Kagan 2004). In some
publications (Wyss et al. 2004, and references therein) it is
suggested that the b-value can vary by a factor 1.5-2, but this
change is not proposed for different time intervals but rather
for various spatial and tectonic regions. However, even such
b-value fluctuations cannot be matched by a strong varia-
tion of the é-value (see above). Hence, the b-value cannot
define the temporally dependent earthquake fractal spatial
dimension (see also discussion by Kagan 1991b, p. 132).

4.8. Randomness

Finally, we mention the randomness of earthquake occur-
rence. Even when all other effects are taken into account,
earthquakes occur randomly in time and space.

Moreover, because of earthquake clustering, especially the
short-term which expresses itself in foreshock-mainshock-
aftershock sequences, the effects of randomness are stronger
than for a Poisson process (Vere-Jones 1999). Local cata-
logs often contain large aftershock sequences which make up
a significant part of the total. Therefore, though such cata-
logs list many thousands of earthquakes, the effective size of
a sample may amount to a much fewer events. Consequently,
random fluctuations can be quite strong. An example of
such a gross fluctuation is shown in Fig. 12.



X-8

5. Correlation dimension for earthquake
catalogs

5.1. Corrections for errors and biases

In this subsection we use the results of Section 4 to take
into account and sometimes correct the observed distance
distributions.

5.1.1. Example

Fig. 11 displays the spatial hypocentral and epicentral
moment curves for the Hauksson & Shearer (2005) catalog
(Section 3). The distance scale is increased by a factor of
2174, starting with B = 0.01 km. In Fig. 12 we show the
estimate of the correlation dimension §, calculated by a for-
mula equivalent to (16). At the distances R < 0.1 km, ran-
dom scatter (Section 4.8) dominates the pattern, although
the relatively high values of average 0 can be clearly at-
tributed to location errors (Section 4.2). The location error
effects would be strong for distances 0.01 < B < 1.0 km
(in this subcatalog we did not delete the earthquakes with
low location accuracy, as was done in Figs. 8-10). For
distances approaching 10-15 km, the finite thickness of the
seismogenic zone strongly influences the hypocentral dimen-
sion (Section 4.4.2 and Fig. 7).

The epicentral §-value is close to 2.0 for small distances.
This is likely due to the location errors (Fig. 4) and projec-
tion (Fig. 5), although the latter effects should be relatively
small since most faults in southern California are almost
vertical.

The difference between the hypocentral and epicentral
correlation dimensions at larger distances (1-10 km) is due
mostly to projection effects (Section 4.3). From Fig. 5 we
see that for isotropic point distribution with § = 2, the epi-
central correlation dimension should decay from 6 = 1.5 to
0 = 1.0 in the scaled distance range R/W = [0.1 — 10.0].
If earthquakes were distributed on vertical faults, the dif-
ference between the two dimensions would be exactly 1.0
(6n = 2.0, 4, = 1.0) and independent of distance. (Here
On is the correlation dimension for the hypocentral moment
and §, is the dimension for the epicentral one.) For the hori-
zontally dipping faults both dimensions would be the same.
In the California catalogs the spatial earthquake distribu-
tion mixes the above-mentioned patterns with a prevalence
of vertical strike-slip faults. Thus, in Fig. 12 the difference
between the dimensions is on the order of 0.5, and both
dimensions decay with distance.

For distances exceeding the effective thickness of the seis-
mogenic layer (W = 13.5 km), the epicentral and hypocen-
tral moments practically coincide (see Section 4.5). Ran-
dom fluctuations associated with aftershock clusters of a few
major earthquakes again predominate at larger distances.
Finally, for distances approaching the size of the box in
Fig. 1 (hundreds km), the spatial boundary effects (see Sec-
tion 4.4.1) strongly decrease correlation dimension.

5.1.2. Corrections and normalizations

We consider how the spatial moments can be corrected
for the effects discussed in Section 4. Location errors are ob-
vious targets for such a correction. Unfortunately, although
these errors are studied extensively and many catalogs con-
tain internal estimates of such uncertainties based on the
discrepancy in fitting the arrival times, there are many diffi-
culties in applying our expressions (Section 4.2). The inter-
nal errors are only part of the total location uncertainties, as
we see in analyzing the earthquake catalog accuracy (Kagan
2003). Real location errors, including systematic ones, are
often significantly higher.

Location errors vary over the time span and territory of
catalogs. This is especially true for local catalogs. Catalogs
based on the waveform cross-correlation have a high relative
location accuracy for earthquake clusters where such corre-
lation is feasible. However, for different clusters, associated
relative error may be significantly higher.

To save effort and the paper size, we refrained in this
work from correcting location errors and projection effects.
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Such procedures can be implemented in future studies of
earthquake spatial distributions.

In Fig. 13 we show the epicentral and hypocentral curves
for the Hauksson & Shearer (2005) catalog (Section 3), nor-
malized by dividing N2(R) and N3(R) numbers by the ap-
propriate pair numbers in a Poisson process. For the 2-D
pattern, Poissonian epicenters are randomly distributed in-
side the box shown in Fig. 1. For distances comparable to
the box size, we estimate the distribution of pair numbers,
N?(R), using simulated catalog (cyan curve in Fig. 13).
To avoid random fluctuations, when distances are small, we
calculate

N(N-1) =R?

NP(R) = 5 X =

(45)

where S is the area of the box, and N is the number of
points in a catalog. We combine both simulated and theo-
retical curves at B = 3 km.

The normalized epicentral curve in Fig. 13 is the ratio

R Na(R)
Bmer . NI(R)’

N (R) = (46)

where Rmax = 734.5 km is the maximum distance in the box,
and multiplication by B/Rmax is done to make the curve ap-
proximately horizontal for §, = 1 and to normalize the value
of the moment at the maximum distance.

A similar normalization is carried out for the hypocen-
tral moment. For small distances, we compute N (R) using
(43). We multiply the ratio of the observational curve to the
Poisson one by R/Rmax, as in (46). Since the Poisson pat-
tern has the dimension 3 here, the horizontal curve means
that the hypocentral distribution has § = 2. The curves be-
low the horizontal line have § > 2.0 (the fractal dimension
is equal to the tangent of the slope angle of the curve plus
2.0). In one plot we combine two types of curves, epicentral
and hypocentral, to show their difference.

The described normalizations rectify for the boundary ef-
fects. In the 2-D case, the correction relates to the box
boundaries; in the 3-D case the bias due to the inhomogene-
ity of the depth distribution is also corrected. However, as
we explained in Section 4, these corrections make certain
assumptions about the actual spatial distribution of earth-
quakes. It is not clear whether these assumptions are fully
valid. However, when comparing Fig. 11 to Fig. 13 where
the corrections are applied, we see that such corrections in-
crease the range of the scale-invariant behavior of the mo-
ments. The normalization, applied in Fig. 13, is used in all
subsequent diagrams (Figs. 14-18). Similarly, in these dia-
grams the corrections extend the power-law moment range.

5.2. California catalogs

Figs. 14 and 15 display the spatial moment curves for the
CalTech (CIT) catalog (Hileman et al. 1973) in two periods:
1932-2001 and 1975-2001. The curves’ behavior for small
distances demonstrates the influence of location errors and
catalog compiling procedures. In the first plot for distances
smaller than 3 km, the fractal correlation dimension is less
than 1.0. The most likely reason for this is that during
the first years of the CalTech catalog, the aftershocks were
often assigned the same location as the mainshocks (see Sec-
tion 4.2). This choice makes the dimension of an aftershock
sequence equal to zero. Because many sequences are present
in this catalog, the combined dimension is small, while not
being a zero.
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In the second plot (Fig. 15), only recent earthquakes
have been processed. The correlation dimension for small
distances (0-5 km) is close to 3.0. This value results from
location errors which randomize the position of hypocenters
and from projection effects (see Section 4.2).

Both curves’ behavior at large distances (more than 100-
200 km) is controlled by box boundary effects (see Sec-
tion 4.4). In these plots we did not account for such effects
as we had in Fig. 13. The scale-invariant part of the curves
is in a distance range of 2-200 km, where the correlation di-
mension is slightly over 2.0. As explained in Section 4.8, the
curves’ fluctuations are probably caused by large aftershock
sequences of the 1992 Landers, 1994 Northridge, and 1999
Hector Mine earthquakes.

Fig. 16 displays similar spatial distribution for the cat-
alog of relocated earthquakes (Richards-Dinger & Shearer
2000). The higher location accuracy of these events is seen in
the extension toward smaller distances of the scale-invariant
region. Whereas the time span in both diagrams (Figs. 15
and 16) is approximately the same, the hypocentral mo-
ment in the latter plot extends as a power-law from about
0.5 km up to 200 km. The difference between the epicentral
and hypocentral curves is larger for the Fig. 16 diagram.
This is due to a higher accuracy of hypocentral solutions. If
the vertical errors were comparable to the thickness of the
seismogenic zone, the curves would be almost identical for
distances comparable to the thickness (Kagan & Knopoff
1980).

Fig. 13 displays similar spatial distribution curves for the
waveform cross-correlation catalog by Hauksson & Shearer
(2005). The clusters of earthquakes in the catalogs have
been cross-correlated to obtain relative accuracy on the or-
der of tens of meters. Two distance regions can be seen in the
curves: 0.2-20 km and 20-200 km. Apparently the catalog
has two earthquake populations: one corresponding to the
events in the cross-correlation clusters and the other to the
inter-cluster distances. The first part (R = 0.01—0.2 km) of
the hypocentral curve indicates that the earthquake spatial
distribution behavior is controlled by location errors.

In Figs. 13, 14, 15, and 16, location accuracy generally
improves over time and in later catalogs it improves as one
employs more sophisticated interpretation of seismograms.
We see that the range of statistical scale-invariant behav-
ior is shifted towards smaller distances. In a complete CIT
catalog (Fig. 14) which includes early location results, the
implied average error is on the order of 3-5 km. In the later
part of the catalog (Fig. 15), the hypocentral moment’s
scale-invariant part starts at about 1 km. For the newer cat-
alogs (Figs. 16 and 13) the curves’ scale-invariant behavior
extends to 0.5 and 0.2 km, respectively. On the other hand,
we see that the later catalogs exhibit more fluctuations at
larger distances, due probably to aftershock clusters of a few
large earthquakes.

To demonstrate the influence of the event temporal clus-
tering, in Fig. 17 we show spatial distribution for the
year 1994, the year of the Northridge, California earthquake
(Thio & Kanamori 1996). The &p-dimension for the dis-
tance interval 20-200 km is close to 1.0. Most southern
California seismicity for this period is concentrated in the
Northridge focal zone; hence the scaling dimension for the
larger distances is low. For the distance interval 2-20 km,
the é-value is approximately the same as in Figs. 14 and 15.
This distance range roughly corresponds to the size of the
Northridge earthquake rupture zone.

5.3. Global catalog

Fig. 18 displays epicentral and hypocentral moments for
earthquakes in the worldwide PDE catalog (Section 3) at
three depth intervals. The curves are calculated for the max-
imum time interval between events (37 years). We include
all pairs of earthquakes without taking the inter-earthquake
time into account.
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Similar to (46) we plot the ratio for the epicentral curve

2 Nz(R) R

NE(R) = N (N 1) sm? (R/(2R5)] " 7Fa’

(47)

where Rg is the Earth radius. The hypocentral curve is
normalized, using an expression similar to (43).

Epicentral moments yield a higher value of the exponent
for distance ranges which are less than, or comparable to,
the thickness of the appropriate layer (see Fig. 18). For
the hypocentral moment, we normalize the pair numbers by
dividing them by the appropriate numbers in a Poisson cat-
alog in which earthquakes are distributed uniformly over the
surface with the same depth distribution as in a real catalog
(Kagan & Knopoff 1978; 1980) (see Eq. 43).

Fig. 18 demonstrates that for shallow earthquakes the
hypocentral curves are approximately power-law in the dis-
tance interval 20-2000 km. But the epicentral curves exhibit
a clear transition in their slope at distances corresponding
roughly to the thickness of a seismogenic layer. Kagan &
Knopoff (1980) showed that the lower distance range of the
linearity breakdown (20 km) is explained by location errors,
both horizontal and vertical.

The upper cutoff for scale-invariance (2000 km) is con-
nected to the size of major tectonic plates (Kagan &
Knopoff 1980; Kagan 1991a). For these distances, statistical
self-similarity of the earthquake spatial distribution breaks
down. The § values in Fig. 18 demonstrate that the dimen-
sion decreases as the depth increases.

The value of the fractal dimension declines to 1.8-1.9 for
intermediate events (depth interval 71-280 km) and to 1.5-
1.6 for deeper ones. We see that epicentral and hypocentral
curves converge at the distances equal to the thickness of a
layer in which earthquakes are selected, the difference be-
tween the curves is a consequence of the projection effect
and transition from 3-D to 2-D when the distance R in-
creases (Sections 4.3-4.5).

Harte (1998) determined correlation dimensions for shal-
low and intermediate events in New Zealand. The estimates
of the hypocentral correlation dimension (see Table 11.1
in Harte 2001) for deeper earthquakes (1.8-2.2) is slightly
higher than for shallow events (1.7-1.9). The larger values
of the dimension for intermediate events are, most likely,
caused by location errors. As we mentioned in the Introduc-
tion, earthquakes registered by seismic networks situated on
island chains can have large location errors, and these errors
would increase for deeper events. Harte (1998, p. 616; 2001,
p. 213) acknowledges that such an explanation is possible.

5.4. Comparison to tectonic plate size distribution

The distribution of the areas in steradians for large tec-
tonic plates has been studied by Bird (2003, his Fig. 19).
Sornette & Pisarenko (2003) investigated the distribution,
using Bird’s preliminary results. Bird found that the dis-
tribution for 52 plates has two branches: a scale-invariant
for small plates with a power-law index D = 0.33 and a
rapidly decaying tail for large plates. The results obtained
by Sornette & Pisarenko (2003) are similar: for 42 plates
their fractal exponent value is 0.25.

Clearly, it would be more difficult to unambiguously iden-
tify even smaller plates: their statistics would not be com-
plete and the 3-D deformation pattern would need to be con-
sidered for plates whose size is comparable with the thick-
ness of a seismogenic layer.

The evidence presented in this Section indicates that for
earthquake catalogs the appropriately scaled distribution
has two branches: scale-invariant for small distances from
zero up to 2000-3000 km, and a non-fractal, long-distance
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tail (3000-20,000 km). As Fig. 18 demonstrates, the fractal
(correlation) dimension () is about 2.2 for shallow earth-
quakes (also see Kagan 1991a).

Kagan & Knopoff (1980, their Figure 11) obtained the
correlation dimension estimate for tessellation of a sphere by
three regular cubic (with triple junctions) polyhedra. The
correlation dimension for small distances (0-3000 km) is 1.0
(or 2.0, if one takes depth into account). A transition to
the large-range pattern occurs at about 2000-5000 km, de-
pending on the polyhedron used. The small-range dimension
value corresponds to the long edges of the regular polyhe-
dra, close pairs of points more likely belong to the same cell
edge.

For regular polyhedra tessellation, the plate distribution
displayed like Bird’s (2003, his Fig. 19) and Sornette &
Pisarenko’s (2003) diagram, would have a step-function at
m, 2w/3, and w/3 for the tetrahedron, the cube, and the
dodecahedron, respectively. For small distances, the dis-
tribution exponent (D) would be zero. If we introduce a
scale-invariant distribution of plate sizes, the correlation di-
mension for earthquakes should increase. Why? In addition
to long edges of large plates, the numbers of short-range
point pairs would increase due to the branching edges (triple
Jjunctions) of the smaller plates. The question is how much
it would increase the §-dimension.

It would be interesting to match the two distributions
(tectonic plates and earthquake locations) to see which frac-
tal dimension exponent corresponds to the tectonic plates
distribution. The only method that could be effectively ap-
plied to solve this problem is simulation. Plate formation
could be represented as a Voronoi tessellation of a sphere.
Many theoretical and computer studies exist for a Voronoi
tessellation of a sphere based on the Poisson point distribu-
tion (Okabe et al. 2000). However, for our purposes a tessel-
lation of power-law distributed plates needs to be developed.
For instance, Nagel & Weiss (2005) propose a stochastic tes-
sellation model for tensile cracks which has scale-invariant
features.

The exponent D for a plate area S distribution should
transform into 2 D for the distribution of plates linear size:
R x \/§ . The fractal distribution of plate sizes should in-
crease the correlation dimension for earthquake epicenters
as §, = 1+ 2D (and corresponding hypocentral dimension
as 6, = 2 + 2D). This would imply ér — 2.6 — 2.7. Fur-
thermore, plates are not rigid. Most plates have significant
intraplate seismic activity (Bird & Kagan 2004) which would
increase the é-value. The value §r = 8/3 is then appropriate
to the dimension of fluid turbulent flow (Mandelbrot 1983,
p. 54).

As we discussed above (Section 4.7), estimates of the cor-
relation dimension depend on the time span of a catalog. For
a sufficiently long catalog, the §-exponent should approach
an asymptotic value (Kagan 1991a). The fractal exponent,
D, for the plate size distribution results from millions of
years of plate tectonic evolution due to mantle convection.
But the é-value is determined for earthquake catalogs span-
ning a few decades. Therefore, on time scales of decades and
centuries §p, — 2.2 — 2.3 is probably an asymptotic value.
It is possible that for longer times the correlation dimension
would increase to dp = 2.6 — 2.7.

Studying the earthquake magnitude distribution for shal-
low earthquakes in continental regions or their boundaries
(Bird & Kagan 2004) yields estimates of the corner or maxi-
mum magnitude of the order 8.0—9.5. These magnitude val-
ues indicate that rupture length for the largest earthquakes
is a few hundred (500-1000) km: it is smaller than 2000-
3000 km of the spatial scale-invariance breakdown (Fig. 18).
This latter distance corresponds to the average size of the
major continents or the total thickness of the mantle. Does
it mean that the continent or tectonic plates formation is due
to a full mantle convection? Does the stress which causes
earthquakes accumulate only in the upper mantle of about
700 km thickness?
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6. Discussion

Our major thrust has been to analyze errors and system-
atic effects influencing the estimate of the correlation dimen-
sion for spatial earthquake distribution. What can we say
about the value of this dimension for the earthquake rup-
ture process? We briefly review attempts to determine the
fractal dimension for rock surfaces and earthquake faults.

6.1. Faults and rock surfaces

Ben-Zion & Sammis (2003) show examples of self-similar
features of shear fault surfaces (their Fig. 3). They also
discuss (their section 2.4) many measurements of scale-
invariant features of fault traces, internal fault zone struc-
tures and fault networks (see also Kagan 1991a).

Bonnet et al. (2001) extensively discuss the properties of
fractures at rock surfaces. The fractal dimension of the fault
traces at the Earth’s surface should be significantly influ-
enced by a free boundary. Moreover, physical properties of
the rocks near the surface should differ from rock properties
at seismogenic depth. In particular, lithostatic pressure is
zero at the surface. Consequently, tectonically stressed rock
material would disintegrate, increasing the fractal dimension
of the rock particles’ distribution.

Schmittbuhl et al. (1995) and Amitrano & Schmittbuhl
(2002) show that the fractal dimension of rock fracture sur-
faces is equal to 2.20-2.25. This dimension is determined
for one surface. The earthquake fault system contains many
fractally distributed surfaces, so their combined dimension
may exceed the above value.

Weiss & Marsan (2003) studied spatial distribution of
dislocations in an ice crystal. They obtained the correla-
tion dimension estimate of 2.5 + 0.1 for dislocation clusters,
and noticed that close-in-time avalanches are more spatially
clustered.

Repeating Mandelbrot’s (1983, pp. 103-104) arguments,
we suggest that é > 2.0, since any line connecting two blocks
of material in shearing motion, would intersect at least one
fault surface. The dimension of the embedding Euclidean
space provides another limit on the value of §: 3.0 > § > 2.0.
An ideal solid crystal (without defects) would fail along a
planar dislocation (§ = 2.0). However, since all natural
rocks have defects, this would cause branching and bending
of earthquake faults due to fault displacement incompatibil-
ity (King 1983; Gabrielov et al. 1996). Hence, the fracture
correlation dimension would increase.

In general, rock fracture surfaces and exposed faults re-
sult from several processes. Hence their fractal dimension
may not agree with that for earthquake spatial patterns.
In the latter, we directly observe brittle fracturing rocks
in situ; therefore, the correlation dimension is relevant to
process of rupture. Furthermore, as discussed in Section 4,
random and systematic errors of earthquake locations can
be approximately evaluated. Such error estimates are more
difficult to perform for earthquake faults and rock surface
measurements.
dimension: monofractal or

6.2. Spatial fractal

multifractal?

Is the spatial distribution of earthquakes monofractal or
multifractal (Molchan & Kronrod 2005)? In Section 4, we
show that practically any value for the correlation dimension
can be obtained if many errors and inhomogeneities in the
observational data as well as deficiencies in data processing
are not properly considered. Presently there are no similar
estimates of systematic effects for multifractal measures of
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the earthquake spatial dimension. Most likely the techni-
cal difficulties discussed in Section 4 are intensified for such
multifractal measures.

In addition, as we discussed in the Introduction, cer-
tain methodological problems must be solved to evaluate
multifractal dimensions for hypocentral distributions: the
only exponents that have clear physical meaning. Moreover,
these estimates need to be obtained for all scale-invariant
ranges of spatial earthquake distribution: from distances
close to zero to hundreds and thousands of km. Thus, it is
doubtful that evaluating multifractal dimensions could yield
significant results for presently available catalogs.

Perhaps a better insight into the spatial patterns of earth-
quake distributions could be obtained by analyzing higher
order point configurations. Kagan (1981a;b) studied 3- and
4-point spatial moments for earthquake distribution. These
moments correspond to point simplexes in 2-D and 3-D, re-
spectively. Similar to the distance between two points, these
sets have the advantage of being independent of any coor-
dinate system and therefore lack the problems associated
with box counting. The results of these studies suggest that
these earthquake distributions are proportional to 1/S and
1/V, where S is the area of a triangle and V is the volume
of a tetrahedron formed by earthquake points. These ge-
ometrical patterns may provide important information on
earthquake generation (see Section 6.4 below). A further
way to study these multi-point patterns is to use the mod-
ern statistical and topological theory of shape (Small 1996;
Kendall et al. 1999).

6.3. Spatial fractal dimension for earthquake rupture

What are the advantages and drawbacks of using local
vs global earthquake catalogs for evaluating the correla-
tion dimension? Local catalogs usually have highly accurate
hypocenter solutions. The Hauksson & Shearer (2005) and
Shearer et al. (2005) catalog has uncertainties much smaller
than the thickness of the seismogenic layer. This high ac-
curacy, as illustrated in Figs. 8-9, allows us to directly es-
timate 4 in 3-D and extend the scale-invariant part of the
hypocentral moment close to zero distances (see Figs. 11-
13). However, local catalogs have serious drawbacks: they
are often strongly inhomogeneous in time and space. A few
aftershock sequences usually dominate the long-range spa-
tial distribution of events, and thus the spatial moment fluc-
tuates strongly at large distances. As the result,  evaluation
becomes difficult. Furthermore, because the high accuracy
part of a catalog is of short span, the § estimates are strongly
influenced by temporal effects.

Global earthquake catalogs have the advantage of more
uniform coverage. They have no boundaries, allowing us
to study spatial moments for large distances comparable to
the Earth’s size. However, location uncertainties are much
higher in these catalogs compared to local ones. Thus, the
moment behavior at small distances (up to 15-20 km) is con-
trolled by location errors and projection effects. Therefore,
the difference between the epicentral and hypocentral mo-
ments is small for worldwide catalogs (Fig. 18). However,
we can observe scale-invariant behavior of the moments at
a distance range of 20-2000 km and evaluate ¢. Another
advantage of global catalogs is their inclusion of many inde-
pendent aftershock clusters. Their averaging produces much
smoother curves at large distances.

However, in processing global catalog data, various tec-
tonic regions are combined. Earthquake size statistics are
different in these regions (Bird & Kagan 2004), and one
may well expect that the spatial distribution pattern also
varies. Since earthquakes in the subduction zones comprise
about 52% of the total (ibid), global spatial distributions as
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in Fig. 18 are largely controlled by subduction earthquakes.
In principle, we could subdivide the seismic regions into sev-
eral categories (ibid) and analyze them separately. But, then
we would have to work in a relatively constricted distance
range between large location errors, specific for global cata-
logs, and relatively small sizes of tectonic regions.

Comparing spatial moments for various time spans and
catalogs yields relevant conclusions about accuracy and the
spatial properties of earthquake process. Therefore, we con-
clude that the statistical self-similarity of earthquake geom-
etry is established down to the scale length of 0.5 km and
less. Since the equations of elasticity do not have intrinsic
scale, we expect that this property of spatial self-similarity
can be extended for the brittle fracture of disordered mate-
rials (rocks) up to the scale of a few millimeters: the size of
rock grains.

In this paper we focus on analyzing errors and systematic
effects to determine the correlation dimension. Even if these
biases are taken into account, the actual study of earthquake
spatial patterns yields no reliable and converging estimates
of the §. Previous investigations (Kagan & Knopoff 1980;
Kagan 1991a) suggest that the ¢-value does not depend or
has weak dependence on the magnitude threshold. However,
the correlation dimension dependence on catalog time inter-
vals (see Section 4.7) and the dimension for aftershocks of
large earthquakes still need to be explored. Many system-
atic effects discussed in Section 4 make such investigations
difficult.

Our analysis suggests that evaluating the fractal dimen-
sion for earthquake spatial patterns is difficult and prone to
many errors and biases. This probably explains in contrast
to two other classical statistical scale-invariant exponents
of earthquake distribution: the Gutenberg-Richter relation
(Bird & Kagan 2004) and Omori’s law (Kagan & Houston
2005), which arguably are controlled by universal param-
eters, or by those with a slight variation, the properties
and value of the correlation dimension are not yet agreed
upon. We hope that the evidence presented here will per-
suade readers that the earthquake spatial distribution, at
least in asymptotic time limit, has universal features also.

6.4. Earthquake fault geometry

Finally, we briefly discuss the conclusions that can be
made on the basis of the results reported earlier, about the
geometry of earthquake faults. If the correlation dimension
is an integer the results are consistent with a simple geo-
metrical model: a line in two dimensions and a plane in 3-D
(Kagan & Vere-Jones 1996). Generally such a model is not
acceptable since the é-value is not an integer and because
even cursory inspection of geologic maps or epicenter maps
(such as Fig. 1) demonstrates that earthquakes occur on
many faults.

Ben-Zion & Sammis (2003) argue that “to a good ap-
proximation, [hypocenters may reside] on a collection of Eu-
clidean surfaces.” It is certainly possible to approximate spa-
tial earthquake distribution, which usually exhibits linear
features in epicentral maps, by several planes. Such approx-
imations may be even useful in comparing earthquake data
with tectonic and geologic datasets. The approximations
can be tested against two-point distance patterns studied in
this paper to see to what degree they satisfy these distribu-
tions. However, it is clear that any finite number of planes
would fail to fully describe earthquake spatial pattern. In-
specting, for example, Fig. 5 in Shearer et al. (2005) one
can see that the number of required fault planes to would
significantly increase as the accuracy of earthquake location
improves.

In addition, the planar faults approximation is unlikely to
have a predictive power: many large earthquakes in Califor-
nia, for example, like the 1952 Kern County, the 1992 Lan-
ders, or the 1999 Hector Mine, occurred on faults which had
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little seismic activity before these events. On the other hand,
estimates of the correlation dimension are robust, they yield
approximately the same value, even when evaluated with a
catalog without these events (Kagan & Knopoff 1980).

Moreover, the distribution of hypocenter quadruplets
studied by Kagan (1981b) suggests that the planar geom-
etry is only a first approximation for earthquake spatial dis-
tribution (see also Section 6.2). The distribution density of
tetrahedra volumes (V') formed by these quadruplets is in-
versely proportional to tetrahedron’s volume, fault planar
geometry would imply the volume distributed as the delta
function of V.

Ben-Zion & Sammis (2003) also suggest that the earth-
quake slip is usually localized in narrow planar zones. The
branching stochastic models of earthquake geometry by Ka-
gan (1982) and by Libicki & Ben-Zion (2005) predict such a
behavior. The fault patterns simulated by these models also
exhibit a quasi-planar deformation bands that are likely to
be identified with a main trace of a fault. However, small
or large planar faults occasionally branch off the main trace
of a fault. Furthermore, these simulated faults are visually
similar to real earthquake faults and they exhibit a statisti-
cally scale-invariant structure.

7. Conclusions

We briefly summarize our results and highlight their dif-
ference from similar investigations:

1. We provide closed-form expressions for most of system-
atic effects and random errors influencing estimates of the
correlation dimension for earthquake spatial pattern. We
test these formulae by simulation.

2. We evaluate the correlation dimension both for
hypocentral and epicentral earthquake patterns and pro-
vide algorithms for comparison and mutual transformation
of these two dimensions.

3. We estimate the correlation dimension for several local
and global earthquake catalogs. Since these catalogs have
different systematic and random biases and errors which in-
fluence the correlation dimension estimate, the reported re-
sults of the statistical analysis are more robust.
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Figure 1. Epicenter distribution of earthquakes in
southern California in the Hauksson & Shearer (2005)
catalog. Time interval is 1984-2002, magnitude thresh-
old M, = 3. A 6-point box with the following coordinates
is used: North latitude — 32.0°, 34.8°, 37.0°, 35.7°, 34.5°,
32.0°; West longitude — 114.4°, 114.4°, 117.15°, 121.0°,
120.8°, 118.0°. Earthquake distribution is considered to
be reasonably homogeneous and complete in this box for
the CalTech catalog (L. M. Jones, private communica-
tion, 2002). The area of the box is S ~ 233,300 km?.
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Figure 2. Density of non-central x-distribution in 3-D.
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Figure 3. Dependence of the correlation dimension es-
timate ¢ on distance scaled with the location error o in
3-D. Solid line is simulation; dashed line shows § change
according to (16).
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mate ¢ on distance scaled with the location error ¢ in 2-D
and 3-D. Solid lines are for the 3-D distribution (hypocen-
ters); dashed lines are for the 2-D distribution (epicen-
ters). The initial fractal point dimension indicated as

6 = 3, etc.
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Figure 5. Dependence of the correlation dimension esti-
mate & on scaled distance for epicenter distribution (grad-
ing effect). Three distributions in a layer of thickness W
are simulated in 3-D: § = 3 or uniform Poisson distribu-
tion (upper two curves), with § = 2 (middle two curves),
and with § = 1 (lower two curves). Dashed lines are the-
oretical curves (Egs. 28-30); solid lines are simulation
results.
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Figure 6. Depth dependence histogram (green lines) for
the Hauksson & Shearer (2005) catalog (M. = 3). Same
events as in the box in Fig. 1. Depth correlation function
(red line) and its approximation by linear function (black
line), corresponding to a layer of thickness 13.5 km with
uniform distribution of seismicity with depth.
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Figure 7. The expected number of event pairs in
the southern California catalog. The theoretical curve
(dashed line) is calculated for a layer with width W =
13.5 km having uniform seismicity distribution (39, 40).
The solid line estimates the Hauksson & Shearer (2005)
catalog (M. = 3), corrected (43) by using the correla-
tion function shown in Fig. 6. We normalize (divide) the
earthquake pair number by R? so that the horizontal line
would correspond to § = 2.
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Figure 8. Distribution of distances between hypocen-
ters N3(R,t) for the Hauksson & Shearer (2005) cata-
log, using only earthquake pairs with inter-event times
in the range [t, 1.25¢]. Time interval t increases be-
tween 1.4 minutes (blue curve) to 2500 days (red curve).
We normalize (divide) the earthquake pair number by R
so that the horizontal line would correspond to § = 1.
The black line is the function N3(R) measured for all

earthquake pairs; it has a fractal dimension ¢ ~ 1.5 for
0.1 < R<5 km.
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Figure 9. This diagram is similar to Figure 8 but for pairs with inter-event times larger than t.
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Figure 10. Fractal dimension of Figure 8 curves
(crosses) and of Figure 9 curves (circles) as a function
of time interval ¢. Distance interval is 0.1 < R < 5 km.
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Fig. 11
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Figure 11. Hypocentral and epicentral spatial mo-
ment curves for the southern California waveform cross-
correlation catalog 1984-2002 (Hauksson & Shearer
2005). Same events as in the box in Fig. 1. The magni-
tude threshold is Mj; > 2.0, the total number of earth-
quakes N = 81649. The solid curve is for the hypocentral
moment and the dashed for the epicentral.
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Figure 12. Correlation dimension estimate (¢) for the
1984-2002 Hauksson & Shearer (2005) catalog (Fig. 11).
The solid curve is for the hypocentral moment and the
dashed for the epicentral. The correlation dimension val-
ues are calculated as the distance scale is increased by a
factor of 2!/%, starting with R = 0.01 km.
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Figure 13. Hypocentral and epicentral spatial mo-
ment curves for the southern California waveform cross-
correlation catalog 1984-2002, My > 2.0 (Hauksson &
Shearer 2005). Same events as in the box in Fig. 1. The
upper curve is for the hypocentral moment and the lower
for the epicentral. Here we also plot two curves, demon-
strating the boundary effects due to the limited spatial
size of the catalog (see Section 4.4.1). The cyan solid
curve is obtained by simulation for the box in Fig. 1.
The green dashed line is calculated for a circle of radius
734.5 km (the maximum distance in the box). Magenta
lines at the right show a slope of the curves correspond-
ing to the integer values of the correlation dimension for
the epicentral moment §, = §p — 1.
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Figure 14. Hypocentral and epicentral spatial mo-
ment curves for the southern California (CalTech) catalog
1932-2001. Same box as in Fig. 1. The upper curve is for
the hypocentral moment and the lower for the epicentral.
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Figure 15. Hypocentral and epicentral spatial mo-
ment curves for the southern California (CalTech) cat-
alog 1975-2001 (Mg > 3.0). Same box as in Fig. 1. The
upper curve is for the hypocentral moment and the lower
for the epicentral.
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Figure 16. Hypocentral and epicentral spatial mo-
ment curves for the southern California relocated earth-
quakes catalog 1975-1997 (Richards-Dinger & Shearer
2000). Same box as in Fig. 1. Magnitude threshold
is My > 3.0. The upper curve is for the hypocentral
moment and the lower for the epicentral.
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Figure 17. Hypocentral and epicentral spatial moment
curves for the southern California (CalTech) catalog for
1994 (Mr > 3.0). Same box as in Fig. 1. The upper
curve is for the hypocentral moment and the lower for
the epicentral.
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Figure 18. Hypocentral and epicentral spatial moment
curves for various depth intervals. The PDE (1965-2003)
catalog with m; > 5.3 is used. In each of two curves,
the upper one is for the hypocentral moment and the
lower for the epicentral. Two upper curves are for the
depth interval of 281-700 km; the middle curves are for
the depth interval of 71-280 km; and the lower curves are
for the depth interval of 0-70 km.



