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ABSTRACT

Landfast sea ice (sea ice which is held fast to the coast or grounded icebergs, also
known as fast ice) is a pre-eminent feature of the Antarctic coastal zone, where it
forms an important interface between the ice sheet and pack ice/ocean to exert a ma-
jor influence on high-latitude atmosphere-ocean interaction and biological processes.
It is highly vulnerable to climate variability and change, given that its formation
and breakup are intimately associated with oceanic and atmospheric forcing, yet is
not currently represented in global climate models or coupled atmosphere-ocean-ice
models. Fast ice forms a key breeding habitat for a number of iconic species, includ-
ing Weddell seals and Emperor penguins, and plays a crucial role in the breeding
success and foraging behaviour of Adélie penguins. Recent work further suggests
that fast ice may stabilize floating glacier tongues and ice shelves, to affect iceberg
calving and ultimately the mass balance of the ice sheet plus the drift rates of ice-
bergs. Moreover, fast ice has a major impact on the logistics of the resupply of
Antarctic bases.

While Antarctic sea ice extent and variability has been the focus of considerable re-
cent research, fast-ice extent and variability are currently poorly understood. This
is in large part due to the difficulty associated with discriminating fast ice from
pack ice on a large scale in satellite data. “Snapshot” analyses are unable to dis-
criminate between the ice types (i.e., fast ice has a non-unique signature), and ice
motion techniques have various problems, including persistent cloud cover at visible
and infrared wavelengths and low spatial resolution for passive microwave sensors.
Furthermore, Synthetic Apterture Radar (SAR) imagery is inherently difficult to
interpret over the sea-ice zone.

This thesis, presented in a “thesis-by-publication” style, overcomes the problems
associated with remotely sensing fast ice at visible and infrared wavelengths to pro-
duce cloud-free time-averaged images of the surface from March 2000 to December
2008, enabling discrimination between pack and fast ice. From these, the first East
Antarctic (10◦ W - 172◦ E) high spatio-temporal resolution (2-km, 20-day) maps
of fast-ice extent are created. This allows the first detailed time series analysis of
the seasonal to inter-annual variability of East Antarctic fast ice. Fast-ice growth
and breakout events are then related to large scale and local atmospheric forcing
parameters.

In addition to presenting the first near decade-long, high spatio-temporal resolution
time series of fast-ice maps in East Antarctica, the main findings of this thesis are
as follows. Using MODerate resolution Imaging Spectroradiometer (MODIS) visible
and thermal infrared data, quality cloud-free composite images of the high-latitude
surface can generally be constructed using 20 days’ raw imagery. The compositing
technique developed here involves using a modified MODIS cloud mask to select
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cloud-free pixels, which are then composited together over number of days. The
MOD35 MODIS cloud mask performs well during daytime, when shortwave tests
could be included into the cloud masking algorithm. However, during night-time,
cloud mask performance is insufficient to create quality cloud-free composite images.
Spatial filtering on the cloud mask is required to produce high-quality composite
images. With a sufficiently long compositing interval (i.e., 20 days), pack ice motion
acts to “blur” the pack ice zone in the composite imagery, while the fast/pack ice
shear zone remains sharply defined. This property of the compositing process is
very useful for discriminating between pack and fast ice.

Despite the success of the compositing technique, persistent cloud cover and inac-
curate cloud masking are found to lower composite image quality at times. Thus, a
technique is developed to augment lower quality composite images with Advanced
Microwave Scanning Radiometer - EOS (AMSR-E) and additional MODIS data.
Fast-ice maps are generated from the resulting imagery. An error analysis shows
that fast-ice extent can be retrieved to within ∼ ±3% for over 80% of the 159 consec-
utive fast-ice maps comprising the 8.8-year time series, with the remainder retrieved
to within ∼ ±9%.

Analysis of the 8.8-year East Antarctic fast-ice time series shows a statistically-
significant increase in fast-ice extent (1.43 ± 0.30% yr−1), albeit based upon a
relatively short period. Regionally, there is a stronger increase observed in the
Indian Ocean sector (20 - 90◦ E) of 4.07 ± 0.42% yr−1, compared to a slight (non-
significant) decrease in the Western Pacific Ocean sector (90 - 160◦ E) of -0.40 ±

0.37% yr−1. In the Indian Ocean sector, a slightly decreasing trend in fast-ice extent
changes to a strongly increasing trend from 2004 - 2008. An analysis of the timing
of maximum and minimum fast-ice extent shows high variability compared to that
of overall sea ice. Analysis of the shape of the mean annual fast-ice extent cycle
reveals a limit to maximum fast-ice extent, apparently related to the locations of
grounded icebergs. Ten fast-ice regimes were identified across the coast, relating
to bathymetry, coastal configuration, and prevailing atmospheric conditions. The
percentage of fast ice comprising overall sea-ice extent varies seasonally from ∼19%
during the summer minimum extent to ∼3.8% during the winter maximum extent.

Nine case studies of anomalous fast-ice breakout or growth are conducted in four
regions around the East Antarctic coast. These anomalous fast-ice extents are ob-
served in conjunction with locally anomalous wind speeds and directions, surface
air temperatures, and pack ice conditions. On a hemisphere-wide scale, a reason-
ably strong correlation is found between the Southern Oscillation Index (SOI) and
fast-ice extent in the Indian Ocean sector (R=+0.45). No strong correlation is ob-
served in the Western Pacific Ocean sector, and, in contrast to previous work, the
correlation between SAM and fast-ice extent is weak in both sectors.

This work has greatly improved our knowledge of fast-ice distribution and variability
around the East Antarctic coast, and provides benefits for many areas of current
research. It has also provided an important new climatic dataset that is directly
comparable to, and complements, the widely-used passive microwave-derived time
series of overall sea-ice extent.
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Chapter 1

Introduction

1.1 An Introduction to Landfast Sea Ice

While overall Antarctic sea ice extent and seasonality, and their global cli-

mate and regional ecological ramifications, have been the focal point of significant

recent research and concern (e.g., Comiso, 2010; Stammerjohn et al., 2008), rela-

tively little is known about Antarctic fast-ice distribution, factors affecting it, its

spatio-temporal variability, and the impact of such variability. Landfast sea ice

(more commonly known as fast ice) is defined as follows (World Meteorological Or-

ganisation, 1970):

Fast ice: sea ice which forms and remains fast along the coast, where it

is attached to the shore, to an ice wall, to an ice front, between shoals and

grounded icebergs. Vertical fluctuations may be observed during changes

of sea-level. Fast ice may be formed in situ from sea water or by freezing

of pack ice of any age to the shore, and it may extend a few meters or

several hundred kilometres from the coast.

Though accurate in theory, this definition does not explicitly state the length of

time for which ice must remain stationary before it is classed as ‘fast’ (fast ice in

1
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many regions breaks out and reforms a number of times each season (Massom et al.,

2009)). Working in the Arctic, Mahoney et al. (2005) define fast ice as sea ice which

has remained stationary for at least 20 days. This time period is long enough to

preclude transient events such as pack ice being temporarily driven shoreward by

oceanic or atmospheric forcing, but short enough to resolve intra-annual events,

such as seasonal fast ice growth or breakup.

Fast ice is a pre-eminent feature of the Antarctic coastal zone, and an im-

portant interface between the ice sheet and pack ice/ocean. The reliance of fast ice

upon coastal features (e.g., promontories, embayments and grounded icebergs) as

anchor points means that it tends to form in narrow bands of widely varying widths,

but rarely exceeding 150 km around East Antarctica (Giles et al., 2008). There are

strong hemispheric contrasts in fast-ice extent and persistence. In the Arctic, a

lack of grounded icebergs means fast ice typically grounds itself in shallow waters,

with the seaward fast-ice edge often located around the 20-30 m isobath (Mahoney

et al., 2007a; Lieser , 2004; Kovacs and Mellor , 1974; Wadhams, 1986). By contrast,

Antarctic icebergs ground in water depths of up to ∼400 m (Massom et al., 2001b),

and act as fast-ice anchor points, leading to extensive fast-ice formation over deeper

water. Shoals also occur some distance offshore along the East Antarctic coast,

leading to formation of fast-ice “islands” in some regions.

Fast ice can form either thermodynamically, growing in situ (Kawamura

et al., 1997; Tison et al., 1998), or dynamically, being advected by winds and

ocean currents into and subsequently attaching to existing fast ice and/or station-

ary coastal features (e.g., grounded icebergs or coastal promontories (Massom et al.,

2001b)). One striking feature of fast ice formation is its inter-annual recurrence in

certain locations (Giles et al., 2008) such as near the Mertz Glacier Tongue (MGT),

East Antarctica (67.5◦ S, 144.75◦ E) (Massom et al., 2010a). This phenomenon is



1.2. THE IMPORTANCE OF FAST ICE 3

linked to local bathymetry, associated grounded iceberg distribution, and the shape

of the coastline and the protective effects of adjacent areas of sea ice and icebergs

(Massom et al., 2001a; Massom, 2003).

Figure 1.1: Research and Supply Vessel (RSV) Aurora Australis parked in fast ice,
near the pack ice/fast ice interface, ∼65.5◦ S, 124.75◦ E, September, 2007. Picture

credit: Adam Steer.

1.2 The Importance of Fast Ice

Given the lack of knowledge about Antarctic fast ice, developing an improved

understanding of its distribution and variability is of crucial importance for a number

of reasons:

• Fast ice forms an important interface between the Antarctic ice sheet and pack

ice/ocean, and is a pre-eminent feature of the coastal zone (where it reforms

in the same locatation each year, or persists year-round in more sheltered

locations, as noted above). As well as prolonging the residence times of un-

grounded icebergs (Massom, 2003), recent work has shown that fast ice may
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act to mechanically stabilise floating glacier tongues and ice shelves, delaying

their calving and ultimately affecting ice sheet mass balance (Massom et al.,

2010a), with possible implications for sea level rise;

• despite the physical significance of fast ice, it is currently not represented in

global climate circulation models or coupled ice-ocean-atmosphere models;

• since fast-ice extent responds rapidly to both atmospheric and oceanic forcing

(Mahoney et al., 2007b; Heil , 2006; Massom et al., 2009), it is probable that it

is a sensitive indicator of climate change (Murphy et al., 1995; Mahoney et al.,

2007a; Divine et al., 2003);

• as it can attain considerable thickness of >5 m and possibly up to 50 m for

perennial fast ice (Massom et al., 2010a), it forms an important component

of the ocean freshwater budget. Indeed, Giles et al. (2008) estimated from

Radarsat Synthetic Aperture Radar (SAR) snapshots in the Novembers of

1997 and 1999 that while fast ice forms only ∼8% of total sea ice area in the

region 75.15 - 170.30◦ E, it may comprise ∼30-40% of the ice by total volume;

• fast-ice features are often associated and coupled with coastal polynyas (Mas-

som et al., 2001b). These areas of open water, thin ice or lower pack-ice

concentration within the interior of the pack ice zone are important sea-ice

production factories (Tamura et al., 2008; Barber and Massom, 2007; Mar-

tin, 2001; Massom et al., 1998; Cavalieri and Martin, 1985). In a few key

locations around the Antarctic coast, these “windows” into the high-latitude

Southern Ocean are globally important sites of Antarctic Bottom Water forma-

tion (Rintoul , 1998), and influence global thermohaline circulation (Rintoul ,

1998; Williams et al., 2008);

• along with pack ice, fast ice is biologically important at various trophic levels,
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providing a habitat for both micro-organisms (McMinn et al., 2000; Arrigo

et al., 1993; Garrison, 1991; Swadling et al., 2000; Günther and Dieckmann,

2001) and large animals such as Weddell seals (Leptonychotes weddellii) and

Emperor penguins (Aptenodytes forsteri) (Massom et al., 2009; Kooyman and

Burns, 1999; Lake et al., 1997; Kirkwood and Robertson, 1997; Wienecke and

Robertson, 1997; Reijnders et al., 1990). The seaward fast ice edge forms

the interface between stationary and moving ice, the location of which is an

important factor in determining the breeding success of Emperor penguins

(Massom et al., 2009); and

• the distribution and seasonality of fast ice has significant implications for polar

marine navigation and logistics, particularly for bases such as the Japanese

Syowa Station located in Lützow-Holm Bay (Uto et al., 2006; Ushio, 2006).

The work in this thesis has been motivated by the need to provide a much

improved understanding of fast-ice extent and variability to contribute to all of these

areas. The techniques developed in this thesis are also potentially applicable to the

Arctic, where fast ice forms a margin for flaw lead formation. Another factor in the

Arctic is the role of fast ice in decelerating coastal erosion (Mahoney et al., 2007a).

Fast ice also plays a prominent role in the daily lives of indigenous Arctic cultures

(George et al., 2004).

1.3 Gaps in Our Knowledge

The current lack of knowledge of large-scale Antarctic fast-ice distribution

and variability largely stems from difficulties associated with discriminating fast ice

from pack ice in satellite data, and the narrow though zonally-extensive coverage

of fast ice. Section 1.4 presents an overview of the technical difficulties of fast-ice
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remote sensing. Here, we focus on current fundamental gaps in our knowledge.

To date, Antarctic sea-ice research has focused almost exclusively (with a

few notable exceptions, e.g., Giles et al. (2008); Massom et al. (2009)) on studies

and climatologies of overall sea-ice extent without discriminating between pack and

fast ice, e.g., Comiso (2010); Comiso and Nishio (2008); Cavalieri and Parkinson

(2008); Lemke et al. (2007); Zwally et al. (2002). As a result, relatively little is

known about larger-scale aspects of Antarctic fast-ice distribution and its spatio-

temporal variability. By the same token, little is currently known about the relative

role of environmental factors (e.g., meteorological forcing, ocean currents, wave-

ice interaction), both individually and as an ensemble, as they affect the growth

and breakout of fast ice around the Antarctic coast. It follows that the possible

response of fast ice to climate change cannot be accurately predicted (fast ice is also

not included in current global climate models).

To date, the majority of Antarctic fast-ice research has largely focused on the

localised, in situ acquisition and analysis of physical and/or biological measurements

close to bases, e.g., Higashi et al. (1982), Kawamura et al. (1997), Ohshima et al.

(2000) and Uto et al. (2006) in and around Lützow-Holm Bay (∼69◦ S, 37.5◦ E);

Heil (2006), Lei et al. (2010) and Tang et al. (2007) around Davis Station (∼68.5◦

E, 78◦ S); and Pringle et al. (2007), Purdie et al. (2006) and Smith et al. (2001) in

the Ross Sea.

Fast ice formation/break-up behaviour have been monitored at a limited

number of Antarctic sites using satellite imagery, but only on regional spatial scales

(covering <∼300 km of coastline at most). These studies have taken place primarily

in and around Lützow-Holm Bay (Enomoto et al., 2002; Mae et al., 1987; Ushio,

2006, 2008; Yamanouchi and Seko, 1992), the Ross Sea (Brunt et al., 2006; Lythe

et al., 1999), the Adélie Land Coast (∼134 to 143◦ E, Massom et al., 2009), and
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the South Orkney Islands (∼45.5◦ W, 60.5◦ S, Murphy et al., 1995). The studies

based in the vicinity of Lützow-Holm Bay and Dumont d’Urville Station (i.e., the

East Antarctic studies) are discussed here in greater detail, to indicate the nature

of the work to date.

Massom et al. (2009) used cloud-free National Oceanic and Atmospheric Ad-

ministration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) data

to create a time series of fast ice off the Terra Adélie coast (134 to 143◦ E) from 1992

to 1999, and highlighted the strong links between fast-ice parameters (overall extent

and nearest distance to open water for foraging) and Emperor penguin breeding suc-

cess at a colony near Dumont d’Urville Station. A case study of anomalously low

fast-ice extent during 1998 revealed the strong links between fast-ice breakout and

strong offshore wind anomalies (i.e., changes in wind direction and strength). In

another study using AVHRR imagery, Massom et al. (2003) documented the large-

scale breakout of perennial fast ice in the region to the east of the Mertz Glacier

Tongue (off the George V Land coast). This occurred in response to an anomalous

shift in the pattern of atmospheric circulation in the October-February period of

1999-2000.

Further to the west, Ushio (2006) used sequences of AVHRR channel 4

(thermal infrared) images to detect and identify fast ice in Lützow-Holm Bay from

1980 to 2004. Though this work was at a high temporal resolution (i.e., 10 days),

fast-ice extent and its variability was not quantified within the bay - rather, the

fast-ice morphology was manually classified into broad classes. Snow depth was

found to be associated with fast-ice stability (deep snow gives greater stability) at

this location, a finding also reported in a later work (Ushio, 2008). This enhanced

stability was attributed to the formation of superimposed ice from melted snow

during summertime, which acts to mechanically strengthen the ice (Kawamura et al.,
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1997). Mae et al. (1987) also used AVHRR observations of the bay to associate fast-

ice breakout with an increase in the thermal infrared brightness temperature of the

ice. Enomoto et al. (2002) used a number of satellite instruments (the Advanced

Visible and Near Infrared Radiometer (AVNIR) on the ADvanced Earth Observing

Satellite (ADEOS), as well as the Scanning Multichannel Microwave Radiometer

(SMMR) and the Special Sensor Microwave/Imager (SSM/I), both of which are

passive microwave instruments) to observe the near-complete fast-ice breakout in

Lützow-Holm Bay during 1997 and 1998. SMMR and SSM/I observations of snow

melt revealed that significant fast-ice breakout events in the bay were associated

with long melting periods during the preceding summer.

Two remote-sensing studies of Antarctic fast-ice extent have been conducted

on a broader spatial scale: Kozlovsky et al. (1977, cited in Fedotov et al. 1998); and

Giles et al. (2008). Kozlovsky et al. (1977, cited in Fedotov et al. 1998) measured

fast-ice extent across East Antarctica (0◦ E to 160◦ E), but sampling was sparse

and sporadic (conducted mainly using aircraft-based observations), and insufficient

to study fast-ice formation or breakup. In a more contemporary study, Giles et al.

(2008) applied image cross-correlation techniques to Radarsat Synthetic Aperture

Radar (SAR) image pairs to produce “snapshots” only of fast-ice extent along the

East Antarctic coast (75 - 170◦ E) during the Novembers of 1997 and 1999. Ice

volume was then roughly estimated by using ice roughness as a proxy for ice thick-

ness, based upon limited in situ observations. “First-year”/low SAR backscatter

(“multi-year”/high SAR backscatter) fast ice was prescribed a thickness of 1 m (5

m). East Antarctic fast ice in November was found to comprise an estimated 8%

of total sea-ice cover by areal extent, but a much more significant ∼30% of the

total sea-ice volume (averaged over the sector 86 - 151◦ E). To date, no study of

Antarctic fast ice has combined large-scale coverage, multi-annual time series and
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high spatio-temporal resolution.

Considerable work has been conducted on fast-ice extent and variability in

parts of the Arctic. There, it has focused on fast-ice variability and extent within

the Kara Sea, north-western Russia (Divine et al., 2005, 2003) and along the north

coast of Alaska, i.e., the Beaufort Sea (Mahoney et al., 2007a,b, 2004; George et al.,

2004).

Mahoney et al. (2004) developed techniques to determine the location of

the Seaward Landfast Ice Edge (SLIE) from sequences of Radarsat SAR imagery.

These techniques were used in a later study (Mahoney et al., 2007a) to produce a

climatology (1996-2004) of fast ice along the north coast of Alaska, and to assess the

variability of fast-ice extent in conjunction with atmospheric parameters. Mahoney

et al. (2007b) used a land-based marine radar situated at Point Barrow, Alaska,

to study fast-ice formation and breakup events in unprecedented spatio-temporal

resolution over a more limited area. George et al. (2004) detailed observations (in-

cluding anecdotes, weather station data and satellite images) of two unexpected

fast-ice breakouts which threatened indigenous hunters in Arctic Alaska. It is likely

that events such as these will become more commonplace under the predicted tro-

pospheric warming scenarios (IPCC , 2007; Flato and Brown, 1996) and as Arctic

pack-ice cover diminishes (Perovich et al., 2008).

As mentioned, fast-ice extent and variability have also been studied in the

Kara Sea (Divine et al., 2005, 2003). These studies used 12.5 km resolution Arctic

and Antarctic Research Institute (AARI) ice charts (created from Russian aircraft

and satellite observations), with a temporal resolution of between 10 and 30 days,

to determine fast-ice extent and variability. The studies linked fast-ice extent (from

1953 to 1990) with large-scale atmospheric circulation. The strength of the climato-

logical Arctic High was found to modulate fast-ice extent, by blocking the passage
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of destructive cyclonic systems.

While detailed studies of Arctic fast-ice formation, breakup and extent have

taken place, (e.g., Mahoney et al., 2007a), there has been no similar Antarctic study

to provide “big picture” information on fast-ice distribution and its spatio-temporal

variability. Work carried out in this thesis aims to address this deficiency.

1.4 Satellite Techniques for Remote Sensing of Fast Ice

As briefly outlined in the previous section, a number of methods have been

used to detect and monitor fast ice from space, in both the Antarctic and Arctic.

These can be broadly classed as i) microwave-based (including SAR), and ii) visi-

ble/thermal infrared-based. A key difference between these two classes is the effect

of cloud, which presents a major problem for visible/infrared wavelengths but has

little effect at the frequencies used in microwave techniques aimed at sensing the

Earth’s surface.

1.4.1 Microwave Remote Sensing of Fast Ice

A number of fast-ice studies have made use of the ability of microwave sensors

to penetrate cloud cover and darkness, e.g., Giles et al. (2008); Mahoney et al.

(2004). The tendency of fast ice to form in narrow bands around the coast precludes

the use of relatively low-resolution passive microwave remote sensing (the key tool

for studying overall sea ice extent and seasonality) for remotely discriminating pack

from fast ice. Passive microwave imagery has been used to determine sea-ice velocity

(Maslanik et al., 1998), but its low spatial resolution offers little promise for detecting

the small-scale ice motion which separates the pack ice from the fast ice. Indeed, the

distance from the coast to the seaward fast-ice edge is at times less than the footprint

of a passive microwave sensor channel. This is due in large part to the diffraction-
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limited angular extent (and subsequent ground footprint size/spatial resolution) of

an aperture, which is directly proportional to wavelength and inversely proportional

to aperture dimension (Born and Wolf , 1975). This results in a relatively low

resolution image of the Earth’s surface, with footprint sizes on the order of 5 to

50 km (frequency-dependent). Ice concentration products range in resolution from

6.25 to 25 km (Lubin and Massom, 2006). Errors are introduced when pixels span

areas including both the continental ice sheet and sea ice (mixed pixel effects). This

problem is again exacerbated by the relatively large pixel sizes of passive microwave

imaging.

SAR techniques, on the other hand, excel at obtaining high resolution images

which may be suitable for fast-ice studies, e.g., Giles et al. (2008); Mahoney et al.

(2007a). Using SAR techniques, phase information recovered from the backscattered

signal can be processed in order to provide extremely high resolution images of the

surface, with pixel sizes down to ∼1 m in some current implementations (Jackson

and Apel , 2004; Werninghaus, 2004), but more typically of the order of 100 m.

However, fast ice is often indistinguishable from pack ice and wind-roughened open

water based upon “snapshot” analysis of normalised backscatter values alone (Lythe

et al., 1999). Though SAR imagery is of a much higher spatial resolution (i.e.,

typically tens of metres) than passive microwave imagery, it is inherently difficult to

interpret (Oliver and Quegan, 1998), particularly over polar oceans (Beaven et al.,

1997).

Gill and Valeur (1999) used single SAR images in an attempt to classify

ice types off the coast of Greenland based on first-order texture parameters such as

Power-to-Mean Ratio (PMR), skewness (the asymmetry of pixel backscatter distri-

bution) and kurtosis (a measure of the shape of the peak of the pixel backscatter

distribution). It was found that fast ice could not be differentiated from open water
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using this technique. However, fast ice and open water could be differentiated from

thin ice and ice of concentration between 40% and 90%.

Lythe et al. (1999) also used single SAR images for fast-ice classification in

the Ross Sea, Antarctica, during late winter/early spring ice, but combined obser-

vations with coincident AVHRR cloud-free imagery. It was found that (thermo-

dynamically-formed) fast ice uniquely exhibits a signature of low SAR backscatter

and low AVHRR band 4 (thermal infrared) radiance. The low AVHRR radiance

was attributed to fast ice being generally thicker than pack ice, thus being better

insulated from the warm ocean and having a lower brightness temperature and ra-

diance, though it was expected that thermal emission is also strongly dependent on

surface air temperature. The low SAR backscatter was attributed to the relative

lack of deformation inherent to fast ice that formed in situ in a sheltered location.

Working along the north coast of Alaska, Mahoney et al. (2004) presented

an automated technique for determining the SLIE from SAR data (applied to Arctic

regions). The SAR data were first smoothed by sub-sampling, then the horizontal

and vertical vector gradients of the scalar (smoothed SAR backscatter) field were

calculated. Differences between successive processed SAR images were then calcu-

lated, clearly showing the SLIE. This technique was used (again in Arctic regions) by

Mahoney et al. (2005), but with less success due to variable SAR backscatter during

times other than mid-winter. Manual classification was required for these times. Ice

type discrimination using SAR is typically difficult outside of winter/early spring

due to the inclusion of water into the snow volume, thus reducing the backscatter

similarities between ice types (see Lubin and Massom (2006) and references therein).

SAR interferometry (InSAR) also holds some promise for automated fast-ice

detection (Dammert et al., 1997; Morris et al., 1999). To produce a SAR inter-

ferogram, two complex SAR images are required (separated by a suitable spatio-
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temporal baseline), and phase information is retained for each pixel. One image

is conjugated, then the images are multiplied on a per-pixel basis (Massom et al.,

2006b). The resulting phase is then extracted, producing the interferogram. The

equation for this phase difference is given as follows (after Dammert et al., 1997):

∆ϕ =
4πBn

λRsinθ
∆h +

4π

λ
∆η + Φnoise + n × 2π (1.1)

where ∆ϕ is the phase difference produced by interfering the images, Bn is the

baseline between the two positions of the satellite, R is the mean satellite position

to a point of interest on the surface, θ is the angle to nadir, h is the height of a feature

on the surface, and η is a horizontal displacement (in the look direction). The first

term is sensitive only to changes in height, while the second term is sensitive only

to changes is displacement (in the look direction). Φnoise is the phase noise due to

decorrelation of scatterers. The final term arises due to ambiguity inherent to any

phase measurement.

Using InSAR processing of ERS-1 SAR data (3 to 6 day temporal baseline),

Dammert et al. (1997) found the displacement required to produce a phase difference

of 2π in the interferogram to be 65 m in the vertical or 28 mm in horizontal displace-

ment, making this technique incredibly sensitive to horizontal motion but much less

sensitive to changes in height. For this reason, this technique can be applied to

fast-ice detection where tidal variations produce negligible phase changes - or tidal

displacement can be effectively removed - but horizontal movements contribute con-

siderably to the phase difference. Due to the extreme sensitivity of the technique to

horizontal motion, the moving pack ice produces random phase difference between

successive images (i.e., in the interferogram). The coherent interference fringes pro-

duced over fast ice are relatively easy to separate from the random phase difference

produced over pack ice in the resulting interferogram.
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Morris et al. (1999) produced a series of ERS-1 SAR-derived data products

covering a section of fast ice situated in the East Siberian Sea during late 1993 -

early 1994. In addition to the phase fringe interferogram used by Dammert et al.

(1997), a phase correlation image was produced for SAR image pairs, which showed

discontinuities of the phase fringes. These phase correlation images were particularly

useful in finding small-scale flaw leads in the sea ice which were not detected by

single SAR images. Though not designed with interferometry in mind, the ERS-1

instrument with its 3-day repeat orbit is in theory well suited to SAR interferometry,

and useful interferograms can be generated from pairs of images separated by 3 days

(Coulson and Guignard , 1994). In practice, however, relatively few suitable image

pairs are available for interferometric analysis, particularly in the Antarctic coastal

zone. The ERS Tandem Mission (October 1995 to June 1996), with its repeat orbit

of one day achieved using the ERS-1 and ERS-2 platforms, was also well suited to

producing useful short temporal baseline interferograms (Zandbergen et al., 1997).

It is worth noting that single-pass SAR interferometry will likely be of less use to

fast-ice detection since the second term in equation 1.1 will vanish, meaning that

the interferogram will no longer be sensitive to horizontal motion.

More recent SAR systems are also suitable for interferometric SAR analy-

sis, but application of these techniques is still limited by fundamental constraints

(Massom and Lubin, 2006). Historical data are often unavailable due to suitable

data being collected only when programmed to do so; and SAR interferometry per-

forms best when viewing geometry is identical between two passes, meaning that the

minimum temporal baseline is equal to the repeat orbit interval. This ranges from

35 days with the European Space Agency (ESA) Envisat Advanced SAR (ASAR,

2002 - present) to 11 days with the German Aerospace Center’s TerraSAR-X (2007

- present). Furthermore, the cost of acquiring sufficient SAR data for large-scale
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fast-ice analysis is often prohibitive for scientific users.

A relatively new SAR capability is the inclusion of polarimetric observation

capabilities. SAR systems such as ASAR, launched in 2002, include the ability

to acquire SAR data simultaneously at different polarisations (Zink et al., 2001).

The Japanese Aerospace eXploration Agency (JAXA) Phased Array L-band SAR

(PALSAR), the Canadian Space Agency’s Radarsat-2 and the German Aerospace

Center’s TerraSAR-X instruments also support polarimetric SAR capability (Lubin

and Massom, 2006). It remains to be seen how the inclusion of polarimetric data into

SAR analyses will influence discrimination between pack and fast ice (see references

in Massom and Lubin (2006)). Techniques for using polarimetric SAR imagery for

ice classification are still under development, and coverage of SARs operating in full

polarimetric mode is typically limited to swath widths of a few tens of km. This

precludes broad-scale coverage and analysis.

1.4.2 Visible/Thermal Infrared Remote Sensing of Fast Ice

Given the constraints and limitations outlined above, wide-swath visible/

thermal infrared sensors offer a viable alternative for broad-scale fast-ice detec-

tion and monitoring, provided cloud cover can be accurately detected and removed

(thermal infrared data can be used during darkness). The Advanced Very High

Resolution Radiometer (AVHRR), a visible/thermal infrared imager onboard sev-

eral NOAA satellites, observes the Earth at a resolution of 1.1 km with a 2,500

km-wide swath. It covers a wide range of wavelengths (0.6 µm to 12 µm), though

only in 4 to 6 spectral channels (Cracknell , 1997). Although the AVHRR was

first launched in 1978, coverage of Antarctic coastal regions tends to be somewhat

patchy (particularly prior to the early 1990s). This was due in large part to a lack

of sufficient onboard image storage capacity, the need to downlink in real-time to
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dedicated receiving stations to gain full-resolution (1 km) coverage, and a lack of

digital archiving. In regions with no dedicated receiving stations, e.g., much of the

East Antarctic coast prior to the early 1990s (when an AVHRR receiving station

was installed at Casey Station), data are only collected at a 4 km spatial resolution.

Where available, however, AVHRR data have been used extensively for sea-ice mo-

tion detection studies (e.g., Heacock et al., 1993; Ninnis et al., 1986), but with the

exception of a few analyses of small regions (see Section 1.3), it has not been used

extensively for fast-ice studies in either hemisphere. Geolocation accuracy is also

an issue when using AVHRR data in remote polar regions with few ground-control

points.

Pixel sizes for passive visible - TIR instruments currently in orbit vary

considerably from ∼1 km (AVHRR, MODIS TIR channels) to an impressive sub-

metre resolution with satellites such as WorldView-2 (46 cm resolution, Glass et al.

(2010)). The Landsat Multi-Spectral Scanner (MSS) and Enhanced Thematic Map-

per (ETM+) instruments are other examples of widely-used, high-resolution visible

imagers, with horizontal resolution up to 15 m. Despite the obvious advantages

of the high resolution Landsat imagery for ice classification applications, one par-

ticularly limiting drawback of these imagers is their narrow swath width, which

adversely affects the temporal coverage of the instrument for any given point on the

surface and means that many images are required to cover extensive coastal regions.

For this study, we use data from a newer and much improved instrument

- the MODerate resolution Imaging Spectroradiometer (MODIS) onboard the two

NASA Earth Observing System (EOS) satellites Terra and Aqua (launched in De-

cember 1999 and May 2002, respectively). An excellent introduction to MODIS

(and several other EOS instruments) is provided by Parkinson (2003), and data and

specifications are available from the MODIS website (http://modis.gsfc.nasa.gov/).
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MODIS images are acquired over a wide swath (2,330 km), and cover a wide range

of wavelengths (see Table 2.1 in Chapter 2 for a complete list of MODIS channel

centroid wavelengths). The 36 MODIS spectral channels cover wavelengths from

visible (0.415 µm) to TIR (14.235 µm), offering a higher spectral resolution than

AVHRR sensors. The TIR pixel size is an AVHRR-equalling 1 km at nadir, but

500 m for channels 3-6 and 250 m for channels 1 and 2. The polar orbit of the

Terra and Aqua satellites produces excellent temporal coverage at high latitudes.

The wide range of spectral channels available allows production of an accurate spec-

tral cloud mask (Ackerman et al., 2006). Terra MODIS was commissioned in 2000,

with Aqua MODIS following in 2003. Calibrated MODIS imagery is readily and

freely available from the Level 1 Atmosphere Archive Distribution System website

(http://ladsweb.nascom.nasa.gov/). MODIS holds several advantages over AVHRR

for this application. In particular, the wealth of spectral channels enables the pro-

duction of a more accurate cloud mask product than is possible with AVHRR, a

key to the success of the procedures detailed in this thesis. Furthermore, routine

coverage of the Earth and full-resolution recording at all times facilitates the regu-

lar and frequent temporal coverage for a given point on the surface. More accurate

geolocation is also possible with MODIS versus AVHRR images around Antarctica.

Despite the technical superiority of MODIS over AVHRR (particularly its higher

spectral resolution), it has yet to be extensively used for fast-ice detection. AVHRR

is still useful when long time series of data are required (i.e. pre-2000).

It is theoretically possible to identify fast ice from a single satellite image

by detecting areas of ice which are consolidated and contiguous with the coast.

However, this technique presents difficulties for automation, requires high-quality,

cloud-free imagery, and is unable to discriminate between fast ice and pack ice

which has been temporarily advected against the coast and/or existing fast ice by
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ocean currents and winds. Fast ice is in general spectrally identical to pack ice of

a similar thickness and roughness (Lythe et al., 1999), making accurate “snapshot”

differentiation difficult in many locations.

An alternative technique for discriminating fast from pack ice is to use time

series of satellite imagery to distinguish between moving (pack) and stationary (fast)

ice. The detection of ice motion using satellite imagery is generally achieved by

performing image cross-correlation techniques on series of temporally closely-spaced

satellite image pairs which are accurately geolocated (Fowler et al., 2001; Giles

et al., 2008, 2009; Mahoney et al., 2004). Due to the adverse affects of cloud on

visible/TIR imagery, this technique is generally applied to radar imagery (either

passive or active), e.g., Giles et al. (2008).

Figure 1.2: RSV Aurora Australis parked in fast ice off the East Antarctic coast,
near Davis Station (∼68.5◦ S, 78◦ E) in November, 2008. The fast ice is anchored
to grounded icebergs in the background. Picture credit: Adam Steer.

The MODIS dataset was chosen for this work because it combines excellent

polar synoptic coverage (a 2,330 km-wide swath, compared with SAR swath width
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of less than 500 km) with sufficient resolution for discriminating pack from fast ice

(1 km in thermal infrared (TIR) bands). Moreover, MODIS imagery is routinely

acquired, without data complications associated with changing sensor modes as

found with SAR instruments (Lubin and Massom, 2006). Furthermore, MODIS

imagery is readily available and free of cost (as opposed to SAR imagery), and

relatively easy to process and interpret (especially compared with SAR over the

sea-ice zone). The MODIS dataset has broad and regular coverage of the narrow

but zonally-extensive fast-ice zone - an extensive zone that cannot easily be covered

and monitored by satellite SAR data and high-resolution (narrow-swath) visible

imagery, and remains largely unresolved in coarse resolution (i.e., 6.25 - 25.0 km)

passive microwave sea-ice concentration data.

A major challenge using the MODIS visible-TIR time series is to derive rea-

sonable coverage of the fast ice is in the treatment of cloud cover (Fraser et al.,

2009). The East Antarctic coast has persistent cloud cover, averaging 93% in Oc-

tober, compared with a global average of 70% (Spinhirne et al., 2005). Large parts

of Chapters 2 and 3 are devoted to overcoming the problems associated with cloud-

cover detection over sea ice and its removal to produce uncontaminated time series

of MODIS-derived fast-ice maps.

1.5 Aims of the Project

The aims of this work were threefold:

1. To use visible-TIR MODIS satellite data, supplemented by Advanced Mi-

crowave Scanning Radiometer - Earth Observing System (AMSR-E) data

when required (i.e., to fill in gaps in MODIS coverage), to detect Antarc-

tic fast ice and to build up a continuous time series of fast ice extent based
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upon cloud-free images over the period March 2000 - December 2008;

2. to use this time series to carry out a detailed analysis of the spatio-temporal

characteristics of fast ice in the East Antarctic sector from 10◦ W to 172◦ E,

a distance of ∼8,600 km; and

3. to investigate the influence of atmospheric parameters (on scales ranging from

local to hemispheric) on fast-ice formation and breakout.

An overall motivation is to produce a new time series of fast-ice extent that

will form a key climatic baseline against which to gauge future change, and which is

equivalent to the widely-used pack-ice products, e.g., Comiso (2010); Cavalieri and

Parkinson (2008). Such data are also required by, for example, the biological com-

munity to assist with interpretation of biological datasets, and the ocean modeling

community, who will use fast-ice maps as part of their domain definition.

Figure 1.3: Aerial photograph of the RSV Aurora Australis at the fast ice/ocean
interface off the East Antarctic coast near Davis Station (∼68.5◦ S, 78◦ E) in Novem-
ber, 2008. Picture credit: Australian Antarctic Division.
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1.6 Format of the Thesis

This thesis is formatted in the “thesis by publication” style, with each main

chapter presenting and expanding upon the work of each of four refereed publications

(two published, one submitted, and one in preparation) in high-profile international

scientific journals. The thesis is structured as follows:

• Chapter 2 outlines the methods used to produce the MODIS composite images

(based on Fraser et al., 2009);

• Chapter 3 extends this work by combining MODIS composite images with

AMSR-E images in order to generate maps of fast-ice extent (based on Fraser

et al., 2010a);

• Chapter 4 presents the fast-ice time series, and an in-depth analysis of fast-ice

extent/timing trends and their relation to sea-ice extent (based on Fraser et

al., subm.);

• Chapter 5 investigates the influence of atmospheric parameters on fast-ice

formation and breakout (based on Fraser et al., in prep.); and

• Chapter 6 presents an overall conclusion, and suggests further work.

Three appendices are included at the end of the thesis:

• Appendix A includes a reprint of the paper upon which Chapter 2 is based,

published in IEEE Transactions on Geoscience and Remote Sensing and enti-

tled A method for compositing polar MODIS satellite images to remove cloud

cover for landfast sea-ice detection.

• Appendix B includes a reprint of the paper upon which Chapter 3 is based.

This is published in Remote Sensing of Environment, and is entitled Gener-
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ation of high-resolution East Antarctic landfast sea-ice maps from cloud-free

MODIS satellite composite imagery.

• Appendix C, presented on a CD-ROM disc, is the full time series of fast-

ice maps (March 2000 - December 2008), including associated information on

georeferencing the maps to aid end users in viewing the maps in the context

of other spatial data.



Chapter 2

A Method for Compositing Polar

MODIS Satellite Images to Remove

Cloud Cover for Landfast Sea-Ice

Detection

This chapter is an edited version of a paper which has been published as:

Fraser, A. D., R. A. Massom, and K. J. Michael, A method for compositing polar

MODIS satellite images to remove cloud cover for landfast sea-ice detection, IEEE

Transactions on Geoscience and Remote Sensing, 47 (9), 3272-3282, doi:10.1109/

TGRS.2009.2019726, 2009.

A reprint of this publication is included in Appendix A.

2.1 Abstract

This chapter presents details of techniques for generating thermal infrared

and visible composite images from the cloud-free portions of temporally closely-

spaced MODIS images, with a focus on deriving consistent time series maps of the

extent of landfast sea ice (hereafter referred to as fast ice) along the entire East

Antarctic coast (10◦ W to 172◦ E). Composite image inclusion criteria are based on

23
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a modified MODIS cloud mask product. The compositing process presented places

emphasis on retaining maximum spatial resolution while minimising storage space

requirements. Composite images can be produced either as a regular product (e.g.,

on a 20-day grid), or dynamically (whenever enough information is acquired to pro-

duce a new output image). These techniques are applicable at any latitude, are

available for all MODIS channels at their native resolution, can combine Aqua and

Terra images, and can produce maps in any output projection. However, due to

the polar orbit of NASA’s Terra and Aqua satellites which host the MODIS instru-

ment, more frequent coverage is produced at higher latitudes. Thus, the techniques

presented are particularly applicable to polar research. Examples composite images

covering the fast ice around the Mertz Glacier region, East Antarctica (∼67.5◦ S,

144.75◦ E), are presented for both winter and summer.

2.2 Introduction

Nadir-imaging radiometers operating at visible to thermal infrared (TIR)

wavelengths, such as the 36-channel MODIS (MODerate resolution Imaging Spec-

troradiometer) instrument (Parkinson, 2003) onboard the NASA (National Aero-

nautics and Space Administration) satellites Aqua and Terra, have significantly

contributed to our understanding of many polar geophysical processes and phe-

nomena (Khalsa et al., 2006; Lubin and Massom, 2006; Massom and Lubin, 2006).

However the Antarctic coast and sea-ice zone are notorious for having a persistently

high cloud cover fraction, particularly in summer. Spinhirne et al. (2005) report the

zonally-averaged East Antarctic coastal cloud cover during October 2003 to be 93%,

compared to a global average of around 70% (Spinhirne et al., 2004). This limits

the applicability of individual MODIS images for observations of the polar surface.

Significant research has been conducted on cloud detection using multi-
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spectral imaging instruments, e.g., MODIS or NOAA AVHRR sensors (see Lubin

and Massom (2006) and the references therein). While cloud detection is relatively

simple during daytime and over most surfaces (e.g., Ackerman et al. (2006)), diffi-

culties in are encountered over snow-covered surfaces, particularly during hours of

darkness (Liu et al., 2004b). This is due to the small contrast in both albedo (dur-

ing daytime), and brightness temperature of clouds versus snow-/ice-covered surface

(Lubin and Morrow , 1998; Welch et al., 1992). The incorporation of MODIS channel

26 (1.375 µm) into the MODIS cloud mask product allows improved polar cloud dis-

crimination during daytime (Gao et al., 2003), though significant difficulties remain

during hours of darkness, when this channel is unavailable. Liu et al. (2004b) have

made improvements in night-time polar cloud detection with MODIS, by means of

new spectral tests and revised thresholds over polar regions. These have been in-

corporated into the latest official MODIS MOD35 cloud mask product (Ackerman

et al., 2006).

One solution for minimising the effect of cloud cover at visible-TIR wave-

lengths is to produce a composite image of cloud-free pixels selected from several

satellite passes separated by time. For low-Earth orbit satellites such as Terra and

Aqua (in contrast to a geosynchronous orbit), accurate geolocation and reprojection

from the original swath to a common map is essential for successful generation of

the composite image. Selection of “cloud-free” pixels from component images is

also critical to the success of a compositing algorithm. Cloud-free pixel selection is

typically performed using either Maximum Value Compositing or by using spectral

tests to pre-determine the probability of cloud contamination for each pixel before

gridding (Haines et al., 2007).

Maximum Value Compositing (MVC) is a class of compositing algorithm

where several component images are first mapped to a common grid, then each
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gridded pixel’s probability of cloud contamination is assessed by comparing its value

to the corresponding pixel from the other gridded images (Comiso, 1994, 1999;

Chen et al., 2003). One frequently-used MVC criterion is the maximum Normalised

Difference Vegetation Index (NDVI) test (Chen et al., 2003). This test involves

reprojecting a number of different overpass swaths (which are closely spaced in time)

onto a common grid to form a “pool” of pixels from which compositing algorithms

can choose the most likely to be cloud-free for composition. Then on a per-pixel

basis, the pixel with the maximum NDVI is chosen for compositing (Rouse et al.,

1974). This test relies on the assumption that for a given pixel over land, a higher

NDVI usually indicates a lower cloud fraction. However, this test fails over ocean and

snow/ice surfaces, due to their negative NDVI values (Luo et al., 2007). Other simple

MVC tests which fail over polar regions include the visible reflectance test (failure

due to high reflectance from both surface and cloud) and brightness temperature

test (failure due to the similar temperatures of surface and cloud in these regions)

(Ebert , 1987).

Comiso (1994, 1999) used a two-stage MVC-style compositing algorithm to

produce cloud-free Nimbus 7 Temperature Humidity Infrared Radiometer (THIR)

polar composite images of surface temperature. The first stage involved choosing

a pixel with the highest IR radiance, relying on the fact that tropospheric cloud is

usually colder than the underlying surface. Secondarily, for areas of persistent cloud

cover (such as the Antarctic sea ice zone), a rudimentary cloud motion detection

feature was implemented. This motion detection algorithm excluded adding to the

composite image during times when the brightness temperature differed by more

than 12 K daily, a figure determined from histograms of daily brightness temperature

difference. MVC has also been used with MODIS images to aid high-resolution mid-

latitude burned-area mapping (Dempewolf et al., 2007).
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MODIS data are negatively affected by detector striping, particularly in

some TIR channels (Yang et al., 2003; Ackerman et al., 2002). Striping occurs when,

in a multi-detector instrument, there is inconsistent calibration between detectors.

The effect is to produce darker or lighter “stripes” within the image, aligned in the

cross-track direction. Spatial domain image convolution can be applied to rectify

affected MODIS images, but important data can be lost due to image blurring. Users

of other data products prone to striping - such as Landsat MSS (Multi-Spectral

Scanner) images - have used techniques such as histogram matching, which are

broadly applicable to MODIS imagery (Horn and Woodham, 1979). Several papers

(Antonelli et al., 2004; di Bisceglie et al., 2009) have reported the use of the ‘bow-tie

effect’ inherent to MODIS level 1b data as a form of data redundancy, facilitating

the correction of data from the poorly calibrated detectors.

Using MODIS data to detect and monitor surface parameters depends upon

the successful implementation of cloud masking to identify cloud-free pixels. The

Earth Observing System (EOS) level 2 MOD35 cloud mask product (hereafter re-

ferred to as the MOD35 cloud mask) has been developed for this purpose, and is

routinely created for each MODIS data granule (Ackerman et al., 1998, 2006). Level

2 products are generally derived fields with quality control, but still at swath level.

The MOD35 product gives the results of a series of spectral, per-pixel cloud mask

tests generated from MODIS imagery (Ackerman et al., 2006). Information on sur-

face conditions (ocean, land, sea ice, snow) is provided by SSM/I passive microwave

data. Table 2.1 gives spectral information on all MODIS channels and indicates

which are used in the cloud mask product.

However, despite the MOD35 product’s wide-ranging, comprehensive spec-

tral tests and proven accuracy, especially at mid/lower latitudes, few compositing

algorithms have made use of it for cloud masking. One exception is the MODIS
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Table 2.1: The complete list of MODIS channels, including each channel’s use in
the MOD35 cloud mask product (reproduced after Ackerman et al. (2006))

Band Centroid Used in Primary Application

Wavelength µm Cloud Mask

1 (250m) 0.659 Y (250 m and 1 km) clouds, shadow

2 (250m) 0.865 Y (250 m and 1 km) low clouds

3 (500m) 0.470 N

4 (500m) 0.555 Y snow

5 (500m) 1.240 Y snow

6 (500m) 1.640 Y snow, shadow

7 (500m) 2.130 N

8 0.415 N

9 0.443 N

10 0.490 N

11 0.531 N

12 0.565 N

13 0.653 N

14 0.681 N

15 0.750 N

16 0.865 N

17 0.905 N

18 0.936 Y low clouds

19 0.940 Y shadows

26 1.375 Y thin cirrus

20 3.750 Y shadow

21/22 3.959 Y(21)/N(22) window

23 4.050 N

24 4.465 N

25 4.515 N

27 6.715 Y high moisture

28 7.325 N

29 8.550 Y mid moisture

30 9.730 N

31 11.030 Y window

32 12.020 Y low moisture

33 13.335 N

34 13.635 N

35 13.935 Y high cloud

36 14.235 N
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Sea Surface Temperature (SST) composite produced by Haines et al. (2007). Pixel

inclusion into the composite image is based upon the MOD35 cloud mask. Day and

night images from Terra and Aqua MODIS are respectively composited into four

separate images to minimise biases between satellites and to isolate diurnal changes

in SST. In this study, we use the MOD35 cloud mask, as well as a modified version

of this mask (see Section 2.3.2).

Overly-conservative performance of the MOD35 product was reported by

Riggs and Hall (2003) over snow-covered surfaces (i.e., clear-sky areas are often

reported as cloudy). In response to this, Riggs and Hall (2003) developed a new

cloud-masking algorithm (dubbed “the liberal cloud mask”) for use with the mid-

latitude MODIS snow cover product. Utilising a small subset of the MOD35 cloud

mask tests plus some additional visible and near-infrared tests, the liberal cloud

mask was developed to mask only those clouds obscuring the surface in shortwave

channels, i.e., radiation with wavelength less than ∼2µm. The heavy reliance on

shortwave channels precludes the use of this style of technique for year-round polar

work.

When generating composite images, it is important to consider the timescales

of events which need to be resolved. While detailed studies of the timescales of

fast-ice breakout/formation have not taken place in either hemisphere, 20 days has

been suggested as a reasonable minimum time for Arctic ice to remain stationary

before being classified as “fast” (Mahoney et al., 2005). The challenge here is to

generate composite images with sufficient temporal resolution to resolve fast-ice

formation/breakout events, while at the same time producing composite images

of a high quality, i.e., keeping the compositing interval as short as possible, while

ensuring it is long enough to generate a cloud-free view of the surface in all parts of

the map.
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A further challenge here is to remove cloud cover contamination as accu-

rately as possible. Due to the lack of sunlight during “winter” in Antarctica (in

practice, approximately from mid-April until mid-October), it is necessary to gen-

erate TIR composite images for this time period. This poses additional challenges,

particularly regarding the MOD35 cloud mask which suffers from reduced accuracy

during darkness due to the unavailability of important shortwave cloud tests (Ack-

erman et al., 2006; Liu et al., 2004b). The solution employed here is to produce a

modified version of the MOD35 cloud mask, hereafter referred to as the modified

cloud mask. A large part of this chapter (see Section 2.3.2) is devoted to overcoming

such problems with the MOD35 cloud mask during wintertime.

The study region in this chapter is centred around the Mertz Glacier Tongue

(MGT) (see Figure 2.1). This region was chosen because it includes a diverse range

of surface conditions such as continental (glacial) ice, fast ice, pack ice and open

ocean (including polynyas). See Massom et al. (2001b) and Barber and Massom

(2007) for a detailed description of the “ice-scape” of this region. It is also the site of

recent work investigating the mechanical coupling between fast ice and the floating

glacier tongue (Massom et al., 2010a), and is a focus area for biological research

(e.g., Massom et al. (2009)). Though the examples presented in this chapter are

tailored for fast-ice detection applications, the techniques are generally suitable for

other applications at any latitude.

2.3 Image Enhancement and Data Preparation

The concept behind the composite image generation process is to use cloud-

free portions of temporally closely-spaced images to build one composite cloud-

free image. Figure 2.2 schematically depicts the process of producing a composite

MODIS image from individual MODIS granules. This involves accurate cloud mask-
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Figure 2.1: The study regions used in Chapters 2, 3 and 4. Chapter 2: the blue box
shows the extents of the MODIS composite images created, in a region including
the Mertz Glacier Tongue and surrounding fast ice, pack ice, continental (glacier)
ice and open ocean. Chapter 3: the dashed line shows the extents of the fast-ice
maps generated from MODIS composite images, covering the East Antarctic coast
(from 10◦ W to 172◦ E). Chapter 4: the dotted lines (labelled i - x) delineate the
boundaries of different fast-ice regimes examined in this thesis.
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ing, gridding, coast masking, and finally, composite image generation.

�� ��

����

����������	 ����������	

	
�������
���

�������������

�����

������������

�������
�

������
�

	
�������
���

���������������

�����������������

��������� ���

������������

�������
�

������
�

	
�������
����

� ���������������

����������������

�����������

��������� ���

������������

�������
�

������
�

	
������

�� ����������

� !�������

�������������

"
�������� �

��� ��#$�%&

'���������

��������

'�� ����

�
�������

(����� ��

��� ���)��

"��������� �

��� ��#$*
"��������

�����

�� ������ 

#$��+

,-.

#$��+

,-.

(������

����

(������

����

"��������

����

Figure 2.2: Schematic of the composite image generation process starting from
MODIS Hierarchical Data Format (HDF) files. a) The MOD35 (modified) MODIS
cloud mask product is used to mask the original HDF files during “summer” (“win-
ter”). Swath trimming also occurs at this point (see section 2.3.3). b) The MODIS
Swath-To-Grid Toolbox (ms2gt) suite of programs (Haran et al., 2002) is used to
grid, geolocate and remove bowtie artefacts (discontinuities between adjacent detec-
tor array scans) from MODIS images. c) The Mosaic Of Antarctica (MOA) coastline
product (Scambos et al., 2007) is used to mask the continent. At this stage, Solar
Zenith Angle (SZA) normalisations were performed where applicable (shortwave
bands only). d) Composite images are generated from cloud-free portions of many
subsequent MODIS images covering the same area.

MODIS level 1B (reprocessed version 5) data, covering the periods from

Day Of Year (DOY) 161 to 170 and from DOY 341 to 350, in 2005, were ob-

tained from the MODIS Level 1 and Atmosphere Archive and Distribution System

(LAADS) archives at the NASA Goddard Space Flight Center (currently accessi-

ble at http://ladsweb.nascom.nasa.gov/data/search.html). Level 1B fields are cali-
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brated, low level data (in this case, radiances and reflectances).

Manual examination of a number of test scenes revealed that the 1 km-

aggregated visible channel 1 (λ = 0.659 µm) and native 1 km TIR channel 31 (λ

= 11.030 µm) were largely free from detector striping issues on both Terra and

Aqua platforms. Image destriping issues (Haran et al., 2002) were thus avoided

by choosing only MODIS channels 1 and 31 for analysis. Throughout this thesis,

infrared images are presented in a non-inverted colour scale, i.e., cold objects (such

as high clouds) are darker than warm objects. It is worth noting that any temporal

averaging process such as the techniques used when generating composite images

as described in this chapter may also reduce the negative effects of striping, due to

the different viewing geometry from each MODIS granule. Note that the techniques

presented in this chapter are equally applicable to any channels. Analogues to

MODIS channels 1 and 31 exist in the National Oceanographic and Atmospheric

Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR)

instrument, raising the possibility of temporally extending the composite cloud-

free MODIS data set back in time (prior to 2000). However, due to AVHRR’s

relatively limited spectral observations and this compositing technique requiring

an accurate cloud mask, AVHRR composites would likely be of a lower quality

than MODIS composites - particularly during the polar night time when shortwave

channel observations are unavailable. Full resolution (i.e., 1 km) AVHRR image

availability is also an issue in polar regions with no receiving station (Massom et al.,

2009).

2.3.1 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical technique that is fre-

quently applied to multispectral remote sensing imagery to examine or reduce the
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dimensionality obtained in non-independent spectral channels (Eklundh and Singh,

1993). Often, the transformation to orthogonal axes inherent to PCA generates

“enhanced” images (either lower in noise than the component channels’ images,

or excluding certain features while enhancing others, or both). Hillger and Clark

(2002), for example, used PCA to enhance MODIS imagery for volcanic cloud de-

tection. Shortwave and longwave bands were analysed separately. The shortwave

PCA was found to produce no Principal Component (PC) images which enhanced

the volcanic ash clouds being studied. However, many IR PC images successfully

displayed the location of the volcanic ash cloud, allowing discrimination between

these regions and the cloud-free regions and water/ice clouds in the image.

In the current work, the use of PCA was investigated for the purpose of

enhancing the information content of both MODIS TIR and visible wavelength

images. It was initially hoped that the use of PCA might produce PC images which

“penetrate” thin cloud, enabling an unobscured view of the surface.

In order to test this, sixteen PC images (PC1 through PC16, with PC1 repre-

senting the greatest variance) were generated from the sixteen MODIS IR channels.

Flaw lead discrimination or cloud penetration was not noticeably improved on any

of the PC images (see Figure 2.3). It was concluded that, for this application, PCA

holds no advantage for thin cloud penetration compared to other methods. Further-

more, detector striping was enhanced in all output PC images (not shown). Similar

artefacts were observed when excluding the obviously noisy channels from the PCA,

i.e., performing a PCA using only channels 20, 22, 23, 25, 29, 31 and 32.

In the analysis of all 20 shortwave channels, PCA images were heavily in-

fluenced by detector saturation in channels 8-16, producing low-quality output (see

Figure 2.4). When these saturated channels, plus channel 6 which exhibited detector

striping, were excluded from the PCA, output images closely resembled either the
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Figure 2.3: Results of the IR PC analysis. a) A typical Antarctic original MODIS
channel 31 (IR) scene, showing the Ross Ice Shelf and pack ice in the Ross Sea,
acquired on June 2, 2005 at 2040 UT. b) PC1 (of 6) generated from the six low
noise IR channels (20, 22, 23, 25, 31 and 32). PC1 (and lower-order PC images
- not shown) shows no advantage for cloud penetration. The image is ∼800 km
across.

original shortwave channels or the near-IR channel 26 (see Figure 2.5). In summary,

none of the PC images generated here showed clear advantages over the raw MODIS

imagery for the purposes of cloud penetration or fast-ice discrimination. Because

the computationally-expensive PCA provided little advantage over the raw MODIS

imagery, it was not used to preprocess images used for fast ice detection.

With reference to Figure 2.2, the following processing steps were used to

produce composite images. These steps are necessary in order to produce cloud-free

composite imagery, and to combine MODIS images from different orbits/viewing

geometries.

2.3.2 Cloud Masking

The MOD35 cloud mask can erroneously mask out regions of fast ice and

consolidated pack ice, as shown in the example in Figure 2.6b. This problem arises
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Figure 2.4: Visible PCA images of the Mertz Glacier region, generated from all
shortwave MODIS channels. a) A typical Antarctic original MODIS channel 1 scene,
acquired at 2320 UT on DOY 335 (December 1), 2005. b) MODIS channel 2 image
of the same scene. c) MODIS channel 7 image of the same scene. Note the saturation
over continental and consolidated sea ice, producing a “striped” effect (a separate
issue to the MODIS detector striping). d) MODIS channel 16 image of the same
scene. Saturation is occurring even over unconsolidated pack ice. e) PC1. Note the
effects of the saturated channels on the image. f) PC2. Saturation effects are even
more obvious, and detrimental to the image.
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Figure 2.5: Visible PCA images of the Mertz Glacier region, generated from all
shortwave channels (channels 1 to 19, plus 26) which exhibited no detector striping
or saturation. a) A MODIS channel 2 scene, acquired on 2320 UT on DOY 335
(December 1), 2005. b) The first PC image generated from the visible channels
which were free from detector striping and detector saturation. Note the similarity
to channel 2. c) The second PC image, effectively showing the location of the thin
cloud in the image. d) PC3. e) PC4. f) PC5. Note that no PC images were superior
to the original MODIS image in terms of penetrating cloud cover.
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during daylight hours over snow- or ice-covered surfaces when the atmosphere is

particularly dry (R. Frey, personal communication, 2007). A strong water vapour

absorption feature at around 1.38 µm (Gao et al., 1993) means that the drier-than-

normal atmosphere brings the band 26 radiance above the predefined cloud threshold

(bit 16 in the MOD35 cloud mask), leading to false cloud detection (Ackerman et al.,

2006). It can be seen that the overall MOD35 cloud mask result closely matches

the contribution from this test, particularly over the sea ice zone. Fortunately, this

problem was encountered infrequently, and did not require corrective measures for

fast-ice detection analysis to take place. For daytime scenes, the MOD35 cloud

mask was found to be consistently accurate enough to use without spatial filtering

of any kind.

Figure 2.6: Example of erroneous masking of consolidated sea ice. a) The original
MODIS channel 1 scene (acquired on DOY 296 (October 23) in 2001, at 23:00 UT).
b) The result of MOD35 cloud masking. Pixels not classed as “confident clear” or
“probably clear” were masked. c) The 1.38 µm cloud mask test contribution to the
overall MOD35 cloud mask. White indicates cloud-free pixels, and black indicates
cloudy pixels.

Manual examination of the MOD35 cloud mask revealed some unexpected

behaviour over the sea ice zone during night-time/wintertime (see Figure 2.7, panels

b and c): a large proportion of the areas covered by flaw leads and polynyas (i.e.,

areas of thin ice and open water) were erroneously classified as cloudy. Upon manual

examination of individual cloud mask tests, it became apparent that the MOD35
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high cloud test (3.7 - 12 µm) was the main contributor to the false cloud detection

over flaw leads and polynyas.
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Figure 2.7: Erroneous masking of flaw leads and polynyas. a) The original MODIS
channel 31 scene (acquired on DOY 161 (June 10) in 2005, at 00:00 UT). b) The
result of MOD35 cloud masking. Pixels not classed as “confident clear” or “probably
clear” were masked. c) Cloud masking results from the high cloud test (3.7 - 12
µm). White indicates cloud-free pixels, black indicates cloudy pixels. It can clearly
be seen that this channel is a major contributor to the false cloud detection in flaw
leads.

Detailed investigation of the processing path for the particular MODIS gran-

ule shown in Figure 2.7 showed that the surface conditions were derived from the

relatively low-resolution (∼25 km) SSM/I passive microwave data. Knowledge of

the surface conditions (i.e., sea-ice concentration) is a key factor for producing an

accurate cloud mask (Ackerman et al., 2006). The spatial resolution of the SSM/I

ice concentration product is insufficiently fine to resolve the flaw leads and polynyas

in the scene. As a result, the high cloud test was applied by the MOD35 cloud mask

processing algorithm over the flaw leads and polynyas, despite not being designed

for regions of open water/thin ice. The high cloud test involves calculation of the

brightness temperature from the infrared radiance in the 3.7 and 12 µm channels

(MODIS channels 20 and 32). The Brightness Temperature Difference (BTD) is

then calculated, to generate an image clearly showing cloud. A threshold is then

applied, to produce the high cloud mask. In these regions, the BTD was well over

the threshold of 4.5 K used to define cloud-free regions (Ackerman et al., 2006) (see
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Figure 2.8). This problem is essentially unavoidable, and is a consequence of the

spatial resolution of passive microwave sea-ice products always being lower than

the MODIS data. The problem was only observed with night-time MODIS scenes

(including winter scenes). It is also worth noting that accurate cloud detection and

ice surface temperature retrieval over polynyas and flaw leads is difficult due to the

frost smoke/fog often associated with these regions (Qu et al., 2006). This is an

additional source of uncertainty which is difficult to quantify. Negative effects of

this test were not observed during “summertime”, i.e., daylight MODIS granules.
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Figure 2.8: A BTD image of the channel 20 - 32 difference (3.7 - 12 µm), acquired
on June 10, 2005, at 0000 UT. A small amount of detector striping is visible. Note
that the difference over flaw leads and polynyas is much greater than the 4.5 K cloud
threshold in this example, resulting in a false positive cloud detection.

In order to overcome the wintertime problem of erroneous flaw lead masking

in the MOD35 cloud mask, a modified cloud mask was developed. Due to the

narrow width of flaw leads (typically narrower than 5 km), spatial smoothing with

a convolution kernel followed by thresholding of the cloud mask was found to be

effective at correctly reclassifying these pixels as cloud-free in most cases. This

technique forms the basis of the modified cloud mask. Figure 2.9 demonstrates the

problem, and shows the results after spatial filtering. A constant-weight convolution

kernel was used to perform the spatial filtering. Effective results (see Figure 2.9d, e
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and f) were achieved using a 3×3 convolution kernel with a constant weight of 1/9,

and a 5×5 convolution kernel with a constant weight of 1/25, thus transforming the

cloud mask from a binary map (containing only values of 1, corresponding to clear,

and 0, corresponding to cloudy) into a greyscale image (containing values between

0 and 1 inclusive). Following convolution, the mask was thresholded to produce a

new cloud mask, with a lower threshold producing a new cloud mask with fewer

cloudy pixels. After experimentation, a threshold value of 0.25 was found to work

well, and is used here.

A spatial averaging process such as this has the potential to inadvertently

reclassify “confident clear” or “probably clear” pixels as “cloudy” once thresholding

has been performed. For this reason, all pixels originally classified as “confident

clear” or “probably clear” were restored to their original value after smoothing and

thresholding.

This inaccurate masking of flaw leads was notably absent during daytime,

where visible and near-infrared channel tests can be added to the MOD35 cloud

mask algorithm to increase its accuracy (Ackerman et al., 2006). Thus, the modified

cloud mask was only used for night-time granules. This spatial filtering had little

detrimental effect on real cloud edges (see Figure 2.10), i.e., little or no previously

masked cloud was unmasked by this process.

MODIS granules were cloud-masked using the modified cloud mask product

during the “winter” (DOY 100 - 280), and the MOD35 cloud mask (Ackerman et al.,

2006) during the “summer” (DOY 280 - 100). For each pixel in the level 1B granule,

a mask value of “0” was assigned if the cloud mask had been calculated for that

pixel and that pixel had not been classified as “confident clear” (confidence greater

than 0.99) or “probably clear” (confidence greater than 0.95). “Clear” pixels were

assigned a value of “1”.
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Figure 2.9: A demonstration of the procedure used to solve the flaw lead masking
problem using spatial filtering of the cloud mask. a) The original MODIS channel
31 scene of the Mertz Glacier region (acquired on DOY 161 (June 10) in 2005, at
0000 UT). b) MODIS image after MOD35 cloud masking: only pixels classified
as “confident clear” are unmasked. A small amount of striping is visible in the
cloud mask. c) MODIS image after MOD35 cloud masking: only pixels classified as
“confident clear” or “probably clear” are unmasked. d) Same cloud mask as image
c, but the mask was convolved by a 3×3 smoothing filter. Following convolution,
the smoothed cloud mask was thresholded at the midway point between a masked
and an unmasked pixel (a threshold of 0.5). e) Same as image d, but using a 5×5
smoothing filter instead. f) Same as image e, but with a more relaxed threshold of
0.25. This convolution forms the modified cloud mask.
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Figure 2.10: A demonstration of the effects of the modified cloud mask on a genuine
cloud. a) The original MODIS channel 31 scene (acquired on DOY 161 (June 10) in
2005, at 0000 UT, centred at ∼60◦ S, 140◦ E). b) The result of cloud masking, using
the MOD35 mask. Pixels not classed as “confident clear” or “probably clear” were
masked. c) The result of masking using the modified cloud mask. A 5×5 convolution
kernel was used (with all weights set to 1/25), thresholded at 0.25. Note the general
lack of cloud at the edge of the filtered mask.

Despite the presence of a spectral cloud shadow contamination test in the

MOD35 cloud mask product for identifying pixels affected by cloud shadow, the test

is only applied over non-snow/ice covered land, due to the variable reflectance and

high Solar Zenith Angles (SZAs) at the poles (Ackerman et al., 2006). Geometric

calculation of cloud shadows is possible, but computationally expensive. Avoiding

the problem of being unable to accurately retrieve cloud top and base heights from

MODIS data alone, Luo et al. (2007) assumed a vertical cloud extent of 0.5 - 10

km for cloudy pixels - almost always an overestimation. Cloud shadows were then

geometrically calculated using satellite and solar ephemeris data. Pixels now clas-

sified as “shadow-contaminated” were then spectrally compared in order to restore

obviously shadow-free pixels to their correct, shadow-free status.

While removing cloud shadow effects is important when radiometrically-

accurate data are required, e.g., for a time series of albedo distribution (Stroeve and

Nolin, 2002), the negative effects are less important for determining fast-ice extent.

Thus, cloud shadows remain unmasked in this project (and remain a minor source

of error in subsequent calculations of fast-ice area). Shadow effects are obvious in



2.3. IMAGE ENHANCEMENT AND DATA PREPARATION 44

component images (see Figure 2.11b), but are unlikely to significantly affect the

generation of composite images due to the dynamic nature of cloud. At lower

latitudes, the inclusion of the spectral cloud shadow test within the MOD35 cloud

mask test suite should only serve to enhance the accuracy of the resulting cloud-free

image, and shadow-contaminated pixels should be masked if possible.

Figure 2.11: The effect of cloud shadow on a shortwave MODIS image, centred
near 67◦ S, 127◦ E. a) An original MODIS channel 1 scene (acquired on DOY 340
(December 6) in 2005, at 0605 UT). b) The result of MOD35 cloud masking. Pixels
not classed as “confident clear” or “probably clear” were masked. Note the cloud
shadow remains unmasked.

2.3.3 Swath Trimming

One consequence of MODIS having a constant-rotation scan mirror with

constant focal length optics is a deterioration of pixel resolution toward the edge of

the swath. That is to say, the ground area covered by one pixel’s Field Of View

(FOV) becomes larger toward the edge of the swath. The pixel size factor is derived

below (with reference to Figure 2.12).

Using the law of sines,

Sinθl

R
=

Sin(θg + 90)

R + h
(2.1)



2.3. IMAGE ENHANCEMENT AND DATA PREPARATION 45

where θl is the look angle in the cross-track direction, θg is the angle between the

tangent to the Earth and the satellite, R is the polar radius of the Earth (here set to

6,357 km, after NIMA (2000)), and h is the height of the satellite above the Earth

(here set to 705 km, after Parkinson (2003)). All angles are in degrees. It follows

that:

Sin(θg + 90) =
R + h

R
Sinθl (2.2)

θg = 180 − Arcsin

(

R + h

R
Sinθl

)

− 90 (2.3)

By virtue of the fact that the interior angles of a triangle add up to 180 degrees,

θe = 180 − θl − (θg + 90) = 90 − θl − θg (2.4)

Again, using the law of sines, and for a given MODIS pixel,

Sinθe

d
=

Sinθl

R
(2.5)

where d is the distance between the satellite and the observation point on the ground.

It follows that:

d = R
Sinθe

Sinθl

(2.6)

Now, consider the angle subtended by one pixel at nadir. Let this angle be θp. The

size of the pixel projected onto the ground scales linearly with the distance from

the sensor to the ground. Thus, the along-track resolution scaling factor (fa) as a

function of cross-track look angle, θl, is:

fa =
d

h
(2.7)

=
R

h

Sinθe

Sinθl

(2.8)

=
R

h

Sin(90 − θl − θg)

Sinθl

(2.9)

where θg is given in equation 2.3.
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Let x = 180 − Arcsin(R+h
R

Sinθl), then

fa =
R

h

Sin(180 − θl − x)

Sinθl

(2.10)

Similarly, the cross-track resolution scaling factor (fc) as a function of cross-track

look angle, θl, is:

fc =
d

h

1

Sinθg

(2.11)

=
R

h

Sinθe

Sinθl

1

Sin(x − 90)
(2.12)

=
R

h

Sin(90 − θl − θg)

Sinθl

1

Sin(x − 90)
(2.13)

=
R

h

Sin(90 − θl − (x − 90))

Sinθl × Sin(x − 90)
(2.14)

=
R

h

Sin(180 − θl − x)

Sinθl × Sin(x − 90)
(2.15)

Using equation 2.10, this reduces to:

fc =
fa

Sin(x − 90)
(2.16)

To determine the dimensions of a pixel at the swath edge, we substitute

θl = 55 degrees, the maximum MODIS cross-track look angle, into Equation 2.10,

and then substitute the resulting value into Equation 2.16, to obtain fa = 2.01 and

fc = 4.83. Thus, for a pixel of dimensions 250 m × 250 m at nadir, the dimensions

increase to 503 m × 1208 m at the swath edge, an increase in area by a factor of

9.72. The same factors apply to the 1 km nadir resolution images. The resolution

decrease factors fa and fc, and their product, are plotted in Figure 2.13. It can

be seen from the solid line in Figure 2.13 that the effective MODIS pixel resolution

decreases by a factor of ∼2 at a cross-track look angle of ±35◦. In the interest of

retaining only high resolution data for image analysis, this angle of ±35◦ was chosen

as the cutoff angle for swath trimming, resulting in a resolution range of 1-2 km for
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Figure 2.12: Diagram of angles used to calculate MODIS pixel size given the cross
track look angle, θl (see Section 2.3.3 for full derivation). Other important angles
are θg, the acute angle between the tangent to the Earth and the satellite; θe, the
angle subtended by the MODIS satellite and the pixel of interest on the ground,
from the centre of the Earth; and θp, the angle subtended by one pixel at nadir from
the satellite.
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1 km granules, and 250-500 m for 250 m granules. As a consequence, swath width

was reduced from the normal value of 2,330 km to 1,017 km.

Figure 2.13: A plot of the MODIS cross-track and along-track resolution decrease
factors, and their product, as a function of cross-track look angle. A similar plot is
shown in the MODIS Level 1A Earth Location Algorithm Theoretical Basis Docu-
ment (Nishihama et al., 1997).

2.3.4 Image Georegistration and Bowtie Correction

Following cloud masking and swath trimming, the MODIS images were re-

projected to a common grid using the ms2gt (MODIS Swath-To-Grid Toolbox) soft-

ware (Haran et al., 2002). All cloud masking and swath trimming was performed

by editing the original HDF-EOS pixel values, thus outputting a fully compatible

HDF-EOS file which could be gridded by ms2gt. Images of Solar Zenith Angle (SZA)

were also generated for visible images, which were later used for SZA correction (see

Section 2.3.5). A cylindrical, equal-area grid was chosen as the output projection,

due to the ease of calculating fast-ice areal extents over an extensive band of the
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Antarctic coastal region. In the interest of minimising file size, conversion to 8-bit

greyscale PNG (Portable Network Graphics) files was investigated, but the relative

lack of dynamic range was found to be detrimental to image quality. The output

file format was thus chosen to be unformatted 32-bit floating point, representing

reflectance for the visible images and brightness temperature for the TIR images.

Optional high resolution geolocation data from the MOD03 files were not

used to georegister component images - the sub-sampled geolocation data in the

MOD/MYD02 data set were deemed sufficient to produce accurate maps at a 1-

km output composite resolution. However, use of the higher resolution (1 km at

nadir) geolocation data may be advisable for composites made from higher resolution

MODIS imagery (250 or 500 m nadir pixel resolution).

As part of the gridding process, “bowtie” corrections were also computed.

The bowtie problem is a manifestation of the increase in pixel size at the swath

edges in a whiskbroom imager (Lubin and Massom, 2006). The ms2gt software was

found to produce accurate (i.e., artefact-free) output from the centre to the extreme

edge of the swath - particularly compared to ITT’s ENvironment for Visualising

Images (ENVI) software suite, which often included seaming artefacts at the edges

of overlapping scan segments. The bowtie correction and geolocation algorithm

employed by ms2gt also performed much faster than ENVI’s implementation. The

agreement between the location of the MOA coastline product (see Section 2.3.5) and

the coastline observed in MODIS imagery indicates that images gridded using ms2gt

were extremely accurately geolocated - an indicator of the high level of accuracy of

both ms2gt’s bowtie-correction, as well as the EOS platforms’ ephemeris data.

Following image preprocessing, all images were at this initial stage manually

examined, and unsuitable images were rejected. Most of the rejected images were

unsuitable for composite image generation due to the swath-trimming process - the
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resulting reduction in swath width produced many blank gridded images. This

process was subsequently automated, given the large volume of images processed

for this study (∼125,000 individual MODIS granules).

2.3.5 Coastline Masking and Solar Zenith Angle Correction

To aid fast-ice detection, the Antarctic continent was masked using the MOA

coastline product (Scambos et al., 2007) after image georegistration. This is a high-

resolution Antarctic coastline dataset produced from MODIS imagery mosaics, and

was found to be consistently accurate around the coast of East Antarctica (excepting

dynamic areas such as glacier tongues and ice shelves).

Simple SZA corrections (normalisations) were computed at this point for

shortwave images, by dividing the original reflectance by the cosine of the SZA,

following Lindsay and Rothrock (1994). The decision was made to perform the

SZA corrections at this point due to the relative efficiency of array operations in the

chosen development language (ITT’s Interactive Data Language (IDL), in this case).

Additionally, very high SZAs (greater than 89◦) were found to produce unrealistic

corrected reflectances in visible images, and performing SZA calculations at this

stage allowed these regions to be excluded. The simple assumption of snow as a

Lambertian reflector - and hence the implementation of only a simple inverse-cosine

SZA correction - proved sufficient to produce quality composites from many different

component images including a wide range of SZA illuminations. For radiometrically

accurate work, a more sophisticated bidirectional reflectance distribution function

can be implemented (e.g., Li et al., 2007).

In this way, all component images are cloud-masked, swath-trimmed, grid-

ded, georeferenced, bowtie-corrected, coast-masked and SZA-corrected, with an out-

put file format of 32-bit unformatted floating point. Each component image typi-
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cally contains many “useful” pixels (unmasked, cloud-free pixels falling within the

new swath edge) and “holes” (pixels which have been masked due to cloud con-

tamination, falling over the masked Antarctic continent, or falling outside the new

swath edge). The compositing process, described in the next section, generates

near-complete composite images from these component images.

2.3.6 Compositing Algorithm

After all image pre-processing (described above), composite images of the

Adélie Land coast (∼130 to 151◦ E) were generated. The compositing algorithm

was developed to average “useful” pixels from several component images on a per-

pixel basis until a full composite was generated (i.e., there were no more “holes” in

the image), or no component images remained to be assimilated into the composite.

For the purposes of this chapter, composite images were generated from component

images acquired over 10 consecutive days. However, the composite image generation

program was written to also generate composite images over dynamic (adjustable)

time periods, starting a new composite image whenever the previous composite is

full. A compositing interval of 20 days was adopted for the remainder of this thesis,

in order to reduce the negative effects of inaccurate cloud masking, and ensure

composite images were of the highest possible quality. Cloud mask shortcomings

(such as the erroneous masking of flaw leads and polynyas not correctly reclassified

using the techniques described in Section 2.3.2) can lead to persistent “holes” located

over the same area, meaning a composite image might never become complete. It is

possible to either begin a new composite either when the current composite becomes

nearly “full” (when the percentage of “holes” in the composite image falls below a

preset value, say 95%), or after a predefined time period has passed. Examples

of the composite images generated over a fixed time period are presented in this
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chapter.

Images from both the Terra and Aqua MODIS sensors can be composited

together to increase the temporal coverage for a given point on the surface, and thus

reduce the time span required to generate a full composite image. Both composite

images presented in Section 2.4 contain component images from both platforms.

The performance of channels 1 and 31 in both Aqua and Terra MODIS is excellent

(Barnes et al., 2003).

2.4 Compositing Results

Two composite images are presented here, produced from MODIS channels 1

(0.659 µm) and 31 (11.030 µm). Both are of the same region near the Mertz Glacier

Tongue, East Antarctica. The TIR image (Figure 2.14) was generated from 17 win-

tertime MODIS images acquired between 1 June, 2005 and 10 June, 2005. The

visible image (Figure 2.15) was generated from 27 summertime MODIS images ac-

quired between 1 December, 2005 and 10 December, 2005. Electronic copies of these

composite images are available from http://seaice.acecrc.org.au/modis/pubimages/.

Both nearest-neighbour and bilinear interpolation techniques were examined

during gridding resampling, to determine which produced higher quality composite

imagery. For visible composites, bilinear interpolation produced dark bands in the

composite image at the edges of component images (not shown). This was a con-

sequence of choosing zero reflectance/brightness temperature to represent masked

cloud: bilinear resampling produces intermediate values along the edge of the bound-

ary. Nearest-neighbour resampling was found to correct this problem. No dark

bands were visible using either resampling method for TIR composites.

Close manual examination reveals that no cloud is visible in either image
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(although sub-pixel scale cloud may be present, this will not affect the fast-ice extent

retrieval). Due to its relatively static nature, the fast ice edge is well defined over

these 10 day periods, whereas the moving pack ice becomes blurred, as expected

(labelled e on Figures 2.14 and 2.15). The sharply-defined nature of the fast-ice

edge is an indication of the accuracy of both the MODIS satellites’ ephemeris data

and ms2gt’s geolocation and bowtie-correction algorithms. No bowtie-correction

edge artefacts are present. Additionally, the resolution of the composite image is

maintained to a satisfactory level, i.e., 2 km/pixel, with the aid of swath trimming

at ±35◦.

Other notable features in the example images (determined by manual exam-

ination) include:

• an “island” of fast ice, labelled f on Figure 2.14. This island appears to be

held fast by grounded icebergs (which are still visible in the visible composite

image during the summertime) (see also Massom et al. (2001b, 2009));

• a vast tabular iceberg, rotating over the 10-day summer period (labelled f on

Figure 2.15);

• a seasonally-recurring fast-ice “buttress ”(labelled c in Figure 2.14) (see Mas-

som et al. (2009)); and

• thick fast ice to the immediate east of the Mertz Glacier Tongue. This is the

focus of a study on the possible role of thick fast ice in stabilising the glacier

tongue, by Massom et al. (2010a).

The compositing technique holds great promise for discriminating between

pack and fast ice throughout the year, and is the basis of this study. However, some

difficulties are encountered during winter periods in places where the boundary
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between fast ice and pack ice is not clear cut. An example of this occurs to the

west of the Mertz Glacier Polynya (Massom et al., 2001b), where newly-formed sea

ice is advected westward in the Antarctic Coastal Current towards a pre-existing

fast-ice feature (between c and f in Figure 2.14). This advection of pack ice leaves

no open water interface between the pack and the fast ice, making it difficult to

unambiguously delineate the fast-ice edge. A suggested solution is to use passive

microwave data to determine where the sea-ice concentration reaches 100% as a

proxy for fast ice extent, albeit at a lower spatial resolution. The best available

imagery for this purpose is the 6.25 km resolution Advanced Microwave Scanning

Radiometer - EOS (AMSR-E) sea-ice concentration product, which is available as

a daily composite image. This technique is developed in Chapter 3.

2.5 Summary and Conclusions

This chapter describes an algorithm and techniques that have been developed

for compositing MODIS satellite imagery, in order to remove cloud cover over polar

regions. The algorithm makes use of the MOD/MYD35 cloud presence flags to

mask cloudy pixels before images are composited. Ten-day compositing periods were

found to be sufficient to produce almost-complete composites during both the winter

(using TIR wavelength data) and summer (using visible wavelength data), though

longer compositing periods may be required during particularly cloudy intervals (20-

day intervals are used for the remainder of this thesis). Composite images created

during autumn and spring (not shown) were also of sufficient quality to discriminate

between pack and fast ice. The techniques described here can produce composite

images of any MODIS channel, can combine component images from both MODIS

platforms (Aqua and Terra), can be used at any latitude, and can produce output

maps in many projections whilst maintaining the highest possible resolution.
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Figure 2.14: 1 km resolution TIR (channel 31) composite of the Mertz Glacier region,
generated from 17 wintertime MODIS images. a) The Antarctic continent (masked
to aid fast ice detection). b) The Mertz Glacier Tongue (also masked). Note the
thick (dark in this TIR image) fast ice immediately to the east of the Tongue. c)
Seasonally recurring fast ice buttress. Note the small “hole” in the composite image
at the north-western point of the buttress. This “hole” exists due to the erroneous
masking of the persistent flaw lead to the north. d) Extensive fast ice held in place
by grounded icebergs. e) Pack ice extends to the northern border of this wintertime
image. f) “Island” of fast ice, held in place by grounded bergs.
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Figure 2.15: 1 km resolution visible (channel 1) composite of the Mertz Glacier
region, generated from 27 summertime MODIS images. a) The Antarctic continent
(masked to aid fast ice detection). b) The Mertz Glacier Tongue (also masked). c)
Seasonally recurring fast ice buttress. d) Extensive summertime fast ice to the east
of the Tongue. e) Summertime pack ice (much less extensive than the wintertime
pack). f) A massive tabular iceberg which has rotated during the 10-day period
covered by the 27 MODIS images comprising the composite.
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The techniques presented here were developed to aid fast-ice detection using

visible/TIR satellite imagery. Importantly, this technique works equally well at all

times of the year. Thus, visible (TIR) composites can be generated during the

summer (winter) months and parts of spring and autumn, i.e., DOY 280 to 100

(DOY 100 to 280). This avoids the problem of having a low temperature contrast

between ocean and sea ice during summer, and hence low contrast in a TIR image.

Conversely, TIR composite images can be successfully used in the wintertime where

few visible images are captured, but the larger temperature difference between sea

ice and ocean gives sufficiently high contrast in the TIR images to discriminate

between open ocean and sea ice.

Due to the relatively static nature of fast ice compared to pack ice, and

the accurate geolocation of MODIS data, the compositing process preserves sharp

edges at the shear zone between pack and fast ice over a multi-day period, enabling

fast-ice classification. This technique forms the basis of a time series of maps of

East Antarctic fast-ice extent derived from composite MODIS imagery, detailed in

Chapter 3 of this thesis.

Although these techniques were developed to aid in fast ice detection, al-

ternative potential applications exist, such as cloud-free NDVI, SST and land/ice

surface temperature composites, as well as cloud-free spectral land usage retrieval.



Chapter 3

Generation of High-Resolution East

Antarctic Landfast Sea-Ice Maps from

Cloud-Free MODIS Satellite Composite

Imagery

This chapter is an edited version of a paper which has been published as:

Fraser, A. D., R. A. Massom, and K. J. Michael, Generation of high-resolution East

Antarctic landfast sea-ice maps from cloud-free MODIS satellite composite imagery,

Remote Sensing of Environment, 114 (12), 2888-2896, doi:10.1016/j.rse.2010.07.006,

2010.

A reprint of this publication is included in Appendix B.

3.1 Abstract

A method to generate high spatio-temporal resolution maps of landfast sea

ice from cloud-free MODIS composite imagery is presented. Visible (from Day Of

Year (DOY) 280 to DOY 100 in the following year) and thermal infrared (DOY

100 to 280) cloud-free 20-day MODIS composite images are used as the basis for

these maps, augmented by AMSR-E sea-ice concentration composite images (when

58
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MODIS composite image quality is poor). The success of this technique is dependent

upon effective cloud removal during the compositing process (see Chapter 2). Ex-

ample wintertime maximum (∼374,000 km2) and summertime minimum (∼112,000

km2) fast-ice maps for the entire East Antarctic coast are presented. The sum-

mertime minimum map provides an indication of multi-year fast-ice extent, which

may be used to help assess changes in Antarctic sea-ice volume. Errors in fast-ice

extent to 2σ level are estimated to be ±3% when ≥90% of the fast-ice pixels in a

20-day period are classified using the MODIS composite, or ±8.8% otherwise (when

augmenting AMSR-E or the previous/next MODIS composite image is used to clas-

sify >10% of the fast ice). Imperfect composite image quality, caused by persistent

cloud, inaccurate cloud masking or a highly dynamic or unclear fast-ice edge, was

the biggest impediment to automating the fast-ice detection procedure.

3.2 Introduction

Much of the original introductory material and literature review from this

chapter (paper) has been moved to the introductory Chapter 1 to avoid repetition.

The aim of this chapter is to develop a method for retrieving maps of fast-ice

areal extent from 20-day cloud-free MODIS (MODerate resolution Imaging Spectro-

radiometer) composite images, augmented with AMSR-E 20-day composite imagery

when required. The fast-ice maps generated using these techniques form the basis

of an 8.8-year time series of East Antarctic fast-ice extent. An analysis of the vari-

ability of fast-ice extent is presented in Chapter 4, and Chapter 5 investigates the

links between fast-ice extent and atmospheric forcing on both local and hemispheric

scales.
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3.3 Methods

3.3.1 Study Area and Projection

Figure 2.1 in Chapter 2 shows the study region used in this chapter. The

longitudinal extents of the composite images were chosen to cover the entire East

Antarctic coast - from 10◦ W (near Neumayer station) to 172◦ E (Cape Adare).

Latitudinal extents are from 63.5◦ to 72◦ S, to sufficiently cover the maximum

extent of wintertime fast ice.

A cylindrical, equal-area projection was used to produce the composite im-

ages in this chapter. The latitudinal range of fast ice along the East Antarctic coast

meant that such a projection minimised pixel “wastage”. A polar stereographic pro-

jection covering the same area would include a lot of lower-latitude Southern Ocean

and higher latitude Antarctic continent, i.e., regions without fast-ice coverage.

3.3.2 Datasets

MODIS Composite Images

The main dataset used in this chapter, hereafter referred to as “the MODIS

composites” or simply “composites”, was a series of 159 contiguous cloud-free MODIS

composite images, generated from cloud-free portions of ∼125,000 individual MODIS

granules, covering the time interval 2000,061 to 2008,365 (in “year,day of year” for-

mat). Each MODIS composite represents a 20-day cloud-free mean image of the

surface (infrared during winter, visible during summer), rather than a daily snap-

shot. This length interval was chosen for several reasons. Firstly, 20 days has been

used as a fast-ice criterion in the Arctic (Mahoney et al., 2005), being long enough

to exclude transient fast-ice growth events associated with the passage of synop-

tic scale weather systems and short enough to resolve genuine fast-ice growth and
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breakout events. Additionally, MODIS composite images generated from 20 days’

imagery are generally of a high quality, with few gaps due to persistent cloud. To fa-

cilitate interannual comparisons, the compositing period was set at exactly 20 days

for the first 17 composites in each year, with the final composite image covering the

remaining days in the year (25 for non-leap years, 26 for leap years).

The techniques presented have been developed in order to classify fast ice

by identifying ice which is contiguous with the coast, rather than ice which is not

moving. The use of mean-value compositing was preferable to maximum/minimum

value compositing in this case due to the difficulties of the latter in polar regions,

arising from the similarities in brightness temperature and albedo between snow and

polar cloud. Mean-value compositing is tolerant, to some degree, of imperfect cloud

masking. Furthermore, due to the motion of the pack ice over the 20 day compositing

period, the pack ice becomes blurred with mean value compositing, while fast-ice

features typically remain more clearly defined (unless growth or breakout occurs),

whereas this would not be the case for minimum/maximum value compositing. This

enhances the utility of this technique for fast-ice detection. The details of the

compositing procedure are given in Chapter 2, Section 2.3 (and also presented in

Fraser et al. (2009)).

Only 1 km resolution MODIS images were used in this chapter, despite the

availability of higher-resolution 250 m imagery in some visible channels. The reason

for this was twofold: i) in winter, few visible images are acquired at high latitudes,

and no 250 m resolution infrared channels exist on MODIS; and ii) the CPU time

required to produce these composite images at 250 m resolution is prohibitive (a

factor of 16 higher in both CPU time and disk space requirements). Because the

MODIS 1 km channel resolution is only 1 km at nadir (with pixels at the edges of

the swath growing to ≃10 km2 due to the combined effects of a curved Earth and



3.3. METHODS 62

a longer path to the swath edges, see Section 2.3.3), the output resolution of the

composite images was set at 2 km.

Both the Terra and Aqua satellites provide one MODIS granule every 5 min-

utes (288 per day). This equates to ∼16,000 granules per platform per year over the

region of interest i.e., over 32,000/year from both platforms, or a total of ∼250,000

granules for the entire time series (2000-2008). The average file size for a MODIS

L1B 1 km-resolution granule is ≃100 MB (higher in summer when visible images

are captured, and less during winter). Thus, the total size of the MODIS archive

required to produce the 159 composites is on the order of 25 TB. This presents

a challenge for both storage and processing of the data. One practical solution

(adopted here) is to pre-select only the least cloudy MODIS granules for inclusion

into the composites. This solution is possible because the MOD35 cloud mask prod-

uct is a much smaller download than the equivalent L1B granule - averaging about

3MB. Thus, for this project, all ∼250,000 MOD35 granules were downloaded, and

the cloud-content of each granule evaluated. These data were acquired from the

Level 1 and Atmosphere Archive and Distribution Center (LAADS), available at

http://ladsweb.nascom.nasa.gov.

To illustrate the cloud content of MODIS scenes along the East Antarctic

coast, Figure 3.1 shows a histogram of cloud-free percentage, including all MODIS

swaths covering the study region for the year 2007. The strong peak at a modal

value of ≃7% cloud-free pixels confirms this region as one of the cloudiest on Earth

(Spinhirne et al., 2004, 2005). A cutoff at 30% cloud-free pixels roughly bisects the

histogram. After some experimentation, it was determined that using only those

granules with 30% or more pixels classified as cloud-free produced composite images

similar in quality to composite images produced using all granules, but requiring

half the storage space and CPU processing time.
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Figure 3.1: A histogram of “cloud-free percentage” (the percentage of pixels within
a granule classified by the MOD35 product as “confident clear” or “probably clear”)
for 2007. This histogram is representative of other years within the study period. In
order to reduce storage and CPU requirements, only granules with ≥30% cloud-free
pixels were used in the compositing process. Resulting composites were similar in
quality to those which used all available granules.
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AMSR-E Sea-Ice Concentration Composite Images

Coincident sea-ice concentration data from the AMSR-E (Advanced Mi-

crowave Scanning Radiometer - EOS) instrument onboard the NASA Aqua platform

were occasionally used to supplement the MODIS composites during times when the

MODIS composite image (and the previous/next MODIS composite images) were of

poor quality. In fact, 30 out of 159 fast-ice maps (or ∼19%) required augmentation

using AMSR-E imagery in this way. Daily AMSR-E ARTIST Sea Ice (ASI) 6.25 km

resolution daily sea-ice concentration data were obtained from http://www.iup.uni-

bremen.de:8084/amsr/ for this purpose (Spreen et al., 2008). AMSR-E composite

images were then generated for the same time intervals as the MODIS composite

images, and using the same projection.

Intercomparisons between MODIS and AMSR-E composite images show

generally good agreement in the location of the fast-ice edge (see Figure 3.2), al-

though the use of the lower resolution AMSR-E data leads to ambiguities in fast-ice

detection at times. Additionally, the AMSR-E composite images erroneously show

lower sea-ice concentration at the locations of large tabular icebergs and ice tongues

(a phenomenon which arises due to the intrinsically different radiometric properties

of sea ice and icebergs, noted by Kern et al. (2007)). This proved useful in the

exclusion of large icebergs from the fast-ice maps in highly dynamic locations (e.g.,

east of the Mertz Glacier Tongue), though identification of the location of sub-pixel

scale icebergs remains a problem.

Fusion of AMSR-E and MODIS data has been reported several times in the

literature, e.g., using AMSR-E data to reduce the effects of cloud obscuration in

the MODIS snow cover product at mid-latitudes (Gao et al., 2010), and using a

combination of MODIS and AMSR-E products to retrieve Ice Water Path in clouds
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over ocean (Huang et al., 2006). This is, however, the first effort to combine the

two different satellite sensor datasets for fast-ice detection.

Despite the reasonable agreement between AMSR-E and MODIS composites

on the location of the fast-ice edge noted above, the ASI algorithm appears to some-

times underestimate the concentration of fast ice. Examples of this “behaviour” are

shown in Figure 3.2 - particularly the area surrounding the large grounded iceberg

D15. In this region, the ASI-reported fast-ice concentration is as low as ∼55%. The

89-GHz channel used by the ASI algorithm to obtain high-resolution sea-ice concen-

tration also has the potential to be adversely affected by cloud and water vapour

(Ulaby et al., 1981). The ASI algorithm (Spreen et al., 2008) uses lower-frequency

AMSR-E channels as weather filters to remove spurious sea-ice concentration in

open water areas, where the contaminating effect of weather systems is largest. The

algorithm is expected to be at its most accurate for retrieving high sea-ice concen-

trations, e.g., in the fast-ice zone (Spreen et al., 2008).

3.3.3 Generation of Fast-Ice Maps

Automation of a fast-ice detection and classification algorithm is technically

difficult, particularly when using only visible/infrared imagery where image qual-

ity is sensitive to cloud masking accuracy. Automated fast-ice classification from a

nadir-viewing orbital imaging instrument has been achieved in the past, e.g., Ma-

honey et al. (2004); Lythe et al. (1999), but only when using microwave imagery

(high-resolution SAR imagery, in particular), to essentially see through the cloud to

the surface. Even so, these automated techniques have only worked during certain

times of the year (Mahoney et al., 2004) or in combination with imagery at other

wavelengths (Lythe et al., 1999).

Initially in this study, it was thought that the MODIS composite images
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Figure 3.2: a) Spatial subset of a MODIS 20-day composite image covering the
time period from DOY 281 to 300, 2008 (7 to 26 October), from ∼65 to 100◦ E. b)
AMSR-E ASI sea-ice concentration composite image covering the same time period.
Note the agreement between both composite images on the location of the fast-ice
edge. The AMSR-E composite image also gives some indication of the location of
icebergs and ice tongues, e.g., iceberg D15 at 82◦ E.
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could be analysed using an automated edge-detection algorithm in order to find the

fast-ice edge. Consecutive MODIS composites would be analysed together in order

to see which edges persisted between composites, forming a likely candidate for

the fast-ice edge (maximum areal extent). Though this hypothetical “persistence of

edges” style approach had the inherent disadvantage of extending the temporal scale

(two or more consecutive composites would be needed to determine the location of

the fast-ice edge), the advantages of automating such a process would mean that

compositing periods could be kept shorter (e.g., ∼10 days), thus maintaining a

temporal resolution of ∼20 days.

In practice, the MODIS composite image quality was at times found to be

imperfect, even when using a compositing period as long as 20 days (see Figure 3.3b

for an example). These lower-quality regions were encountered under one or more

of the following conditions:

• The cloud mask performed poorly and allowed cloudy pixels into the composite

image, thus partly obscuring the surface (this problem was most frequently

encountered for the wintertime (TIR) composites, when shortwave tests could

not be used by the cloud masking algorithm);

• Cloud was persistent in a certain region over the 20-day period, giving few/no

images of the surface (this was particularly the case off the coast of Enderby

Land around 40◦ - 50◦ E, where a persistent high pressure ridge often pre-

vents cyclonic systems from passing to the east (Carleton, 1979; Kuga, 1962));

and/or

• The region is highly dynamic, with fast-ice growth/breakout “blurring” the

fast-ice edge (a problem frequently encountered during the late spring/early

summer fast-ice minimum, when rates of change of the fast-ice edge are high-
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est).

Because of these imperfections in the MODIS composites, each image was

classified manually. A discussion of the biases and errors introduced by this process

is presented in Section 3.3.4. The majority of pixels in each fast-ice map were

classified from a single MODIS composite image corresponding to the time interval

of interest. These pixels are henceforth referred to as “confident fast ice”, or simply

“confident” pixels. For regions/time intervals of lower image quality, two auxiliary

datasets were used to augment the “confident” composite:

• AMSR-E ASI sea-ice composite images covering the same 20-day period as

the “confident” composite (hereafter referred to as “AMSR-E”); and

• The previous and/or next MODIS 20-day composite was used (hereafter re-

ferred to as “prev/next” - note that previous/next AMSR-E composite images

were never used in the analysis).

Each of these auxiliary datasets has associated strengths and weaknesses.

Importantly, the AMSR-E dataset is available at a highest resolution of 6.25 km/pixel,

significantly lower than the 1 km (nadir) MODIS resolution. Additionally, the lower

resolution of the AMSR-E imagery exacerbates the problem encountered when pack

ice is advected against a fast-ice feature, leaving no flaw lead or shear zone be-

tween the pack and fast ice and making it difficult to discriminate fast ice from pack

(Fraser et al., 2009). Prev/next imagery is at the native projection resolution, but

its use degrades the temporal scale of the fast-ice classification by 20 or 40 days.

Often, when a low-quality section was encountered in a particular MODIS compos-

ite, both the previous and next composites showed the fast-ice edge in the same

location, thereby providing a good indication of the likely position of the fast-ice

edge during the intervening time. At other times of poor composite image quality,
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fast-ice growth or breakout was identified from analysis of the prev/next composites,

and the AMSR-E composite could give more information about the location of the

fast-ice edge at the time of interest.

Figure 3.3 shows a portion of a fast-ice map (from DOY 121 to 140, 2006

(May 1 to 20)) which required the current MODIS composite, the associated AMSR-

E ASI sea-ice concentration composite, and the next MODIS composite to classify

the image. Much of the fast-ice classification in scene a) came from the associated

MODIS composite image b), but the fast-ice edge is not well defined in this com-

posite image at ∼111◦ and ∼116◦ E, either due to persistent cloud, inaccurate cloud

masking, or a highly dynamic fast-ice edge. For this reason, c), which is the associ-

ated AMSR-E composite image, was used to classify the fast-ice feature at ∼111◦ E.

The “next” MODIS composite, d), was used for fast-ice classification at ∼116◦ E,

because both the MODIS and AMSR-E composites for DOY 121-140 showed that

no flaw lead was present between the pack ice and fast ice.

3.3.4 Bias Reduction and Error Analysis

The next step involved identification and reduction of any biases introduced

by manual processing of the composites into fast-ice maps. Primarily, systematic

biases were removed by processing composites in a randomised order. A second pass

of each image (also randomised) was conducted to verify (and, if required, adjust)

the fast-ice map. Additionally, 14 randomly-selected composites were completely

and independently re-processed, and the differences in area compared (see Figure

3.4).

Two error regimes were identified from Figure 3.4: regime 1 (to the right of

the dashed line) - composites in which ≥90% of the pixels classified as “fast ice”

were classified from a single MODIS composite (i.e., pixels which were “confidently”
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Figure 3.3: An example illustration of the process of converting a MODIS composite
into a fast-ice map. a) The fast-ice map for the time interval DOY 2006,121-140,
as generated from images b), c) and d). The continent is shown in white, and the
Southern Ocean/pack ice/large tabular icebergs are shown in light blue. Fast ice is
shown in dark blue (classified from a single MODIS composite), yellow (classified
from a single AMSR-E composite image, and red (classified from the next MODIS
20-day composite image). b) The MODIS brightness temperature composite cov-
ering the time interval 2006,121-140. c) An AMSR-E ASI sea-ice concentration
image of the same region over the same time interval. d) The “next” MODIS image
(covering the time interval 2006,141-160).
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Figure 3.4: A graph showing the percentage difference between independent es-
timates of area of 16 randomly-chosen composites. The abscissa represents the
fraction of each composite image’s fast-ice map which was determined from a single
MODIS composite image (“confident”). For those points in regime 1 (regime 2), the
mean difference between fast-ice area measurements was found to be 0.79% (2.13%),
and one standard deviation was 1.51% (4.38%). These values are represented here
as error bars in their respective regimes.

classified); and regime 2 (to the left of the dashed line) - in which <90% of pixels

were classified from a single MODIS composite. Regime 1 has a much lower sample

estimation of the population standard deviation (1.49%) compared with regime 2

(4.38%). This finding was expected, considering that “fraction of pixels classified as

confident” is essentially a proxy for “composite image quality”, and higher quality

composite images are expected to produce more consistent fast-ice maps. Two

standard deviations are used as the error bars for the fast-ice time series (i.e., ± ≃3%

for regime 1 or ± ≃9% for regime 2) in Chapter 4 (Fraser et al., 2010b).
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3.3.5 Iceberg Masking

Icebergs much larger in area than the MODIS composite pixel size (4 km2)

were manually detected in each composite image, and removed from fast-ice classi-

fication. Identification and tracking/removal of these icebergs in fast-ice zones was

aided by the representation of icebergs as lower concentration (i.e., <25%) sea ice

in the AMSR-E ASI sea-ice concentration algorithm (Kern et al. (2007); see also

Figure 3.2 in this chapter).

Some areas of fast ice around the East Antarctic coast contain sub-pixel

scale (i.e., less than 4 km2) icebergs. Thus, for these regions (often adjacent to

calving glaciers), the actual area of fast ice will be less than the reported area, by

up to an estimated factor of ≃15% in some regions. For example, Figure 3.5 shows

a SAR enlargement of the recurring region of fast ice located at ∼121◦30’ E (Jezek ,

2002). Accurate removal, by masking, of icebergs is not possible in such cases. Large

icebergs have, however, been masked manually.

3.4 Results and Discussion

Figure 3.6 shows, for the first time, examples of fast-ice maximum (2005,241-

260) and minimum (2006,061-080) extent maps along the entire East Antarctic

coast. These maps confirm that fast-ice typically forms narrow bands (up to ∼200

km wide) along the coast. They also show that much of the coast becomes fast-

ice free during the summertime minimum, particularly to the west of 80◦ E where

the only significant fast-ice feature is found in Lützow-Holm Bay, and to the east

of 155◦ E. Between 80◦ and 155◦ E, several coastal promontories, iceberg tongues,

glacier tongues and fields of grounded icebergs act to couple with and stabilise

fast-ice features on their eastern sides. This allows these fast-ice features to remain
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Figure 3.5: A Radarsat-1 C-band SAR image (inset) acquired in 1997, enlarg-
ing part of a MODIS composite image (covering the dates 2001,301-320) of the
East Antarctic coast (Jezek , 2002). The Radarsat image was acquired from
http://nsidc.org/data/docs/daac/nsidc0103 ramp mosaic.gd.html. The SAR en-
largement shows that this particular fast-ice feature is interspersed with hundreds
of sub-pixel-scale icebergs (forming the Dalton Iceberg Tongue), likely calved from
the nearby Moscow University Ice Shelf. Radarsat image c©Radarsat International,
1997.
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throughout the summertime minimum and become multi-year fast ice (see also Giles

et al. (2008)).

The fast-ice minimum map likely provides an accurate indication of the dis-

tribution of multi-year fast ice (MYFI). When combined with in situ or remotely-

sensed measurements of freeboard and snow depth, these MYFI maps could con-

tribute to estimates of sea-ice volume, an important yet largely unknown quantity

in Antarctica. This work is beyond the scope of this thesis.

Statistics for these two fast-ice maps are shown in Table 3.1. The ratio of

overall maximum to minimum area shown in these maps is ∼3.3 to 1 - much lower

than the ratio in this region of ∼10 to 1 for overall sea ice extent (including pack

ice and fast ice) (Comiso, 2010) and the overall seasonal sea-ice ratio of ∼6 to 1 for

the entire Antarctic region (Gloersen et al., 1992).

We propose that some form of physical limit exists on the maximum fast-

ice extent in this region: large-scale fast-ice distribution is inextricably linked with

grounded iceberg (both large- and small-scale) distribution, and thus the bathymetry

of the region (Massom et al., 2001b, 2009; Giles et al., 2008). Icebergs ground at

depths of up to ∼400 to 500 m in this region (Beaman and Harris, 2005; Massom

et al., 2001b). Grounded icebergs (including both large tabular grounded icebergs

and fields of smaller grounded icebergs) are thought to affect fast-ice distribution

in this region in two significant ways (Massom et al., 2001b). They intercept and

trap encroaching pack ice drifting westwards in the Antarctic Coastal Current, thus

dynamically forming fast ice. They also act as anchor points for fast-ice formation.

Evidence of these fast ice-iceberg interactions can be seen in Figures 3.5 (showing

fast-ice formation within a field of small grounded icebergs) and 3.6 (displaying the

occurrence of fast-ice features to the east of coastal promontories, iceberg tongues

and large tabular icebergs). Both interactions rely on similar, relatively shallow
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bathymetric conditions, and thus fast-ice features generally tend not to exist out-

side of these regions (though exceptions exist, and are covered in Chapter 4, Section

4.3). This forms an upper limit to fast-ice areal extent. This limit may vary sea-

sonally due to large tabular iceberg grounding location/distribution, and prevailing

ocean current/wind direction.
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Figure 3.6: Typical fast-ice a) maximum (2005, DOY 241-260) and b) minimum (2006, DOY 061-080) extent maps. The Antarctic
continent, ice shelves and floating glacier tongues are shown in white, and the southern ocean/pack ice/large tabular icebergs in light
blue. Dark blue represents fast ice determined from a single MODIS composite (“confident”), yellow represents fast ice determined
from a AMSR-E ASI composite (“AMSR-E”), and red represents fast ice determined from the previous/next MODIS composite
(“prev/next”). Areas of fast ice in the lower panel (fast-ice minimum) essentially show multi-year fast ice.

Table 3.1: Statistics relating to Figures 3.4 and 3.6.

Date Area (km2) 2σ Error (km2) Fraction pixels “confident” Error regime

Maximum 2005,241-260 374,108 11,148 0.99 1 (±3%)

Minimum 2006,061-080 111,952 3,336 0.91 1 (±3%)
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Caveats for this method of fast-ice detection can be summarised as follows:

• Using only the 20-day composite imagery, no statements can be made about

the specific date of fast-ice growth/breakout events - only that the event hap-

pened within the 20-day interval. To achieve higher temporal resolution, the

component images comprising the composite must be analysed separately.

• Regarding the treatment of pixel edge effects, if a pixel had any fast-ice con-

tent, then it was classed as fast ice. As a corollary of this, leads within the

fast ice with widths on the order of ≃1 pixel (≃2 km) were classified as fast

ice. This may have implications for end-users who are advised to consider

the MODIS composite image product as well as the fast-ice map. Also, leads

narrower than 2 km are likely not resolved by maps of this resolution.

• Due to the resolution limitations associated with passive microwave remote

sensing, the highest resolution AMSR-E ASI sea-ice concentration data are

available at 6.25 km (compared with the map projection’s resolution of 2 km).

Thus, when AMSR-E composites are used to detect fast ice, smaller flaw leads

(<∼2 km width) will not be resolved, the seaward fast-ice edge will be of a

lower resolution, and fast-ice edge effects will be more pronounced.

• Although every effort has been made to remove icebergs larger than one pixel

(4 km2) from the fast-ice maps, some may remain.

• Sub-pixel scale icebergs remain unmasked and unaccounted for in the fast-ice

area calculations. These icebergs can occupy as much as 15% of the area in

some regions, as shown in Figure 3.5.

• The MODIS Mosaic Of Antarctica product (Scambos et al., 2007) was used

to mask the Antarctic continent throughout the study period, and no adjust-
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ments were made to account for subsequent change in coastal configuration.

This will result in small errors in the location of the southern fast-ice edge, and

hence small errors in fast-ice area retrieval. Generally, the effect of a changing

coastline should have minimal influence on the location of fast-ice features

over the 8.8 year study period. However, abrupt change may be regionally

significant, e.g., the calving of the Mertz Glacier Tongue in early 2010 (Young

et al., 2010).

• The problem of discriminating pack ice from fast ice during times when the

pack ice is consistently advected against a fast-ice feature remains. However,

using the previous/next MODIS composite to aid in fast-ice classification goes

a long way toward fixing this problem. It is estimated that this problem is the

cause of a large proportion of the uncertainty associated with estimating fast-

ice extent from satellite imagery. Other techniques which detect fast ice by

observing ice motion (e.g., Mahoney et al., 2005, 2007a; Dammert et al., 1997;

Morris et al., 1999) are not susceptible to this problem, but such techniques are

not well suited to visible to TIR imagery due to cloud obscuration. Despite this

advantage of SAR over visible/TIR imagery in terms of cloud penetration, it

is not well suited to large-scale studies such as this, due to its typically narrow

swath width.

3.5 Conclusions and Future Work

This work presents a method for retrieving the first high spatio-temporal

resolution time series of fast-ice extent along the entire East Antarctic coast, as well

as some examples of fast-ice maps created using these techniques. The technique

uses 20-day MODIS composite images (visible in the summertime, thermal infrared

in the wintertime) to discriminate pack ice from fast ice. Rather than detecting
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sea-ice motion to differentiate between pack and fast ice, the technique aims to

enhance the difference between moving ice and stationary ice contiguous with the

coast (i.e., fast ice). The motion of the pack ice during the 20-day period “blurs” the

pack-ice zone, whereas fast-ice features are clearly defined in the composite imagery.

The production of these maps represents a significant improvement in our ability

to map and monitor Antarctic fast ice. Despite the technique relying on manual

classification, the 2σ error is ±3% for the majority of images, and ±9% otherwise.

It is likely that maps of the fast-ice minima show multi-year fast ice extent.

For the first time, measurements of a typical maximum (∼374,000 km2) and

minimum (∼112,000 km2) fast-ice extent for the entire East Antarctic coast have

been presented. This gives a seasonal maximum to minimum ratio of ∼3.3 to 1, a

much lower ratio than that of overall sea-ice extent in this region (∼10 to 1, Comiso

(2010)) or around Antarctica (∼6 to 1, Gloersen et al. (1992)). This lower ratio

reflects the upper limit imposed on fast-ice extent by the locations of grounded

icebergs.

A more accurate cloud mask would lead to higher-quality MODIS compos-

ite images, particularly during wintertime when accurate cloud masking is most

difficult. At the expense of creation of a regular (e.g., 20-day) product, a running

mean may also provide higher quality MODIS composite images, and potentially

a higher temporal resolution (during prolonged cloud-free periods). Gridding and

subsequent re-assessment of the cloud mask product over the East Antarctic coast

(rather than evaluating the cloud content of a MODIS granule on a granule-wide

basis) would also lead to higher quality composite images, and potentially reduce

the data volume required even further. These improvements may be introduced into

a future version of the composite image creation software.

The techniques presented here are used to map the fast-ice extent along the
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entire East Antarctic coast from March 2000 - December 2008. This work, along

with an analysis of the variability of the time series, is presented in Chapter 4.



Chapter 4

East Antarctic Landfast Sea-Ice

Distribution and Variability, 2000-2008

An abridged version of this chapter has been submitted for publication to

Journal of Climate. As with Chapter 3, much of the original introductory material

from this chapter has been moved to Chapter 1, to avoid repetition and duplication.

4.1 Abstract

This chapter presents the first continuous high spatio-temporal resolution

(2 km, 20 day) time series of landfast sea-ice extent along the East Antarctic coast

(10◦ W to 172◦ E), in this case for the period March 2000 to December 2008. The

time series was derived from consecutive 20-day cloud-free MODIS composite im-

ages. Fast-ice extent across the East Antarctic coast shows a statistically-significant

(1.43 ± 0.30% yr−1) increase (albeit based on this short time series). Regionally,

there is a strong increase in the Indian Ocean sector (20◦ E to 90◦ E, 4.07 ± 0.42%

yr−1), and a slight (but not significant) decrease in the Western Pacific Ocean sec-

tor (90◦ E to 160◦ E, -0.40 ±0.37% yr−1). An apparent shift from a negative to

a positive fast-ice extent trend is observed in the Indian Ocean sector from 2004.

This shift also coincides with a greater amount of interannual variability. No such

81
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shift in apparent trend is observed in the Western Pacific Ocean sector, where fast-

ice extents are typically higher and variability lower than the Indian Ocean sector.

Fast-ice distribution along the East Antarctic coast is closely related to bathymetry

as it affects the positions of grounded icebergs, which act to anchor the fast ice. The

limit to the maximum fast-ice areal extent imposed by the location of icebergs mod-

ulates the shape of the mean annual fast-ice extent cycle, to give a broad maximum

and an abrupt, relatively transient minimum. Ten distinct fast-ice regimes were

identified, related to regional variations in bathymetry and coastal configuration.

Fast ice is observed to form in sheltered bays, adjacent to large grounded icebergs

(particularly on the windward side), between groups of smaller grounded icebergs,

between promontories, and upwind of coastal features (e.g., glacier tongues). Fast-

ice extent was compared to passive microwave-derived time series of sea-ice extent

in the Western Pacific Ocean and Indian Ocean sectors. While sea-ice minimum

area/extent is strongly correlated with fast-ice minimum extent (R2=0.86 across

entire East Antarctic coast), maxima appear to be uncorrelated. Analysis of the

timing of fast-ice maxima and minima is also presented and compared with overall

sea-ice maxima/minima timing.

4.2 Aims, Datasets and Methods

Much of the original introductory material from this chapter has been moved

to Chapter 1. The aims of the work in this chapter are: a) to produce a continuous

8.8-year time series of fast-ice extent across the entire East Antarctic coast, and

to analyse its spatio-temporal variability in the Indian Ocean and Western Pacific

Ocean sectors; b) to detect and quantify trends in fast-ice extent in these three

regions; c) to identify possible fast-ice formation regimes across the study region, and

relate these regimes to regional variations in coastal configuration and bathymetry;
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and d) to compare the regional fast-ice time series to the overall regional pack ice

time series over the 8.8-year study period.

A series of 159 consecutive 2-km, 20-day resolution cloud-free MODIS com-

posite images, from March 2000 to December 2008, of the East Antarctic fast-ice

zone (63.5◦ to 72◦ S, 10◦ W to 172◦ E, see dashed box of Figure 2.1 in Chapter 2)

were created, using the methods outlined in Chapters 2 and 3 (Fraser et al., 2009,

2010a).

European Centre for Medium-Range Weather Forecasts (ECMWF) Interim

Reanalysis data (Berrisford et al., 2009) from 1989-2008 (Mean Sea Level Pres-

sure (MSLP), 10 m wind vectors and 2 m surface temperatures on a 1.5◦ grid)

were formed into 20-day and annual climatologies to assist in interpretation of

fast-ice variability. Moreover, 20-day sea-ice concentration composite images were

also created from the NSIDC (National Snow and Ice Data Center) combined

SMMR (Scanning Multichannel Microwave Radiometer) and SSM/I (Special Sen-

sor Microwave/Imager) dataset (Comiso, 1999), in order to compare overall sea-

ice extent/area with fast-ice extent. Note that only SSM/I data are used af-

ter 1987. This product, known as NSIDC-0079, uses the Bootstrap algorithm,

and a threshold of 15% was used to compute sea-ice area. These data are avail-

able from http://nsidc.org/data/nsidc-0079.html. Bathymetric information was ob-

tained from the Smith and Sandwell (1997) dataset (version 11.1, updated in 2008;

available at http://topex.ucsd.edu/WWW html/mar topo.html).

The evaluation of trend significance for the fast-ice extent time series closely

follows the methodology used by Cavalieri and Parkinson (2008), with the metric

of a continuous “R-value” (the ratio of the linear trend to the standard deviation)

used to indicate the significance of a particular trend. This R-value was converted

to a confidence interval by assuming a two-tailed Student’s t-distribution and using
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a lookup table with the appropriate number of Degrees Of Freedom (DOFs). More

details about this analysis are available in many introductory statistical texts (e.g.,

Anderson et al., 1981). It is important to note that the use of Null Hypothesis

Significance Testing (NHST) has been criticised because of the arbitrary nature of

significance levels, the effect of sample size on significance levels, and the difficulty of

correctly interpreting the result when rejecting or accepting the null hypothesis (e.g.,

Nicholls, 2001). These criticisms are overcome to some extent here by using and

reporting the R-value (thus providing a continuum of significance), and reiterating

that care must be taken when interpreting the results of the NHST.

Care must also be taken when considering the number of DOFs in the sta-

tistical analysis. For truly independent, repeated measurements of a value, the

number of DOFs is equal to the number of observations minus two (when fitting a

linear model). For example, this fast-ice time series consists of 159 measurements

of fast-ice extent. If these measurements were truly independent, then DOFs =

157. However, these measurements are far from independent (for example, it is

unphysical for fast-ice extent to jump from a typical maximum value to a typical

minimum value in the space of one 20-day window). Thus, the number of DOFs

must be reduced to represent this. One typical approach (e.g., used by Cavalieri and

Parkinson, 2008) is to set DOFs = (number of years in time series) - 2, regardless

of how many observations were conducted per year. This approach is equivalent to

assigning each year a single value based upon the average ice conditions over that

year. Perhaps a more realistic approach may be to assign at least two DOFs per

year, allowing for a limited amount of variability within the year, but not to the

extent of letting all observations be statistically independent. Nevertheless, in the

interest of comparability with other papers in the field, our statistical analyses will

be conducted assuming 7 DOFs (i.e., 9 years’ data - 2).
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4.3 Results and Discussion

This section first presents a discussion of regional differences in fast-ice dis-

tribution and morphology around the East Antarctic coast, and then presents the

8.8-year time series of fast-ice extent. This includes a regional analysis, and com-

parison with pack-ice area/extent within those regions.

4.3.1 Location and Seasonality of Fast-Ice Features

Figures 4.1 and 4.2 show maps of the average percentage of time with fast-ice

cover throughout the 8.8-year study period (e.g., a value of 50% likely indicates that

fast ice is present for half of each year on average), and the bathymetry for the study

region (Smith and Sandwell , 1997). Ten distinct regimes of fast-ice cover can be

identified from Figures 4.1 and 4.2. These regimes were identified with the assistance

of a SAR image mosaic of Antarctica, the RADARSAT-1 Antarctic Mapping Project

(RAMP) (Jezek , 2002). The SAR mosaic was compared with the bathymetric map

to determine the approximate location of zones of grounded icebergs, i.e., in waters

shallower that 400 to 500 m. In SAR imagery, icebergs are shown as consistently

bright (i.e., high backscatter) targets under freezing conditions, compared with the

typically lower backscatter values from sea ice (Williams et al., 1999; Gladstone and

Bigg , 2002). From west to east, these regimes are classified as follows:

i. 10◦ W to 35◦ E (Haakon VII Sea Coast) - This region is characterised by

low fast-ice extents, with little to no multi-year fast ice. This is a possible

consequence of the continental shelf break being close (∼20 km) to the coast,

leading to few grounded icebergs to act as anchor points for fast ice. Localised

exceptions are at 11◦ E and 15◦ E where the shallow continental shelf region is

wider (i.e., ∼50 km), allowing a number of small icebergs to ground and provide
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anchors for fast ice. A thin (up to 30 km) strip of seasonally-recurring fast ice

is also found at 27◦ to 35◦ E, again where icebergs ground in shallow regions.

ii. 35◦ to 40◦ E (Lützow-Holm Bay) - A region of extensive multi-year fast ice

surrounds Syowa base. Despite relatively deep bathymetry in the centre of

the bay (up to ∼900 m), groups of icebergs grounded to the west of Riiser-

Larsenhalvøya (∼69◦ S, 34◦ E) and to the north of Syowa Station (at ∼69◦

S, 39.5◦ E) anchor fast-ice formations. These icebergs naturally reinforce the

sheltering effect of Lützow-Holm Bay, maintaining the frequently extensive fast

ice. Additionally, relatively calm atmospheric conditions are often encountered

in the bay (according to ECMWF Interim Reanalysis data, not shown), likely

reducing the occurrence of wind-driven fast-ice breakout. Fast ice formed under

such quiescent conditions is mainly thermodynaically-formed, and can attain

considerable thickness (Ushio, 2006).

iii. 40◦ to 50◦ E (Enderby Land Coast) - A seasonally-recurring, approximately 50

km wide strip of fast ice is found along this coastline, of which little is multi-

year fast ice. Several thousand small grounded icebergs, clustered along several

NW-SE-aligned bathymetric ridges, act to anchor the fast ice between the coast

and the 400-500 m isobath.

iv. 50◦ to 57◦ E (Amundsen Bay to Cape Boothby) - Fast-ice rarely forms exten-

sively in this region, despite the fact that the shallow bathymetry permits a line

of grounded icebergs about 40 km from the coast. Few grounded icebergs exist

between this line and the coast. It is possible that this distance is too wide for

fast ice to span in the absence of suitable onshore atmospheric/oceanic forcing,

though verification of this assertion would require a detailed analysis of fast-ice

extent in coastal embayments and/or between the coast and known grounded
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icebergs. Furthermore, the continental shelf is narrow here, possibly allowing

warmer waters from the divergence of the Weddell Gyre and the Antarctic Cir-

cumpolar Current to penetrate more easily onto the continental shelf (Meijers

et al., 2010), which could explain the reduced fast-ice extent here.

v. 57◦ to 68◦ E (Mawson Coast) - Small grounded icebergs closely follow the

contour of undersea ridges, leading to recurring and distinctively-shaped fast-

ice features extending ∼50 km from the coast in this area. Fast ice is present

for much of the year, particularly in the 57◦ - 62◦ E section. Multi-year fast ice

is found only in the most sheltered bays (e.g., Edward VIII Gulf, ∼57◦ E).

vi. 68◦ to 71◦ E (Cape Darnley) - A line of small grounded icebergs extends north-

east from Cape Darnley, leading to extensive and frequent (though not typically

multi-year) fast-ice coverage. This fast-ice feature frequently extends to the

western edge of the Amery Ice Shelf.

vii. 71◦ to 74◦ E (north face of Amery Ice Shelf terminus) - No significant fast ice

forms in this dynamic polynya region, likely due to the deep bathymetry (600-

700 m) in Prydz Bay. The depth here precludes iceberg grounding, leading to

a lack of fast-ice anchor points.

viii. 74◦ to 81◦ E (Ingrid Christensen Coast) - A narrow strip of fast ice often covers

this coast, forming along the eastern margin of the Amery Ice Shelf, the Polar

Record Glacier, and hundreds of small grounded icebergs. Multi-year fast ice is

found at the eastern edge of the Amery Ice Shelf. Further offshore (∼100 km),

a large, seasonally-recurring “island” of fast ice exists, of which the main body

is present for around half of each season. This is anchored around a group of

small grounded icebergs (centred on approximately 78.5◦ E, 67◦ S).
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ix. 81◦ to 152◦ E (West Ice Shelf to Cook Ice Shelf) - This zonally-extensive region

is characterised by several coastal features that are north-south aligned, e.g.,

iceberg tongues, glacier tongues, ice shelves, coastal promontories, and groups of

smaller grounded icebergs. Irregular-shaped fast-ice regions are located on the

eastern (windward) side of these coastal features (as opposed to the majority of

fast-ice features found from 10◦ W to 81◦ E, which typically run parallel to the

coast). Latent heat polynyas (driven by katabatic winds) are typically found

on the western (lee) side of the features (Barber and Massom, 2007). Several

extensive (a few 1,000 km2 in area) regions of multi-year fast ice are encountered

in this region. In fact, every major north-south protrusion (i.e., the West Ice

Shelf, Shackleton Ice Shelf, line of grounded icebergs north of Vincennes Bay,

Dalton Iceberg Tongue, Dibble Iceberg Tongue and Mertz Glacier Tongue) has

a latent heat polynya on its western side (Massom et al., 1998; Tamura et al.,

2008), and a fast-ice feature on its eastern side.

x. 152◦ to 172◦ E (Cook Ice Shelf to Cape Adare) - This final region is characterised

by a relatively narrow (∼ 50 km) strip of fast ice which is oriented parallel to the

coast, similar to the fast-ice morphology found in the aforementioned Enderby

Land Coast and Mawson Coast regions (regions iii and v). The strip of fast

ice is more extensive in the western half of this region. Multi-year fast ice is

found between Lauritzen and Slava Bays (154◦ E -156◦ E), and also off the

coast of the closed Russian Leningradskaya Station (∼159.5◦ E). Few grounded

icebergs are present in this region. The recurring fast-ice feature to the east

of this region likely forms in the oceanic lee of Cape Adare. Wind speeds in

the region, as shown in ECMWF Interim Reanalyses (Berrisford et al., 2009),

are typically relatively low, which precludes the formation of a significant latent

heat polynya from the Cape. The presence of the ocean ridge, reportedly centred
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at 157◦, 68.5◦ S (Smith and Sandwell , 1997), is unlikely as there appear to be

no grounded icebergs at this location. The ridge is also not present in other

more recent bathymetry products, e.g., Timmermann et al. (2010).

We suggest that these regimes can be broadly combined into two larger regions

with broadly different fast-ice characteristics: a) west of 81◦ E, where relatively

few coastal protrusions exist; and b) east of 81◦ E, a region characterised by a large

number of coastal protrusions. In the former region, it is expected that the northern

margin on these elongated fast-ice zones (i.e., regions iii and v) form boundaries with

extensive flaw lead systems, suggesting strong flow in the Antarctic Coastal Current

(Barber and Massom, 2007).
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Figure 4.1: a) Fast-ice coverage map (10◦ W - 80◦ E) averaged over the 8.8-year study period (from March 2000 - December 2008).
A value of 100% is given to fast ice that covers the pixel for the entire time series of 159 images spanning the 8.8 year study period.
b) Corresponding bathymetry map for a). Bathymetry from Smith and Sandwell (1997). Coastline from Scambos et al. (2007). See
the text for a full discussion of fast-ice formation regimes. The maximum width of the fast-ice zone varies widely across the East
Antarctic coast, reaching a maximum width of ∼225 km at around 150◦ E (immediately east of the iceberg B-9B).



4.3.
R

E
S
U

L
T

S
A

N
D

D
IS

C
U

S
S
IO

N
91

���������������������������������������������������������������������������������������	���������������
���������������������������������������������������

���������������������������������������������������������������������������������������	���������������
���������������������������������������������������

�
�
�
�
���������������

�
�
�

�
�
�
�
���������������

�
�
�

���������������������������������������������������������������������������������������	���������������
���������������������������������������������������

�
�
�
�
���������������

�
�
�

�
�
�
�
���������������

�
�
�

��

��

�����

�������
������

��� !�""�

�������
#$��� %�

&'�&

(����#$���)�"*

���+�

#$���)�"*

��,��

-�� �

.� $����

�����/��)�

*�����$�

$�!� 

���0

�0

��

����

&��)���� �

1� �2�3"�$�� 

4��%��

�5 5

Figure 4.2: a) Fast-ice coverage map (80◦ E - 172◦ E) averaged over the 8.8-year study period (from March 2000 - December 2008).
A value of 100% is given to fast ice that covers the pixel for the entire time series of 159 images spanning the 8.8 year study period.
b) Corresponding bathymetry map for a). Bathymetry from Smith and Sandwell (1997). Coastline from Scambos et al. (2007). See
the text for a full discussion of fast-ice formation regimes.
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4.3.2 Fast-Ice Time Series, Annual Cycle, and Overall Trend
Analysis

The time series of fast-ice extent for the entire region (10◦ W - 172◦ E) is

shown in Figure 4.3, with the mean annual cycle given in panel b. The 8.8-year

mean annual cycle begins by steadily declining to the fast-ice minimum of ∼120,000

km2 at around Day Of Year (DOY) 61-80 (early mid-March). This is followed by

a period of rapid fast-ice growth to a relatively broad maximum of ∼388,000 km2

(persisting from ∼DOY 141 to 300, or mid May to late October). Following DOY

300, the fast-ice extent declines until the end of the year. In contrast, the shape of

the overall sea-ice extent and area cycles is more sinusoidal, with fairly slow seasonal

formation (from mid march to late September) being followed by relatively rapid

retreat, typically from mid-October to early February (Gloersen et al., 1992).

The annual cycle is smoother in the Indian Ocean sector (Figure 4.4) than

the Western Pacific Ocean sector (Figure 4.5), though it is still substantially broader

around the maximum than the minimum. This may be a consequence of relative

spatial scales of averaging and fast-ice variability. A smooth time series may result

if the averaging scale is significantly larger than the scale at which fast ice varies.

Alternatively, this possibly reflects the different formation regimes in each region.

The proportion of thermodynamically- rather than dynamically-formed fast ice in

the Indian Ocean sector is likely higher than that in the Western Pacific Ocean

sector, due to the greater number of north-south coastal promontories in the latter

sector. These features act to intercept pack ice that is drifting westwards around the

coast within the Antarctic Coastal Current, leading to more dynamically-formed fast

ice (Giles et al., 2008; Jezek , 2002). This pattern is also shown in the maps of Giles

et al. (2008), which indicate higher radar backscatter (indicating rougher ice) for

fast-ice on the “upstream” side of these coastal promontories. It is hypothesised here
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that the dynamic formation leads to the “jagged” shape of the mean annual cycle in

regions containing a high proportion of dynamically-formed fast ice. Significant fast-

ice breakout also typically begins to occur earlier in the Western Pacific Ocean sector

than the Indian Ocean sector (see Figures 4.4b and 4.5b), and continues at a steady

rate throughout the summer breakout season. This suggests that dynamically-

formed fast ice may be mechanically weaker, leading to episodic breakout which

may occur at the interfaces between existing fast ice and newer dynamically-formed

fast ice. This result showing the more transient nature of dynamically-formed fast

ice in Antarctica, characterised by series of breakouts and reformations, has also

been observed in the Arctic by Mahoney et al. (2007b).

There is a pronounced peak in the mean annual fast-ice extent cycle in the

Western Pacific Ocean sector at DOY 261-280. Initially, it was suspected that an

anomalously high maximum in 2006 (discussed in detail later in Chapter 5) was

solely contributing to this peak. The contribution of these data to the annual cycle

was tested by calculating a truncated mean (whereby the maximum and minimum

values are removed from the mean calculation). The truncated mean annual cy-

cle also exhibited a peak at DOY 261-280, however, so the timing of the fast-ice

maximum extent is genuinely believed to occur within this period.

We also performed a regional analysis on the fast-ice time series, comparing

the Indian Ocean and Western Pacific Ocean sectors. One caveat of this approach

is that it involves spatial averaging on large spatial scales (several thousand km),

possibly masking regional variability of fast ice. This decision was made in order to

allow intercomparisons between this fast-ice time series, and the overall sea-ice time

series from passive microwave data analysis (e.g., Cavalieri and Parkinson (2008)).

Table 4.1 summarises the results of the trend analyses, and Table 4.2 shows the

value of the fast-ice minimum/maximum areal extent in each year.
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Table 4.1: Table of fast-ice extent trend results by region. The R-value represents
the ratio of trend slope to its standard deviation. An R-value greater than 3.5
indicates a statistically-significant trend with greater than 99% confidence, and is
shown here in a bold and italic font.

Sector km2 yr−1 % yr−1 R-value

East Antarctica (10◦ W - 172◦ E) 4012 ± 830 1.43 ± 0.30 4.84

Indian Ocean (20◦ - 90◦ E) 4444 ± 457 4.07 ± 0.42 9.73

Western Pacific Ocean (90◦ - 160◦ E) -579 ± 525 -0.40 ± 0.37 -1.10
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Table 4.2: Table of fast-ice maximum and minimum extents (km2) for East Antarctic coast, Indian Ocean and Western Pacific Ocean
sectors.

East Antarctica Indian Ocean sector Western Pacific Ocean
(10◦ W - 172◦ E) (20◦ - 90◦ E) (90◦ - 160◦ E)

Minimum Maximum Minimum Maximum Minimum Maximum
FI extent FI extent FI extent FI extent FI extent FI extent

×103 ×103 ×103 ×103 ×103 ×103

2000 392 144 206
2001 133 375 34 140 87 199
2002 96 400 41 148 51 226
2003 110 362 24 146 79 211
2004 83 341 8.9 137 69 184
2005 115 374 46 150 68 192
2006 104 447 26 179 72 238
2007 127 395 66 162 54 195
2008 191 407 92 173 76 199

Mean 120 388 42 153 69 205
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For the entire East Antarctic coast and from 2000 to 2008, a positive trend

(increase) in fast-ice extent of 4012 ± 830 km2 yr−1 is observed. Though this trend

is statistically significant (at the 99% confidence level), the time series is too short

to determine whether or not it is part of a longer-term positive trend. The observed

increase is concentrated mainly in the Indian Ocean sector (see Figure 4.4), with a

trend of 4444 ± 457 km2 yr−1. Interannual variability in areal extent in this region

is relatively large, especially in fast-ice minima. As with the entire East Antarctic

coast, annual minima in the Indian Ocean sector seem to have little relation to

previous or subsequent maxima. Fast-ice maxima in this region appear to follow a

bi-modal distribution, with the 2000-2005 maxima falling near the 8.8-year mean

cycle value, while the 2006-2008 maxima are considerably higher. In contrast, there

is no significant trend in fast-ice extent for the Western Pacific Ocean sector (-579

± 525 km2 yr−1).

An apparent change in fast-ice extent trend is observed in the Indian Ocean

sector from ∼2004 onwards (Figure 4.4). Prior to 2004, a slightly negative trend

is observed, and interannual variability is relatively small. From 2004 onwards, the

trend becomes strongly positive and variability increases. This change in trend in

the Indian Ocean sector contributes strongly to the trend observed for the entire

East Antarctic coast. In the Indian Ocean sector, minima range from ∼9,000 km2

(in 2004) to ∼92,000 km2 (2008), while maxima range from ∼137,000 km2 (2004)

to ∼179,000 km2 (2006). No such change is observed in the Western Pacific Ocean

sector (Figure 4.5), where variability is uniformly relatively small (but values still

span a large range), and the negative trend continues throughout the 8.8-year record.

In this sector, minima range from ∼51,000 km2 (in 2002) to ∼87,000 km2 (2001),

while maxima range from ∼184,000 km2 (2004) to ∼238,000 km2 (2006).

The relationship between each year’s fast-ice maximum and the subsequent
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minimum was also analysed. Below-average minima are observed in 2002 (∼96,000

km2), 2004 (∼83,000 km2) and 2006 (∼104,000 km2, compared with the mean of

∼120,000 km2). Of these years, only the 2004 maximum was more than 40,000 km2

below average (∼341,000 km2 compared with the mean maximum extent of ∼388,000

km2). In fact, the 2006 maximum was 70,000 km2 above average (∼447,000 km2),

despite the preceding below-average minimum. The only strongly above-average

(∼191,000 km2) was encountered in 2008, which was followed by an above-average

maximum (∼407,000 km2). It appears that there is little correlation between max-

ima and subsequent minima, except from 2006 to 2008 in the Indian Ocean sector,

which recorded strongly positive extent anomalies for almost the entire 3-year pe-

riod.
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Figure 4.3: a) Fast-ice time series for the East Antarctic coast (10◦ W to 172◦ E), showing a statistically significant (at the 99%
confidence level) increase of 4012 ± 830 km2 yr−1. Errors bars (±2σ) are shown in blue (corresponding to error regime 1) and red
(error regime 2, see text). Note the major impact of extraordinarily extensive fast ice along the Enderby Land and Mawson coasts
from 2006 to 2008. b) The shape of the annual fast-ice cycle, produced from the 8.8 year dataset. The repetition of this cycle is also
shown as a thin green line in a). c) Fast-ice extent anomaly (differences between the observed fast-ice extent and the 8.8-year mean
for that time period).
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Figure 4.4: a) Fast-ice time series for the Indian Ocean sector (black line), showing
a statistically significant increase (at the 99% confidence level) of 4444 ± 457 km2

yr−1. Error bars are as shown in Figure 4.3. b) The shape of the annual fast-
ice cycle, produced from the 8.8 year dataset. The repetition of this cycle is also
shown as a thin green line in a). Note the smooth annual cycle, possibly reflecting
the relatively high portion of thermodynamically-formed fast ice in this region. c)
Fast-ice extent anomaly (differences between the observed fast-ice extent and the
8.8-year mean for that time period).

Comparing fast-ice extent by sector (see Figure 4.6), it can be seen that while

minima of the Indian Ocean and Western Pacific Ocean sectors are uncorrelated

(R2=0.03), maxima have a slightly higher correlation coefficient (R2=0.21). The

Indian Ocean sector includes generally less fast ice than the Western Pacific Ocean

sector until late 2006, when their fast-ice extents become comparable (see Figure

4.6).

4.3.3 Fast-Ice Extent Climatology and Annual
Minimum-to-Minimum Averages

The fast-ice extent by time of year, averaged over the 8.8-year time series, is

shown in Figures 4.7 and 4.8. These figures represent a fast-ice climatology. Com-
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Figure 4.5: a) As in 4.4 but for the Western Pacific Ocean sector, showing a slight
but non-significant decrease (579 ± 525 km2 yr−1). b) The shape of the annual
fast-ice cycle, produced from the 8.8 year dataset. The repetition of this cycle is
also shown as a thin green line in a). c) Fast-ice extent anomaly (differences between
the observed fast-ice extent and the 8.8-year mean for that time period).

parison between these figures and Figures 4.1a and 4.2a reaffirms the close links

between bathymetry, iceberg grounding and fast-ice extent discussed in previous

sections. In many regions, and particularly where minimal coastal protrusions are

present, fast ice reaches its maximum extent early in the season, and is unable to

“grow” past this due to a lack of grounded icebergs in waters deeper than approxi-

mately 400 to 500 m. We suggest that these regions (e.g., the Mawson and Enderby

Land coasts) may have a higher fraction of thermodynamically-formed fast ice.

Annually-averaged (annual minimum to subsequent annual minimum) fast-

ice conditions are shown in Figure 4.9 (except for the image labelled “2008”, where

no data from 2009 were analysed and hence the 2009 minimum was unavailable,

making this image more biased toward greater fast-ice coverage). This figure clearly

shows the origin of the positive trend in the Indian Ocean sector (Figure 4.4),
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Figure 4.6: Fast-ice extent time series by region. The 90 - 160◦ E (Western Pacific
Ocean) sector generally has more extensive fast-ice cover than the 20 - 90◦ E (Indian
Ocean) sector due to the presence of substantially more north-south aligned coastal
features, and a higher proportion of perennial fast ice.
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especially over the period 2006-2008. In particular, much more of the fast ice along

the Mawson and Enderby Land coasts survives the summertime melt during 2007

and 2008, contributing to the progressively higher minimum fast-ice extents during

these years. Additionally, more fast ice forms north of the region from Amundsen

Bay to Cape Boothby (50 - 57◦ E) during the maxima of 2006, 2007 and 2008,

contributing to the higher maximum extent observed in the Indian Ocean sector

during these years.

In the Western Pacific Ocean sector, the main contribution to the origin

of the anomalously high maximum extent in 2006 (DOY 261-280) can be traced

to an extensive fast-ice feature to the east of iceberg B-9B (until recently (Young

et al., 2010), centred at approximately 67◦20’ S, 148◦23’ E). Here, the westward-

flowing Antarctic Coastal Current advects pack ice into the region between B-9B

and the coast, often forming heavily consolidated pack ice which can temporarily

form fast ice (Massom et al., 2001b; Barber and Massom, 2007). Dense clusters of

small grounded icebergs, i.e., those to the north of B-9B, act in a similar fashion

to individual large grounded icebergs (Massom et al., 2001b; Barber and Massom,

2007). In this way, fast ice can extend across waters deeper than the maximum depth

of iceberg grounding (∼450 m), and be present more than 200 km offshore. The 2006

maximum is likely an extreme manifestation of this phenomenon. Examination of

ECMWF Interim Reanalysis data for this period shows anomalously strong easterly

winds. This provides evidence for pack-ice advection being an important contributor

to fast-ice growth in this region. Ocean currents are also likely to be an important

factor in this region, but data are lacking. This event is studied in detail, in Chapter

5, Section 5.5.9.

Analysis of the fast-ice climatology (Figures 4.7 and 4.8) reveals important

differences in the nature of fast-ice formation and breakout in each sector. Fast-ice
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growth and breakout along the Enderby Land and Mawson coasts, and also the

region to the east of the Cook Ice Shelf (∼152◦ E) both occur largely in a north-

south direction, i.e., the strip of fast ice along the coast becomes wider as the season

progresses, before gradually retreating back towards the coast in summer. This is in

contrast to much of the fast ice in the Western Pacific Ocean sector. As previously

mentioned, in this region, several coastal protrusions allow fast-ice to form windward

of these features. As the season progresses, the fast ice grows more in an eastward

direction as more pack ice is intercepted by the pre-existing fast ice. Fast-ice retreat

in this sector then occurs by recession of the fast ice largely from east to west in

spring/summer.

The length of the fast-ice coverage per year at a given location, i.e., the

seasonality or fast-ice “season” duration, is an important parameter, responding to

both oceanic and atmospheric forcing (Heil , 2006; Heil et al., 2006; Mahoney et al.,

2005). Due to the large spatial scale of this dataset, detailed analysis of fast-ice

seasonality is outside of the scope of this work.

4.3.4 Comparison Between Fast-Ice Extent and Overall Regional
Sea-Ice Extent and Area

The relationship between fast-ice extent and overall sea-ice extent was exam-

ined using SSM/I passive microwave sea-ice concentration 20-day composite images

generated over the same time period. Sea-ice area is defined as the area of ocean

which is covered by sea-ice of concentration >15%. Sea-ice extent is defined as the

area of ocean covered by sea ice, weighted by the concentration. Comparisons for

the whole coast, the Indian Ocean sector, and the Western Pacific Ocean sector

are shown in Figures 4.10, 4.11 and 4.12 respectively. Note the difference in over-

all sea-ice extent and area between the Indian Ocean and Western Pacific Ocean
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Figure 4.7: Fast-ice climatology for the 8.8-year period, in 20-day increments, from
DOY 1 - 180 (see Figure 4.8 for DOY 181 - 365). Each panel shows the fraction of
observations during that DOY interval with fast-ice cover. The colour scale is the
same as that used in Figures 4.1 and 4.2, i.e., it represents the proportion of time
over which fast ice coverage occurs.
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Figure 4.8: Fast-ice climatology for the 8.8-year period, in 20-day increments, from
DOY 181 - 365 (see Figure 4.7 for DOY 1 - 180). Each panel shows the fraction of
observations during that DOY interval with fast-ice cover. The colour scale is the
same as that used in Figures 4.1 and 4.2, i.e., it represents the proportion of time
over which fast ice coverage occurs.
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Figure 4.9: Fast-ice conditions by season (from one minimum to the subsequent
minimum), using the same colour scale as Figures 4.1 and 4.2, i.e., it represents
the proportion of time over which fast ice coverage occurs.. Since no 2009 data
were analysed, the 2008 “season” is incomplete, and biased toward higher fast-ice
coverage.
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sectors, a consequence of the greater pack-ice extent in the Indian Ocean sector,

relating to the location of the eastern part of the Weddell Gyre and the southern

boundary of the Antarctic Circumpolar Current (Gloersen et al., 1992). Across

the East Antarctic coast and both sub-regions, pack ice area/extent maxima are

uncorrelated with fast-ice maxima, with R2 values of 0.05, 0.02 and 0.04 for the

entire coast, Indian Ocean and Western Pacific ocean sectors respectively. However,

the minima are strongly correlated (R2 values of 0.86, 0.89 and 0.65 respectively).

This is not necessarily an indication that fast-ice extent and overall sea-ice extent

share a common forcing; rather the relative fraction of fast ice comprising overall

sea ice increases (i.e., the ratio of sea ice to fast ice decreases to a minimum) during

the summertime sea-ice minimum (see Figure 4.2). Additionally, fast ice is highly

vulnerable to ocean waves (Crocker and Wadhams, 1988, 1989; Langhorne et al.,

2001), and it may be that pack ice acts as a protective buffer to their destructive

effect, leading to larger fast-ice minimum extents during years when more extensive

pack ice is present.

This fast-ice time series mirrors the longer-term trends in overall sea-ice

extent/area in the region (dating back to 1978). For example, both Comiso (2010)

and Cavalieri and Parkinson (2008) show a larger increase in sea-ice extent in the

Indian Ocean sector (∼1.9 ±1.4% decade−1) than the Western Pacific Ocean sector

(∼1.4 ±1.9% decade−1), though neither trend is significant at the 95% confidence

level (Cavalieri and Parkinson, 2008).

4.3.5 Variability in the Timing of Fast-Ice Maxima and Minima

Timing of maximum and minimum fast-ice extent are important fast-ice

parameters, and are sensitive to changes in climate (Heil et al., 2006; Mahoney et al.,
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Figure 4.10: Time series comparison between overall sea-ice extent/area and fast-ice
extent along the entire East Antarctic coast (10◦ W to 172◦ E). The scale for overall
sea-ice extent and area is on the left. Fast-ice extent has been scaled by a factor of
10 for intercomparison purposes, and uses the scale on the right.
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Figure 4.11: Time series comparison between overall sea-ice extent/area and fast-
ice extent in the Indian Ocean sector (20◦ E to 90◦ E). The scale for overall sea-ice
extent and area is on the left. Fast-ice extent has been scaled by a factor of 10 for
intercomparison purposes, and uses the scale on the right.
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Figure 4.12: Time series comparison between overall sea-ice extent/area and fast-ice
extent in the Western Pacific Ocean sector (90◦ E to 160◦ E). The scale for overall
sea-ice extent and area is on the left. Fast-ice extent has been scaled by a factor
of 10 for intercomparison purposes, and uses the scale on the right. Note that fast-
ice extent in this sector comprises a much greater portion of overall sea-ice extent
compared to the Indian Ocean sector (Figure 4.11).
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2005). The minimum fast-ice extent, averaged across the entire region, typically

occurs during DOY 61-80 (early/mid March), with a mean value of ∼120,000 km2.

Maximum typically occurs during DOY 261-280 (mid/late September), with a mean

value of ∼388,000 km2 (see Figure 4.13) - i.e., the ratio of maximum to minimum

fast-ice extent is typically ∼3.2 to 1. In comparison, the mean regional minimum and

maximum overall sea-ice extent over the same time period (2000-2008) is ∼770,000

and ∼9,300,000 km2 respectively (Comiso, 1999), i.e., a ratio of ∼12 to 1 for overall

sea ice to fast ice. The fast-ice minimum almost always occurs later than the overall

sea-ice minimum, a likely consequence of the pack ice protecting the fast ice from

swell-induced breakout.

The timing of fast-ice minimum extent is observed to occur progressively

earlier in the Indian Ocean sector (on the order of 5 days/year) throughout the

8.8-year time series (see Figure 4.13). No obvious trend is observed in the timing

of the overall sea-ice extent in the Indian Ocean sector. In general, the timing of

maximum/minimum fast-ice extent displays higher variability than the correspond-

ing timing of overall sea-ice maximum/minimum extent, reflecting both the lower

fast-ice extent compared to overall sea ice, and the complex controls which limit

fast-ice extent (e.g., grounded icebergs acting as anchor points).
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Figure 4.13: Diagram of the timing of fast-ice and overall sea-ice minimum and maximum extent, shown in DOY range format for
the period March 2000 - December 2008.
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4.3.6 Percentage of Fast Ice Comprising
Overall Sea-Ice Extent/Area

The percentage of fast-ice area comprising overall sea-ice area throughout

the 8.8-year time series for the East Antarctic coast is shown in Figure 4.14. The

percentage of fast-ice extent comprising overall sea-ice extent is also shown in this

figure. Minimum, maximum and mean values for each year are shown in Table 4.3.

We assume here that fast-ice concentration is 100%; hence fast-ice extent is equiv-

alent to fast-ice area. This is a reasonable assumption based on field observations.

A strong seasonal cycle is observed in the fraction of overall sea-ice area/extent

which is fast ice. Following the maximum fast-ice percentage early in the season, i.e.,

around DOY 41-60, or late February, the fast-ice extent (area) percentage slowly

decreases to a broad minimum, with a mean value of 3.77% (4.51%). A rapid

increase in the fast-ice percentage is observed from around DOY 341-365 (mid-

December), with maximum percentage occurring during DOY 41-60 in most years,

excepting 2003 and 2005, when the maximum fast-ice extent percentage occurred

during DOY 21-40. The value of the maximum (minimum) extent percentage varies

between 16.0% and 21.0% (3.2% to 4.2%), with the maximum (minimum) area

percentage showing similar variability.
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Figure 4.14: a) Percentage of overall sea ice which is fast ice, throughout the 8.8-
year time series. b) Monthly climatology of a), generated from the 8.8-year time
series. Minimum maximum and mean values for each year are given in Table 4.2.
Maximum fast-ice percentage typically occurs at approximately the same time as
the sea-ice minimum. Timing of minimum fast-ice percentage has larger variability,
reflecting the large variability in timing of the fast-ice maximum.
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Table 4.3: Table of maximum and minimum percentage of overall sea-ice extent/area which is fast ice (see Figure 4.14).

East Antarctica (10◦ W - 172◦ E)
Maximum fast-ice percentage compared to: Minimum fast-ice percentage compared to:

Overall sea-ice extent (%) Overall sea-ice area (%) Overall sea-ice extent (%) Overall sea-ice area (%)

2000 3.9 4.8
2001 21.0 34.0 4.0 4.8
2002 19.4 34.1 4.2 4.9
2003 17.9 25.9 3.7 4.4
2004 20.7 33.9 3.2 3.7
2005 19.6 35.1 3.3 4.1
2006 20.6 32.2 3.6 4.3
2007 16.4 26.6 4.1 4.7
2008 16.0 24.1 4.0 4.9

Mean 19.0 30.7 3.8 4.5
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4.4 Summary and Further Work

This work presents the first multi-year, high spatio-temporal resolution maps

and time series of fast-ice extent along the entire East Antarctic coast (and indeed

any large section of the Antarctic coast). For the first time, a gap-free multi-year

climatology of Antarctic fast ice is presented. This product is directly comparable

to the widely-used overall sea-ice extent products derived from passive microwave

imagery (e.g., Comiso, 2010).

The major findings of this study can be summarized as follows:

1. A statistically-significant (at the 99% confidence level) increase in fast-ice ex-

tent occurred across the entire study region, from 2000 to 2008, of 4,012 ±830

km2 yr−1, equivalent to 1.43 ±0.3% yr−1 (albeit over a short time series);

2. Regionally and over the entire 8.8-year time series, a strong (and also sig-

nificant) increase in fast-ice extent in the Indian Ocean sector of 4,444 ±457

km2 yr−1 (4.07 ±0.42% yr−1). At the same time, a (non-significant) decrease

occurred in the Western Pacific Ocean sector of 579 ±525 km2 yr−1 (0.40

±0.37% yr−1). In other words, the statistically-significant increase in overall

fast-ice extent is due mainly to the contribution of the Indian Ocean sector;

3. In the Indian Ocean sector, a weak decrease in fast-ice extent with low variabil-

ity is observed for the first four years (2000-2003), followed by a strong increase

(with higher variability) for the remainder of the time series (2004-2008);

4. The observed relatively abrupt change in fast-ice extent trend in the Indian

Ocean sector is due mainly to the presence of extraordinarily extensive fast-

ice conditions along the Mawson and Enderby Land coasts, particularly from

2006 to 2008, both in summer and winter (and to a lesser extent during the
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“shoulder” seasons of spring and autumn);

5. Generally, greater fast-ice extents and lower variability were observed in the

Western Pacific Ocean sector, likely due to the different fast-ice formation

regimes and existence of several north-south oriented coastal features here;

and

6. A physical limit is effectively imposed on fast-ice growth (in most regions)

by a lack of anchor points in the form of grounded icebergs in deeper water

(≥500 m depth). This results in an annual cycle which is characterised by a

temporally-broad fast-ice maximum, and an abrupt, relatively short minimum.

Although significant trends were detected in the (relatively short) 8.8-year

time series, these trends are not necessarily indicative of longer-term variability.

The fast-ice trends broadly agree, however, with longer-term (1979 - 2008) over-

all sea-ice (including both pack ice and fast ice) observations (e.g., Cavalieri and

Parkinson, 2008; Comiso, 2010). Fast-ice extent displays more variability than

overall sea-ice extent/area on both medium (i.e., monthly) and long (seasonal to

inter-annual) timescales, which is likely due to the often abrupt transitions between

fast-ice breakout and growth. Fast-ice maxima are uncorrelated with sea-ice area

and extent maxima, while fast-ice minima are correlated with overall sea-ice min-

ima. This relationship is indicative of the protective effects of consolidated pack ice

against ocean swell/wave-induced fast-ice breakout. The fast-ice minimum almost

always occurs after the overall sea-ice minimum, which further suggests that the

presence of pack ice protects the fast ice from swell-induced breakout (Langhorne

et al., 2001). Fast-ice minima (maxima) are found to be generally uncorrelated with

subsequent maxima (minima).

Significant inter-annual variability is also observed in the timing of fast-ice
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minima and maxima. The fast-ice timing analysis performed is likely of limited value

(particularly the analysis of fast-ice maximum timing) due to the shape of the annual

cycle: the broad peak in the maximum confounds the precise dating of maximum

extent. The minimum extent of fast-ice is observed to occur progressively earlier in

the Indian Ocean sector, despite there being no corresponding trend observed in the

timing of the minimum in overall sea-ice extent. The shape of the annual cycle itself

(in particular the broad maximum) reinforces the link between fast-ice presence and

shallow bathymetry: 400-500 m is the maximum depth at which icebergs ground

(Massom et al., 2001b), and as such forms an upper limit to the fast-ice extent,

which is attained relatively early in the winter. Further fast-ice growth past this

natural barrier is achieved only in the most sheltered regions (e.g., Lützow-Holm

Bay) or regions where pack ice is continually advected into other protruding coastal

features.

Work is currently underway to relate fast-ice variability to atmospheric forc-

ing parameters. Further work is planned to automate the production of, and extend

this fast-ice time series further back in time, using AVHRR data where available,

and around the entire Antarctic coast. We also plan to extend this dataset forward

in time, using both MODIS and successive instruments such as the Ocean Land

Colour Instrument (OLCI) on the European Space Agency’s Sentinel-3 satellite.

Sentinel-3 is due for launch in 2013, and further information can be obtained from

http://www.eoportal.org/directory/pres GMESSentinel3Mission.html. This work

can also be extended to both polar regions.



Chapter 5

Atmospheric Influences on East

Antarctic Landfast Sea-Ice Formation

and Breakout

This chapter is being prepared for publication.

5.1 Abstract

This chapter presents a preliminary investigation into the links between pat-

terns of East Antarctic fast-ice formation/breakout and atmospheric forcing on both

local and hemisphere-wide scales. To investigate local-scale forcing, several case

studies of anomalous fast-ice formation/breakup events are identified from regional

(∼10◦ of longitude wide) time series of fast-ice extent located near Syowa Station

(34 - 42◦ E), Mawson Station/Cape Darnley (60 - 71◦ E), Dumont d’Urville Station

(134 - 145◦ E) and the Mertz Glacier region (145 - 154◦ E). These anomalous cases

are investigated by relating fast-ice extent to atmospheric parameters including sur-

face air temperature and wind velocity, as well as regional pack-ice distribution

and concentration. Anomalously strong winds, particularly from anomalous direc-

tions, are found to play an important role in both fast-ice formation and breakout.

The relationship between wind direction and local coastal configuration is found to

119
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be a particularly important factor. Strong surface air temperature anomalies are

observed in conjunction with anomalous fast-ice growth/breakout events in some

regions, with high (low) temperatures observed during times of anomalous fast-ice

breakout (growth). The influence of the Southern Annular Mode (SAM) and El

Niño-Southern Oscillation (ENSO) on East Antarctic fast-ice extent is assessed. A

strong correlation (R≃0.45) is found between the Southern Oscillation Index (SOI)

and fast-ice extent in the Indian Ocean sector (20 - 90◦ E), with a time lag of 6

months (SOI leading fast-ice extent). This correlation in the Indian Ocean sector

contributes strongly to a high correlation (R=≃0.4) between SOI and fast-ice ex-

tent across the entire East Antarctic coast (10◦ W - 172◦ E). The mechanism of

teleconnection is unclear, but similar correlations between SOI and overall sea-ice

extent have been previously reported. No significant correlation is found between

SAM index and fast-ice extent (R<0.2 in all regions).

5.2 Introduction

Chapter 4 presented the first gap-free time series of fast-ice extent around

the entire East Antarctic coast. This work provided, for the first time, a detailed,

large-scale picture of fast-ice extent and variability with sufficient temporal resolu-

tion to resolve variability in East Antarctic fast ice over a range of spatial scales. The

aims of this chapter are to analyse this new time series in conjunction with meteo-

rological reanalysis data to investigate the response of fast-ice extent to large-scale

modes of atmospheric variability, and to determine which regional-scale atmospheric

parameters contribute to episodes of anomalous fast-ice extent. This work builds

upon recent work by Heil (2006) and Massom et al. (2009), which have investigated

the role of synoptic weather patterns in fast-ice formation and breakup near Davis

Station and off the Adélie Land coast respectively.



5.2. INTRODUCTION 121

5.2.1 Fast-Ice Response to Local Atmospheric Forcing: Work to
Date

The formation and breakup of Antarctic fast ice is complex and poorly un-

derstood. It is driven by the interaction of a number of atmospheric and oceanic

processes (including ocean waves), in addition to interactions with the ice sheet, ice-

bergs, and the surrounding pack-ice cover (e.g., Massom et al., 2009, 2010a; Crocker

and Wadhams, 1988). Here, we initially examine factors which have been reported

from both the Arctic and Antarctic (noting that fast-ice conditions are significantly

different in the Arctic - see Chapter 1). Although ocean currents, temperature (Heil

et al., 1996) and waves (Crocker and Wadhams, 1988) play key roles in fast-ice for-

mation and breakup, analysis of these parameters is beyond the scope of this thesis.

Here, we focus on atmospheric parameters.

Working near Davis Station, East Antarctica, Heil (2006) found that several

fast-ice parameters appear to be modulated by atmospheric temperature, including

maximum annual ice thickness (anti-correlated with temperature), and timing of

maximum ice thickness (higher air temperature leads to later maximum thickness).

Temperature was also found to be closely associated with fast-ice formation and

breakout in studies of fast ice formation modes in the Kara Sea, in the Arctic

Ocean (Divine et al., 2003, 2005). Here, a bimodality was observed in fast-ice

maximum extent relating to the locations of different islands within the Kara Sea.

Anomalously cold air temperatures (on the order of 6 ◦C below the monthly mean)

led to an expansion of the fast-ice edge. Fast-ice area was significantly correlated (R

≃0.55) with mean winter temperature (Divine et al., 2003). Mahoney et al. (2007a)

found that the breakup of fast ice off the coast of northern Alaska was correlated

with the onset of thawing air temperatures. With the exception of a few notable

studies (e.g., Heil et al. (1996); Heil (2006)), the role of sea/ocean temperature in
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fast-ice formation and decay has not been widely studied in either polar region, but

in addition to lateral and basal melt, warm sea temperatures are likely to contribute

to grounded keel erosion in the Arctic, leading to fast-ice breakout (Mahoney et al.,

2007b). Ice keels play a key role in anchoring fast ice to the seabed in shallow Arctic

coastal areas such as the north Alaskan coast.

Snow cover thickness has also been suggested as a factor controlling the

stability and thus duration of fast ice. Working in Lützow-Holm Bay, East Antarc-

tica, Ushio (2008) determined that a thin snow cover led to significant fast-ice melt,

precluding formation of superimposed ice during the summertime melt season. Su-

perimposed ice forms from snow meltwater that percolates down through the snow

column and freezes on the sea-ice surface (Haas et al., 2001). Superimposed ice acts

to strengthen fast ice by both “hardening” its surface and increasing its thickness

(Ushio, 2006). Fast-ice breakout events were frequently observed at this location

when snow cover was relatively thin.

Using a 1-dimensional modeling study set in the Arctic, Flato and Brown

(1996) investigated the role of snow cover and air temperature on fast ice. While

increasing the air temperature led to lower maximum fast-ice thickness and longer

open water duration, the effect of a changing snowfall rate was more complex: from

0 to ∼3 mm/day, an increasing snowfall rate led to a lower maximum ice thick-

ness and longer open water duration. However, for snowfall rates greater than ∼3

mm/day, an increasing snowfall rate led to a higher fast-ice thickness, primarily by

production of snow ice (ice which forms when the snow loading is heavy enough to

flood the snow/ice interface, resulting in a frozen mixture of snow and sea water

(Haas et al., 2001)). While this model study included no dynamic component, it

serves to illustrate the complex effects of snow cover on fast-ice growth and decay,

and the probable importance of a projected increase in high-latitude snowfall under



5.2. INTRODUCTION 123

a climate warming scenario (Bracegirdle et al., 2008).

Using passive microwave satellite data, fast-ice melt was also investigated as

a factor contributing to breakout by Enomoto et al. (2002). This study found that

warmer than average air temperatures led to extensive fast-ice melt, often followed

by large-scale fast-ice breakout within Lützow-Holm Bay.

The influence of waves and swell on fast ice has been studied both theoret-

ically, e.g., Langhorne et al. (2001); Chung and Fox (2001) and experimentally in

situ vis a vis observed fast-ice breakout events, e.g., Higashi et al. (1982). From the

Higashi et al. (1982) study, it was concluded that an extreme fast-ice breakout event

observed in Lützow-Holm Bay in 1980 was caused by ocean swell, probably gener-

ated by a nearby low pressure system. Waves with a long period may be responsible

for fast-ice breakout in the Arctic via ungrounding of fast-ice keels (Mahoney et al.,

2007b). The possible impact of long-period swell on Antarctic fast-ice breakup is

complicated by the presence of numerous icebergs acting as “anchors”.

Most of the observational work on wave-induced fast-ice breakout has been

conducted in McMurdo Sound, in the Ross Sea (Crocker and Wadhams, 1988, 1989;

Langhorne et al., 2001). Langhorne et al. (2001) used a theoretical fast ice model to

determine the number of flexural cycles a fast-ice sheet can sustain before fracturing.

Crocker and Wadhams (1988) related regional wind speed to waves detected within

the fast ice using strain gauges. There appeared to be a critical wind speed of 10

m/s, below which waves are undetectable in the ice, and above which wave energy

increases significantly. However, the maximum strain induced by such waves was

still one order of magnitude below the theoretical fracture strain for the relatively

thick fast ice in the study region (>1 m thick). Crocker and Wadhams (1989), also

working in McMurdo Sound extended this work to attribute fast-ice breakout to

wind-induced tensile failure throughout most of the year. For a short period during
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summertime, the influence of ocean swell becomes more important than than wind-

induced tensile failure. The authors also commented on the protective effects of a

high concentration regional ice pack against wave-induced breakout.

In general, changes in spatio-temporal characteristics and distribution of fast

ice are determined by the complex interaction of atmospheric and oceanic param-

eters, with some studies reporting a stronger role played by ocean current velocity

(e.g., Mahoney et al., 2007b), while others report a more important role played by

winds, e.g., Heil (2006). Heil et al. (1996) attribute strong interannual variability

in oceanic heat flux under fast ice off the Mawson coast to seasonal variations in

both polynya activity, and ocean currents within the nearby Prydz Bay. Nunes Vaz

and Lennon (1996) and Heil (2006) note that shallow sites of fast-ice formation are

effectively decoupled from horizontal advection of water masses and the influence of

warmer water past the continental shelf break and onto the shelf itself. However,

Arctic fast ice typically forms in much shallower regions than Antarctic fast ice.

Thus, the differences between the Heil (2006) and Mahoney et al. (2007b) studies

may reflect the local study region, with the former located in the sheltered Davis

Harbour, East Antarctica, and the latter along the more exposed Barrow coast,

northern Alaska. Surrounding pack-ice distributions and conditions are also likely

to be different, and hence their potential buffering effects will differ.

As noted in Chapter 1, the bathymetry of the continental shelf plays an

important role in determining the spatial distribution of Antarctic fast-ice features

by means of determining the location of grounded icebergs (Massom et al., 2001b).

Though it has not been extensively covered in the literature, the spatial scale of

coastal features (promontories) is also expected to be an important parameter in

determining the location of fast-ice features (R. Smith, personal communication,

July 2010, Mahoney et al., 2007a). This is beyond the scope of this thesis, but
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investigation of this factor is planned.

Ocean current and wind velocities can have complex and directionally- de-

pendent effects on fast ice. Offshore winds are known to be a major factor affecting

fast-ice breakup (Heil , 2006; Massom et al., 2009), by potentially producing a drag

force on pressure ridges and causing fast ice to fracture. Ephemeral fast-ice break-

out and re-formation events can occur throughout the fast-ice season in certain

regions, e.g., north of Dumont d’Urville. In this location, this phenomenon occurs

where there are gaps in the distribution of grounded icebergs over ocean troughs,

and is related to changes in wind direction and strength (Massom et al., 2009).

The synoptic-scale passage of storm systems has also been associated with fast-ice

breakout in several studies, e.g., Heil et al. (2006); Divine et al. (2005); Higashi et al.

(1982). Model studies (König Beatty and Holland , 2010) have associated offshore

winds with fast-ice breakout due to mechanical creep (i.e., thinning and stretch-

ing) induced within the fast ice, though these model studies largely neglected other

factors potentially more likely to contribute to breakout (wind gusts, waves, etc.).

Though no study has explicitly investigated the effects of katabatic wind on Antarc-

tic fast-ice formation/breakout, it is likely that such winds have a similar effect to

offshore winds associated with synoptic-scale systems.

In a detailed case study, Massom et al. (2009) examined the extreme break-

out of fast ice north-west of Dumont d’Urville in 1998 using AVHRR satellite im-

agery. This breakout event was explained by unusually strong and persistent winds

from the south-west, i.e., at an angle of almost 45◦ to the coastline, but in line with

a bathymetric trough free from grounded icebergs. Similar wind anomalies with

an even stronger southerly (i.e., offshore) wind component were observed during

the winter and spring of 1963, when a “snapshot” of conditions shown in recently

declassified spy satellite images revealed near-zero fast-ice extents along the Adélie
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Land coast in August and October of that year. Further to the east, Massom et al.

(2003) observed a major breakout of the multi-year fast-ice zone adjacent to iceberg

B-9B in the spring-early summer of 1999-2000, due to an anomalous and sustained

reversal of the large-scale wind field.

As noted earlier, onshore winds and currents generally contribute to fast-

ice growth by advecting pack ice toward the coast or pre-existing fast ice (Massom

et al., 2001b, 2009). Moderate winds and currents parallel to the coast can advect

pack ice onto pre-existing fast-ice features or coastal protrusions into the ocean, to

dynamically form new fast ice (Fraser et al., 2010b; Massom et al., 2001b, 2009).

Conversely, observations in the Alaskan Arctic show that strong currents or winds

parallel to the coast advect large pack-ice floes or ungrounded icebergs at such high

speed that a collision with fast ice may shear off pre-existing fast ice (e.g., the

“freight train” event observed off northern Alaska using coastal radar by Mahoney

et al., 2007b). In fact, persistent but weaker offshore winds and currents in the

Arctic appear to actually stabilise fast-ice features by precluding this shearing flow

(A. Mahoney, personal communication, July 2010). Offshore airflow was correlated

with larger fast-ice extents in the Kara Sea, off the northern coast of Russia (Divine

et al., 2005, 2003). Here, offshore airflow was associated with the control of synoptic-

scale weather systems by the climatological Arctic High, blocking the passage of

destructive cyclonic systems and the milder air temperatures associated with these

systems.

This chapter presents an initial investigation into the effects of wind speed,

direction and air temperature on fast-ice formation and breakout on a local scale.

The results shown are preliminary only, at this stage. The following section presents

a review of large-scale modes of atmospheric circulation in the Southern Hemisphere,

with particular emphasis on effects on sea ice.
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5.2.2 Large-Scale Climate Modes and Indices

Several large-scale modes of atmospheric variability have been identified at

mid to high southern latitudes (see Simmonds and King (2004) and Simmonds

(2003), and the references therein, for reviews). These modes control the spatial

and temporal distribution of several climate parameters. Surface manifestations of

these modes of variability, e.g., wind speed and direction, surface air temperature,

are key drivers of sea-ice variability (Massom et al., 2009; Lefebvre and Goosse, 2008;

Stammerjohn et al., 2008; Yuan and Li , 2008; Raphael , 2007; Fogt and Bromwich,

2006; Yuan, 2004; Kwok and Comiso, 2002). In this section, we carry out a prelim-

inary assessment of the possible impacts of phases of these large-scale atmospheric

modes on fast-ice distribution and its variability.

5.2.3 Dominant Modes of Atmospheric Variability at High
Southern Latitudes

It is possible to identify large-scale modes of climate variability by conduct-

ing an Empirical Orthogonal Function (EOF) analysis on time series of geopotential

height or Mean Sea Level Pressure (MSLP) (Peixóto and Oort , 1992). When per-

forming such an analysis over the the mid- to high-latitude Southern Hemisphere,

the first EOF shows a near zonally-symmetric pattern, with a broad pressure fea-

ture centred over the Antarctic continent, and pressures of opposite sign at mid

latitudes (e.g., Simmonds and King , 2004). This EOF is known as the South-

ern Annular Mode (SAM), and is the dominant large-scale mode of variability in

MSLP/geopotential height at southern polar latitudes (Mo and Ghil , 1987). SAM

(also known as the Antarctic Oscillation or Southern Hemisphere Annular Mode)

varies from weekly (Baldwin, 2001) to intra-decadal (Kidson, 1999) timescales. A

positive index indicates lower pressures over the continent, resulting in a stronger
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Polar Vortex, and stronger westerly winds around the coast of East Antarctica

(Stammerjohn et al., 2008). SAM has become increasingly positive in recent decades

(Marshall , 2003), and a corresponding increase in westerly wind strength has been

observed around the East Antarctic coast (Turner et al., 2005).

The second EOF is known as the Pacific-South American (PSA) pattern,

showing a “dipole”-like pattern between the Amundsen and Weddell seas. This is

characterised by a pressure centre located near Drake Passage, bordered to the east

and west by pressure centres of the opposite sign (Mo and Ghil , 1987). This re-

gion is known as the Antarctic Dipole (ADP). The variability of the PSA pattern

is thought to be driven by the El Niño-Southern Oscillation (ENSO) via a tele-

connection from the source of the Southern Oscillation, the tropical Pacific Ocean

(Mo and White, 1985; Karoly , 1989; Harangozo, 2000; Turner , 2004). Its signal

is transmitted poleward by both oceanic currents and atmospheric Rossby waves

(Platzman, 1968; Turner , 2004). The propagation of Rossby waves to high south-

ern latitudes can affect the trajectories of storm systems, thereby influencing the sea

level pressure (Hoskins and Karoly , 1981). ENSO, and thus the PSA pattern, varies

on timescales from 2 to 6 years (Diaz and Pulwarty , 1994). Because the pressure

centres of the PSA pattern are concentrated over the ADP region, this pattern is

thought to have little influence along the East Antarctic coast (Simmonds and King ,

2004). Oceanic propagation of ENSO signals around Antarctica has been linked to

the Antarctic Circumpolar Wave (ACW), a wave 2 pattern with a period of ∼ 8

years, propagating eastward with the Antarctic Circumpolar Current (White and

Peterson, 1996; Jacobs and Mitchell , 1996; White et al., 1998). Signals of ENSO are

detected in Antarctic meteorological, ice core and sea-ice records (Turner , 2004).

The third EOF of high-latitude Southern Hemisphere MSLP shows three

quasi-stationary pressure centres located near the three major mid-latitude land
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masses of Australia, South America and Africa (Raphael , 2004, 2007). This is

known as the Zonal Wave 3 (ZW3) pattern. A ZW3 index was developed by Raphael

(2004), and used to investigate the influence of the ZW3 pattern on sea-ice variability

(Raphael , 2007). A strong positive correlation was observed between the ZW3 index

and sea-ice concentration anomaly between 60 and 90◦ E (Raphael , 2007).

In addition, there are several modes of large-scale climate variability which

vary both spatially and temporally and cannot be captured by EOF analyses. As

such, Extended Empirical Orthogonal Function (EEOF) analysis is required for

detection (Peixóto and Oort , 1992). These modes include:

• The Semi-Annual Oscillation (SAO), a twice-annual cycle in SLP and air tem-

perature which is a consequence of complex interactions between ocean, at-

mosphere and incoming shortwave radiation (van Loon, 1967; Simmonds and

Jones, 1998); and

• the Antarctic Circumpolar Wave (White and Peterson, 1996; White et al.,

1998; Haarsma et al., 2000).

The SAO, ACW and ZW3 indices are not considered in this work for the

following reasons. The variability in the SAO is largely represented in the ERA

Interim climatology used here (as detailed in Section 5.3). In addition, the ZW3

index is currently only available up to 2005 (M. Raphael, personal communication,

June 2010). Moreover, the magnitude of the ACW becomes greatly attenuated in

the Indian Ocean and Western Pacific Ocean sectors (Yuan and Li , 2008), and its

existence and persistence, and mechanism of generation, have been the subject of

recent debate in the literature (Aiken et al., 2006; Mélice et al., 2005; Venegas, 2003;

Haarsma et al., 2000; White et al., 1998).
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5.2.4 Impacts of Large-Scale Atmospheric Variability on
Antarctic Pack Ice

Large-scale modes of atmospheric variability affect sea-ice extent, concen-

tration and seasonality indirectly via changes in surface climate parameters, e.g.,

surface air and sea surface temperature, and wind fields influenced by changes in the

spatial distribution of MSLP. Some of the more recent publications investigating the

effects of these modes of variability on sea ice include Stammerjohn et al. (2008);

Yuan and Li (2008); Raphael (2007); Fogt and Bromwich (2006); Turner (2004);

Lefebvre and Goosse (2008); Liu et al. (2004a); Yuan (2004); Kwok and Comiso

(2002). The findings of these publications will be briefly summarised below, with

particular emphasis on links in East Antarctica where possible.

Stammerjohn et al. (2008) and Fogt and Bromwich (2006) noted a shift in

the interactions between ENSO and SAM in the ADP region between the 1980s and

1990s. Destructive interference between the patterns (i.e., opposite effects of SAM

and ENSO on MSLP) in the ADP region, leading to a weaker ENSO teleconnection

during the 1980s, changed to constructive interference and a strong teleconnection

during the 1990s. The strongest teleconnections were observed in the ADP region

when negative SAM indices were coincident with negative SOI (El Niño) conditions,

or positive SAM with positive SOI (La Niña). This is in contrast to earlier work,

which suggested that SAM and SOI indices of the same sign produced qualitatively

opposite effects on sea-ice concentration (Liu et al., 2004a). Interactions between

the SAM and PSA patterns are thus particularly strong in the ADP region (Kwok

and Comiso, 2002; Liu et al., 2004a; Yuan, 2004; Yuan and Li , 2008; Stammerjohn

et al., 2008; Fogt and Bromwich, 2006), and correspondingly weaker/more variable

along the East Antarctic coast (Stammerjohn et al., 2008).
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Liu et al. (2004a) analysed recent sea-ice variability in West Antarctica in

the context of SAM and SOI indices. It was concluded that although SAM and

ENSO influence the changes in sea-ice concentration observed in the Ross, Belling-

shausen and Amundsen seas, the SOI and SAM indices alone could not explain the

regional sea-ice trends observed. The authors recommend further work examining

the influence of other high-latitude atmospheric modes on sea ice (i.e., SAO and

PSA).

Despite the complex teleconnections between the tropical Pacific Ocean and

the ADP region (van Loon and Jenne, 1972), and significant attenuation of the

ENSO by the time it propagates to the East Antarctic coast (Turner , 2004), corre-

lations have been found between overall sea-ice edge location and SOI (Simmonds

and Jacka, 1995), particularly in the Indian Ocean sector (35 - 65◦ E). Simmonds

and Jacka (1995) observed a positive correlation between SOI and fast-ice edge

location, with a maximum correlation at ∼6 to 10 months (SOI leading sea ice).

Simmonds and Jacka (1995) observed other, weaker correlations in different sec-

tors around the Antarctic coast, but SOI was generally observed to lead anomalies

in the sea-ice edge location (except for “Australian longitudes”, i.e., the Western

Pacific Ocean sector). Correlations were strongest during April - October, which

the authors attributed to a seasonally-variable teleconnection strength, though this

may also be a reflection of the lower relative variability of the overall pack-ice edge

location during the wintertime maximum. Hall and Visbeck (2002) conducted an

investigation into the influence of SAM on June-to-November modeled Antarctic

sea-ice thickness distribution. The highest correlations were found in the Indian

Ocean sector, but in the marginal ice zone (MIZ). Correlations between SAM index

and sea-ice thickness near the coast were close to zero. Hall and Visbeck (2002)

concluded that sea-ice thickness is more strongly controlled by thermodynamic pro-
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cesses than wind velocity anomalies associated with SAM. On the other hand, sea-ice

extent and the location of the ice edge appears to be modulated by the SAM index,

with a positive SAM leading to divergent sea-ice conditions, and a northward ex-

pansion of the ice edge (Hall and Visbeck , 2002). In contrast, Massom et al. (2006a)

observed extreme dynamic thickening of pack ice in the West Antarctic Peninsula

region due to wind-driven ice convergence against the Peninsula in the spring of

2001. This was related to a positive SAM index, and a strong ZW3 pattern.

Kwok and Comiso (2002) also found that the links between ENSO and

coastal parameters were stronger in the Indian Ocean sector than the Western Pacific

Ocean sector. In particular, a negative correlation between Sea Surface Tempera-

ture (SST) anomaly and SOI was observed in the Indian Ocean sector, significant

at the 95% confidence level, giving a difference of ∼1.0 ◦C between a strong La Niña

(SOI > 0) and a strong El Niño (SOI < -1). Correlations between SOI and surface

air temperature, and SOI and sea level pressure, were close to zero across the East

Antarctic coast.

Raphael (2007) investigated the effects of the ZW3 pattern on sea-ice vari-

ability. During times of a positive ZW3 index, three positive geopotential height

(GPH) anomalies are found at approximately 70◦ W, 50◦ E and 160◦ E, with three

GPH minima between. These GPH anomalies lead to anomalous northward airflow

at approximately 170◦ W, 40◦ W and 80◦ E, and southward airflow at approximately

100◦ W, 20◦ E and 130◦ E. Regions of anomalous northward (southward) airflow had

higher (lower) sea-ice concentrations during time of positive ZW3 index, which was

attributed to modified temperature differences between the ocean and atmosphere

rather than a response to modified surface winds.

Yuan and Li (2008) investigated the links between several climate modes

(PSA, ZW3, SAM and SAO) and sea-ice concentration, from 1978 - 2002. The
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ENSO signal itself was not one of the four indices correlated with sea-ice extent.

Instead, the PSA pattern, a manifestation of the ENSO signal as SLP anomalies,

was used. All four large-scale climate modes were found to be correlated with sea-

ice concentration anomalies, particularly along the West Antarctic Peninsula and in

the Weddell Sea, using a lag of two months (with sea-ice concentration anomalies

lagging each climate index). However, correlations along the East Antarctic coast

were close to zero for all four modes, especially adjacent to the coast where fast

ice forms. The effect of these four modes on sea-ice extent was also examined by

Lefebvre and Goosse (2008). In the Lefebvre and Goosse (2008) study, only the

summertime SAO index was significantly correlated with hemisphically-integrated

sea-ice extent, despite being poorly correlated regionally. The authors concluded

that the pattern of atmospheric variability which best described sea-ice extent in

the Southern Ocean was a combination of uncorrelated regional patterns (i.e., none

of the continent-wide, large-scale modes), and that the response of sea-ice extent to

large-scale atmospheric forcing should be studied regionally.

5.2.5 Impacts of Large-Scale Atmospheric Variability on Fast Ice

Despite the recent work on the complex response of the overall Antarctic sea-

ice cover to change and variability in large-scale atmospheric forcing, relatively little

is known about the response of fast ice to such forcing. This has in large part been

due to the lack of a suitable large-scale time series of fast-ice extent for the purpose

(this is also the case for the Arctic). The generation of the new MODIS-derived

fast-ice time series gives the opportunity to carry out an analysis of the large-scale

response of East Antarctic fast ice to atmospheric variability (and change) for the

first time.

As well as covering the fast-ice response to local atmospheric forcing, Heil
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(2006) described the localised multi-decadal response of fast-ice thickness and sea-

sonality near Davis Station, East Antarctica, under what appeared to be a climate

modulated by an increasing SAM index (negative MSLP trend, positive wind speed

trend, winter/springtime warming, summer/autumn cooling). Positive trends in

precipitation were also observed (except during summer), along with an increase in

storm activity (over the period 1969-2003). Significant (at the 90% confidence level

or higher) negative correlations were found between fast-ice thickness and air tem-

perature, snowfall, cyclonicity (using a storm index related to the power spectrum

of MSLP variability), and wind speed. Air temperature was also correlated with

date of maximum fast-ice thickness, and cyclonicity with breakout date.

Working in Arctic Alaska, Mahoney et al. (2007a), analysed Radarsat SAR-

derived fast-ice extent from 1996 to 2004 in conjunction with Characteristic Patterns

(CPs) of Sea Level Pressure (SLP) in the region. Though different in concept to

an EOF on time series of SLP, the CPs represent broad-scale synoptic features

from which wind vectors can be inferred. No correlation was found between CP

occurrence and fast-ice events (date of first ice, stable ice, break-up, ice-free). Similar

work has been done in the Kara Sea in the Russian Arctic (Divine et al., 2003, 2005),

where an observed bimodality in fast-ice distribution was related to monthly MSLP.

MSLP anomalies were also analysed during times of breakout and formation. Fast-

ice expansion phases were associated with the presence of the climatological Arctic

High to the north, producing a strong meridional pressure gradient and blocking the

passage of storm systems. Conversely, the presence of a trough was associated with

fast-ice breakout events. It was concluded that storminess plays a role in fast-ice

breakup in this region (Divine et al., 2003, 2005).

Massom et al. (2009) conducted the most comprehensive study to date on

the influence of SAM and SOI on Antarctic fast-ice extent, albeit confined to a
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sector of the Adélie Land coast. Working on a region of largely annual fast ice to

the north/northwest of Dumont d’Urville Station, they related Emperor penguin

(Aptenodytes forsteri) breeding success to AVHRR-derived fast-ice extent and near-

est distance from the colony to open water. In this region and for the limited period

from 1992 to 1999, SAM index was strongly correlated with nearest distance to open

water (R2=0.75), and fast-ice areal extent (R2=0.58). Corresponding correlations

with SOI instead of SAM yielded values of 0.31 and 0.17 respectively. These results

indicate that wind anomalies associated with SAM play a key role in modulating

fast-ice variability on a regional scale.

Section 5.3 will next outline the datasets and methods used in this chapter

to investigate links between fast ice and atmospheric parameters. Section 5.4 fol-

lows with several correlation analyses to investigate the response of fast-ice extent to

SOI and SAM indices. Section 5.5 then presents several case studies in sub-regions

around the East Antarctic coast, to investigate which local-scale atmospheric pa-

rameters are important influences on fast-ice extent.

5.3 Datasets and Methods

The fast-ice extent time series was generated from cloud-free composite

MODIS imagery (Fraser et al., 2009, Chapter 2 of this thesis), augmented with

AMSR-E data when required (Fraser et al., 2010a, Chapter 3). The 8.8-year time

series is presented in Chapter 4 (Fraser et al., subm. ), and is comprised of 159

consecutive 20-day resolution fast-ice maps.

For the purposes of this chapter, the East Antarctica-wide dataset was spa-

tially subsetted into four sub-regions, each around 10◦ of longitude wide, as shown in

Figure 5.1. Two are from the Indian Ocean sector, while the other two are from the
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Western Pacific Ocean sector. These sub-regions, and the justification for choosing

each sub-region, are as follows:

• a) The Syowa Station region, including extensive annual and multi-year fast

ice in and around Lützow-Holm Bay (34 - 42◦ E). This is a site of intensive

satellite- and surface-based observational work on fast-ice extent and charac-

teristics by Japanese researchers, e.g., Ushio (2006, 2008); Uto et al. (2006);

Enomoto et al. (2002);

• b) The Mawson Station/Cape Darnley region, covering the largely annual

fast-ice feature off the Mawson coast (60 - 71◦ E). This sub-region includes

several Emperor penguin rookeries (Fretwell and Trathan, 2009), e.g., the Tay-

lor rookery, ∼61◦ E, and the Auster rookery, ∼64◦ E. The breeding success of

Emperor penguins is closely linked with fast-ice extent and seasonality (Mas-

som et al., 2009). This is also the site of an important new Japanese-led field

programme which aims to investigate and quantify the formation of Antarc-

tic Bottom Water (AABW) from the Cape Darnley Polynya (Ohshima et al.,

2009; Fukamachi et al., 2010; Tamura et al., 2008). Fast ice plays a key role

in polynya dynamics here. Due to the lack of north-south aligned in coastal

protrusions, this region can be considered representative of fast-ice sub-regions

i, iii, v and x (see Section 4.3.1);

• c) The Dumont d’Urville Station region, covering the largely annual fast-ice

feature extending from the Dibble Iceberg Tongue to Commonwealth Bay (134

- 145◦ E). This work will build upon similar work in the region by Massom

et al. (2009), which related atmospheric parameters to fast-ice extent (and

Emperor penguin breeding success). The fast ice in this region is also inhabited

by Weddell seals (Andrews-Goff et al., 2010). Due to the line of grounded
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icebergs to the west of this region, it can be considered representative of much

of fast-ice sub-section ix (see Section 4.3.1); and

• d) The Mertz Glacier/B-9B region (145 - 154◦ E), including the annual and

multi year fast-ice features to the east of the Mertz Glacier Tongue. This region

is the focus of a new study analysing the possible role of fast ice in stabilising

floating ice tongues (Massom et al., 2010a). Fast ice also plays a crucial role

in, and interplays with, the globally-important Mertz Glacier Polynya (Barber

and Massom, 2007; Massom et al., 2001b). It has also changed dramatically

with the recent calving (in February 2010) of the glacier tongue (Young et al.,

2010).

Additionally, the correlation between SAM/SOI and fast-ice extent in the

Indian Ocean (20 - 90◦ E) and Western Pacific Ocean sectors (90 - 160◦ E) is

investigated. These regions are shown in Figure 5.1.
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Figure 5.1: Map showing the sub-regions used in this chapter (a to d). a): The
Syowa sub-region (34 - 42◦ E). b): The Mawson/Cape Darnley sub-region (60 -
71◦ E). c): The Dumont d’Urville sub-region (134 - 145◦ E). d): The Mertz/B-9B
sub-region (145 - 154◦ E).

European Centre for Medium-range Weather Forecasts (ECMWF) ERA In-

terim Reanalysis data (Berrisford et al., 2009) are used to provide surface-level

meteorological data on local scales. The ERA data, obtained from http://data-

portal.ecmwf.int/data/d/interim daily/, are provided at a 1.5◦ × 1.5◦ resolution,

and apparently provide more realistic data than the equivalent NCEP/NCAR (Na-
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tional Centers for Environmental Prediction/National Center for Atmospheric Re-

search) reanalysis data around the East Antarctic coast (Bromwich et al., 2007; Fogt

and Bromwich, 2006). The following ERA fields are used in the analysis:

• Temperature at 2 m (T2M);

• 10 m zonal and meridional winds (U10M and V10M); and

• Mean Sea Level Pressure (MSLP).

These reanalysis fields (T2M, U10M, V10M and MSLP) were formed into 20-day

means, to enable direct comparison (analysis) with the MODIS fast-ice maps. Longer-

term (1989-2008) climatology fields (means) for T2M, MSLP, U10M and V10M were

also produced from the ERA data, in order to study anomalies in these fields.

Specifically, investigation of the response of fast-ice extent to wind conditions

was conducted using detailed times series of wind difference plots (20-day wind

conditions minus 1989-2008 climatology). These plots were created for each 20-

day interval in each case study (see Section 5.5). The wind difference plots are

essentially an alternative way of displaying a wind rose (a graphical representation

of wind strength and direction over a period of time), with the advantage of being

able to subtract the climatology to assess anomalies in strength, frequency and

direction together. Such a subtraction is difficult to present/interpret using wind

rose plots alone.

These plots are constructed by binning 20 days’ wind reanalyses (20 days

× 4 observations per day = 80 wind observations per wind difference plot) into 8

direction bins (cardinal plus ordinal points of the compass) along the x-axis and

seven strength bins along the y-axis. Wind strength bins were chosen to be 0-2, 2-5,

5-10, 10-15, 15-20, 20-25, and >25 (all in units of m/s), to sufficiently resolve the ex-
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pected range in 6-hourly mean wind strength around the East Antarctic coast. The

same process was conducted using long-term mean climatology data, and a subtrac-

tion (observed minus climatology) was performed to generate the wind difference,

essentially a plot of the wind anomaly in each direction/strength bin. Frequency of

wind anomaly from each direction at each strength bin is represented by contours,

with blue (red) contours showing winds stronger (weaker) than the climatology. In

addition to detailed wind difference plots, a time series of T2M was created for

each case study. To assess possible relationships between regional pack-ice distribu-

tion and fast-ice extent, 20 day AMSR-E passive microwave sea-ice concentration

and MODIS visible/thermal infrared composite images were created, and will be

presented where applicable.

A long-term wind plot representing the prevailing wind conditions is created

for each case study by combining all wind observations from 1989 - 2008 into a

single wind plot. This was found to be useful in assisting interpretation of the wind

difference plots.

For computational simplicity, contemporary SAM index values are typically

generated using a simple difference formula, rather than performing an EOF anal-

ysis. Such a formula usually takes the form

SAM = P40◦S − P65◦S (5.1)

where SAM is the SAM index, and P40◦S (P65◦S) is the zonal MSLP at 40◦ S (65◦ S).

This chapter uses this differential form of SAM index, which was obtained from the

British Antarctic Survey (Marshall , 2003). Values for the SOI were obtained from

the Australian Bureau of Meteorology, which uses the Troup SOI (Troup, 1965).

The formula for the monthly Troup SOI is as follows:

SOI = 10
∆P − ∆Pav

σav

(5.2)
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where SOI is the SOI, ∆P is the Tahiti MSLP minus the Darwin MSLP for the

month in question, ∆Pav is the long-term mean pressure difference between Tahiti

and Darwin for the month in question, and σav is the long-term mean standard

deviation of ∆P for the month in question. With the conventional multiplication

by a factor of 10, Troup SOI values typically range from -35 to +35. SAM and SOI

indices for March 2000 - December 2008 are shown in Figure 5.2.

Figure 5.2: a) Time series of monthly mean SOI and b) SAM index values from
March 2000 to December 2008.

5.4 Correlation of Fast-Ice Extent by Sector with SOI
and SAM Indices

A correlation analysis was carried out to investigate possible links between

fast-ice extent (across the entire East Antarctic coast and the Indian Ocean and

Western Pacific Ocean sectors) and the SOI and SAM indices (see Figure 5.3). Cor-

relations with SAM index values (Figure 5.3, panels b, d and f) generally displayed

low correlation coefficients (R< ±0.2), and high variability as a function of lag. In

this preliminary correlation analysis, it appears that the SAM index is uncorrelated

with regional fast-ice extent. However, a more in-depth analysis including separate

correlation analyses by season or month, may yield higher correlation coefficients.
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This is beyond the scope of this thesis, but is planned. The low observed correlation

is surprising given the high correlation between SAM and fast-ice extent observed

by Massom et al. (2009), albeit over a much smaller region.

Again in contrast to Massom et al. (2009), there appears to be a high cor-

relation between the SOI and fast-ice extent (see Figure 5.3, panels a, c and e),

both in the Indian Ocean sector (maximum R≃0.45 at a lag of 6 months, SOI lead-

ing fast-ice extent) and the East Antarctic coast (maximum R≃0.4 also at a lag

of 6 months, SOI leading fast-ice extent). The mechanism of teleconnection is un-

known, but high correlation at a lag of 6 months implies an atmospheric, rather

than oceanic, propagation. This is because propagation eastward from the ADP

region to the Indian Ocean sector, at the speed of the ACW (White and Peterson,

1996), would take approximately 3 years. Compared to correlations against SAM,

SOI correlations display much lower variability as a function of lag.
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Figure 5.3: Correlation of SOI and SAM indices with fast-ice extent as a function
of lag. a) and b): Correlation of SOI and SAM, respectively, with fast-ice extent
across East Antarctic coast (10◦ W - 172◦ E). c) and d): Correlation of SOI and
SAM, respectively, with fast-ice extent across in Indian Ocean sector (20 - 90◦ E).
e) and f): Correlation of SOI and SAM, respectively, with fast-ice extent across the
Western Pacific Ocean sector (90 - 160◦ E).
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5.5 The Influence of Atmospheric Conditions on
Regional Fast-Ice Variability

The aim of this section is to examine possible relationships between fast-

ice changes/ anomalies and regional-scale change/variability in key environmental

parameters, e.g., wind direction and strength, surface air temperature, and nearby

pack-ice conditions. This is done by carrying out nine case studies which focus on

four sub-regions (each ∼10◦ of longitude wide) around the East Antarctic coast.

These are shown in Figure 5.1.

In this preliminary analysis, maps of MSLP were not considered because of

the loss of information associated with averaging MSLP over several 20-day intervals.

Future extensions of this work will use a “storm index”, similar to that used by

Heil (2006), to provide information on storminess. Oceanographic data, e.g., ocean

currents and wave parameters are also not included at this stage.

The fast-ice extent time series, spatially subsetted to these four sub-regions,

is shown in Figure 5.4. From these time series, nine temporal case studies were

chosen. Three were chosen as “control” case studies (Case Studies 1, 4 and 7), i.e.,

where the fast-ice extent is similar to the 8.8-year mean annual cycle. The remaining

six case studies were chosen by finding large departures from the mean annual cycle

in each sub-region, with the aim of determining the cause of such fast-ice extent

anomalies. These case studies are marked on Figure 5.4, while table 5.1 details the

location, time interval, and the rationale for these case studies. In general, inter-

annual variability in each sub-region is much larger than that for the East Antarctic

coast as a whole (see Chapter 4). This is a consequence of averaging over a much

smaller area.
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Figure 5.4: Time series of fast-ice extent in each sub-region (see Figure 5.1). The
nine case study periods analysed are shown using red circles.
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Table 5.1: Details of the nine case studies used to investigate atmospheric influences
on fast-ice growth/breakout events (see Figure 5.4). To enable inter-comparisons
between years, the final data point in each year spans 25 days (26 in a leap-year).

Case Sub-region Date range Rationale

1 Syowa 2000, 61-80 to A “control” case study, where
341-366 fast-ice extents are similar to

the 8.8 year climatology
2 Syowa 2003, 341-365 to Anomalously low

2004, 141-160 summertime extent in
Lützow-Holm Bay

3 Syowa 2007, 341-365 to Anomalously extensive
2008, 141-160 summertime fast-ice conditions

in Lützow-Holm Bay
4 Mawson/ 2000, 121-140 to A “control” case study, where

Cape Darnley 341-366 fast-ice extents are similar to
the 8.8 year climatology

5 Mawson/ 2007, 341-365 to Anomalously extensive
Cape Darnley 2008, 101-120 summertime fast-ice conditions

along Mawson Coast
6 Dumont 2000, 261-280 to Early and near-complete

d’Urville 2001, 41-60 fast-ice breakout
7 Dumont 2004, 101-120 to A “control” case study, where

d’Urville 341-366 fast-ice extents are similar to
the 8.8 year climatology

8 Mertz Glacier/ 2001, 321-340 to Anomalously low summertime
B-9B 2002, 121-140 fast-ice extent

9 Mertz Glacier/ 2006, 221-240 to Anomalously high wintertime
B-9B 301-320 fast-ice extent

5.5.1 Case Study 1: Near-Average Fast-Ice Conditions, Syowa
Station Sub-Region, 2000

Case Study 1 is a “control” case, chosen to investigate atmospheric condi-

tions during a period when fast-ice extent is similar to the 8.8 year climatology (see

Figure 5.5a). Aside from a strong negative temperature anomaly in the first two

20-day intervals (of ∼-4 ◦C), temperature anomalies were within ∼2 ◦C of the cli-

matology (Figure 5.5b). Figure 5.5c shows a plot of the prevailing wind conditions.

Analysis of wind difference plots reveals that wind anomalies were generally small

(Figure 5.5d-r). In these wind difference plots, blue (red) contours indicate that the
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observed wind over that 20-day interval was stronger (weaker) than the climatology

in that direction/strength bin. In contrast to the other case studies, there were no

strong positive (i.e., blue contour) wind anomalies greater than 10 m/s throughout

the entire case study. Differences between observed wind strength/direction and

the climatology are either small in magnitude (e.g., Figure 5.5f and p), from the

same direction but differing slightly in strength (e.g., Figure 5.5l), or from a dif-

ferent direction (not greater than 90◦) but at a similar strength (e.g., Figure 5.5d

and e). Overall sea-ice concentration conditions in the Indian Ocean sector (20-90◦

E) during 2000 were close to average (see Figure 4.11 in Chapter 4 of this thesis,

Comiso (2010), and Cavalieri and Parkinson (2008)).

Despite the relatively quiescent conditions (calm winds) and cold tempera-

tures in the first two 20-day intervals, no significant fast-ice growth was observed.

This may be related to the geometry of Lützow-Holm Bay. Once maximum extent

is attained, i.e., the bay is filled with fast ice, no further growth can occur without

strong wind from the north, advecting pack ice against the fast ice to lead to the

growth of dynamically-formed fast ice.
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Figure 5.5: Case Study 1, illustrating near-average fast-ice conditions, Syowa Sta-
tion sub-region, 2000. a): Fast-ice extent (black line) for the Case Study, and
the associated 8.8-year climatological fast-ice extent (green line). b): Temperature
anomaly time series. c): Wind plot of the prevailing wind conditions, averaged over
all seasons, from 1989 to 2008. The x-axis on panels a) to c) is labelled d) to r) for
cross-referencing with the wind difference plots (panels d to r). d) to r): Sequen-
tial 20-day wind difference plots for DOY intervals 2000, 61-80 to 2000, 341-366
respectively.
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5.5.2 Case Study 2: Low Minimum Fast-Ice Extent, Syowa
Station Sub-Region, 2004

Case Study 2, also in the Syowa sub-region, investigates a particularly low

summertime fast-ice extent in late 2003/early 2004 (minimum of ∼4,500 km2 at

DOY 61-80, compared with the 8.8 year mean extent of ∼17,500 km2 for that

DOY interval, see Figure 5.6a). Temperature anomalies were in general consistently

positive throughout the case study period (Figure 5.6b). Analysis of the wind

difference plots (Figure 5.6d-l) reveals some more significant anomalies than the

control case. In particular, anomalously strong easterly winds changed to anomalous

westerlies from DOY 1-20 to 21-40. This is observed in conjunction with the MSLP

anomaly time series changing sign (not shown), possibly indicating the passing of

a synoptic-scale (storm) system. This hypothesis is strengthed by observations of

alternating wind anomalies throughout the early part of the case study. Wind

strengths were similar to the climatology throughout the case study interval, with

the exception of DOY 341-365 in 2003 (Figure 5.6d) and DOY 101-120 in 2004

(Figure 5.6j) where winds were calmer than the climatology, and DOY 1-20 (Figure

5.6e) where strong easterlies were more frequent.

Of possibly greater importance is the relative lack of a protective pack ice

cover north of Lützow-Holm Bay during the 2004 minimum (overall sea-ice extent of

∼31,400 km2 between 34 and 42◦ E) (see Figure 5.7), especially compared with the

2008 minimum (overall sea-ice extent of ∼44,000 km2 in the same longitude range),

which is the subject of Case Study 3. The anomalously strong and frequent easterly

wind anomaly at DOY 1-20, 2004 may have advected any remaining pack ice away

from Lützow-Holm Bay, thus rendering the latter more exposed to wave-induced

breakout. The relative lack of a protective pack ice cover (see Figure 5.7) may have

left the Lützow-Holm Bay fast ice vulnerable to wave-induced breakout (Langhorne
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et al., 2001).

Figure 5.7: AMSR-E sea-ice concentration maps during 2004, 21-40 (top) and 2008,
21-40 (bottom). The Mosaic Of Antarctica (MOA) coastline and grounding line
(Scambos et al., 2007) are shown in red. There is much less protective pack ice
north of Lützow-Holm Bay during the 2004 summer minimum compared to 2008.
Artefacts of the ASI concentration retrieval algorithm can be seen in the eastern
part of the lower panel (Spreen et al., 2008).

5.5.3 Case Study 3: High Minimum Fast-Ice Extent, Syowa
Station Sub-Region, 2008

Case Study 3, again situated in the Syowa sub-region, examines the sum-

mertime fast-ice extent in 2008 (covering the same time of year as Case Study 2).

During this summer, fast-ice extent was anomalously high in and around Lützow-
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Figure 5.6: Case Study 2, illustrating low minimum fast-ice extent, Syowa Station
sub-region, 2004. a) to c): As in Figure 5.5, but for Case Study 2. d) to l):
Sequential 20-day wind difference plots for DOY intervals 2003, 341-365 to 2004,
141-160 respectively.
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Holm Bay (see Figure 5.8a). In contrast to Case Study 2, temperature anomalies

(Figure 5.8b) were consistently negative, ranging from 0 to -2.5 ◦C. Additionally,

pack ice around Lützow-Holm Bay and along the Enderby Land coast (40 - 50◦ E)

was much more extensive than normal (Massom et al. (2010b), also see Figure 5.7),

to again possibly protect the fast ice from wave-induced breakout. Furthermore, Sea

Surface Temperatures (SSTs) north of Lützow-Holm Bay were 0.3 to 0.6 ◦C below

climatological values (Xue and Reynolds, 2010), with surface temperatures around

Lützow-Holm Bay being 1 to 2 standard deviations below the mean at this time

(Fogt and Barreira, 2010). This is likely related to the positive SAM index at this

time, leading to a stronger polar vortex, and more effective isolation from warmer

mid-latitude winds (Xue and Reynolds, 2010). However, effects of a stronger polar

vortex, e.g., stronger westerly winds, are not shown in the localised wind anomaly

plots for this case study (Figure 5.8d-l). As with Case Study 2, the increased fast-ice

extent does not appear to be directly related to observed wind conditions (see Figure

5.8). No wind anomalies with a strong northerly component, which may have led to

dynamically-formed fast-ice growth via advection of pack ice into pre-existing fast

ice, were observed at this time. Thus, favourable pack-ice conditions combined with

colder than average temperatures may explain this positive fast-ice extent anomaly.
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Figure 5.8: Case Study 3, illustrating high minimum fast-ice extent, Syowa Station
sub-region, 2008. a) to c): As in Figure 5.5, but for Case Study 3. d) to l):
Sequential 20-day wind difference plots for DOY intervals 2007, 341-365 to 2008,
141-160 respectively.
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5.5.4 Case Study 4: Near-Average Fast-Ice Conditions, Mawson/
Cape Darnley Sub-Region, 2000

Case Study 4 is another “control” case, chosen to investigate the near-

average fast-ice extent in the Mawson/Cape Darnley Sub-Region in 2000, from DOY

121-140 to 341-365 (see Figure 5.9). The fast-ice extent is within 5,000 km3 of the

8.8-year mean extent for all 20-day time periods within this interval, except for

DOY 181-200 when the fast-ice extent is ∼10,000 km3 below the 8.8-year mean,

despite strong wind anomalies during several of the 20-day windows within the time

interval, e.g., Figure 5.9d, h, j, k and n. Strong temperature anomalies are also

observed throughout the case study period (Figure 5.9b), although there appears to

be no strong relationship between temperature anomaly and fast-ice extent at this

time. During this period, pack-ice area/extent in the Indian Ocean sector was close

to average (see Figure 4.11 in Chapter 4 of this thesis, Comiso (2010), Cavalieri and

Parkinson (2008)). This suggests that the extent of adjacent pack ice may influence

fast-ice extent in this location.
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Figure 5.9: Case Study 4, illustrating near-average fast-ice conditions, Maw-
son/Cape Darnley sub-region, 2000. a) to c): As in Figure 5.5, but for Case Study
4. d) to o): Sequential 20-day wind difference plots for DOY intervals 2000, 121-140
to 341-365 respectively.
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5.5.5 Case Study 5: High Minimum Fast-Ice Extent, Mawson
Station/Cape Darnley Sub-Region, 2008

Case Study 5, again in late 2007/early 2008 but this time located in the

Mawson Station/Cape Darnley sub-region, investigates a positive fast-ice extent

anomaly along the Mawson coast (Figure 5.10a). Pack-ice concentration and ex-

tent in early 2008 in this region were well above average (Massom et al., 2010b).

Temperature anomalies (Figure 5.10b) increased from ∼-2 to +3.5 ◦C over the case

study period. Wind difference plots (Figure 5.10d to j) showed repeating, strong

anomalies from the east and south-east (Figure 5.10d, g and j). The lack of ob-

served wind anomalies from the north/north west, which would advect pack ice into

the pre-existing fast-ice features, leads to the conclusion that wind strength and

direction did not, in this case, play a large part in this anomalously large fast-ice

minimum extent. Again, the persistently extensive surrounding pack ice may have

provided significant protection from wave-induced breakout, to combine with the

negative temperature anomalies early in the case study. Similarly to Case Study

3, a strongly positive SAM index at this time led to a stronger polar vortex and

effective isolation of the region from warmer, lower latitude air. This possibly con-

tributed to negative (i.e., 0.3 to 0.6 ◦C below the mean) SST anomalies observed in

the region (Xue and Reynolds, 2010; Fogt and Barreira, 2010). Though no study

has examined the effect of regional SST on Antarctic fast-ice extent, it follows that

less sea-ice melt would occur during years of colder SSTs, possibly leading to less

summertime fast-ice melt/breakout.
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Figure 5.10: Case Study 5, illustrating high minimum fast-ice extent, Mawson Sta-
tion/Cape Darnley sub-region, 2008. a) to c): As in Figure 5.5, but for Case Study
5. d) to j): Sequential 20-day wind difference plots for DOY intervals 2007, 341-365
to 2008, 101-120 respectively.
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5.5.6 Case Study 6: Early and Near-Complete Fast-Ice Breakout,
Dumont d’Urville Station Sub-Region, Late 2000

Case Study 6 examines the unseasonably early (compared to the 8.8-year

mean), abrupt (occurring largely within a single 20-day time interval) and almost

complete fast-ice breakout in the Dumont d’Urville Station sub-region in late 2000

(Figure 5.11a). This extensive breakout occurred in spite of the protective effects of

extensive pack ice surrounding the fast-ice feature (not shown). In fact, the observed

breakout coincided with several consecutive positive temperature anomalies (up to

+1.5 ◦C, Figure 5.11b). As with the Massom et al. (2009) study, a strong positive

south-easterly anomaly was observed during DOY 280-301, although this occurred

before the observed breakout. The wind anomaly regime switched to a persistent,

moderately strong (5-10 m/s) westerly wind anomaly in the subsequent 20-day pe-

riod, before again switching to strong easterlies. This pattern may be indicative

of the passage of one or more storm systems. Wind anomalies (Figure 5.11d-k)

were generally small before a persistent westerly anomaly during the time of fast-

ice breakout (DOY 2000, 301-320), followed by a strong easterly anomaly during

DOY 321-340 then a persistent easterly/south easterly anomaly (DOY 341-366).

It is likely that these strong wind anomalies, as well as the positive temperature

anomaly, contributed to the abrupt fast-ice breakout.
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Figure 5.11: Case Study 6, illustrating early and near-complete fast-ice breakout,
Dumont d’Urville Station sub-region, late 2000. a) to c): As in Figure 5.5, but for
Case Study 6. d) to k): Sequential 20-day wind difference plots for DOY intervals
2000, 261-280 to 2001, 41-60 respectively.
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5.5.7 Case Study 7: Near-Average Fast-Ice Conditions, Dumont
d’Urville Sub-Region, Mid-Late 2004

Case Study 7, is another “control” case, chosen to investigate the near-

average fast-ice conditions in the Dumont d’Urville sub-region in mid-late 2004 (see

Figure 5.12). The fast-ice extent within the sub-region was within ∼5,000 km2

of the 8.8-year mean cycle throughout the study period. As with Case Study 4,

another “control” case (see Figure 5.9), strong temperature anomalies (both positive

and negative) were observed (see Figure 5.12b), although the magnitude of wind

anomalies was smaller here than in Case Study 4 (see Fig 5.12d-p). Pack-ice extent

was below the climatological mean for the latter part of 2004 in the Western Pacific

Ocean sector (Comiso, 2010; Cavalieri and Parkinson, 2008).

A transient fast-ice breakout occurred at DOY 181-200, which was followed

by reformation in DOY 201-220. This ephemeral breakout was preceded by a strong

(+5.5 ◦C) positive temperature anomaly in the previous 20-day window (DOY 161-

180). The subsequent fast-ice re-formation occurred during a 20-day window where

temperatures were ∼3.5 ◦C below the climatological mean, supporting the conclu-

sion that temperature may play a predominant role in modulating fast-ice extent

during this case study.
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Figure 5.12: Case Study 7, illustrating near-average fast-ice conditions, Dumont
d’Urville sub-region, mid-late 2004. a) to c): As in Figure 5.5, but for Case Study
7. d) to p): Sequential 20-day wind difference plots for DOY intervals 2004, 101-120
to 341-365 respectively.
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5.5.8 Case Study 8: Low Minimum Fast-Ice Extent, Mertz
Glacier/B-9B Sub-Region, 2002

Case Study 8 investigates an extensive breakout in the fast-ice feature to the

east of the Mertz Glacier Tongue in early 2002. Barber and Massom (2007) give an

in-depth description of the “ice-scape” of this region. A similarly abrupt (though

less complete) breakout in this region in late October 1999 was discussed by Massom

et al. (2003). Pack ice concentration in the region was well below average in 2002

(Waple and Schnell , 2003). This may have led to wave-induced fast-ice breakout.

Surface air temperature was generally above average (Figure 5.13b). Persistent

wind anomalies from the west/north west were observed for the first 80 days of

the Case Study (Figure 5.13d-g), close to 180◦ from the climatological mean. The

combination of these three factors likely led to the observed breakout, which resulted

in the lowest fast-ice extent in the region over the entire 8.8-year time series, i.e.,

∼5,500 km2. The lack of fast ice surrounding the large tabular iceberg B-9B at

this time allowed it to rotate clockwise (as seen from above), the most significant

movement of the iceberg observed throughout the 8.8-year time series (Massom,

2003). Similar fast-ice conditions during early 2010 may have precipitated the major

rotation of B-9B that led to its collision with the Mertz Glacier Tongue (MGT),

resulting in calving of the MGT (Young et al., 2010).
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Figure 5.13: Case Study 8, illustrating low minimum fast-ice extent, Mertz
Glacier/B-9B sub-region, 2002. a) to c): As in Figure 5.5, but for Case Study
8. d) to l): Sequential 20-day wind difference plots for DOY intervals 2001, 321-340
to 2002, 121-140 respectively.
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5.5.9 Case Study 9: High Wintertime Maximum Fast-Ice Extent,
Mertz Glacier/B-9B Sub-Region, 2006

Case Study 9 details the anomalously high, transient (persisting for only

one 20-day time interval) maximum fast-ice extent in 2006. This event may be akin

to the “stable extension” events observed in the Alaskan Arctic (Mahoney et al.,

2007a; Stringer et al., 1980), where fast ice ephemerally extends well beyond the

climatological maximum in a certain region. The most significant wind anomaly

(see Figure 5.14f) occurred during the timing of the anomalous maximum, when

strong wind anomalies were observed from the east and south-east. At this time of

year (DOY 261-280), which is near the annual sea-ice maximum extent (Gloersen

et al., 1992), strong easterly winds such as this would advect pack ice against the

pre-existing fast-ice feature east of B-9B. In this case, it appears that much of this

pack ice became temporarily consolidated and formed fast ice. This conversion of

pack ice to fast ice may have been aided by anomalously cold temperatures in the

preceding 20-day interval (nearly 6 ◦C colder than average, Figure 5.14b), although

the temperature anomaly became positive (∼+2 ◦C) during the fast-ice maximum.

This case study raises the issue of what is fast ice, and more specifically, how

long sea ice must remain stationary before it is considered fast ice. This issue was

discussed to some extent by Mahoney et al. (2005), who also used a 20-day motion

threshold to define fast ice.
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Figure 5.14: Case Study 9, illustrating high wintertime maximum fast-ice extent,
Mertz Glacier/B-9B sub-region, 2006. a) to c): As in Figure 5.5, but for Case Study
9. d) to h): Sequential 20-day wind difference plots for DOY intervals 2006, 221-240
to 2006, 301-320 respectively.
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5.6 Discussion, Conclusions and Further Work

5.6.1 Summary of Regional-Scale Atmospheric Influences on Fast
Ice

Analysis of these nine case studies reveals that the response of fast-ice extent

to changes in atmospheric parameters varies by region. Table 5.2 summarises which

factors are important in each sub-region.

Table 5.2: Summary table of factors influencing fast-ice growth/breakout in each
sub-region. An “x” indicates the factor that was identified as a strong influence on
fast-ice extent, while a “∼” indicates the factor that may influence fast-ice forma-
tion/breakout to a lesser extent.

Study sub-region Wind Temperature Pack-ice

Syowa x x

Mawson/Cape Darnley x

Dumont d’Urville x ∼

Mertz Glacier/B-9B x x

In the Syowa Station sub-region (Case Studies 1-3), surface air temperature

and pack-ice extent anomalies were found to control fast-ice extent. No strong

relationship between wind and fast-ice extent was observed. This is likely due to

the sheltering effect of Lützow-Holm Bay, which surrounds much of the fast ice in

this sub-region. Wind-driven fast-ice breakout in such a bay would require a strong

southerly wind, whereas prevailing wind conditions are primarily from the east and

south east.

Below-average adjacent pack-ice concentration/extent was also found to be

a major factor contributing to fast-ice breakup in this region by Higashi et al. (1982)

and Ushio (2006). In the Ushio (2006) study, a southerly wind anomaly was directly

implicated in a fast-ice breakout event in 2007, but more generally, the largest effect

of wind is to control the distribution of pack ice. Ushio (2006) also comment on
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the effect of surface air temperature on fast-ice stability in this region, stating that

warmer temperatures lead to mechanically weaker fast ice within the bay.

In the Mawson Station/Cape Darnley sub-region (Case Studies 4 and 5),

pack-ice extent anomalies were found be most closely linked to fast-ice extent. This

is likely a consequence of the coastal configuration here. The relative lack of north-

south protrusions into the Antarctic Coastal Current (ACC) leads to a narrow fast-

ice zone forming parallel to the coast, which is exposed along its northern edge to

wave-induced breakout (see previous chapter). The relative lack of influence of wind

anomalies on fast-ice extent here, as also observed in the Syowa Station sub-region,

is somewhat surprising given the differences in coastal configuration between the

two sub-regions.

In the Dumont d’Urville sub-region (Case Studies 6 and 7), anomalous wind

events were found to be an important influence on fast-ice extent, a finding also

reported by Massom et al. (2009) in the same location. Fast ice above the bathy-

metric trough located to the north-west of Dumont d’Urville Station is particularly

susceptible to ephemeral fast-ice breakout (Massom et al., 2009), though the near-

complete and abrupt fast-ice breakout in Case Study 6 suggests that much of the

fast ice in this sub-region is also relatively prone to such breakouts. As in the other

sub-regions, wave-ice interaction may also be a key factor, but this requires further

investigation.

Pack ice and wind conditions were both found to play important roles in

influencing fast-ice extent in the Mertz Glacier/B-9B sub-region (Case Studies 8 and

9). This may be because the fast ice here is likely largely dynamically-formed Barber

and Massom (2007), and thus favourable wind strength/direction (i.e., onshore, or

against B-9B/the Mertz Glacier Tongue) and pack-ice conditions are required for

fast-ice formation under such a regime.
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In the light of these nine case studies, we suggest that coastal configuration

is the single largest determinant of which atmospheric/oceanic conditions control

or influence fast-ice extent. Where dynamic fast-ice formation predominates (i.e.,

regions on the eastern “upstream” side of north-south protrusions into the ACC),

wind direction and pack-ice concentration/extent/presence may be the primary fac-

tors controlling fast-ice growth, while the presence or absence of adjacent pack ice

also likely influences breakout events by acting as a protective buffer against wave-

induced breakout. In regions containing a larger percentage of thermodynamically-

formed fast ice, temperature anomalies become a relatively important factor.

As mentioned, the effect of wind anomalies on fast-ice extent is complex. It

may be the case that wind-driven fast-ice variability is more of an indirect process,

with wind directly affecting pack-ice concentration via advection (as shown in Mas-

som et al. (2009)). Though it is outside the scope of this work, analysis of storm

conditions throughout each case study would be valuable, given that storminess has

been identified as a contributor to fast-ice breakout in both hemispheres (e.g., Heil ,

2006; Divine et al., 2003, 2005). Such work is planned for the future.

Perhaps the main difficulty associated with attributing fast-ice formation

and breakout events to changes in atmospheric parameters is the mismatch in time-

scales. Fast-ice extent can respond quickly to synoptic-scale atmospheric changes

(Heil , 2006; Mahoney et al., 2007a; Massom et al., 2009), on a timescale which is

poorly resolved in the 20-day resolution product detailed in this thesis. Thus, confi-

dent attribution of fast-ice breakout/formation events to particular atmospheric/pack

ice parameters requires a higher temporal resolution fast-ice extent time series. Nev-

ertheless, the results of this chapter suggest that the response of fast-ice to atmo-

spheric and pack ice conditions differs regionally, possibly reflecting the differences

in coastal configuration between the sub-regions studied here.
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5.6.2 Summary of Large-Scale Atmospheric Influences on Fast-Ice
Growth and Breakout

Fast-ice extent across the East Antarctic coast and in both the Indian Ocean

and Western Pacific Ocean sectors was found to be uncorrelated with SAM index

(R<0.2). However, correlations with SOI index were substantially higher, particu-

larly in the Indian Ocean sector (R≃+0.45) and the East Antarctic coast (R≃+0.4).

In these SOI correlation analyses, the maximum correlation coefficient was obtained

with a lag of 6 months (SOI leading fast-ice extent), implying an atmospheric ENSO

teleconnection.

These results stand in contrast to those of Massom et al. (2009), who found

a much stronger fast-ice response to SAM than SOI (in a regional study along the

Adélie Land coast). However, this correlation study involved only eight data points

for eight years, with fast-ice extent, distance to open water, SAM and SOI values

all averaged over the June - December period. The smaller-scale spatial averaging

used by Massom et al. (2009) may also be responsible for the differences in observed

correlations. It is also possible that the stability of the annual “buttress” of annual

fast ice to the north-west of Dumont d’Urville Station is particularly susceptible to

anomalies in wind speed and direction, given the strong response to wind anomalies

observed both in the Massom et al. (2009) paper and Case Study 6 presented here.

A significant factor here is the presence of a bathymetric trough (and an associated

lack of grounded icebergs) extending north to northwestwards from the coast near

Dumont d’Urville. The ephemeral breakouts and re-formations largely occur in this

area. Similar sensitivity to wind anomalies is also observed in the Mertz Glacier/B-

9B sub-region, with wind identified as a possible influence on fast-ice anomalies on

both Case Studies 8 and 9. Much of this persistent fast-ice feature - particularly

that to the south and south-east of B-9B - is exposed by means of a lack of grounded
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icebergs, this time to the east instead of the north. In contrast, the fast ice in the

Syowa sub-region is much more sheltered due to the presence of Lützow-Holm Bay,

and the fast-ice feature along the Mawson Coast is bounded by grounded icebergs

to the north, east and west.

The stronger correlations observed by Massom et al. (2009) may be related

to the temporal averaging, which would reduce the effects of noise on the data.

However, using this style of correlation analysis makes it impossible to compute

the lag between SAM index and fast-ice response. It is reasonable to expect that

SAM may influence fast-ice extent more strongly than SOI, given that it is the first

EOF of MSLP, and thus represents a higher fraction of the MSLP variance than

manifestations of SOI.

It is perhaps more difficult to view the relationships between large-scale

atmospheric modes of variability and fast-ice extent in the context of works which

relate these modes to overall sea-ice (i.e., predominantly pack-ice) parameters such

as concentration or length of the annual sea-ice season (e.g., Stammerjohn et al.,

2008; Yuan and Li , 2008; Lefebvre and Goosse, 2008; Turner , 2004; Liu et al., 2004a;

Yuan, 2004; Kwok and Comiso, 2002). These works conclude either explicitly or

implicitly that the effects of SAM and SOI are much larger in West Antarctica

than East Antarctica. Despite this, moderately strong correlations have been found

between sea-ice edge location and SOI. The Simmonds and Jacka (1995) study, for

example, found a positive correlation between SOI and sea-ice edge location in the

35 to 65◦ E sector, with the strongest correlation observed during the winter months.

It is possible that a monthly-resolved SOI/fast-ice extent correlation analysis would

yield similar correlation values and variability. It is encouraging that the sign and

magnitude of the correlation, as well as the lag of maximum correlation are the same

as that reported in the Simmonds and Jacka (1995) study of overall sea ice.
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The Simmonds and Jacka (1995) and Kwok and Comiso (2002) studies sug-

gest that the response to SOI is larger in the Indian Ocean sector than the Western

Pacific Ocean sector, which is also found in this work. This supports the concept of

ENSO signals propagating eastward around the Southern Hemisphere, and becom-

ing more attenuated as the signals travel farther (i.e., into the Western Pacific Ocean

sector). Kwok and Comiso (2002) found a negative correlation between SST and

SOI in the Indian Ocean sector (i.e., colder SSTs during positive SOI). Though the

links between large-scale Antarctic fast-ice variability and SST have yet to be stud-

ied, Kwok and Comiso (2002) qualitatively suggest that colder SSTs occur during

times of positive SOI. This broadly agrees with the findings presented here.

5.6.3 Suggested Further Research

As mentioned at the beginning of this chapter, the results presented here

from an investigation of atmospheric influences on fast-ice variability are preliminary

only. An aim is to subsequently extend this work by performing more in-depth (i.e.,

seasonally-resolved) correlation analyses between fast-ice extent and SOI, SAM,

and when they become available, ZW3 index data (see Raphael (2004, 2007)). This

research will also benefit greatly from a longer time series of fast-ice extent, so

extending the fast-ice series both back and forward in time is a high priority, and is

planned. We also plan to incorporate storm/cyclone and wave model data into the

fast-ice variability analysis.



Chapter 6

Overall Summary and Conclusions

The main outcomes of the work presented in this thesis are:

• the development of techniques to generate cloud-free composite images of the

surface of the Earth in visible/thermal infrared wavelengths from MODIS

imagery (Chapter 2);

• the development of techniques for interpretation of this composite imagery in

order to consistently and accurately determine fast-ice extent on a large scale

(Chapter 3);

• production of the first (near decade-long) time series of fast-ice extent at a 2

km, 20-day spatio-temporal resolution across the entire East Antarctic coast,

generated from ∼125,000 individual MODIS images (Chapter 4);

• the identification of ten fast-ice regimes around the coast, which are related

to bathymetry (i.e., grounded iceberg distribution) and coastal configuration

(Chapter 4);

• the first baseline measurements of East Antarctic fast-ice areal extent, as well

as quantification of trends (albeit over a climatologically short, 8.8-year time

series) in extent across the East Antarctic coast (+1.43 ±0.30% yr−1) and
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its component parts: the Indian Ocean sector (+4.07 ±0.42% yr−1) and the

Western Pacific Ocean sector (-0.40 ±0.37% yr−1) (Chapter 4); and

• a preliminary investigation into the influences of local- to large-scale atmo-

spheric variability on anomalous fast-ice growth and breakout events (Chapter

5).

In addition to the scientific outcomes noted above, the work in this thesis will result

in four peer-review publications in highly-ranked international journals (currently

two are published, one has been submitted, and one is in preparation, and is close

to completion), as well as several non-referreed publications and oral and poster

presentations (see page viii in the introductory material of this thesis for a complete

list with details).

This work has significantly expanded our knowledge of fast-ice extent and

variability across the entire East Antarctic coastline. It has not only gone some way

toward filling a large gap in our knowledge of this integral part of the climate and

physical/biological systems, but has also provided a new baseline for future climate

change/variability comparisons and assessments. This is particularly important,

given the sensitivity of fast ice to changing oceanic and atmospheric conditions and

its potentially important role in stabilising dynamic ice-sheet margins.

Chapter 2 presented details of a procedure for compositing visible and ther-

mal infrared MODIS images to effectively remove cloud cover, and provide an unob-

scured view of the surface. The success of this technique is highly dependent on the

efficacy of the cloud mask used. During times when the Sun is above the horizon

and shortwave tests can be incorporated into the suite of tests comprising the cloud

mask, no modifications are necessary to produce generally high-quality composite

images. However, during times when the Sun is below the horizon (i.e., much of the
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polar winter), the lower cloud-mask accuracy necessitate modifications to the cloud

mask in order to produce quality output. These modifications are in the form of a

spatial smoothing kernel, tuned to enhance the cloud mask efficacy over polynyas

and flaw leads. Sample visible and infrared composite images of the Mertz Glacier

regions were presented as a proof-of-concept for the techniques.

Following on from this work, Chapter 3 used these techniques to produce a

time series of 159 consecutive fast-ice maps spanning the time interval from March

2000 until December 2008. A compositing period of 20 days was found to produce

good quality composite images in the majority of cases. This time interval also

coincides with the suggested minimum time for ice to remain stationary before it

is considered “fast” (based on the Arctic work of Mahoney et al., 2005). How-

ever, persistent cloud and inaccurate cloud masking lead to lower quality regions in

some composite images. In these cases, AMSR-E data are used to assist in image

classification at the expense of spatial resolution. Additionally, the previous and

subsequent fast-ice maps are used to help classify lower quality composite images,

at the expense of temporal resolution. A study of errors determined that the fast-ice

extent in the majority (∼81%) of images, fast-ice extent can be retrieved to within

∼ ±3%, with the remainder of images within ∼ ±9%. This chapter also presents

the first maximum and minimum fast-ice extent maps for the entire East Antarctic

coast, showing fast-ice extents of ∼374,000 and ∼112,000 km2 respectively.

Chapter 4 presented the 8.8-year time series of fast-ice extent, including

analysis of inter-annual variability, at temporal and spatial resolutions of 20 days

and 2 km respectively. This time series and the associated fast-ice maps are com-

parable to the widely-used passive microwave-derived time series of overall sea-ice

extent and area, extending back to 1979 (e.g., Comiso, 2010; Cavalieri and Parkin-

son, 2008). As noted above, a statistically-significant increase in fast-ice extent is
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observed across the East Antarctic coast (1.43±0.30% yr−1), albeit over the short

time series (2000 to 2008). Regionally, a stronger increase is observed in the Indian

Ocean sector (20 - 90◦ E, 4.07±0.42% yr−1) over the 8.8-year time series. The trend

in the Indian Ocean sector is slightly negative prior to 2004, but strongly positive

thereafter, and this apparent shift in trend coincided with an increase in variability.

A slight (non-significant) decrease is observed in the Western Pacific Ocean sector

(90 - 160◦ E, -0.40±0.37% yr−1), with an unchanged level of variability observed

through the time series. Interannual variability in fast-ice extent is generally high

over the entire East Antarctic coast, but particularly high in the Indian Ocean sector

(and particularly from 2004 to 2008). Overall, fast-ice extent in the Western Pacific

Ocean sector is lower than that in the Indian Ocean sector, possibly reflecting the

different coastal and bathymetric configurations in each sector.

This chapter also presents a 20-day resolution climatology of East Antarctic

fast-ice extent for the first time, in addition to maps of fast ice by year (from fast-

ice minimum to subsequent fast-ice minimum). Ten regimes of fast-ice formation

are identified around the East Antarctic coast, within which regional differences are

related to the bathymetry (and associated distribution of grounded icebergs which

act as anchor points for fast-ice formation) and the shape of the coastline, e.g., the

presence of bays/promontories. Correlations between fast ice and overall sea-ice

extent and area are investigated, and are only found to be high during the summer-

time sea-ice minimum. This possibly reflects the higher relative fraction of fast ice

during the summertime, and/or the protective effect of extensive summertime pack

ice. Analysis of the shape of the mean annual fast-ice cycle reveals an upper limit

on fast-ice extent: formation in water deeper than 400 to 500 m is rarely observed

due to the lack of grounded icebergs acting as anchors there. East Antarctic fast

ice is found to comprise between ∼5% (during winter and spring) and 45% (during
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summer) of overall sea-ice area in the region (these percentages change to ∼4% and

∼20% when considering overall sea-ice extent rather than area). This agrees well

with the Synthetic Aperture Radar-based study by Giles et al. (2008), which finds

that East Antarctic fast-ice extent (between 75 and 170◦ E) comprises between 2

and 16 % of overall November sea-ice area, depending on the sub-region (8.3% when

averaged over the whole study region).

Chapter 5 presented a preliminary investigation of the role of local to hemi-

spheric atmospheric patterns on influencing fast-ice extent. On local scales, the

relative importance of various oceanic/atmospheric parameters on controlling fast-

ice extent was found to depend on the fast-ice formation regime. Growth/breakout of

dynamically-formed fast ice was found to depend strongly on wind strength/direction

and nearby pack-ice concentration. By contrast, temperature was observed to be

an important factor in the growth/breakout of thermodynamically-formed fast ice.

These results agree broadly with previous studies both in the Arctic and Antarctica,

which find that wind strength/direction and air temperature anomalies can influ-

ence fast-ice growth and breakout events (Heil et al., 2006; Massom et al., 2009;

Divine et al., 2003, 2005). Anomalous fast-ice breakout (formation) is associated

with anomalously low (high) local pack-ice concentration, possibly reflecting the

buffering effect of a compact pack-ice cover against wave-induced fast-ice breakout.

On a hemisphere-wide scale, the correlation between fast-ice extent and the South-

ern Oscillation Index (SOI)/Southern Annular Mode (SAM) is analysed. Significant

correlations (R≃0.4 and R≃0.45) are found between SOI and fast-ice extent along

the East Antarctic coast/Indian Ocean sector respectively. No notable correlations

are observed between fast-ice extent and the SAM index. This is in contrast to a

study by Massom et al. (2009), which found much stronger correlations between

SAM and fast-ice extent to the north-west of Dumont d’Urville.
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6.1 Potential Response of East Antarctic Fast-Ice to

Atmospheric Change and Variability

Model projections of the state of the climate around the Antarctic coast by

the end of the 21st century include increases in surface air temperature, snowfall,

storminess, waviness and the numbers of icebergs, as well as a general decrease in

pack-ice extent (Turner et al., 2009; Bracegirdle et al., 2008; Bentley et al., 2007).

The potential impacts of these changes on fast-ice extent are discussed in the follow-

ing sub-sections. Although this assessment is largely speculative, it is based upon

knowledge of current conditions.

6.1.1 Rising Temperatures

Recent decadal-scale temperature changes across coastal Antarctica (e.g.,

1950 to present) have so far been mixed, depending on the sector (Turner et al.,

2005, 2009; Steig et al., 2009). To date, stations along East Antarctica have generally

reported no significant trend or even slight decreases in air temperature. Conversely,

stations along the West Antarctic Peninsula (WAP) have reported some of the

strongest positive global temperature trends (Vaughan et al., 2003). For example,

Faraday (now named Vernadsky) station on the WAP is reporting an increase in

mean winter-time air temperature of 0.56 ±0.43 ◦C/decade for the last 5 decades

(Turner et al., 2005).

With East Antarctic coastal temperatures projected to rise between 1.5 and

5 degrees by the year 2100 (IPCC , 2007; Bracegirdle et al., 2008; Convey et al.,

2009; Turner et al., 2009), more frequent glacier calving is likely (Scambos et al.,

2003; Cook et al., 2005; Bentley et al., 2007). Massom and Stammerjohn (2010)

suggest that this may in fact contribute to larger fast-ice extents by means of more

grounded icebergs providing more anchor points for fast-ice formation, or may act to
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stabilise the coverage. Alternatively, higher air and sea temperatures may result in

a shorter fast-ice growth season (Heil et al., 2006), leading to less extensive/thinner

fast ice.

6.1.2 Increasing Wind Speed and Storminess

Trends toward stronger westerly winds and higher SAM index values have

also been noted over the last 50 years across the East Antarctic coast (Turner et al.,

2009). Winds with a stronger westerly component may counteract westward pack

ice advection by the Antarctic Coastal Current, to potentially reduce the amount

of fast ice formed dynamically, particularly in the Western Pacific Ocean sector.

Additionally, anomalously strong westerly winds were implicated in fast-ice breakout

in the Dumont d’Urville case study presented in Chapter 5. A trend toward lower

atmospheric pressures over the last 50 years is also noted at Antarctic stations

(Turner et al., 2009, 2005), leading to fewer but more intense low pressure systems

around the coast of Antarctica (Turner et al., 2009; Simmonds and Keay , 2000).

Several models predict an increase in wind, wave and storm occurrence at

high southern latitudes throughout the 21st century (Fyfe and Saenko, 2006), partic-

ularly during winter (Convey et al., 2009). This is a manifestation of the southward

shift of storm tracks under the influence of a positive SAM index (Miller et al.,

2006). The projected increase in SAM index is itself a consequence of increased

greenhouse gas concentrations and a reduction in stratospheric ozone (Bracegirdle

et al., 2008; Massom and Stammerjohn, 2010). The projected recovery of the ozone

hole to 1980 levels by the year 2068 is expected to reduce this windiness to some

extent (Perlwitz et al., 2008).
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6.1.3 Reduction in Pack-Ice Cover

Several case studies in Chapter 5 have shown the importance of summer-

time pack-ice coverage for maintaining average summertime fast-ice extents. Pack

ice acts as a physical shield to buffer the vulnerable fast ice from wave-induced

breakout (Crocker and Wadhams, 1988, 1989; Langhorne et al., 1998, 2001). Case

studies of anomalously low and high fast-ice extent in Lützow-Holm Bay, presented

in Chapter 5 of this thesis, highlight this dependence particularly strongly. Several

recent studies (e.g., Comiso, 2010; Cavalieri and Parkinson, 2008) have shown that

overall Antarctic sea-ice extent is slightly increasing (1±0.4% decade−1), despite dif-

fering regional trends. Overall sea ice area and extent is generally observed to be

increasing in the Indian Ocean (1.9±1.4% decade−1) and Western Pacific Ocean

(1.4±1.9% decade−1) sectors (Cavalieri and Parkinson, 2008). These trends are

valid for the satellite era. Different (decreasing) trends are apparent if the record is

extended back in time, however, using proxy estimates derived from whaling records

(de La Mare, 1997) and ice core data (Curran et al., 2003).

Using a weighted ensemble average of output from 24 climate models, Brace-

girdle et al. (2008) forecast Antarctic sea-ice concentration to decrease by 33% over-

all by the end of the 21st century. Regionally, greater decreases in sea-ice con-

centration are forecast in the Indian Ocean sector than the Western Pacific Ocean

sector. The largest fractional decreases are forecast in the winter (June-August) and

spring (September-November) seasons, however decreases in sea-ice concentration

are forecast throughout the year in both sectors. Despite a large spread in model

projections (Turner et al., 2009; Massom and Stammerjohn, 2010), other modeling

studies have forecast similar decreases in overall sea-ice extent by the end of the

century, e.g., (Arzel et al., 2006) predict a reduction in the annual mean sea-ice
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extent of 24% by the year 2100 using an ensemble of 15 models.

In the light of these projections of reduced pack-ice concentration and extent,

a future reduction in fast-ice extent may occur (all else being equal). Wave-induced

fast-ice breakout is likely to increase as a consequence of this projected decrease in

pack-ice extent, especially when also taking into account the increase in occurrence

of destructive waves associated with increased wind strength and storm occurrence

(Massom and Stammerjohn, 2010; Bracegirdle et al., 2008). Another anticipated

consequence of reduced pack-ice coverage is an enhanced ice-albedo positive feedback

effect (Perovich, 2009), leading to warmer SSTs and possibly associated fast-ice

breakout events.

6.1.4 Increase in Precipitation

One consequence of a warmer atmosphere is its higher atmospheric moisture

capacity. When combined with a southward shift in the storm track (Turner et al.,

2005), this leads to increases in projected snowfall (Bracegirdle et al., 2008; Mas-

som and Stammerjohn, 2010; Convey et al., 2009) over the East Antarctic coast.

The net increase in precipitation along the East Antarctic coast has been estimated

at 10-20% (Bracegirdle et al., 2008). Snow on fast ice affects heat transfer and ice

formation rates in non-linear ways (e.g., Flato and Brown, 1996; Massom and Stam-

merjohn, 2010). It can lead to a significant growth in fast-ice thickness by means

of snow ice formation if flooding occurs (Maksym and Jeffries, 2000). Furthermore,

heavy snow cover has been shown to reduce the occurrence of fast-ice breakout (i.e.,

perpetuate the duration) in Lützow-Holm Bay (Ushio, 2006, 2008).
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6.2 Suggested Future Work

There are many possible directions for future work building on the outcomes

of this project. In particular, the following are suggested:

• Development of a fully-automated fast-ice detection algorithm, to enable au-

tomated extension of the MODIS time series forward in time;

• Spatially extending the coverage to provide the first fast ice time series of the

entire Antarctic coastline;

• Production of the first detailed maps of the extent and variability of circum-

polar Arctic fast ice, enabling a unique bi-polar comparison;

• Providing wider spatio-temporal fast ice information in support of detailed

localised measurements made within the Antarctic Fast Ice Network (AFIN)

project (Heil et al., 2010);

• Extension of the time series back in time (pre-2000) via implementation of al-

gorithms using NOAA Advanced Very High Resolution Radiometer (AVHRR)

satellite data, in order to produce both the first long-term assessment of the

effects of climate change on fast ice, and a longer dataset for use by the bio-

logical community (although data availability is poorer back in time);

• Modifying the compositing procedure to process high-resolution (300 m visible

and thermal infrared) Ocean Land Colour Instrument (OLCI) imagery from

the upcoming European Space Agency (ESA) Sentinel-3 platform;

• Detailed case studies investigating links between fast ice and demographic

parameters of various biological species (including breeding success, foraging

behaviour, and other factors);
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• Studies on the role of fast ice in polynya dynamics (in particular, combining

these data with passive microwave measurements to more accurately retrieve

ice formation rates, and salt water, heat and moisture fluxes); and

• Investigation of possible links between fast ice and the stability of glacier

tongues and ice shelves, building upon the work of Massom et al. (2010a).

• Regional studies aimed at identifying key scales of spatial variability, and

comparisons between regions with similar bathymetry/coastal configurations.
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tica, Annals of Glaciology, 44, 281–287, 2006.

van Loon, H., The half-yearly oscillations in middle and high southern latitudes and

the coreless winter, Journal of Atmospheric Sciences, 24, 472–486, 1967.

van Loon, H., and R. L. Jenne, The Zonal Harmonic Standing Waves in the

Southern Hemisphere, Journal of Geophysical Research, 77, 992–1003, doi:

10.1029/JC077i006p00992, 1972.

Vaughan, D. G., G. J. Marshall, W. M. Connolley, C. Parkinson, R. Mulvaney,

D. A. Hodgson, J. C. King, C. J. Pudsey, and J. Turner, Recent rapid regional

climate warming on the Antarctic Peninsula, Climate Change, 60, 243–274, 2003.

Venegas, S. A., The Antarctic Circumpolar Wave: A combination of two signals?,

Journal of Climate, 16, 2509–2525, 2003.

Wadhams, P., The Seasonal Ice Zone, 825-991 pp., Plenum Press, New York, 1986.

Waple, A. M., and R. C. Schnell, The Poles - The Antarctic: Sea ice extent and

concentration, in State of The Climate in 2002, vol. 84, edited by A. Arguez, pp.

S29–S30, Bulletin of the American Meteorological Society, 2003.

Welch, R. M., S. K. Sengupta, A. K. Goroch, P. Rabindra, N. Rangaraj, and M. S.

Navar, Polar cloud and surface classification using AVHRR imagery: An inter-

comparison of methods., Journal of Applied Meteorology, 31, 405–420, 1992.

Werninghaus, R., TerraSAR-X mission, in Society of Photo-Optical Instrumentation



BIBLIOGRAPHY 209

Engineers (SPIE) Conference Series, vol. 5236, edited by F. Posa, pp. 9–16, doi:

10.1117/12.511500, 2004.

White, W. B., and R. G. Peterson, An Antarctic circumpolar wave in surface

pressure, wind, temperature and sea-ice extent, Nature, 380, 699–702, doi:

10.1038/380699a0, 1996.

White, W. B., S. Chen, and R. G. Peterson, The Antarctic Circumpolar Wave: A

beta effect in ocean atmosphere coupling over the Southern Ocean, Journal of

Physical Oceanography, 28, 2345–2361, 1998.

Wienecke, B. C., and G. Robertson, Foraging space of emperor penguins Aptenodytes

forsteri in Antarctic shelf waters in winter, Marine Ecology Progress Series, 159,

249–263, 1997.

Williams, G. D., N. L. Bindoff, S. J. Marsland, and S. R. Rintoul, Formation and

export of dense shelf water from the Adélie Depression, East Antarctica, Journal
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