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Eastward expansion of the Tibetan Plateau by
crustal flow and strain partitioning across faults

Qi Yuan Liu1*, Robert D. van der Hilst2, Yu Li1, Hua Jian Yao3, Jiu Hui Chen1, Biao Guo1, Shao Hua Qi1,
JunWang1, Hui Huang2 and Shun Cheng Li1

The lateral expansion of the southeastern Tibetan Plateau
causes devastating earthquakes, but is poorly understood. In
particular, the links between regional variations in surface
motion1–3 and the deeper structure of the plateau are unclear.
The plateau may deform either by movement of rigid crustal
blocks along large strike-slip faults4,5, by continuous deforma-
tion6,7, or by the eastward flow of a channel of viscous crustal
rocks8,9. However, the importance of crustal channel flow was
questioned in thewake of the 2008Wenchuan earthquake10–12.
Controversies about the style of deformation have persisted, in
part because geophysical probes have insufficient resolution
to link structures in the deep crust to the observed surface
deformation. Here we use seismic data recorded with an
array of about 300 seismographs in western Sichuan, China,
to image the structure of the eastern Tibetan Plateau with
unprecedented clarity. We identify zones of weak rocks in
the deep crust that thicken eastwards towards the Yangtze
Craton, which we interpret as crustal flow channels. We also
identify stark contrasts in the structure and rheology of the
crust across large faults. Combined with geodetic data, the
inferred crustal heterogeneity indicates that plateauexpansion
is accommodated by a combination of local crustal flow and
strain partitioning across deep faults. We conclude that rigid
block motion and crustal flow are therefore not irreconcilable
modes of crustal deformation.

Themagnificence of the Tibetan plateau and controversies about
its origin and deformation style following the collision of India
and Asia some 50 Myr ago have inspired many geological and
geophysical studies of Tibet and surrounding regions. Southeastern
Tibet—where interaction of distinct tectonic units produces one
of the most seismically active regions of China (Fig. 1)—has been
central in this debate. Crustal channel flow8,9 was proposed to
explain the conundrum of, on the one hand, the slow lateral
deformation and the absence of substantial Neogene shortening
structures just west of Sichuan Basin and, on the other hand,
high elevation and steep relief across the Longmenshan. Zones
of high electrical conductivity13 and low shear wave speed14–16

as well as depth variations of seismic anisotropy17,18 support this
model, but its validity has been questioned, for instance, in the
wake of the 2008 Wenchuan earthquake10–12. The mechanisms for
uplift and plateau expansion have remained enigmatic, in part,
as a result of uncertainty associated with extrapolation from two-
dimensional (2D) profiles, non-unique interpretation of separate
data sets, and insufficient spatial resolution to relate deep structures
imaged seismologically to geological observables at the surface.

Indeed, understanding eastern Tibetan plateau dynamics requires
seismological constraints on 3D crustal structure at a higher spatial
resolution (and over larger areas and depth ranges) than has so far
been available. We can now produce this insight using data from
a pioneering regional array of ∼300 densely spaced seismograph
stations in southeastern Tibet (Fig. 1).

Figure 1a shows the main geological, topographical, and seismo-
tectonic features of the area defined by the interaction of geological
units (Songpan, Kangding, Dianzhong, Sichuan Basin) that have
distinct crustal structures, are internally deformed, and are bounded
on the crustal scale by faults (Xianshuihe, Longmenshan, Lijiang,
Anninghe–Zemuhe–Xiaojiang) along which most of the region’s
large earthquakes occur. The rate of eastward crustal movement
away from central Tibet is partitioned across the Xianshuihe and
Anninghe–Zemuhe–Xiaojiang faults. To the south, inKangding and
Dianzhong, which constitute the so-called Chuandian fragment,
fast horizontal motions (reaching ∼17mm yr−1) define the
conspicuous clockwise rotation of Tibetan crust around the Eastern
Himalayan Syntaxis (EHS; refs 1–4). To the north, in what we call
Songpan, surface displacement is slow and decreasing eastwards,
with crustal shortening near the Longmenshan fault less than
3mm yr−1(refs 1,3).

Figure 1b shows the location of a temporary, dense (10–30 km
spacing) array of almost 300 broadband seismographs in western
Sichuan. From waveforms recorded between 2007 and 2009 we
infer 3D variations in shear wave speed in the crust and upper
mantle through joint (nonlinear) inversion of P-receiver functions
and the (Rayleigh) surface-wave phase velocity dispersion from
ambient noise correlation (Methods). Our 3D model agrees with
seismic refraction19 profiles (Supplementary Fig. 12), but provides
high-resolution insight across a large area and avoids uncertainties
associated with interpolation between 2D sections.

Figure 2 illustrates 3D crustal heterogeneity through a series of
map views. At shallow depth (Fig. 2a) the dense array data reveal
seismically slow sediments in Sichuan Basin, fast wave propagation
inKangding, and variable but near-averagewave speeds in Songpan,
Dianzhong and Yangtze. In the upper crust (Fig. 2b) low wave
speeds appear along the Xianshuihe fault and in the Yidun (or
Shangrila) part of Kanding (west of the Litang fault), and high
wave speeds correlate with parts of the Emeishan large igneous
province20. The most conspicuous mid-crustal features (Fig. 2c) are
the anomalously low wave speeds in the Kangding unit (protruding
across the Lijiang fault into Dianzhong) and the contrast across
Longmenshan between moderately low wave speeds in Songpan
and high wave speeds beneath Sichuan Basin. Weak and spatially
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Figure 1 | Maps of western Sichuan. a, Geological setting. Black solid lines indicate faults. White circles: epicentres of earthquakes (Ms>5.0) between

1901 and 2010 (source: China Earthquake Network Center). Symbol size scales with magnitude. Red circle: Lushan earthquake (Mw=6.6; 20 April 2013);

focal mechanism: 2008Wenchuan earthquake (source: global CMT catalogue). Blue arrows: (geodetic) crustal motion relative to the Yangtze craton1.

b, Location of the (temporary) seismograph array (297 broadband stations; 10–30 km spacing; operational from 2006–2009). Black solid lines and open

triangles: faults and stations, respectively. Dashed lines: location of the sections in Fig. 3. Inset: white arrows indicating large scale block motion. Acronyms:

EHS, Eastern Himalaya Syntaxis; SG, Songpan–Ganze; YZ, Yangtze; XSHF, Xianshuihe fault; LMSF, Longmenshan fault; LJF, Lijiang–Xiaojinhe fault; ANHF,

Anninghe fault; XJF, (Zemuhe-)Xiaojiang fault; LTF, Litang fault.

variable slow anomalies are detected in Yangtze. Between 50 and
80 km depth (Fig. 2d–f) the Longmenshan and Lijiang faults mark
a sharp transition between seismically fast (cratonic) mantle to the
east and low (deep crustal and uppermost mantle) wave speeds to
thewest, with subtle differences across theXianshuihe fault. Figure 2
suggests that Longmenshan and Lijiang are main boundary faults,
marking lateral differences between the plateau and craton structure
to lower crustal depths.

Vertical sections further illustrate the transition from the
relatively simple lithosphere of the Yangtze craton (including
Sichuan Basin) to the structural complexity of the Tibetan plateau.
The choice of profiles (Fig. 3) was motivated by predictions from
the channel flow model8,9 (Supplementary Fig. 16): section A–A′

crosses the steep drop in elevation from plateau to basin across
Longmenshan and section B–B′ follows the gentle topographic
gradient from the high plateau into Yunnan. We note that the
features discussed below are also clear in other cross-sections
(Supplementary Figs 12, 13 and 15).

Before discussing structural changes across the main boundary
faults, we make the following general observations. First, east of the
Longmenshan and Lijiang faults the base of the crust (white line,
Fig. 3) is unequivocal given the tomographically inferred radial wave
speed variations and evidence for a distinct Moho from receiver
functions (Supplementary Figs 4 and 5). Second, west of these
faults crust-like wave speeds extend to greater depths and receiver
functions are ambiguous and often lack distinct wave conversions
(Supplementary Figs 4, 11, 12 and 13). This suggests that there
is no sharp Moho and that the crust–mantle transition is gradual
(dashed lines), which is common in tectonically active areas. We
note that our first-order observations regarding crustal thickness
do not depend on the precise nature of the transition. Third,

consistentwith previous studies21–23, the increase in crustal thickness
from ∼40 km in Sichuan Basin (∼50 km in Yangtze) to 60–80 km
beneath the plateau occurs over a relatively small lateral distance,
with evidence for some thickening of the deep crust towards the
craton (Supplementary Fig. 15). Fourth, whereas the entire crust
beneath southeastern Tibet is (seismically) slower than the global
average, zones with anomalously low velocity (LVZs) appear in the
Kangding and Songpan units (Supplementary Figs 12, 13 and 15).
Fifth, the apparent structural homogeneity of the deep crust west
of the boundary faults suggests continuous deformation of the deep
crust beneath eastern Tibet.

Sections A–A′ and B–B′ differ in important aspects, with lateral
contrasts across the Longmenshan fault (Fig. 3a) more pronounced
than across the Lijiang fault (Fig. 3b). The former coincides with
steep topographic relief and the edge of a mid-crustal LVZ—both
the middle and lower crust contribute to crustal thickening relative
to Sichuan Basin, but the onset of lower crustal thickening is a
few tens of kilometres west of the topographic break and surface
expression of the Longmenshan fault (Supplementary Fig. 15). The
Lijiang fault coincides with a subtle but distinct change in relief
(Figs. 1,4) and with a change in stress orientation inferred from
earthquake focalmechanisms (N–S to E–Wextension)7. Thickening
of plateau crust (compared to that of Yangtze craton) seems here
confined to the transitional lower part, and the mid-crustal LVZ
protrudes across the fault—beyond the area of thick crust—as far
east as the Emeishan igneous province20.

Figure 4 summarizes the 3D wave speed variations inferred
from the array data and highlight spatial correlations between
crustal heterogeneity and surface features. Changes in elevation
and in crustal structure and thickness—in particular the extent of
deep crustal thickening—suggest that the Longmenshan and Lijiang
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Figure 2 | Map views of wave speed variation in crust and mantle. a–f, Results of the joint inversion of P-receiver functions and (ambient noise) surface

wave dispersion measured from the dense seismograph array depicted in Fig. 1b (see Supplementary Information for a description of the method). The

depth (below sea level) of each map view is shown in the lower right corner. Black solid lines denote major faults (Fig. 1).

faults mark the main (western) boundary of the Yangtze craton. In
the north, at the Longmenshan, this boundary is quite sharp and
manifests at all depths. In the south (in Dianzhong), Tibetan crust
transgresses (locally) onto the lithospheric root of the craton. The
Xianshuihe fault marks the northern edge of a pronounced, laterally
continuous LVZ.

The combination of slow shear wave propagation, high Poisson’s
ratios14 and differential crustal thickening suggests that the plateau
is, overall, mechanically weak compared to the Yangtze craton.
Differences exist, however, between the main units comprising the
plateau. South of the Xianshuihe fault (in Kangding, at the eastern
end of the central TibetanQiangtang unit) zones of anomalously low
velocities (<3.3 km s−1), strong radial anisotropy (Vsh >Vsv ; ref. 18),
and high electrical conductivity13 suggest that the middle crust is
weak even compared to the overall crust and that interconnected
ductile flow is possible. These weak zones may be related to
magmatism in and flow from central Tibet23, and in the absence
of (present-day) obstacles to further eastward motion, detached (by
the Xianshuihe fault) from the more stagnant Songpan unit further
north, and aided by gravitational driving forces7, they facilitate
lateral displacement of the brittle upper crust around EHS, as
observed geodetically1–3. It is possible that shear heating due to
differential motion between upper crust and lithospheric mantle
further reduces viscosities, enhancing LVZs and causing a dynamic
run-away. Continuation of weak crust onto the Yangtze cratonic keel
(Fig. 3b) can explain the gentle topographic slope and accommodate
the increase in surface velocities towards Yunnan (in a Tibetan
Plateau fixed reference frame)3.

North of the Xianshuihe fault, in the Songpan unit, the array
data resolve crustal LVZs that are smaller—both in strength
(3.3<Vs <3.5 km s−1) and size—than beneath Kangding, located

at variable depths, and cut off in the east by the Longmenshan
fault (Figs 2c and 3a). These LVZs may involve partial melt24–26,
but the average crustal viscosity here is probably higher than
in Kangding. Obstruction of eastward motion by Sichuan Basin
may produce crustal thickening and local strain heating27 but
prevent the run-away that may help produce the extensive LVZ
further south.

These lateral variations in crustal rheology and boundary
conditions (‘strong’ across Longmenshan, ‘weak’ across Lijiang
fault) help in understanding regional seismicity. Along with surface
uplift in Songpan from levelling surveys2, our results support
the interpretation that the 2008 Wenchuan earthquake (M = 7.9;
thrust near epicentre, increasing right-lateral slip northeastwards
along Longmenshan12,28) resulted from uplift of brittle upper
crust29. In contrast, ductile flow beneath Kangding and the
weakness of (lateral) boundaries facilitate energy release, limit
earthquakemagnitude, and localize the transition fromnormal fault
earthquakes with N–S extension (above the LVZ in Kangding) to
normal faulting with E–W extension (in Dianzhong)7.

The differences between the Songpan (A–A′) and Kangding
(B–B′) transitions as well as the eastward thickening of lower
crust towards the craton (Figs 3 and 4) are qualitatively consistent
with the notion of channel flow8,9 (Supplementary Fig. 16). Our
results suggest, however, that such flow is not uniform and
that deformation of the eastern Tibetan Plateau is influenced by
(mechanical) conditions along the periphery, lateral variations in
crustal structure and rheology, and strain partitioning across major
(strike-slip) faults. Deformation through the interaction of crustal
blocks that are internally deformed, which may (or may not)
contain interconnected weak zones, and which are separated by
deep-cutting faults, reconciles the canonical endmember models
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of deformation through (rigid) block motion along faults4,5 or
crustal flow8,9.

Methods
On the one hand, receiver functions sense elasticity contrasts but cannot constrain
interface depths without knowledge of the absolute wave speed. On the other
hand, surface wave dispersion (here extracted from ambient seismic noise15) is
more sensitive to wave speed variations than to interface depths. Joint inversion
of receiver functions and surface wave dispersion constrains interface depth

as well as lateral wave speed variations. The method—based on Bayesian
theory30—is described in the Supplementary Information. Joint inversion
provides better constraints on wave speed variations and interface depths, but
crustal thickness estimates can differ from the separate inversion of receiver
functions, especially if the crust–mantle boundary is transitional, as is often the
case for tectonically active regions such as the region under study.
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