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ABSTRACT Particle swarm optimization (PSO) is a popular stochastic approach for solving practical 
optimal problems from industries due to its effective performance and few hyperparameters. Nonlinear 
constrained optimization (NCO) problems frequently cause multiple optimal regions and can cause many 
infeasible regions in the search space. The state-of-the-art approaches for handling the infeasible regions 
generated by problems’ constraints either block particles’ paths or penalize NCO problems’ objective 
values based on the standard updating velocity formula. The standard updating velocity formula introduces 
difficulties for particles in searching the undiscovered optimal solutions separated by infeasible regions and 
being mutually restrained on directions by social and cognitive factors. Afterward, the particles cause 
premature convergence and difficulty searching the undiscovered optimal regions to improve their solutions. 
Observing the biological ant colony and inspired by lazy ant behavior, this study proposes an easy particle 
that simulates the lazy ant to diversify the moving direction. Finally, this study integrates the proposed easy 
particles with referenced PSO-based approaches for solving NCO problems. The experiment results show 
that the proposed easy particles can effectively reinforce exploration abilities and improve the performances 
of all referenced PSO-based algorithms to reduce the status of premature convergence in solving NCO 
problems. 

INDEX TERMS Particle swarm optimization; Easy Particles; Exploration; Premature convergence; 
Nonlinear constrained optimization problems. 

I.  INTRODUCTION 
In nature, the biological swarm establishes a social system 
for food searching, migration, and defense. Such biological 
behavior inspires many scientists to develop related 
theoretical bases. Particle swarm optimization (PSO), 
proposed by Kennedy and Eberhart [1], is a popular approach 
in swarm intelligence. PSO has since been applied in many 
industries from the real world for solving nonlinear 
optimization problems because of its effective performance 
and few hyperparameters. 

Most optimal problems in practical industries can be 
expressed the nonlinear constrained optimization (NCO) 
problems as follows. 

Min  ( )f x  (1) 

s.t. ( ) 0, 1,...,jc j m≤ =x  , (2) 
 ( ) 0, 1,...,je j m′= =x . (3) 
where ( )jc x  in (2) denote the problem-specific inequality 

constraints and ( )je x  in (3) denote the problem-specific 
equation constraints. The problem-specific constraints (2)–(3) 
are derived from the limitations of resources in practical 
industries, such as in electromagnetics [2], real-time UAV 
path planning [3], prediction of seismic slope stability [4], 
energy development [5][6], incomplete data clustering [7], 
and production inventory [8]. [9] presented a performance 
comparison of harmony search (HS), differential evolution 
(DE), and PSO for the standard benchmark functions. [10] 
have used PSO, DE, and genetic algorithm (GA) altogether 
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to estimate low atmospheric refractivity profiles from radar 
sea clutter. Such studies essentially recognized PSO’s 
superiority compared with other algorithms for NO 
problems[9][11]. 

The problem-specific constraints in (2)–(3) frequently 
cause multiple optimal regions and can cause many 
infeasible regions in the search space. Given that primitive 
PSO does not discuss any approach for handling the 
infeasible regions in the search space, many improvements 
have been developed in the literature. However, the state-of-
the-art approaches for handling the infeasible regions in the 
search space either block particles’ paths or penalize NCO 
problems’ objective values on the basis of the standard 
updating velocity formula. Given that the traditional updating 
velocity formula does not consider the infeasible regions, 
those approaches cause the particles (i) difficulty in searching 
the undiscovered optimal solutions separated by infeasible 
regions and (ii) to be mutually restrained on directions by 
social and cognitive factors. Afterward, the particles 
encounter difficulty in improving their solutions, resulting in 
premature convergence. In particular, the optimal solutions 
enclosed by the infeasible regions are difficult to obtain. The 
randomized velocity is a simple way to avoid the stagnation 
situation; however, [12][13][14]indicated that randomized 
velocity always obtained terrible results. Developing a novel 
approach for PSO is necessary to solve the issue of 
constraints in NCO problems. 

This study solves this issue by observing ant colony 
behavior. Most ants harvest food with effort in the usual 
sense, but some ants roam around everywhere and do nothing. 
Such ants are referred to by biologists as lazy ants. When 
food shortages occur, most ants cannot do anything but the 
lazy ants come forward to guide the typical ants to find a new 
region for harvesting food. Therefore, lazy ants are not lazy; 
they are looking for additional food sources everywhere. The 
lazy ant effect is a popular theory in organization 
management in recent years [15][16][17][18][19]. This study 
proposes an easy particle that simulates the lazy ant to 
improve the ability to search the optimal regions separated by 
infeasible regions and solve the dilemma of mutually 
restrained directions by social and cognitive factors. This 
idea is never proposed for PSO in current literature. The 
advantages and contributions of the proposed easy particle 
are listed as follows. 
(i) Increasing the probability of exploring the search space 

across the infeasible regions for PSO-based approaches 
solving the NCO problems. 

(ii) Effectively reducing the status of premature 
convergence for PSO-based approaches solving the 
NCO problems.  

(iii) Current PSO-based approaches can conveniently embed 
the proposed easy particles to significantly improve the 
performances of solving the NCO problems. 

The remainder of this study is as follows. Section II 
investigates the literature of current PSO-based approaches. 

Section III introduces the proposed easy particle. Section IV 
presents some numerical experiments to demonstrate the 
advantages of the proposed easy particle. Section V provides 
some concluding remarks. 

 
II. LITERATURE REVIEW 
PSO was first proposed by Kennedy and Eberhart [1] to 
solve optimization problems, and Shi and Eberhart [12] 
introduced a new parameter called inertia weight in PSO. On 
this basis [20], the main processes of PSO include 
initialization, fitness, updating velocity, and moving particle. 
In this study, the notations are defined as follows: 
Notation Meaning 
T  The total number of iterations. 
t  The index of iterations where {1,2,..., }t T∈ . 
G  The size of swarm. 
i  The index of particles in swarm where {1,2,..., }i G∈ . 
d  The dimension of the optimization problem. 
ω  The inertia weight factor. 

1c  The cognitive factor. 

2c  The social factor. 

1r , 2r  The random vector where ,1 ,( , , )i i i dr r=r  , , [0,1]i jr ∈ , 

1, 2i = , and 1,...,j d= . 
( )t
ix  The position vector of particle i  at iteration t  where 

( ) ( ) ( )
,1 ,( , , )t t t

i i i dx x=x  . 
( )t
iv  The velocity vector of particle i  at iteration t  where 

( ) ( ) ( )
,1 ,( , , )t t t

i i i dv v=v  . 
( )tS  The swarm at iteration t  where ( ) ( ) ( ) ( )

1 2{ , ,..., }t t t t
GS = x x x . 

ip  The best position vector of (1) ( ){ , , }t
i ix x  for particle i  from 

1st to tth iterations where ,1 ,( , , )i i i dp p=p  . 

gp  The best position vector of 1{ , , }Gp p  for entire swarm 

from 1st to tth iterations where ,1 ,( , , )g g g dp p=p  . 

 
On the basis of Shi and Eberhart [20], the formulas of 
updating velocity and moving are shown in Equations (4) and 
(5). 
 ( 1) ( ) ( ) ( )

1 1 2 2( ) ( )t t t t
i i i i g ic cω+ = + − + −v v r p x r p x , (4) 

 ( 1) ( ) ( 1)t t t
i i i
+ += +x x v . (5) 

In Equation (4), ( )
1 1( )t

i ic −r p x  and ( )
2 2 ( )t

g ic −r p x  present 
the cognitive movement and social movement, respectively. 
The social and cognitive movements are based on the 
individual best position   and group best position   where   
and   are only storing feasible solutions. The primitive PSO is 
designed for nonlinear optimization problems; however, it is 
inappropriate to solve the NCO problems. Given that the 
NCO problems are solved through traditionally updating 
velocity formulas in Equations (4)–(5), particles will 
frequently be moved to the infeasible regions constructed by 
the problem-specific constraints in (2)–(3). Given that no 
schema exists in primitive PSO for handling the particles 
entering the infeasible regions, many schemas are proposed 
in the literature to solve constraints in NCO problems 
[21][22]. The following contexts describe the favored 
schemas of handling the constraints in (2)–(3) for PSO. 
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A. Penalty schema 
The most popular idea is the penalty schema because it is 

straightforward in addressing the constraints issue. The 
penalty schema for PSO is calculating the penalty value of 
constraint violations and adding this penalty value to the 
objective function in (1) [23][24][25][26]. Based on Koziel 
and Michalewicz [24] and O. Yeniay [26], the NCO 
problems with the penalty schema can be expressed as 
follows:  
Min ( ) ( )f P+x x  (6) 
s.t. (2), (3),  

 1 2
1 1

( ) ( ) ( )
m m

j j
j j

P p N p v v
′

= =

 
′= + + 

 
∑ ∑x x x , (7) 

 ( ) max{0, ( )}, 1,...,j jv c j m= =x x , (8) 
 ( ) | ( ) |, 1,...,j jv e j m′ ′= =x x . (9) 
 where ( )P x  in Equation (7) is the penalty value that will be 
added to the objective function, 1p  and 2p  are the penalty 
coefficients that the user can define, N  is the number of 
violated constraints, ( )jv x  in Equation (8) is the penalty 
value of the thj  violated constraints in (2), and ( )jv′ x  in 
Equation (9) is the penalty value of the thj  violated 
constraints in (3). 

The penalty schema is very convenient because it does not 
involve modifications of the used PSO or specialized 
operators’ development for the constraints. However, 

( ) ( )f P+x x  in (6) results in an infeasible solution for NCO 
problems. For example, supporting the objective function 

( ) 10f = −x  with ( ) 0P =x  in (6) is a global optimum and 
( ) 100f = −x  with ( ) 1P =x  in (6) is an infeasible solution. 

Then, the final objective value will be −100 with a slight 
penalty factor of ( ) 1P =x . However, ( ) 100f = −x  is an 
infeasible solution. [27] proposed a mutation function to 
solve the specific constraint of bin-packing problems when 
particles encounter the boundaries of constraints. However, 
the concept of mutation is similar to that of GA, that is, the 
fitness function typically drives the computational load.  

B. Boundary schema 
Some studies treat the infeasible regions as particles’ 

boundaries. Thus, they will let the particles likely explore 
feasible regions and avoids the particles entering infeasible 
regions. Sanaz et al. [28] and Li-Yeh et al. [29] proposed a 
boundary schema to handle constraints in NCO problems. 
When a particle moves to an infeasible region, [28] and [29] 
drag the particle back to a closer feasible position against the 
infeasible region’s boundary, the particle moves to a position, 

( )temp
ix , in the infeasible region, and the particle will be 

dragged to the position ( 1)t
i
+x . He et al. [30] proposed a fly-

back schema to handle constraints in NCO problems. This 
schema is straightforward, and it is effortless to implement in 
PSO. In this schema, the particles are dragged back into the 
original feasible solution. 

However, the boundary schema proposed by [28] and [29] 
does not offer a precise formula to calculate the closer 
feasible position, and the distance between ( )temp

ix  and ( 1)t
i
+x  

is difficult to calculate if the objective function or constraints 
are nonlinear. The fly-back schema proposed by [30] will 
generate many dummy moves in evolution processes and 
reduce PSO efficiency. [31] indicated that taking the bounds 
as the corresponding positions of new particles in [28] and 
[29] and keeping the positions of particles unchanged in [30] 
will reduce the diversity of the particles in the search process. 
Moreover, if the infeasible regions completely enclose the 
best optimal solution, the particles cannot achieve the best 
optimal solution until the evolution processes are terminated. 

In addition to directly solving the constraints issue, many 
schemas are available for PSO to increase its exploration 
ability. The following contexts describe the most popular 
schemas. 

C. Reinforcement best position schema 
In literature, two main variants of PSO-based approaches 

on the number of best position, gp , are used, namely global 
and local search PSOs. The global search PSO is the 
primitive PSO proposed by Shi and Eberhart [20], and only 
one gp  exists in Equation (4) for all particles where the gp ’s 

neighborhoods are the entire swarm ( )tS . For local search 
PSO, the swarm will be divided into multiple groups, and 
each group has the best position. ngp  is denoted as the best 
position for group n  in the swarm. The formula of the local 
search PSO can be changed to Equations (10)–(11). 
 ( 1) ( ) ( ) ( )

, 1 1 2 2( ) ( )t t t t
Local i i i i ng ic cω+ = + − + −v v r p x r p x , (10) 

 ( 1) ( ) ( 1)
,

t t t
i i Local i
+ += +x x v . (11) 

The global search PSO in Equations (4)–(5) promotes 
exploitation because all particles are attracted by one group 
best position gp , which will converge rapidly toward the 
same point. In contrast to the local search PSO, the updating 
velocity formula in Equations (10)–(11) has better 
exploration effects because many best positions ngp  exist for 
the related groups, and the related groups’ best positions will 
attract the particles. This process is a tradeoff between the 
global and local search PSO. Parsopoulos and Vrahatis [32] 
proposed a unified PSO (UPSO) that combines the 
exploitation feature of global search PSO and the exploration 
feature of local search PSO. The UPSO’s updating velocity 
formulas can be expressed by Equations (4), (10), (12), and 
(13). 
 ( 1) ( 1) ( 1)

, ,(1 )t t t
UPSO i Local i iu u+ + += − +v v v , (12) 

 ( 1) ( ) ( 1)
,

t t t
i i UPSO i
+ += +x x v . (13) 

where ( 1)t
i
+v  in Equation (4) and ( 1)

,
t

Local i
+v  in Equation (10) 

are global and local velocities. Afterward, Parsopoulos and 
Vrahatis [33] indicated that the UPSO with 0.5u =  and 
UPSO with mutation (UPSOm) proved the most promising 
scheme on their optimization problems examined. 
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[34] propose a differential evolution PSO (DEPSO) that 
uses the operators (crossover, recombination, and mutation) 
of the genetic algorithm to create diversified best group 
positions gp  for improving the exploitation ability of PSO. 
The particles of DEPSO converge faster than those in 
traditional PSOs in our experiments. However, DEPSO 
results in premature convergence for solving the NCO 
problems. This reinforcement best position schema may 
improve the exploitation ability of PSO, but it still does not 
solve the mutual restraint on directions by social and 
cognitive factors. 

 

D. Reinforcement updating velocity formula schema 
[35] proposed a new updating velocity updating method, 

named the foothold concept, to solve constraints in the NCO 
problems. If the particle is moved into an infeasible region, 
the repairing process will be started until a new feasible 
particle is found. The new feasible particle is calculated using 
a linear combination between the infeasible particle and the 
randomly selected feasible particle. [31] adjusted the original 
velocity obtained by Equation (4) according to the number of 
particles moving outside the feasible region, and the 
adjustment original updating velocity formula can be 
expressed as follows: 
 ( 1) ( )(1 )t t

i i
αβ+ = +v v  ,if  1out iN < ,  

 ( )( 1) ( )
, ,/ 1 /  if  1t t

i i out i T out iN N N
γ+ = + ≥v v .  

where ,  ,  and α β γ  are positive constants; ,out iN  is the 
number of moves outside the feasible region since the last 
velocity adjustment for particle i ; and TN  is the number of 
iterative cycles among velocity adjustments.  

[36] indicated that an excellent PSO-based algorithm 
needs to consider both abilities of exploration and 
exploitation. The reinforcement best position and 
reinforcement updating velocity formula schemas enhance 
the traditional updating velocity formula’s searchability in 
Equation (4). However, the traditional updating velocity 
formula in Equation (4) does not consider the status of 
particles entering the infeasible regions. It will cause the 
social factor ( 2c ) and cognitive factor ( 1c ) to be mutually 
restrained on particles’ directions. The reinforcement best 
position and reinforcement updating velocity formula 
schemas based on the traditional updating velocity formula in 
Equation (4) are inappropriate to solve the NCO problems. 
The penalty schema can easily handle the constraint’s issue 
but pollute the objective function. The boundary schema 
blocks the paths of particles.  

Based on the above discuss, Table I lists the advantages 
and disadvantages of the literature.  

TABLE I 
THE ADVANTAGES AND DISADVANTAGES OF THE REFERENCES  

Schema and  
references 

Advantage Disadvantage 

A. 
Penalty 
schema [23] 

• It is straightforward in 
addressing the 
constraints issue. 

• It results in an infeasible 
solution for NCO problems.  

[24] [25] [26] 
[27]. 

• It does not involve 
modifications of the used 
PSO. 

B. 
Boundary 
schema [28] 
[29] [30]. 

• It let the particle explore 
feasible regions and 
avoids the particles 
entering infeasible 
regions. 

• It does not offer a formula to 
calculate the distance 
between the boundary and 
current infeasible position.  

• It generates many dummy 
moves. 

• It cannot escape a local 
optimal region completely 
enclosed by infeasible 
regions. 

C. 
Reinforcement 
best position 
schema [32] 
[33] [34] [43]. 

• The local search PSO 
improves the exploration 
ability because many 
best positions ngp  exist 
for the related groups. 

• It remains the issue of the 
tradeoff between global 
search PSO and local search 
PSO. 

• It still does not solve the 
mutual restraint on directions.  

D. 
Reinforcement 
updating velocity 
formula schema 
[35] [36]. 

• It enhances the 
traditional updating 
velocity formula’s 
searchability. 

• It does not consider the status 
of particles entering the 
infeasible regions.  

 
Therefore, the current PSO-based approaches still lack a 

novel schema to explore undiscovered regions blocked by the 
infeasible regions generated by constraints (2)–(3) [37]. For 
solving premature convergence, the current PSO-based 
approaches need different behavior of particles to break 
through the traditional particle that restricted by the social 
( 2c ) and cognitive ( 1c ) factors. 

In a biological study, [38] observed that not all ants were 
active in the ant colony. In 1999, Gordon and Mehdiabadi 
[39] observed that the ant colony does the task allocation 
according to the environment and food reserved. [40] found 
that most ants harvest food with effort, but the lazy ants roam 
around everywhere and seemingly do nothing in the ant 
colony. Without those lazy ants, the ant colony cannot 
change the harvest target immediately during food shortages. 
Lazy ants spent the most time exploring and detecting 
unknown regions to continuously ensure the colony owned 
food sources. More precisely, lazy ants are not lazy; they are 
not tempted by present foods but spend the most time 
exploring additional food sources everywhere. [41] indicated 
that the inactive lazy ants are also a biological activity of 
swarm. Inspired by the lazy ant, this study proposes an easy 
particle that simulates lazy ant behavior. This study will 
embed the proposed easy particles into referenced PSO-based 
approaches to effectively address the stagnant particle and 
solve the NCO problems. 

III. PROPOSED EASY PARTICLE 

A. Easy particle concept 
To reiterate, [40][41] indicated that lazy ants are not 

tempted by present food but spend the most time exploring 
anywhere. [42] analyzed the ants’ trails and obtain that the 
lazy ants move straight in most times, sometimes turn right 
or turn left, and move backward within seldom times. 
Figure 1 represents the excepted exploration trajectory of 
easy particles. The proposed easy particles’ movements are 
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not influenced by the individual best position ip  and group 
best position gp  in Equation (4) (as the present food for the 
lazy ant). Thus, the lazy ants have more probabilities to find 
the undiscovered optimal solutions and to never be 
mutually restrained on directions by social and cognitive 
factors. 

Movements of Easy Particle

Current group best position

Undiscovered 
feasible region

Movements of typical particle
(Influenced By group best)

(Simulate the behavior of Lazy Ant)

Global optimization  
FIGURE 1.  Expected exploration movements of easy particle. 

 
Based on the analysis in [42], the trails of Lazy Ants 

are not purely random. The easy particle is the same as 
Lazy Ant. The trails of easy particle are not simply purely 
random moving. [12] indicated that the randomized 
velocity always obtained terrible results, such as stochastic 
particles [13] or wandering particles [14].  

The concept of movements of the easy particle is 
shown in Figure 2. In Figure 2, an easy particle in each 
iteration has four directions relative to its previous 
movement: move forward, turn left, turn right, and move 
backward. To simulate lazy ant behavior, the easy particle 
moves forward most times, sometimes turns right or left, 
and seldom goes backward. Therefore, the design principles 
of the easy particle are shown in Table II. 

Current position.

Probability of next velocity.

?

Move forward

Go backward

Turn rightTurn left

 
FIGURE 2.   Concept of movements of easy particle. 

 
TABLE II 

DESIGN PRINCIPLES OF EASY PARTICLE 

Direction Purpose Probability 
Directions of 
dimensions in 
velocity 

Moving 
forward 

Moving forward to 
ensure the particle is 
exploring the 
undiscovered 
regions. 

High. Greater and equal 
than 50% of the 
dimension’s 
directions in velocity 
is the same as its 
previous ones. 

Turning 
left/right 

Both exploration and 
exploitation 
orientation. Turning 
left/right to keep the 
balance of exploring 
the undiscovered 
regions and 
exploiting the current 
region. 

Medium. Less than 50% of the 
dimension’s 
directions in velocity 
are the same as its 
previous ones, and 
less than 50% of the 
dimension’s 
directions in velocity 
are the opposite of its 
previous ones. 

Moving 
backward 

Fully exploitation 
orientation. Move 
backward to refine 
the solution by 
exploiting the current 
region.  

Low. Greater and equal 
than 50% of the 
dimension’s 
directions in velocity 
is the opposite of its 
previous ones. 

 

B. Moving schema of easy particle 
For implementing the easy particle based on Table II, 

seven hyperparameters are introduced in Table III. 
TABLE III 

HYPERPARAMETERS OF EASY PARTICLE 
Notation Meaning 

EPr  [0,1)EPr ∈ . The rate of easy particles in the swarm. 

FWr  [0,1]FWr ∈ . The rate of easy particle’s directions moving 
forward 

TUr  [0,1]TUr ∈ . The rate of easy particle’s directions turning left 
and turning right, respectively. 

BWr  [0,1]BWr ∈ . The rate of easy particle’s directions going 
backward. 

Sr  [0,1]Sr ∈ . The rate of dimension’s directions in easy 
particle’s velocity that are the same as its previous ones. 

Or  [0,1]Or ∈ . The rate of dimension’s directions in easy 
particle’s velocity that are the opposite of its previous ones. 

Rr  [0,1]Rr ∈ . The rate of random direction dimensions. 

 
In Table III, EPr  decides the size of easy particles in a 
swarm; more easy particles will improve the swarm’s 
exploration ability but counteract the exploitation. In our 
experiential, 0.1EPr =  can appropriately increase the 
exploration ability and retain its exploitation ability as 
much as possible. The other hyperparameters must follow 
constraints (14) and (15). 
 2 1FW TU TRr r r+ + = , FW TU BWr r r> > , (14) 
 1S O Rr r r+ + = . (15) 

The appropriate ranges of Sr  and Or  for each direction are 
deduced by Proposition. 

 
PROPOSITION 1 
On the basis of the design principles in Table II and 
constraint (15), the appropriate ranges of Sr  and Or  for 
each direction of easy particle are listed as follows. 
(i) Moving forward: 0.75Sr ≥ . (16) 
(ii) Turning left/right: 0.25 , 0.75S Or r< < . (17) 
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(iii) Moving backward: 0.75Or ≥ . (18)□ 
Proof 
(i) Let the direction of dimension in the previous easy 
particle’s velocity be positive, then the dimensions 
belonging to Sr  are positive, and the dimensions belonging 
to Or  are negative. Denote ( )SD r , ( )OD r , and ( )RD r  as 
the direction values of dimensions belonging to Sr , Or , and 

Rr , respectively. Then, ( )S SD r r= , ( )O OD r r= − , and 
( ) [ , ]R R RD r r r∈ − . (ii) Base in Table II, an easy particle 

moving forward should follow constraint (19). 
 ( ) ( ) ( ) 0.5S O RD r D r D r+ + ≥ . (19) 
In the most conservative case, ( )R RD r r= − , constraint (19) 
can be expressed as constraint (20). 
 0.5S O Rr r r− − ≥ . (20) 
Based on constraint (15), constraint (20) deduces constraint 
(16). (iii) An easy particle turning left/right should follow 
constraint (21). 
 0.5 ( ) ( ) ( ) 0.5S O RD r D r D r− < + + < . (21) 
In the most conservative case for the lower bound of 
constraint (21), ( )R RD r r= − ; constraint (21) can be 
expressed as constraint (22). 
 0.5 0.5S O Rr r r− < − − < . (22) 
Based on constraint (15), constraint (22) deduces constraint 
(23). 
 0.25 0.75Sr< < . (23) 
In the most conservative case for the upper bound of 
constraint (21), ( )R RD r r= ; constraint (21) can be 
expressed as constraint (24). 
 0.5 0.5S O Rr r r− < − + < . (24) 
Constraint (24) deduces constraint (25) based on constraint 
(15). 
 0.25 0.75Or< < . (25) 
Constraints (23) and (25) can be expressed as constraint 
(17). (iv) An easy particle moving backward should follow 
constraint (26). 
 ( ) ( ) ( ) 0.5S O RD r D r D r+ + ≤ − . (26) 
In the most conservative case, ( )R RD r r= , constraint (26) 
can be expressed as constraint (27). 
 0.5S O Rr r r− + ≤ −  (27) 
Constraint (27) deduces constraint (18) based on constraint 
(15). ■ 

 
Let d as the number of dimensions of the NCO problem. 

Denote SS  as a set of dimensions whose directions are the 
same as their previous ones in velocity. Denote OS  as a set 
of dimensions whose directions are the opposite of their 
previous ones in velocity. Denote ( )S v  as the sign of the 
element v  in velocity. 3r  and 4r  are random variables that 
follow a uniform distribution. The following processes can 
calculate the velocity of the easy particle:  

(1) Decide the moving direction of the easy particle by a 
random variable 3r . 

30 FWr r≤ < : moving forward.  

3FW FW TUr r r r≤ < + : turning left.  

3 2FW TU FW TUr r r r r+ ≤ < + : turning right.  

32 1FW TUr r r+ ≤ ≤ : moving backward.  
 

(2) Move the easy particle with random variable 4r . 
(i) Randomly pick up Sdr    and Odr    dimensions of 

velocity for the sets SS  and OS , respectively. 
(ii) Calculate the velocity of easy particle through the 

updating velocity formulas (28). 

 
, 4 min max min ,

( 1)
, , 4 min max min ,

4 min max min

( ) ( ( )),
( ) ( ( )),

2( 0.5)( ( )),otherwise

t t
k i k i S

t t t
k i k i k i O

S v r v v v v S
v S v r v v v v S

r v v v

+

 + − ∈
= − + − ∈
 − + −

. (28) 

C. PSO-based approach embedded with easy particle 
The PSO-based approach embedded with easy particles is 

shown in Figure 3. Major processes in Figure 3 are the same 
as those of the standard PSO-based approach except for 
updating the velocity of the easy particle. The typical 
particles calculate velocity by PSO-based approaches’ 
updating velocity formulas, whereas the easy particle 
calculates velocity by formula (28). When the easy particle 
obtains a better feasible result, the best position gp  of the 
entire swarm will be updated. Therefore, the typical particles 
will be influenced by the new group best position gp . 

That is, the typical particles moving in the traditional 
manner attracted by social and cognitive factors and easy 
particles moving in a diversity trajectory simulated the 
behavior of the lazy ant. Hence, the particle swarm closer to 
the ants’ behavior in nature.  

Moreover, the easy particles only influence the 
convergence of PSO when they search a better position than 
the current group best position, and the easy particles will 
help the whole swarm to find a better solution. The easy 
particles impossibly find the better solution continuously; 
therefore, the solution must be converged within an 
acceptable evolution time in the late evolution process. 
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START

Update the best positions pg or pi

Terminate

Calculating the velocity by PSO-
based algorithm's schema

Move particle

End of the swarm

       Yes

END

No

No (next iteration)

       Yes

Better feasible solution?

Pick next particle x from the swarm

Is Easy Particle?

Calculating the velocity 
by formula (28)

NoYes

Check the feasibilities of new 
position by PSO-based 

algorithm's schema

          Yes

No

Initialize the environment (swarm & velocity)

 
FIGURE 3. The flowchart of PSO-based approach embedded with the 
easy particles. 

 

IV. EXPERIMENTAL RESULTS 
This study uses pretest–posttest design to validate the 

effectiveness of the proposed easy particle. Five PSO-based 
algorithms are used as the referenced algorisms. Pretests are 
the referenced algorithms without easy particles, and the 
referenced algorithms with easy particles are posttests. 
Given that the penalty schema should pollute the objective 
function, it will cause the best group position as an 
infeasible solution and distort the behavior of the easy 
particle. The easy particle is inappropriate for the penalty 
schema. Therefore, the following five referenced 
algorithms do not include the penalty schema. 

 
Algorithm 1 The traditional PSO that was proposed by Shi and 

Eberhart [20]. 
Algorithm 2 The UPSOm proposed by Parsopoulos and Vrahatis [33] 

incorporated a stochastic parameter that imitates mutation 
in UPSO [32] to enhance the exploration capabilities. 

Algorithm 3 The RWDEPSO proposed by Lin et al [43] is a mutate 
DEPSO [34] in which the inertia weight was based on a 
random number that obeys the standard state distribution. 

Algorithm 4 The algorithm proposed by He et al. [30] uses the fly-
back manner to handle the infeasible solution spaces in 
problems. 

Algorithm 5 The PSO+ proposed by Kohler et al. [35] uses the 
crossover operator between the infeasible particle and 
feasible particle until a new feasible particle can solve the 
infeasible particles. 

 
Five examples (three well-known benchmark problems 

and two well-known real-world optimization problems) are 
used in this section. 25 pretest–posttest experiments (five 
referenced algorithms with five examples) are performing 
in this section to demonstrate the effectiveness of the 
proposed easy particle. 

The values of standard PSO hyperparameters and easy 

particle hyperparameters are listed as following: (i) swarm 
size ( G ) is 30, (ii) executing time per run is 60 seconds, (iii) 
inertia weight ( w ) is descending by iteration from 0.9 to 
0.4 on the basis of Shi and Eberhart [20], (iv) cognitive and 
social parameters ( 1 2,c c ) are 1.7 based on Bonyadi and 
Michalewicz [44], (v) EPr = 0.1, (vi) FWr = 0.5, TUr = 0.2, 
and BWr = 0.1 based on constraint (14). The value ranges of 

Sr , Or , and rr  are following constraints (15)-(18). Based 
on constraints (15)-(18), the full factorial design of 
experiment (DOE) for Sr , Or , and rr  is conducted to find 
the appropriate settings listed in Table IV.  

 
TABLE IV 

VALUES OF HYPERPARAMETERS IN THIS STUDY 
Direction Values of Sr , Or , rr  
Moving forward. 

Sr = 0.75, Or = 0, rr = 0.25. 
Turning left/right. 

Sr = 0.35, Or = 0.35, rr = 0.3. 
Going backward. 

Sr = 0, Or = 0.75, rr = 0.25. 

 
All algorithms are implemented by C# in Microsoft 

Visual Studio Community 2019. All pretest–posttest 
experiments are run on a PC equipped with an Intel® 
CoreTM i7-930 CPU, 16 GB RAM, and Windows 10 
operating system. Each pretest–posttest experiment is 
performed at 30 runs, and it will let the average of objective 
values following the normal distribution based on the 
central limit theorem. Finally, this study uses paired t-test to 
verify the performance of each pretest–posttest experiment. 
The format of the result of the paired t-test is “p-value (* or 
** or ***)” where “*”, “**”, and “***” denote p-value <0.05, p-
value <0.01, and p-value <0.001, respectively. Standard 
deviation (Stdev) and quartile deviation (QD) are used to 
verify the stability of each pretest–posttest experiment. The 
tables provide precision experiment results, while the 
boxplots provide a visual for observing the difference 
simply. The experiment results of all examples are shown 
as follows.  

 
Example 1. Rosenbrock Problem 

The Rosenbrock problem was first proposed by 
Rosenbrock [45]. It is a famous testing problem that includes 
two local optimal regionals. The constraints form several 
infeasible regions within the search space that restrict the 
movements of traditional particles. They usually cause the 
particles to fall into premature convergence. Experiment 
results in Table V and Figure 4 show that the proposed easy 
particles help the PSO swarm to discover the new feasible 
region and obtain better objective values. 

Min 2 2 2
1 2 1( ) (1 ) 100( )f x x x= − + −x  

s.t. 3
1 2( 1) 1 0x x− − + ≤ , 1 2 2 0x x+ − ≤ . 

 
TABLE V 

EXPERIMENT RESULT OF EXAMPLE 1 
  Algorithm 
  1 2 3 4 5 
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Pretest Max 0.9989 0.9989 0.9989 0.9994 0.9991 

 Mean 0.9989 0.9989 0.9989 0.9656 0.9989 

 Min 0.9989 0.9989 0.9989 0.0000 0.9989 
 Stdev 0.0000 0.0000 0.0000 0.1824 0.0000 

 QD 0.0000 0.0000 0.0000 0.0000 0.0000 
Posttest Max 0.0281 0.1261 0.9989 0.6517 0.4809 

 Mean 0.0087 0.0218 0.3819 0.1101 0.0798 

 Min 0.0001 0.0002 0.0000 0.0028 0.0001 
 Stdev 0.0067 0.0297 0.4686 0.1547 0.1260 

 QD 0.0033 0.0137 0.4994 0.0626 0.0253 
p-value 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 

 

 
FIGURE 4. Box plot of Example 1. 

 
Example 2. Three-hump Camelback Problem 

The three-hump camelback problem that is modified from 
[46] has three local optimal regionals. It increased the 
challenge for the typical particle to find the global optimal 
region when it has lacked exploring capability. Experiment 
results in Table VI and Figure 5 show that the proposed easy 
particles improve the exploring capability of all referenced 
algorithms and obtain better objective values. 

Min 2 4 61
1 1 162 1.0) 81( x x xf − +=x  

 2
1 2 2 10.01x x x x− + +  

s.t. 12.5 2.5x− ≤ ≤ , 22.5 2.5x− ≤ ≤ . 
 

TABLE VI 
EXPERIMENT RESULT OF EXAMPLE 2 

  Algorithm 
  1 2 3 4 5 
Pretest Max 0.0088 0.0088 0.0000 0.3263 0.3365 

 Mean -0.0164 -0.0085 -0.0100 0.0094 0.0167 

 Min -0.0272 -0.0272 -0.0272 -0.0272 -0.0272 
 Stdev 0.0147 0.0148 0.0133 0.0615 0.0884 

 QD 0.0136 0.0136 0.0136 0.0044 0.0092 
Posttest Max -0.0272 -0.0272 0.0000 0.0000 0.0000 

 Mean -0.0272 -0.0272 -0.0200 -0.0218 -0.0263 

 Min -0.0272 -0.0272 -0.0272 -0.0272 -0.0272 
 Stdev 0.0000 0.0000 0.0122 0.0110 0.0050 

 QD 0.0000 0.0000 0.0102 0.0000 0.0000 
p-value 0.0002*** 0.0000*** 0.0045** 0.0058** 0.0063** 

 

 
FIGURE 5. Box plot of Example 2. 

 
Example 3. Townsend Problem 

The Townsend problem, modified from Townsend [47], 
contains trigonometric functions in objective function and 
constraints. A ridge is present around the global optimization 
that restricts the crossing of typical particles. Experiment 
results in Table VII and Figure 6 show that the proposed easy 
particles led the PSO swarm across the ridge successfully. 

Min [ ]2
1 2 1 1 2cos(( 0.1) sin(3( ) ) )x x x xf x− − − +=x  

s.t. 2 2 (2cos 0.5cos 2x y t t+ < −  
 0.25cos3t− − 2 20.125cos 4 ) (2sin )t t+ , 
 1 2Atan2( , )t x x= . 

 
TABLE VII 

EXPERIMENT RESULT OF EXAMPLE 3 
  Algorithm 
  1 2 3 4 5 
Pretest Max -1.6397 -1.6397 -1.6397 -1.6397 -1.6397 

 Mean -1.8314 -1.7689 -1.8088 -1.6777 -1.6696 

 Min -2.0240 -2.0240 -2.0236 -2.0240 -2.0219 
 Stdev 0.1827 0.1701 0.1695 0.0938 0.0668 

 QD 0.1814 0.1697 0.1672 0.0099 0.0000 
Posttest Max -2.0159 -2.0192 -1.6595 -2.0135 -2.0087 

 Mean -2.0225 -2.0229 -1.9510 -2.0205 -2.0204 

 Min -2.0240 -2.0240 -2.0240 -2.0239 -2.0240 
 Stdev 0.0019 0.0015 0.1483 0.0031 0.0037 

 QD 0.0009 0.0010 0.0001 0.0024 0.0018 
p-value 0.0000*** 0.0000*** 0.0011** 0.0000*** 0.0000*** 

 

 
FIGURE 6. Box plot of Example 3. 

 
Example 4. Welded Beam Design Problem 

Example 4 is a particle design problem for welded beams, 
which was first proposed by Rao [48]. The four decision 
variables are the thickness of the welded joint ( 1h x= ), the 
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length of the welded joint ( 2l x= ), the width of the beam 
( 3t x= ), and the thickness of the beam ( 4b x= ). It is also a 
popular machine design optimization problem that includes 
nonlinear objective function and nonlinear constraints. 
Experiment results in Table VIII and Figure 7 show that the 
proposed easy particles help all referenced algorithms obtain 
improved objective value and stability. 

Min 2
1 2 3 4 21.10471 0.04811 (14 )x x x x x+ +  

s.t. max( ) 0τ τ− ≤x , max( ) 0σ σ− ≤x , 
 1 4 0x x− ≤ , 
 2

1 3 4 20.10471 0.04811 (14 ) 5 0x x x x+ + − ≤ , 
 10.125 0x− ≤ , 
 max( ) 0δ δ− ≤x , ( ) 0cP P− ≤x , 
 0.1 2,  1, 4ix i≤ ≤ = , 0.1 10,  2,3ix i≤ ≤ = , 

where 

 2 22( ) ( ) 2 ( )
2
x
R

τ τ τ τ τ′ ′ ′′ ′′= + +x , 

 
1 22

P
x x

τ ′ = , MR
J

τ ′′ = , 2( )
2
xM P L= + , 

 
2

21 32 ( )
4 2

x xxR
+

= + ,

 
2

21 31 2 22 ( )
12 22

x xx x xJ
 +

= + 
 

,  

 2
4 3

6( ) PL
x x

σ =x , 3 3
3 4( ) 4PL Ex xδ =x , 

 
2 6
3 4 3

2

4.013 ( ) / 36
( ) 1

2 4c

EGx x x EP
L GL

 
= −  

 
x , 

 6000P lb= , 14L in= , 630 10E psi= × , 
 612 10G psi= × , max 13,600 psiτ = , 

 max 30,000 psiσ = ,  and max 0.25inδ = . 
 

TABLE VIII 
EXPERIMENT RESULT OF EXAMPLE 4 

    Algorithm 
    1 2 3 4 5 
Pretest Max 7.4251 3.7842 3.6703 11.9458 14.4426 

 Mean 3.7221 3.0462 3.1755 5.3372 5.6572 

 Min 2.2600 2.5067 2.3931 2.4842 2.4982 
 Stdev 2.0873 0.3558 0.3501 2.4744 2.8029 

  QD 0.4084 0.2809 0.2425 1.2801 1.2943 
Posttest Max 2.7116 2.8223 2.7357 2.5961 2.5795 

 Mean 2.5926 2.6465 2.5839 2.4908 2.4919 

 Min 2.4503 2.4590 2.3812 2.4267 2.4096 
 Stdev 0.0645 0.0975 0.1236 0.0337 0.0423 

  QD 0.0401 0.0721 0.0935 0.0206 0.0380 
p-value 0.0030** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 

 

 
FIGURE 7. Box plot of Example 4. 

 
Example 5. Pressure Vessel Design Problem 

The pressure vessel design problem introduced by 
Sandgren [49] aims to minimize the total cost of materials 
when forming and welding pressure vessels. In Table IX and 
Figure 8, the proposed easy particles have improved the 
performances and stabilities of all referenced algorithms as 
well for Example 5. 

Min 2
1 3 4 2 3( ) 0.6224 1.7781f x x x x x= + +x

 
2 2
1 4 1 33.1661 19.84x x x x+  

s.t. 1 30.0193 0x x− + ≤ , 2 30.00954 0x x− + ≤ , 
 2 34

3 4 33 1296000 0x x xπ π− − + ≤ , 
 4 240 0x − ≤ , 1 20.0625 , 6.1875x x≤ ≤ ,  

 3 410 , 200x x≤ ≤ . 
 

TABLE IX 
EXPERIMENT RESULT OF EXAMPLE 5 

    Algorithm 
    1 2 3 4 5 
Pretest Max 11946.73 11549.74 11523.64 23385.96 21633.41 

 Mean 6591.82 6735.73 6974.48 11668.12 11063.45 

 Min 6058.87 5977.99 5915.86 6355.25 5897.48 
 Stdev 1291.65 1547.71 1569.72 5184.27 5265.78 

  QD 85.22 130.86 332.29 4260.13 3738.06 
Posttest Max 6264.68 6538.04 7144.50 7950.01 6084.48 

 Mean 6027.54 6145.40 6219.87 6758.61 6011.27 

 Min 5895.68 5938.13 5895.68 6029.14 5892.29 
 Stdev 108.63 174.72 298.34 543.28 57.58 

  QD 86.01 111.61 229.29 279.84 43.28 
p-value 0.0094** 0.0227* 0.0083** 0.0000*** 0.0000*** 

 

 
FIGURE 8. Box plot of Example 5. 

 
Table X shows the significance level of the experiment 

results of 25 pretest–posttest experiments (five examples 
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with five referenced algorithms). All experiment results of 
posttest are better than the ones of pretest significantly. 

 
TABLE X 

SUMMARY OF THE EXPERIMENT RESULTS OF  
PRETEST-POSTTEST EXPERIMENTS 

 Algorithm 
1 

Algorithm 
2 

Algorithm 
3 

Algorithm 
4 

Algorithm 
5 

Example 
1 *** *** *** *** *** 

Example 
2 *** *** ** ** ** 

Example 
3 *** *** ** *** *** 

Example 
4 ** *** *** *** *** 

Example 
5 ** * ** *** *** 

*: p-value<0.05; **: p-value<0.01; ***: p-value<0.001. 
 

Table X demonstrates that the proposed easy particles 
improve all referenced algorithms in all examples. The 
experiment using 10% of swarm size to improve the 
referenced algorithms and 90% of swarm size keeps the 
features of the referenced algorithms. The experiment results 
demonstrate that the proposed easy particles are helpful to 
improve the referenced algorithms for obtaining better results. 
 

V. CONCLUSION 
This study proposes the easy particle inspired by the lazy 

ant’s effect in the ant colony for PSO to solve the issue of 
constraints in NCO problems, and the easy particle is very 
convenient to embed the current PSO-based approaches. 
Based on lazy ant behavior, the proposed easy particle 
unrestricted by social and cognition factors can break through 
the containment of constraint for enhancing the probabilities 
of exploring undiscovered regions. The experiments 
demonstrate that the proposed easy particles embedded in all 
referenced algorithms can effectively reduce premature 
convergence for significantly improving the NCO problems’ 
performances.  

Reducing the number of easy particles will enhance the 
exploitation capability but weakening the exploration 
capability; on the contrary, increasing the number of easy 
particles will enhance the exploration capability but 
weakening the exploitation capability. Sometimes the PSO-
based approach needs more easy particles to enhance the 
exploration capability, and sometimes it needs fewer easy 
particles to enhance the exploitation capability. How to 
determine the optimal number of easy particles for both 
maintaining the exploration and exploitation is always a 
dilemma problem for PSO.  

Appropriately refreshing the number of easy particles 
seems a good strategy; therefore, the elastic size of easy 
particles is a topic for future research. 
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