
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3110708, IEEE Access

VOLUME XX, 2021 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2021.Doi Number

Easy Particle Swarm Optimization for Nonlinear
Constrained Optimization Problems
Hsuan-Yu Tseng1, Pao-Hsien Chu2, Hao-Chun Lu2-3,*, and Ming-Jyh Tsai4
1Graduate Institute of Business Administration, Fu Jen Catholic University, New Taipei 242, Taiwan.
2Department of Cardiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
3Graduate Institute of Business and Management, Chang Gung University, Taoyuan 333, Taiwan.
4Department of Information Management, Fu Jen Catholic University, New Taipei 242, Taiwan.

Hsuan-Yu Tseng and Pao-Hsien Chu made equal contributions and serve as co-first authors for this publication.

*Corresponding author: Hao-Chun Lu. (e-mail: bach0809@mail.cgu.edu.tw).

The work was partially supported by the Ministry of Science and Technology of Taiwan under the grant MOST 108-2410-H-030-078-MY2 and MOST 110-
2410-H-182-008-MY3.

ABSTRACT Particle swarm optimization (PSO) is a popular stochastic approach for solving practical
optimal problems from industries due to its effective performance and few hyperparameters. Nonlinear
constrained optimization (NCO) problems frequently cause multiple optimal regions and can cause many
infeasible regions in the search space. The state-of-the-art approaches for handling the infeasible regions
generated by problems’ constraints either block particles’ paths or penalize NCO problems’ objective
values based on the standard updating velocity formula. The standard updating velocity formula introduces
difficulties for particles in searching the undiscovered optimal solutions separated by infeasible regions and
being mutually restrained on directions by social and cognitive factors. Afterward, the particles cause
premature convergence and difficulty searching the undiscovered optimal regions to improve their solutions.
Observing the biological ant colony and inspired by lazy ant behavior, this study proposes an easy particle
that simulates the lazy ant to diversify the moving direction. Finally, this study integrates the proposed easy
particles with referenced PSO-based approaches for solving NCO problems. The experiment results show
that the proposed easy particles can effectively reinforce exploration abilities and improve the performances
of all referenced PSO-based algorithms to reduce the status of premature convergence in solving NCO
problems.

INDEX TERMS Particle swarm optimization; Easy Particles; Exploration; Premature convergence;
Nonlinear constrained optimization problems.

I. INTRODUCTION
In nature, the biological swarm establishes a social system
for food searching, migration, and defense. Such biological
behavior inspires many scientists to develop related
theoretical bases. Particle swarm optimization (PSO),
proposed by Kennedy and Eberhart [1], is a popular approach
in swarm intelligence. PSO has since been applied in many
industries from the real world for solving nonlinear
optimization problems because of its effective performance
and few hyperparameters.

Most optimal problems in practical industries can be
expressed the nonlinear constrained optimization (NCO)
problems as follows.

Min ()f x (1)

s.t. () 0, 1,...,jc j m≤ =x , (2)
 () 0, 1,...,je j m′= =x . (3)
where ()jc x in (2) denote the problem-specific inequality

constraints and ()je x in (3) denote the problem-specific
equation constraints. The problem-specific constraints (2)–(3)
are derived from the limitations of resources in practical
industries, such as in electromagnetics [2], real-time UAV
path planning [3], prediction of seismic slope stability [4],
energy development [5][6], incomplete data clustering [7],
and production inventory [8]. [9] presented a performance
comparison of harmony search (HS), differential evolution
(DE), and PSO for the standard benchmark functions. [10]
have used PSO, DE, and genetic algorithm (GA) altogether

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3110708, IEEE Access

VOLUME XX, 2021 2

to estimate low atmospheric refractivity profiles from radar
sea clutter. Such studies essentially recognized PSO’s
superiority compared with other algorithms for NO
problems[9][11].

The problem-specific constraints in (2)–(3) frequently
cause multiple optimal regions and can cause many
infeasible regions in the search space. Given that primitive
PSO does not discuss any approach for handling the
infeasible regions in the search space, many improvements
have been developed in the literature. However, the state-of-
the-art approaches for handling the infeasible regions in the
search space either block particles’ paths or penalize NCO
problems’ objective values on the basis of the standard
updating velocity formula. Given that the traditional updating
velocity formula does not consider the infeasible regions,
those approaches cause the particles (i) difficulty in searching
the undiscovered optimal solutions separated by infeasible
regions and (ii) to be mutually restrained on directions by
social and cognitive factors. Afterward, the particles
encounter difficulty in improving their solutions, resulting in
premature convergence. In particular, the optimal solutions
enclosed by the infeasible regions are difficult to obtain. The
randomized velocity is a simple way to avoid the stagnation
situation; however, [12][13][14]indicated that randomized
velocity always obtained terrible results. Developing a novel
approach for PSO is necessary to solve the issue of
constraints in NCO problems.

This study solves this issue by observing ant colony
behavior. Most ants harvest food with effort in the usual
sense, but some ants roam around everywhere and do nothing.
Such ants are referred to by biologists as lazy ants. When
food shortages occur, most ants cannot do anything but the
lazy ants come forward to guide the typical ants to find a new
region for harvesting food. Therefore, lazy ants are not lazy;
they are looking for additional food sources everywhere. The
lazy ant effect is a popular theory in organization
management in recent years [15][16][17][18][19]. This study
proposes an easy particle that simulates the lazy ant to
improve the ability to search the optimal regions separated by
infeasible regions and solve the dilemma of mutually
restrained directions by social and cognitive factors. This
idea is never proposed for PSO in current literature. The
advantages and contributions of the proposed easy particle
are listed as follows.
(i) Increasing the probability of exploring the search space

across the infeasible regions for PSO-based approaches
solving the NCO problems.

(ii) Effectively reducing the status of premature
convergence for PSO-based approaches solving the
NCO problems.

(iii) Current PSO-based approaches can conveniently embed
the proposed easy particles to significantly improve the
performances of solving the NCO problems.

The remainder of this study is as follows. Section II
investigates the literature of current PSO-based approaches.

Section III introduces the proposed easy particle. Section IV
presents some numerical experiments to demonstrate the
advantages of the proposed easy particle. Section V provides
some concluding remarks.

II. LITERATURE REVIEW
PSO was first proposed by Kennedy and Eberhart [1] to
solve optimization problems, and Shi and Eberhart [12]
introduced a new parameter called inertia weight in PSO. On
this basis [20], the main processes of PSO include
initialization, fitness, updating velocity, and moving particle.
In this study, the notations are defined as follows:
Notation Meaning
T The total number of iterations.
t The index of iterations where {1,2,..., }t T∈ .
G The size of swarm.
i The index of particles in swarm where {1,2,..., }i G∈ .
d The dimension of the optimization problem.
ω The inertia weight factor.

1c The cognitive factor.

2c The social factor.

1r , 2r The random vector where ,1 ,(, ,)i i i dr r=r , , [0,1]i jr ∈ ,

1, 2i = , and 1,...,j d= .
()t
ix The position vector of particle i at iteration t where

() () ()
,1 ,(, ,)t t t

i i i dx x=x .
()t
iv The velocity vector of particle i at iteration t where

() () ()
,1 ,(, ,)t t t

i i i dv v=v .
()tS The swarm at iteration t where () () () ()

1 2{ , ,..., }t t t t
GS = x x x .

ip The best position vector of (1) (){ , , }t
i ix x for particle i from

1st to tth iterations where ,1 ,(, ,)i i i dp p=p .

gp The best position vector of 1{ , , }Gp p for entire swarm

from 1st to tth iterations where ,1 ,(, ,)g g g dp p=p .

On the basis of Shi and Eberhart [20], the formulas of
updating velocity and moving are shown in Equations (4) and
(5).
 (1) () () ()

1 1 2 2() ()t t t t
i i i i g ic cω+ = + − + −v v r p x r p x , (4)

 (1) () (1)t t t
i i i
+ += +x x v . (5)

In Equation (4), ()
1 1()t

i ic −r p x and ()
2 2 ()t

g ic −r p x present
the cognitive movement and social movement, respectively.
The social and cognitive movements are based on the
individual best position and group best position where
and are only storing feasible solutions. The primitive PSO is
designed for nonlinear optimization problems; however, it is
inappropriate to solve the NCO problems. Given that the
NCO problems are solved through traditionally updating
velocity formulas in Equations (4)–(5), particles will
frequently be moved to the infeasible regions constructed by
the problem-specific constraints in (2)–(3). Given that no
schema exists in primitive PSO for handling the particles
entering the infeasible regions, many schemas are proposed
in the literature to solve constraints in NCO problems
[21][22]. The following contexts describe the favored
schemas of handling the constraints in (2)–(3) for PSO.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3110708, IEEE Access

VOLUME XX, 2021 3

A. Penalty schema
The most popular idea is the penalty schema because it is

straightforward in addressing the constraints issue. The
penalty schema for PSO is calculating the penalty value of
constraint violations and adding this penalty value to the
objective function in (1) [23][24][25][26]. Based on Koziel
and Michalewicz [24] and O. Yeniay [26], the NCO
problems with the penalty schema can be expressed as
follows:
Min () ()f P+x x (6)
s.t. (2), (3),

 1 2
1 1

() () ()
m m

j j
j j

P p N p v v
′

= =

′= + +

∑ ∑x x x , (7)

 () max{0, ()}, 1,...,j jv c j m= =x x , (8)
 () | () |, 1,...,j jv e j m′ ′= =x x . (9)
 where ()P x in Equation (7) is the penalty value that will be
added to the objective function, 1p and 2p are the penalty
coefficients that the user can define, N is the number of
violated constraints, ()jv x in Equation (8) is the penalty
value of the thj violated constraints in (2), and ()jv′ x in
Equation (9) is the penalty value of the thj violated
constraints in (3).

The penalty schema is very convenient because it does not
involve modifications of the used PSO or specialized
operators’ development for the constraints. However,

() ()f P+x x in (6) results in an infeasible solution for NCO
problems. For example, supporting the objective function

() 10f = −x with () 0P =x in (6) is a global optimum and
() 100f = −x with () 1P =x in (6) is an infeasible solution.

Then, the final objective value will be −100 with a slight
penalty factor of () 1P =x . However, () 100f = −x is an
infeasible solution. [27] proposed a mutation function to
solve the specific constraint of bin-packing problems when
particles encounter the boundaries of constraints. However,
the concept of mutation is similar to that of GA, that is, the
fitness function typically drives the computational load.

B. Boundary schema
Some studies treat the infeasible regions as particles’

boundaries. Thus, they will let the particles likely explore
feasible regions and avoids the particles entering infeasible
regions. Sanaz et al. [28] and Li-Yeh et al. [29] proposed a
boundary schema to handle constraints in NCO problems.
When a particle moves to an infeasible region, [28] and [29]
drag the particle back to a closer feasible position against the
infeasible region’s boundary, the particle moves to a position,

()temp
ix , in the infeasible region, and the particle will be

dragged to the position (1)t
i
+x . He et al. [30] proposed a fly-

back schema to handle constraints in NCO problems. This
schema is straightforward, and it is effortless to implement in
PSO. In this schema, the particles are dragged back into the
original feasible solution.

However, the boundary schema proposed by [28] and [29]
does not offer a precise formula to calculate the closer
feasible position, and the distance between ()temp

ix and (1)t
i
+x

is difficult to calculate if the objective function or constraints
are nonlinear. The fly-back schema proposed by [30] will
generate many dummy moves in evolution processes and
reduce PSO efficiency. [31] indicated that taking the bounds
as the corresponding positions of new particles in [28] and
[29] and keeping the positions of particles unchanged in [30]
will reduce the diversity of the particles in the search process.
Moreover, if the infeasible regions completely enclose the
best optimal solution, the particles cannot achieve the best
optimal solution until the evolution processes are terminated.

In addition to directly solving the constraints issue, many
schemas are available for PSO to increase its exploration
ability. The following contexts describe the most popular
schemas.

C. Reinforcement best position schema
In literature, two main variants of PSO-based approaches

on the number of best position, gp , are used, namely global
and local search PSOs. The global search PSO is the
primitive PSO proposed by Shi and Eberhart [20], and only
one gp exists in Equation (4) for all particles where the gp ’s

neighborhoods are the entire swarm ()tS . For local search
PSO, the swarm will be divided into multiple groups, and
each group has the best position. ngp is denoted as the best
position for group n in the swarm. The formula of the local
search PSO can be changed to Equations (10)–(11).
 (1) () () ()

, 1 1 2 2() ()t t t t
Local i i i i ng ic cω+ = + − + −v v r p x r p x , (10)

 (1) () (1)
,

t t t
i i Local i
+ += +x x v . (11)

The global search PSO in Equations (4)–(5) promotes
exploitation because all particles are attracted by one group
best position gp , which will converge rapidly toward the
same point. In contrast to the local search PSO, the updating
velocity formula in Equations (10)–(11) has better
exploration effects because many best positions ngp exist for
the related groups, and the related groups’ best positions will
attract the particles. This process is a tradeoff between the
global and local search PSO. Parsopoulos and Vrahatis [32]
proposed a unified PSO (UPSO) that combines the
exploitation feature of global search PSO and the exploration
feature of local search PSO. The UPSO’s updating velocity
formulas can be expressed by Equations (4), (10), (12), and
(13).
 (1) (1) (1)

, ,(1)t t t
UPSO i Local i iu u+ + += − +v v v , (12)

 (1) () (1)
,

t t t
i i UPSO i
+ += +x x v . (13)

where (1)t
i
+v in Equation (4) and (1)

,
t

Local i
+v in Equation (10)

are global and local velocities. Afterward, Parsopoulos and
Vrahatis [33] indicated that the UPSO with 0.5u = and
UPSO with mutation (UPSOm) proved the most promising
scheme on their optimization problems examined.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3110708, IEEE Access

VOLUME XX, 2021 4

[34] propose a differential evolution PSO (DEPSO) that
uses the operators (crossover, recombination, and mutation)
of the genetic algorithm to create diversified best group
positions gp for improving the exploitation ability of PSO.
The particles of DEPSO converge faster than those in
traditional PSOs in our experiments. However, DEPSO
results in premature convergence for solving the NCO
problems. This reinforcement best position schema may
improve the exploitation ability of PSO, but it still does not
solve the mutual restraint on directions by social and
cognitive factors.

D. Reinforcement updating velocity formula schema
[35] proposed a new updating velocity updating method,

named the foothold concept, to solve constraints in the NCO
problems. If the particle is moved into an infeasible region,
the repairing process will be started until a new feasible
particle is found. The new feasible particle is calculated using
a linear combination between the infeasible particle and the
randomly selected feasible particle. [31] adjusted the original
velocity obtained by Equation (4) according to the number of
particles moving outside the feasible region, and the
adjustment original updating velocity formula can be
expressed as follows:
 (1) ()(1)t t

i i
αβ+ = +v v ,if 1out iN < ,

 ()(1) ()
, ,/ 1 / if 1t t

i i out i T out iN N N
γ+ = + ≥v v .

where , , and α β γ are positive constants; ,out iN is the
number of moves outside the feasible region since the last
velocity adjustment for particle i ; and TN is the number of
iterative cycles among velocity adjustments.

[36] indicated that an excellent PSO-based algorithm
needs to consider both abilities of exploration and
exploitation. The reinforcement best position and
reinforcement updating velocity formula schemas enhance
the traditional updating velocity formula’s searchability in
Equation (4). However, the traditional updating velocity
formula in Equation (4) does not consider the status of
particles entering the infeasible regions. It will cause the
social factor (2c) and cognitive factor (1c) to be mutually
restrained on particles’ directions. The reinforcement best
position and reinforcement updating velocity formula
schemas based on the traditional updating velocity formula in
Equation (4) are inappropriate to solve the NCO problems.
The penalty schema can easily handle the constraint’s issue
but pollute the objective function. The boundary schema
blocks the paths of particles.

Based on the above discuss, Table I lists the advantages
and disadvantages of the literature.

TABLE I
THE ADVANTAGES AND DISADVANTAGES OF THE REFERENCES

Schema and
references

Advantage Disadvantage

A.
Penalty
schema [23]

• It is straightforward in
addressing the
constraints issue.

• It results in an infeasible
solution for NCO problems.

[24] [25] [26]
[27].

• It does not involve
modifications of the used
PSO.

B.
Boundary
schema [28]
[29] [30].

• It let the particle explore
feasible regions and
avoids the particles
entering infeasible
regions.

• It does not offer a formula to
calculate the distance
between the boundary and
current infeasible position.

• It generates many dummy
moves.

• It cannot escape a local
optimal region completely
enclosed by infeasible
regions.

C.
Reinforcement
best position
schema [32]
[33] [34] [43].

• The local search PSO
improves the exploration
ability because many
best positions ngp exist
for the related groups.

• It remains the issue of the
tradeoff between global
search PSO and local search
PSO.

• It still does not solve the
mutual restraint on directions.

D.
Reinforcement
updating velocity
formula schema
[35] [36].

• It enhances the
traditional updating
velocity formula’s
searchability.

• It does not consider the status
of particles entering the
infeasible regions.

Therefore, the current PSO-based approaches still lack a

novel schema to explore undiscovered regions blocked by the
infeasible regions generated by constraints (2)–(3) [37]. For
solving premature convergence, the current PSO-based
approaches need different behavior of particles to break
through the traditional particle that restricted by the social
(2c) and cognitive (1c) factors.

In a biological study, [38] observed that not all ants were
active in the ant colony. In 1999, Gordon and Mehdiabadi
[39] observed that the ant colony does the task allocation
according to the environment and food reserved. [40] found
that most ants harvest food with effort, but the lazy ants roam
around everywhere and seemingly do nothing in the ant
colony. Without those lazy ants, the ant colony cannot
change the harvest target immediately during food shortages.
Lazy ants spent the most time exploring and detecting
unknown regions to continuously ensure the colony owned
food sources. More precisely, lazy ants are not lazy; they are
not tempted by present foods but spend the most time
exploring additional food sources everywhere. [41] indicated
that the inactive lazy ants are also a biological activity of
swarm. Inspired by the lazy ant, this study proposes an easy
particle that simulates lazy ant behavior. This study will
embed the proposed easy particles into referenced PSO-based
approaches to effectively address the stagnant particle and
solve the NCO problems.

III. PROPOSED EASY PARTICLE

A. Easy particle concept
To reiterate, [40][41] indicated that lazy ants are not

tempted by present food but spend the most time exploring
anywhere. [42] analyzed the ants’ trails and obtain that the
lazy ants move straight in most times, sometimes turn right
or turn left, and move backward within seldom times.
Figure 1 represents the excepted exploration trajectory of
easy particles. The proposed easy particles’ movements are

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3110708, IEEE Access

VOLUME XX, 2021 5

not influenced by the individual best position ip and group
best position gp in Equation (4) (as the present food for the
lazy ant). Thus, the lazy ants have more probabilities to find
the undiscovered optimal solutions and to never be
mutually restrained on directions by social and cognitive
factors.

Movements of Easy Particle

Current group best position

Undiscovered
feasible region

Movements of typical particle
(Influenced By group best)

(Simulate the behavior of Lazy Ant)

Global optimization
FIGURE 1. Expected exploration movements of easy particle.

Based on the analysis in [42], the trails of Lazy Ants

are not purely random. The easy particle is the same as
Lazy Ant. The trails of easy particle are not simply purely
random moving. [12] indicated that the randomized
velocity always obtained terrible results, such as stochastic
particles [13] or wandering particles [14].

The concept of movements of the easy particle is
shown in Figure 2. In Figure 2, an easy particle in each
iteration has four directions relative to its previous
movement: move forward, turn left, turn right, and move
backward. To simulate lazy ant behavior, the easy particle
moves forward most times, sometimes turns right or left,
and seldom goes backward. Therefore, the design principles
of the easy particle are shown in Table II.

Current position.

Probability of next velocity.

?

Move forward

Go backward

Turn rightTurn left

FIGURE 2. Concept of movements of easy particle.

TABLE II

DESIGN PRINCIPLES OF EASY PARTICLE

Direction Purpose Probability
Directions of
dimensions in
velocity

Moving
forward

Moving forward to
ensure the particle is
exploring the
undiscovered
regions.

High. Greater and equal
than 50% of the
dimension’s
directions in velocity
is the same as its
previous ones.

Turning
left/right

Both exploration and
exploitation
orientation. Turning
left/right to keep the
balance of exploring
the undiscovered
regions and
exploiting the current
region.

Medium. Less than 50% of the
dimension’s
directions in velocity
are the same as its
previous ones, and
less than 50% of the
dimension’s
directions in velocity
are the opposite of its
previous ones.

Moving
backward

Fully exploitation
orientation. Move
backward to refine
the solution by
exploiting the current
region.

Low. Greater and equal
than 50% of the
dimension’s
directions in velocity
is the opposite of its
previous ones.

B. Moving schema of easy particle
For implementing the easy particle based on Table II,

seven hyperparameters are introduced in Table III.
TABLE III

HYPERPARAMETERS OF EASY PARTICLE
Notation Meaning

EPr [0,1)EPr ∈ . The rate of easy particles in the swarm.

FWr [0,1]FWr ∈ . The rate of easy particle’s directions moving
forward

TUr [0,1]TUr ∈ . The rate of easy particle’s directions turning left
and turning right, respectively.

BWr [0,1]BWr ∈ . The rate of easy particle’s directions going
backward.

Sr [0,1]Sr ∈ . The rate of dimension’s directions in easy
particle’s velocity that are the same as its previous ones.

Or [0,1]Or ∈ . The rate of dimension’s directions in easy
particle’s velocity that are the opposite of its previous ones.

Rr [0,1]Rr ∈ . The rate of random direction dimensions.

In Table III, EPr decides the size of easy particles in a
swarm; more easy particles will improve the swarm’s
exploration ability but counteract the exploitation. In our
experiential, 0.1EPr = can appropriately increase the
exploration ability and retain its exploitation ability as
much as possible. The other hyperparameters must follow
constraints (14) and (15).
 2 1FW TU TRr r r+ + = , FW TU BWr r r> > , (14)
 1S O Rr r r+ + = . (15)

The appropriate ranges of Sr and Or for each direction are
deduced by Proposition.

PROPOSITION 1
On the basis of the design principles in Table II and
constraint (15), the appropriate ranges of Sr and Or for
each direction of easy particle are listed as follows.
(i) Moving forward: 0.75Sr ≥ . (16)
(ii) Turning left/right: 0.25 , 0.75S Or r< < . (17)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3110708, IEEE Access

VOLUME XX, 2021 6

(iii) Moving backward: 0.75Or ≥ . (18)□
Proof
(i) Let the direction of dimension in the previous easy
particle’s velocity be positive, then the dimensions
belonging to Sr are positive, and the dimensions belonging
to Or are negative. Denote ()SD r , ()OD r , and ()RD r as
the direction values of dimensions belonging to Sr , Or , and

Rr , respectively. Then, ()S SD r r= , ()O OD r r= − , and
() [,]R R RD r r r∈ − . (ii) Base in Table II, an easy particle

moving forward should follow constraint (19).
 () () () 0.5S O RD r D r D r+ + ≥ . (19)
In the most conservative case, ()R RD r r= − , constraint (19)
can be expressed as constraint (20).
 0.5S O Rr r r− − ≥ . (20)
Based on constraint (15), constraint (20) deduces constraint
(16). (iii) An easy particle turning left/right should follow
constraint (21).
 0.5 () () () 0.5S O RD r D r D r− < + + < . (21)
In the most conservative case for the lower bound of
constraint (21), ()R RD r r= − ; constraint (21) can be
expressed as constraint (22).
 0.5 0.5S O Rr r r− < − − < . (22)
Based on constraint (15), constraint (22) deduces constraint
(23).
 0.25 0.75Sr< < . (23)
In the most conservative case for the upper bound of
constraint (21), ()R RD r r= ; constraint (21) can be
expressed as constraint (24).
 0.5 0.5S O Rr r r− < − + < . (24)
Constraint (24) deduces constraint (25) based on constraint
(15).
 0.25 0.75Or< < . (25)
Constraints (23) and (25) can be expressed as constraint
(17). (iv) An easy particle moving backward should follow
constraint (26).
 () () () 0.5S O RD r D r D r+ + ≤ − . (26)
In the most conservative case, ()R RD r r= , constraint (26)
can be expressed as constraint (27).
 0.5S O Rr r r− + ≤ − (27)
Constraint (27) deduces constraint (18) based on constraint
(15). ■

Let d as the number of dimensions of the NCO problem.

Denote SS as a set of dimensions whose directions are the
same as their previous ones in velocity. Denote OS as a set
of dimensions whose directions are the opposite of their
previous ones in velocity. Denote ()S v as the sign of the
element v in velocity. 3r and 4r are random variables that
follow a uniform distribution. The following processes can
calculate the velocity of the easy particle:

(1) Decide the moving direction of the easy particle by a
random variable 3r .

30 FWr r≤ < : moving forward.

3FW FW TUr r r r≤ < + : turning left.

3 2FW TU FW TUr r r r r+ ≤ < + : turning right.

32 1FW TUr r r+ ≤ ≤ : moving backward.

(2) Move the easy particle with random variable 4r .
(i) Randomly pick up Sdr and Odr dimensions of

velocity for the sets SS and OS , respectively.
(ii) Calculate the velocity of easy particle through the

updating velocity formulas (28).

, 4 min max min ,

(1)
, , 4 min max min ,

4 min max min

() (()),
() (()),

2(0.5)(()),otherwise

t t
k i k i S

t t t
k i k i k i O

S v r v v v v S
v S v r v v v v S

r v v v

+

 + − ∈
= − + − ∈
 − + −

. (28)

C. PSO-based approach embedded with easy particle
The PSO-based approach embedded with easy particles is

shown in Figure 3. Major processes in Figure 3 are the same
as those of the standard PSO-based approach except for
updating the velocity of the easy particle. The typical
particles calculate velocity by PSO-based approaches’
updating velocity formulas, whereas the easy particle
calculates velocity by formula (28). When the easy particle
obtains a better feasible result, the best position gp of the
entire swarm will be updated. Therefore, the typical particles
will be influenced by the new group best position gp .

That is, the typical particles moving in the traditional
manner attracted by social and cognitive factors and easy
particles moving in a diversity trajectory simulated the
behavior of the lazy ant. Hence, the particle swarm closer to
the ants’ behavior in nature.

Moreover, the easy particles only influence the
convergence of PSO when they search a better position than
the current group best position, and the easy particles will
help the whole swarm to find a better solution. The easy
particles impossibly find the better solution continuously;
therefore, the solution must be converged within an
acceptable evolution time in the late evolution process.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3110708, IEEE Access

VOLUME XX, 2021 7

START

Update the best positions pg or pi

Terminate

Calculating the velocity by PSO-
based algorithm's schema

Move particle

End of the swarm

 Yes

END

No

No (next iteration)

 Yes

Better feasible solution?

Pick next particle x from the swarm

Is Easy Particle?

Calculating the velocity
by formula (28)

NoYes

Check the feasibilities of new
position by PSO-based

algorithm's schema

 Yes

No

Initialize the environment (swarm & velocity)

FIGURE 3. The flowchart of PSO-based approach embedded with the
easy particles.

IV. EXPERIMENTAL RESULTS
This study uses pretest–posttest design to validate the

effectiveness of the proposed easy particle. Five PSO-based
algorithms are used as the referenced algorisms. Pretests are
the referenced algorithms without easy particles, and the
referenced algorithms with easy particles are posttests.
Given that the penalty schema should pollute the objective
function, it will cause the best group position as an
infeasible solution and distort the behavior of the easy
particle. The easy particle is inappropriate for the penalty
schema. Therefore, the following five referenced
algorithms do not include the penalty schema.

Algorithm 1 The traditional PSO that was proposed by Shi and

Eberhart [20].
Algorithm 2 The UPSOm proposed by Parsopoulos and Vrahatis [33]

incorporated a stochastic parameter that imitates mutation
in UPSO [32] to enhance the exploration capabilities.

Algorithm 3 The RWDEPSO proposed by Lin et al [43] is a mutate
DEPSO [34] in which the inertia weight was based on a
random number that obeys the standard state distribution.

Algorithm 4 The algorithm proposed by He et al. [30] uses the fly-
back manner to handle the infeasible solution spaces in
problems.

Algorithm 5 The PSO+ proposed by Kohler et al. [35] uses the
crossover operator between the infeasible particle and
feasible particle until a new feasible particle can solve the
infeasible particles.

Five examples (three well-known benchmark problems

and two well-known real-world optimization problems) are
used in this section. 25 pretest–posttest experiments (five
referenced algorithms with five examples) are performing
in this section to demonstrate the effectiveness of the
proposed easy particle.

The values of standard PSO hyperparameters and easy

particle hyperparameters are listed as following: (i) swarm
size (G) is 30, (ii) executing time per run is 60 seconds, (iii)
inertia weight (w) is descending by iteration from 0.9 to
0.4 on the basis of Shi and Eberhart [20], (iv) cognitive and
social parameters (1 2,c c) are 1.7 based on Bonyadi and
Michalewicz [44], (v) EPr = 0.1, (vi) FWr = 0.5, TUr = 0.2,
and BWr = 0.1 based on constraint (14). The value ranges of

Sr , Or , and rr are following constraints (15)-(18). Based
on constraints (15)-(18), the full factorial design of
experiment (DOE) for Sr , Or , and rr is conducted to find
the appropriate settings listed in Table IV.

TABLE IV

VALUES OF HYPERPARAMETERS IN THIS STUDY
Direction Values of Sr , Or , rr
Moving forward.

Sr = 0.75, Or = 0, rr = 0.25.
Turning left/right.

Sr = 0.35, Or = 0.35, rr = 0.3.
Going backward.

Sr = 0, Or = 0.75, rr = 0.25.

All algorithms are implemented by C# in Microsoft

Visual Studio Community 2019. All pretest–posttest
experiments are run on a PC equipped with an Intel®
CoreTM i7-930 CPU, 16 GB RAM, and Windows 10
operating system. Each pretest–posttest experiment is
performed at 30 runs, and it will let the average of objective
values following the normal distribution based on the
central limit theorem. Finally, this study uses paired t-test to
verify the performance of each pretest–posttest experiment.
The format of the result of the paired t-test is “p-value (* or
** or ***)” where “*”, “**”, and “***” denote p-value <0.05, p-
value <0.01, and p-value <0.001, respectively. Standard
deviation (Stdev) and quartile deviation (QD) are used to
verify the stability of each pretest–posttest experiment. The
tables provide precision experiment results, while the
boxplots provide a visual for observing the difference
simply. The experiment results of all examples are shown
as follows.

Example 1. Rosenbrock Problem

The Rosenbrock problem was first proposed by
Rosenbrock [45]. It is a famous testing problem that includes
two local optimal regionals. The constraints form several
infeasible regions within the search space that restrict the
movements of traditional particles. They usually cause the
particles to fall into premature convergence. Experiment
results in Table V and Figure 4 show that the proposed easy
particles help the PSO swarm to discover the new feasible
region and obtain better objective values.

Min 2 2 2
1 2 1() (1) 100()f x x x= − + −x

s.t. 3
1 2(1) 1 0x x− − + ≤ , 1 2 2 0x x+ − ≤ .

TABLE V

EXPERIMENT RESULT OF EXAMPLE 1
 Algorithm
 1 2 3 4 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3110708, IEEE Access

VOLUME XX, 2021 8

Pretest Max 0.9989 0.9989 0.9989 0.9994 0.9991

 Mean 0.9989 0.9989 0.9989 0.9656 0.9989

 Min 0.9989 0.9989 0.9989 0.0000 0.9989
 Stdev 0.0000 0.0000 0.0000 0.1824 0.0000

 QD 0.0000 0.0000 0.0000 0.0000 0.0000
Posttest Max 0.0281 0.1261 0.9989 0.6517 0.4809

 Mean 0.0087 0.0218 0.3819 0.1101 0.0798

 Min 0.0001 0.0002 0.0000 0.0028 0.0001
 Stdev 0.0067 0.0297 0.4686 0.1547 0.1260

 QD 0.0033 0.0137 0.4994 0.0626 0.0253
p-value 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000***

FIGURE 4. Box plot of Example 1.

Example 2. Three-hump Camelback Problem

The three-hump camelback problem that is modified from
[46] has three local optimal regionals. It increased the
challenge for the typical particle to find the global optimal
region when it has lacked exploring capability. Experiment
results in Table VI and Figure 5 show that the proposed easy
particles improve the exploring capability of all referenced
algorithms and obtain better objective values.

Min 2 4 61
1 1 162 1.0) 81(x x xf − +=x

 2
1 2 2 10.01x x x x− + +

s.t. 12.5 2.5x− ≤ ≤ , 22.5 2.5x− ≤ ≤ .

TABLE VI
EXPERIMENT RESULT OF EXAMPLE 2

 Algorithm
 1 2 3 4 5
Pretest Max 0.0088 0.0088 0.0000 0.3263 0.3365

 Mean -0.0164 -0.0085 -0.0100 0.0094 0.0167

 Min -0.0272 -0.0272 -0.0272 -0.0272 -0.0272
 Stdev 0.0147 0.0148 0.0133 0.0615 0.0884

 QD 0.0136 0.0136 0.0136 0.0044 0.0092
Posttest Max -0.0272 -0.0272 0.0000 0.0000 0.0000

 Mean -0.0272 -0.0272 -0.0200 -0.0218 -0.0263

 Min -0.0272 -0.0272 -0.0272 -0.0272 -0.0272
 Stdev 0.0000 0.0000 0.0122 0.0110 0.0050

 QD 0.0000 0.0000 0.0102 0.0000 0.0000
p-value 0.0002*** 0.0000*** 0.0045** 0.0058** 0.0063**

FIGURE 5. Box plot of Example 2.

Example 3. Townsend Problem

The Townsend problem, modified from Townsend [47],
contains trigonometric functions in objective function and
constraints. A ridge is present around the global optimization
that restricts the crossing of typical particles. Experiment
results in Table VII and Figure 6 show that the proposed easy
particles led the PSO swarm across the ridge successfully.

Min []2
1 2 1 1 2cos((0.1) sin(3()))x x x xf x− − − +=x

s.t. 2 2 (2cos 0.5cos 2x y t t+ < −
 0.25cos3t− − 2 20.125cos 4) (2sin)t t+ ,
 1 2Atan2(,)t x x= .

TABLE VII

EXPERIMENT RESULT OF EXAMPLE 3
 Algorithm
 1 2 3 4 5
Pretest Max -1.6397 -1.6397 -1.6397 -1.6397 -1.6397

 Mean -1.8314 -1.7689 -1.8088 -1.6777 -1.6696

 Min -2.0240 -2.0240 -2.0236 -2.0240 -2.0219
 Stdev 0.1827 0.1701 0.1695 0.0938 0.0668

 QD 0.1814 0.1697 0.1672 0.0099 0.0000
Posttest Max -2.0159 -2.0192 -1.6595 -2.0135 -2.0087

 Mean -2.0225 -2.0229 -1.9510 -2.0205 -2.0204

 Min -2.0240 -2.0240 -2.0240 -2.0239 -2.0240
 Stdev 0.0019 0.0015 0.1483 0.0031 0.0037

 QD 0.0009 0.0010 0.0001 0.0024 0.0018
p-value 0.0000*** 0.0000*** 0.0011** 0.0000*** 0.0000***

FIGURE 6. Box plot of Example 3.

Example 4. Welded Beam Design Problem

Example 4 is a particle design problem for welded beams,
which was first proposed by Rao [48]. The four decision
variables are the thickness of the welded joint (1h x=), the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3110708, IEEE Access

VOLUME XX, 2021 9

length of the welded joint (2l x=), the width of the beam
(3t x=), and the thickness of the beam (4b x=). It is also a
popular machine design optimization problem that includes
nonlinear objective function and nonlinear constraints.
Experiment results in Table VIII and Figure 7 show that the
proposed easy particles help all referenced algorithms obtain
improved objective value and stability.

Min 2
1 2 3 4 21.10471 0.04811 (14)x x x x x+ +

s.t. max() 0τ τ− ≤x , max() 0σ σ− ≤x ,
 1 4 0x x− ≤ ,
 2

1 3 4 20.10471 0.04811 (14) 5 0x x x x+ + − ≤ ,
 10.125 0x− ≤ ,
 max() 0δ δ− ≤x , () 0cP P− ≤x ,
 0.1 2, 1, 4ix i≤ ≤ = , 0.1 10, 2,3ix i≤ ≤ = ,

where

 2 22() () 2 ()
2
x
R

τ τ τ τ τ′ ′ ′′ ′′= + +x ,

1 22

P
x x

τ ′ = , MR
J

τ ′′ = , 2()
2
xM P L= + ,

2

21 32 ()
4 2

x xxR
+

= + ,

2

21 31 2 22 ()
12 22

x xx x xJ
 +

= +

,

 2
4 3

6() PL
x x

σ =x , 3 3
3 4() 4PL Ex xδ =x ,

2 6
3 4 3

2

4.013 () / 36
() 1

2 4c

EGx x x EP
L GL

= −

x ,

 6000P lb= , 14L in= , 630 10E psi= × ,
 612 10G psi= × , max 13,600 psiτ = ,

 max 30,000 psiσ = , and max 0.25inδ = .

TABLE VIII
EXPERIMENT RESULT OF EXAMPLE 4

 Algorithm
 1 2 3 4 5
Pretest Max 7.4251 3.7842 3.6703 11.9458 14.4426

 Mean 3.7221 3.0462 3.1755 5.3372 5.6572

 Min 2.2600 2.5067 2.3931 2.4842 2.4982
 Stdev 2.0873 0.3558 0.3501 2.4744 2.8029

 QD 0.4084 0.2809 0.2425 1.2801 1.2943
Posttest Max 2.7116 2.8223 2.7357 2.5961 2.5795

 Mean 2.5926 2.6465 2.5839 2.4908 2.4919

 Min 2.4503 2.4590 2.3812 2.4267 2.4096
 Stdev 0.0645 0.0975 0.1236 0.0337 0.0423

 QD 0.0401 0.0721 0.0935 0.0206 0.0380
p-value 0.0030** 0.0000*** 0.0000*** 0.0000*** 0.0000***

FIGURE 7. Box plot of Example 4.

Example 5. Pressure Vessel Design Problem

The pressure vessel design problem introduced by
Sandgren [49] aims to minimize the total cost of materials
when forming and welding pressure vessels. In Table IX and
Figure 8, the proposed easy particles have improved the
performances and stabilities of all referenced algorithms as
well for Example 5.

Min 2
1 3 4 2 3() 0.6224 1.7781f x x x x x= + +x

2 2
1 4 1 33.1661 19.84x x x x+

s.t. 1 30.0193 0x x− + ≤ , 2 30.00954 0x x− + ≤ ,
 2 34

3 4 33 1296000 0x x xπ π− − + ≤ ,
 4 240 0x − ≤ , 1 20.0625 , 6.1875x x≤ ≤ ,

 3 410 , 200x x≤ ≤ .

TABLE IX
EXPERIMENT RESULT OF EXAMPLE 5

 Algorithm
 1 2 3 4 5
Pretest Max 11946.73 11549.74 11523.64 23385.96 21633.41

 Mean 6591.82 6735.73 6974.48 11668.12 11063.45

 Min 6058.87 5977.99 5915.86 6355.25 5897.48
 Stdev 1291.65 1547.71 1569.72 5184.27 5265.78

 QD 85.22 130.86 332.29 4260.13 3738.06
Posttest Max 6264.68 6538.04 7144.50 7950.01 6084.48

 Mean 6027.54 6145.40 6219.87 6758.61 6011.27

 Min 5895.68 5938.13 5895.68 6029.14 5892.29
 Stdev 108.63 174.72 298.34 543.28 57.58

 QD 86.01 111.61 229.29 279.84 43.28
p-value 0.0094** 0.0227* 0.0083** 0.0000*** 0.0000***

FIGURE 8. Box plot of Example 5.

Table X shows the significance level of the experiment

results of 25 pretest–posttest experiments (five examples

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3110708, IEEE Access

VOLUME XX, 2021 10

with five referenced algorithms). All experiment results of
posttest are better than the ones of pretest significantly.

TABLE X

SUMMARY OF THE EXPERIMENT RESULTS OF
PRETEST-POSTTEST EXPERIMENTS

 Algorithm
1

Algorithm
2

Algorithm
3

Algorithm
4

Algorithm
5

Example
1 *** *** *** *** ***

Example
2 *** *** ** ** **

Example
3 *** *** ** *** ***

Example
4 ** *** *** *** ***

Example
5 ** * ** *** ***

*: p-value<0.05; **: p-value<0.01; ***: p-value<0.001.

Table X demonstrates that the proposed easy particles
improve all referenced algorithms in all examples. The
experiment using 10% of swarm size to improve the
referenced algorithms and 90% of swarm size keeps the
features of the referenced algorithms. The experiment results
demonstrate that the proposed easy particles are helpful to
improve the referenced algorithms for obtaining better results.

V. CONCLUSION
This study proposes the easy particle inspired by the lazy

ant’s effect in the ant colony for PSO to solve the issue of
constraints in NCO problems, and the easy particle is very
convenient to embed the current PSO-based approaches.
Based on lazy ant behavior, the proposed easy particle
unrestricted by social and cognition factors can break through
the containment of constraint for enhancing the probabilities
of exploring undiscovered regions. The experiments
demonstrate that the proposed easy particles embedded in all
referenced algorithms can effectively reduce premature
convergence for significantly improving the NCO problems’
performances.

Reducing the number of easy particles will enhance the
exploitation capability but weakening the exploration
capability; on the contrary, increasing the number of easy
particles will enhance the exploration capability but
weakening the exploitation capability. Sometimes the PSO-
based approach needs more easy particles to enhance the
exploration capability, and sometimes it needs fewer easy
particles to enhance the exploitation capability. How to
determine the optimal number of easy particles for both
maintaining the exploration and exploitation is always a
dilemma problem for PSO.

Appropriately refreshing the number of easy particles
seems a good strategy; therefore, the elastic size of easy
particles is a topic for future research.

REFERENCES
[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in

Proceedings of ICNN’95 - International Conference on Neural

Networks, Dec. 1995, vol. 4, pp. 1942–1948 vol.4, doi:
10.1109/ICNN.1995.488968.

[2] J. Robinson and Y. Rahmat-Samii, “Particle Swarm Optimization in
Electromagnetics,” IEEE Trans. Antennas Propagat., vol. 52, no. 2,
pp. 397–407, Feb. 2004, doi: 10.1109/TAP.2004.823969.

[3] V. Roberge, M. Tarbouchi, and G. Labonte, “Comparison of Parallel
Genetic Algorithm and Particle Swarm Optimization for Real-Time
UAV Path Planning,” IEEE Transactions on Industrial Informatics,
vol. 9, no. 1, pp. 132–141, 2013, doi: 10.1109/TII.2012.2198665.

[4] B. Gordan, D. J. Armaghani, M. Hajihassani, and M. Monjezi,
“Prediction of seismic slope stability through combination of particle
swarm optimization and neural network,” Eng. with Comput., vol. 32,
no. 1, pp. 85–97, 2016, doi: 10.1007/s00366-015-0400-7.

[5] S. Upadhyay and M. P. Sharma, “Development of hybrid energy
system with cycle charging strategy using particle swarm
optimization for a remote area in India,” Renewable Energy, vol. 77,
pp. 586–598, May 2015, doi: 10.1016/j.renene.2014.12.051.

[6] R. Ge and J. Gao, “Improved PSO algorithm for energy saving
research in the double layer management mode of the cloud
platform,” Jul. 2016, pp. 257–262, doi:
10.1109/ICCCBDA.2016.7529567.

[7] L. Zhang, W. Lu, X. Liu, W. Pedrycz, C. Zhong, and L. Wang, “A
Global Clustering Approach Using Hybrid Optimization for
Incomplete Data Based on Interval Reconstruction of Missing Value:
GLOBAL CLUSTERING APPROACH FOR INCOMPLETE
DATA,” Int. J. Intell. Syst., vol. 31, no. 4, pp. 297–313, Apr. 2016,
doi: 10.1002/int.21752.

[8] M. S. Rahman, A. K. Manna, A. A. Shaikh, and A. K. Bhunia, “An
application of interval differential equation on a production inventory
model with interval‐valued demand via center‐radius optimization
technique and particle swarm optimization,” Int J Intell Syst, vol. 35,
no. 8, pp. 1280–1326, Aug. 2020, doi: 10.1002/int.22254.

[9] P. H. Mohan. Performance Review of Harmony Search, Differential
Evolution and Particle Swarm Optimization. IOP Conference Series:
Materials Science and Engineering. 2017;225(1):012221. doi:
10.1088/1757-899X/225/1/012221

[10] B. Al-kazemi, C. K. Mohan. Discrete Multi-Phase Particle Swarm
Optimization. Information Processing with Evolutionary Algorithms.
2005:305-327. doi: 10.1007/1-84628-117-2_20

[11] B. Wang, Z. Wu, Z. Zhao. Performance comparison of GA, PSO, and
DE approaches in estimating low atmospheric refractivity profiles.
Wuhan Univ. J. Nat. Sci. 2010;15(5):433-439. doi: 10.1007/s11859-
010-0679-6

[12] A. Engelbrecht, “Particle swarm optimization: Velocity
initialization,” in 2012 IEEE Congress on Evolutionary Computation,
Brisbane, Australia, Jun. 2012, pp. 1–8, doi:
10.1109/CEC.2012.6256112.

[13] Cui Zhihua, Zeng Jianchao, and Cai Xingjuan, “A new stochastic
particle swarm optimizer,” in Proceedings of the 2004 Congress on
Evolutionary Computation (IEEE Cat. No.04TH8753), Portland, OR,
USA, 2004, pp. 316–319, doi: 10.1109/CEC.2004.1330873.

[14] J. An, Q. Kang, L. Wang, and Q. Wu, “Mussels Wandering
Optimization: An Ecologically Inspired Algorithm for Global
Optimization,” Cogn Comput, vol. 5, no. 2, pp. 188–199, Jun. 2013,
doi: 10.1007/s12559-012-9189-5.

[15] A. L. Cronin, “Individual and Group Personalities Characterise
Consensus Decision-Making in an Ant,” Ethology, vol. 121, no. 7, pp.
703–713, 2015, doi: 10.1111/eth.12386.

[16] M. W. Moffett, The human swarm: how our societies arise, thrive,
and fall. New York: Basic Books, 2019.

[17] I. Maák, G. Roelandt, and P. d’Ettorre, “A small number of workers
with specific personality traits perform tool use in ants,” eLife, vol. 9,
p. e61298, Dec. 2020, doi: 10.7554/eLife.61298.

[18] T. O. Richardson, A. Coti, N. Stroeymeyt, and L. Keller,
“Leadership – not followership – determines performance in ant
teams,” Communications Biology, vol. 4, no. 1, p. 535, May 2021, doi:
10.1038/s42003-021-02048-7.

[19] M. W. Moffett et al., “Ant colonies: building complex organizations
with minuscule brains and no leaders,” Journal of Organization
Design, vol. 10, no. 1, pp. 55–74, Mar. 2021, doi: 10.1007/s41469-
021-00093-4.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3110708, IEEE Access

VOLUME XX, 2021 11

[20] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” May
1998, pp. 69–73, doi: 10.1109/ICEC.1998.699146.

[21] A. Banks, J. Vincent, and C. Anyakoha, “A review of particle swarm
optimization. Part I: background and development,” Natural
Computing, vol. 6, no. 4, pp. 467–484, Dec. 2007, doi:
10.1007/s11047-007-9049-5.

[22] A. Banks, J. Vincent, and C. Anyakoha, “A review of particle swarm
optimization. Part II: hybridisation, combinatorial, multicriteria and
constrained optimization, and indicative applications,” Natural
Computing, vol. 7, no. 1, pp. 109–124, Mar. 2008, doi:
10.1007/s11047-007-9050-z.

[23] C. A. C. Coello, “A Survey of Constraint Handling Techniques used
with Evolutionary Algorithms,” Techn. Rep. Lania–RI–99–04, p. 33,
1999.

[24] S. Koziel and Z. Michalewicz, “Evolutionary algorithms,
homomorphous mappings, and constrained parameter optimization,”
Evol. Comput., vol. 7, no. 1, pp. 19–44, 1999, doi:
10.1162/evco.1999.7.1.19.

[25] C. A. Coello Coello, “Use of a self-adaptive penalty approach for
engineering optimization problems,” Computers in Industry, vol. 41,
no. 2, pp. 113–127, Mar. 2000, doi: 10.1016/S0166-3615(99)00046-9.

[26] Ö. Yeniay, “Penalty Function Methods for Constrained Optimization
with Genetic Algorithms,” MCA, vol. 10, no. 1, pp. 45–56, Apr. 2005,
doi: 10.3390/mca10010045.

[27] D. S. Liu, K. C. Tan, C. K. Goh, and W. K. Ho, “On Solving
Multiobjective Bin Packing Problems Using Particle Swarm
Optimization,” in 2006 IEEE International Conference on
Evolutionary Computation, Vancouver, BC, Canada, 2006, pp. 2095–
2102, doi: 10.1109/CEC.2006.1688565.

[28] M. Sanaz, M. Sanaz, H. Werner, and W. Anja, “Linear Multi-
Objective Particle Swarm Optimization,” in Stigmergic Optimization,
vol. 31, Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.
209–238.

[29] Li-Yeh Chuang, Sheng-Wei Tsai, and Cheng-Hong Yang, “Catfish
particle swarm optimization,” in 2008 IEEE Swarm Intelligence
Symposium, St. Louis, MO, USA, Sep. 2008, pp. 1–5, doi:
10.1109/SIS.2008.4668277.

[30] S. He, E. Prempain, and Q. H. Wu, “An improved particle swarm
optimizer for mechanical design optimization problems,” Engineering
Optimization, vol. 36, no. 5, pp. 585–605, Oct. 2004, doi:
10.1080/03052150410001704854.

[31] S. L. Ho, S. Y. Yang, G. Z. Ni, and K. F. Wong, “An Improved PSO
Method With Application to Multimodal Functions of Inverse
Problems,” IEEE Trans. Magn., vol. 43, no. 4, pp. 1597–1600, Apr.
2007, doi: 10.1109/TMAG.2006.892108.

[32] K. E. Parsopoulos, “UPSO : A Unified Particle Swarm Optimization
Scheme,” Lecture Series on Computer and Computational Science,
vol. 1, pp. 868–873, 2004, [Online]. Available:
https://ci.nii.ac.jp/naid/10018505420/en/.

[33] K. E. Parsopoulos and M. N. Vrahatis, “Unified Particle Swarm
Optimization for Solving Constrained Engineering Optimization
Problems,” 2005, pp. 582–591, doi: 10.1007/11539902_71.

[34] Z. Wen-Jun and X. Xiao-Feng, “DEPSO: hybrid particle swarm with
differential evolution operator,” Oct. 2003, vol. 4, pp. 3816–3821
vol.4, doi: 10.1109/ICSMC.2003.1244483.

[35] M. Kohler, L. Forero, M. Vellasco, R. Tanscheit, and M. A. Pacheco,
“PSO+: A nonlinear constraints-handling particle swarm
optimization,” in 2016 IEEE Congress on Evolutionary Computation
(CEC), Jul. 2016, pp. 2518–2523, doi: 10.1109/CEC.2016.7744102.

[36] H. Mohan Pandey, “Performance Review of Harmony Search,
Differential Evolution and Particle Swarm Optimization,” IOP Conf.
Ser.: Mater. Sci. Eng., vol. 225, p. 012221, Aug. 2017, doi:
10.1088/1757-899X/225/1/012221.

[37] N. K. Jain, U. Nangia, and J. Jain, “A Review of Particle Swarm
Optimization,” J. Inst. Eng. India Ser. B, vol. 99, no. 4, pp. 407–411,
Aug. 2018, doi: 10.1007/s40031-018-0323-y.

[38] D. M. Gordon, B. C. Goodwin, and L. E. H. Trainor, “A parallel
distributed model of the behaviour of ant colonies,” Journal of
Theoretical Biology, vol. 156, no. 3, pp. 293–307, Jun. 1992, doi:
10.1016/S0022-5193(05)80677-0.

[39] D. M. Gordon and N. J. Mehdiabadi, “Encounter rate and task
allocation in harvester ants,” Behavioral Ecology and Sociobiology,
vol. 45, no. 5, pp. 370–377, Apr. 1999, doi: 10.1007/s002650050573.

[40] D. Charbonneau, N. Hillis, and A. Dornhaus, “‘Lazy’ in nature: ant
colony time budgets show high ‘inactivity’ in the field as well as in
the lab,” Insect. Soc., vol. 62, no. 1, pp. 31–35, Feb. 2015, doi:
10.1007/s00040-014-0370-6.

[41] D. Charbonneau and A. Dornhaus, “When doing nothing is something.
How task allocation strategies compromise between flexibility,
efficiency, and inactive agents,” J Bioecon, vol. 17, no. 3, pp. 217–
242, Oct. 2015, doi: 10.1007/s10818-015-9205-4.

[42] N. Imirzian, Y. Zhang, C. Kurze, R. G. Loreto, D. Z. Chen, and D. P.
Hughes, “Automated tracking and analysis of ant trajectories shows
variation in forager exploration,” Sci. Rep., vol. 9, no. 1, p. 13246,
Dec. 2019, doi: 10.1038/s41598-019-49655-3.

[43] M. Lin, Z. Wang, and F. Wang, “Hybrid Differential Evolution and
Particle Swarm Optimization Algorithm Based on Random Inertia
Weight,” in 2019 34rd Youth Academic Annual Conference of
Chinese Association of Automation (YAC), Jun. 2019, pp. 411–414,
doi: 10.1109/YAC.2019.8787698.

[44] M. Bonyadi and Z. Michalewicz, “Impacts of coefficients on
movement patterns in the particle swarm optimization algorithm,”
IEEE Trans. Evol. Computat., pp. 1–1, 2016, doi:
10.1109/TEVC.2016.2605668.

[45] H. H. Rosenbrock, “An Automatic Method for Finding the Greatest
or Least Value of a Function,” The Computer Journal, vol. 3, no. 3,
pp. 175–184, 1960, doi: 10.1093/comjnl/3.3.175.

[46] L. C. W. Dixon and G. P. Szegö, Towards Global Optimisation:
Proceedings of a Workshop. North-Holland; New York: American
Elsevier, 1975.

[47] Alex Townsend, “Constrained optimization in Chebfun,” Chebfun,
Jan. 2014.
http://www.chebfun.org/examples/opt/ConstrainedOptimization.html.

[48] S. S. Rao, Engineering Optimization. JOHN WILEY & SONS, INC.,
1996.

[49] E. Sandgren, “Nonlinear Integer and Discrete Programming in
Mechanical Design Optimization,” Journal of Mechanical Design,
vol. 112, no. 2, pp. 223–229, 1990, doi: 10.1115/1.2912596.

