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Cell-free protein synthesis (CFPS) systems are gaining more importance as universal tools
for basic research, applied sciences, and product development with new technologies
emerging for their application. Huge progress was made in the field of synthetic biology
using CFPS to develop new proteins for technical applications and therapy. Out of the
available CFPS systems, wheat germ cell-free protein synthesis (WG-CFPS) merges the
highest yields with the use of a eukaryotic ribosome, making it an excellent approach for
the synthesis of complex eukaryotic proteins including, for example, protein complexes
and membrane proteins. Separating the translation reaction from other cellular processes,
CFPS offers a flexible means to adapt translation reactions to protein needs. There is a
large demand for such potent, easy-to-use, rapid protein expression systems, which are
optimally serving protein requirements to drive biochemical and structural biology
research. We summarize here a general workflow for a wheat germ system providing
examples from the literature, as well as applications used for our own studies in structural
biology. With this review, we want to highlight the tremendous potential of the rapidly
evolving and highly versatile CFPS systems, making them more widely used as common
tools to recombinantly prepare particularly challenging recombinant eukaryotic proteins.
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INTRODUCTION

Efficient, easy-to-use, and rapid protein expression methods for protein analysis are in great demand
for structural determination, biochemical research, and applications in synthetic biology, such as the
design of new biological circuits or the development of new proteins for technical applications and

therapies (Gregorio et al., 2019; Silverman et al., 2020). The rapid response to the recent COVID-19
pandemic shows how the scientific community is applying the latest technologies to study viral
proteins and to make them available for structural analysis (Zhu et al., 2020b) and drug testing (Dai
et al., 2020; Jin et al., 2020), the development of antibodies, or creation of new serological tests to
monitor infection rates. In this context, cell-free protein synthesis (CFPS) was used to make versions
of the SARS-CoV-2 N-protein using wheat germ cell-free protein synthesis (WG-CFPS) for use in
serological testing (Matsuba et al., 2020; Yamaoka et al., 2020) and antibody development leading to
tests for COVID-19 now available on the market to serve patients. Also, a variety of accessory and
structural proteins have been synthesized and purified in milligram amounts using this approach
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(Altincekic et al., 2021)1. CFPS platforms in general are versatile
tools to address such needs (Rosenblum and Cooperman, 2014),
building on previous work on pathogen-related research
(Matsunaga et al., 2014; Yamaoka et al., 2016). These protein

expression platforms can be customized to work on individual
proteins or have been scaled for high-throughput protein
expression for analysis and production on large scales. Hence,
CFPS (recently also called TXTL for “transcription-translation”) is
getting more attention these days with the development of new
methods that try to make the best use of the unique features of an
in vitro method rather than relying on established systems
depending on a host cell (Zemella et al., 2015) for synthesis of
recombinant proteins. The high potential of newCFPS systems was
demonstrated by an E. coli system that is used for protein
expression on an industrial scale (Zawada et al., 2011; Salehi

et al., 2016; Hershewe et al., 2020). It was suggested that such
systems could be used more in the future for the production of
dedicated pharma proteins, for example, incorporating
noncanonical amino acids (Hong et al., 2014; Quast et al., 2015;
Wu et al., 2020), preparation of dedicated proteins that were
produced under more defined conditions than possible in cell-
based systems (Oza et al., 2015), or allowing for the “on-demand”
production of protein therapeutics in the clinic (Mohr et al., 2016;
Sullivan et al., 2016; Timm et al., 2016). The diverse features of
CFPS systems promoted also their recent use in teaching (Stark
et al., 2019), protein engineering (Kido et al., 2020), and synthetic

biology (Tinafar et al., 2019), which holds great promises for
studies on genetic networks or rapid prototyping (Karim et al.,
2020) in metabolic engineering (Perez et al., 2016) as well as future
drug development (Dondapati et al., 2020). Moreover, the in vitro
reaction format of CFPS systems allows for full automation,
miniaturization (Ayoubi-Joshaghani et al., 2020), and working
with large sample numbers (Zhu et al., 2015). This advantage
has been utilized in large-scale screening experiments (Khnouf
et al., 2010; Kim et al., 2015), searches for malaria vaccine
candidates (Kanoi et al., 2017; Morita et al., 2017; Kanoi et al.,
2020), identifying interactions between E3 ligases and their

substrates (Takahashi et al., 2016), building a protein array
holding human Deubiquitinating Enzymes (DUBs) (Takahashi
et al., 2020), or the development of protein array platforms
(Romanov et al., 2014; Zarate and Galbraith, 2014; Morishita
et al., 2019). Other promising developments make use of the
stability of the reagents, where the extracts and buffers can be
lyophilized for long-term storage at room temperature (Smith
et al., 2014). This enabled the development of a paper-based
diagnostic assay for the detection of Ebola (Pardee et al., 2014),
a concept that could be extended to the development of more
sensitive rapid tests for other infectious diseases suitable for use in

developing countries or testing water quality (Jung et al., 2020) with
a simple assay (Grawe et al., 2019; Thavarajah et al., 2020). It is a
promising approach to combine DNA detection with the
expression of a marker protein, which will enable new concepts
for biosensor developments (Duyen et al., 2016; Ogawa et al., 2016;

Zhang et al., 2020). For such applications, the translation system
could also beminiaturized or used in a fluidic array device (Jackson
et al., 2015) for automation and easy use.

Whether used in high-throughput or on individual proteins,

CFPS systems can be optimized in ways not possible for cell-
based systems. The open nature of an in vitro reaction allows for
changes to the reaction environment to mimic better individual
protein needs. This was demonstrated in many studies for the
most commonly used commercial or self-made CFPS systems
from E. coli using customized extract preparations on a large
variety of proteins for different applications (Gregorio et al., 2019;
Cole et al., 2020). Another well-established system on which we
will focus here is based on wheat germ extracts (Roberts and
Paterson, 1973; Madin et al., 2000). Eukaryotic ribosomes from
plants are better adapted for protein folding during synthesis than

prokaryotic ribosomes from E. coli extracts, notably when
eukaryotic proteins are targeted. Besides those established
CFPS systems (Rosenblum and Cooperman, 2014; Zemella
et al., 2015; Dondapati et al., 2020), new systems were
developed for rapid protein expression that better match the
features of cell-based systems, for instance, using extracts from
HeLa (Mikami et al., 2008) or Chinese Hamster Ovary (CHO)
cells (Brodel et al., 2015; Thoring et al., 2016). Other advancing
systems are based on extracts from Saccharomyces cerevisiae
(Gan and Jewett, 2014), Pichia pastoris (Spice et al., 2020),
tobacco BY-2 cells (Buntru et al., 2015), rice (Suzuki et al., 2020),

or modified E. coli strains (Seki et al., 2009; Cole et al., 2020) to
name a few. Our growing understanding of translation reactions
and a deeper understanding of the cell extracts led to new
protocols for extracts having improved activity (Borkowski
et al., 2020; Contreras-Llano et al., 2020) or been engineered
for specialized applications such as working better with
noncanonical amino acids (Martin et al., 2018). All those
modern CFPS systems have often been optimized for high
protein yields and better cost performance, thus by far
exceeding the abilities of the classical rabbit reticulocyte
lysate system that is still widely used in protein labeling

reactions and biochemical studies. Among the eukaryotic
systems, high-performance wheat germ extracts have shown
the highest protein expression activity (Perez et al., 2016),
leading to the wide use of this system in research and
applied sciences. Since the germ is in a dormant stage, it is
an extraordinarily rich source for the protein factors and the
ribosomes needed for rapidly performing protein synthesis from
stored mRNAs during early germination (Sano et al., 2020).

In the context of structural biology, protocols developed for the
preparation of highly active wheat germ extracts lead to a universal
protein expression system (Sawasaki et al., 2002b) that is used in a

variety of structural approaches, such as preparing stable-isotope-
labeled samples for protein NMR (Lacabanne et al., 2019), making
reference standards for mass spectrometry in proteomics (Singh
et al., 2009; Takanori et al., 2017), or preparing samples for
cryogenic electron microscopy (cryo-EM) (Novikova et al.,
2018). Notably, sample amounts needed in structural biology
have significantly diminished in the last years with the
development of crystallization robots for X-ray studies, high-
performance detectors in cryo-EM, and higher magnetic fields

1Altincekic, N., Korn, S.M., Qureshi, N.S. Dujardin, M., Ninot-Pedrosa, M., Abele,

R., et al. Front. Mol. Biosc., in production.
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in NMR (Dobson, 2019). Particularly, in solid-state NMR, faster
magic-angle spinning (MAS) recently reduced sample needs by a
spectacular factor of 100 through proton detection under MAS
frequencies exceeding 100 kHz (Agarwal et al., 2014; Bockmann
et al., 2015; Lecoq et al., 2018; Lecoq et al., 2019;Wang et al., 2019),
a milestone that enables investigation of submilligram amounts of
sample. As solid-state NMR can typically target large protein
assemblies such as viral capsids (Zhang et al., 2016; Wang

et al., 2017; Quinn et al., 2018), envelopes (David et al., 2018),
microtubules (Guo et al., 2019), or membrane proteins (Jirasko
et al., 2020) and their assemblies (Ong et al., 2013; Kaur et al., 2015;
Kaur et al., 2016; Kaur et al., 2018; Kaur et al., 2019), an in vitro
protein synthesis system using a high-yielding eukaryotic ribosome
is a central asset for such studies. This approach can generally be
used to also produce proteins of pathogens that hijack the
eukaryotic host cell machinery during infections making it a
powerful tool for pathogen research.

Here, we review a typical workflow for using WG-CFPS and
report our experiences about recombinantly preparing protein

samples in this expression system. For all our experiments, we
are using a WG-CFPS that had been developed in the Endo Lab at
Ehime University (Sawasaki et al., 2002b). Endo and coworkers
published the detailed protocol on how to prepare highly active
wheat germ extracts by completely removing the endosperm in
careful washing steps; the same protocol also describes how to
utilize their wheat germ extracts in translation experiments (Takai
et al., 2010). This protocol allows to establish extract preparation
and CFPS in any reasonably equipped biochemistry laboratory;

wheat germ extracts prepared according to the same procedure
are also commercially available from CellFree Sciences (Japan).
Figure 1 provides information on the basic steps for conducting
protein expression experiments in this WG-CFPS. These
conditions allow for direct expression of proteins in high-
throughput experiments or also joint expression of several
proteins in a single reaction, as shown, for example, for
chromatin reconstruction experiments using premixed mRNAs

for up to four core histones, three chromatin assembly factors, and
histoneH1 (Okimune et al., 2020). The expression of eight proteins
in a single reaction is an impressive achievement not possible in
most cell-based systems. However, the WG-CFPS can achieve this
by simply adjusting the mRNA ratios in the translation reaction.
The basic reaction conditions of the WG-CFPS can be adopted in
many ways for more advanced applications further outlined in this
review. The aim of this review is to give practical advice on how to
plan and run such experiments and to highlight the extraordinary
potential of the system, with a focus on (structural) studies on viral
(membrane) proteins and the analysis of their assemblies.

EXPERIMENTAL DESIGN

The workflow of an experiment in a wheat germ system (WGS) is
given in Figure 2; refer to the guide by Wingfield (2015) for an
overview on the purification of recombinant proteins which
provides some general introduction into protein expression,
particularly in E. coli. For experimental design, information on

FIGURE 1 | Components of WG-CFPS described by Takai et al. (2010). (A) Wheat germ extract (WGE) can be prepared from nontreated durum wheat.
Alternatively, commercially available WGE can be used. (B) The WG-CFPS uses expression templates having a SP6 promoter to drive RNA synthesis and an E01
translational enhancer to induce cap-independent translation. The system can use circular and linear DNA templates to hold a cDNA encoding a protein. Alternatively, T7
RNA polymerase can be used as well under the same reaction conditions. The RNA is used as a template for protein synthesis. (C) The key components for protein
synthesis are provided with the WGE. This includes the necessary ribosomes and tRNAs, but there are also other cell components in those extracts that may assist for
example protein folding or possibly protein modification. Other key components are provided by the “Buffered Substrate Solution” which includes the amino acids, a
DTT-based redox system, and a creatine kinase driving energy supply. Protein synthesis reactions can be modified as further explained in the text. (D) Protein synthesis
can be confirmed by several different methods with the most commonly ones given in the figure.
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the nature of the protein is useful to better understand its
requirements for production and purification. Next, the design
of the cDNA template needed to produce the recombinant
protein can include further considerations on working with
fusion proteins such as constructs with affinity tags for
detection and purification. The expression template determines
conditions for the protein expression reactions and purification

steps. For proteins requiring special conditions, the results of
expression tests are analyzed and then optimized in iterative
cycles. This may include different additives necessary to obtain
soluble and correctly folded proteins. Finally, specific tests for
samples later used for structural or functional analysis must be
established to make sure that the protein is suitable for the
intended use. This includes particularly biological and
biophysical tests assessing whether the protein is correctly
folded. We discuss these steps in the following sections in
more detail.

INFORMATION ON THE PROTEIN OF
INTEREST

Before starting experiments, information about the protein
of interest needs to be collected. This includes its biological
role, possible binding partners, physicochemical properties,
protein modifications, known or predicted structure, domains,

signal peptides, disordered zones, stability, solubility, or
hydrophobicity. This information enables optimal design of
the expression template before a cDNA encoding the protein
is cloned into a suitable expression vector or prepared by
polymerase chain reaction (PCR) and is also useful for
planning the expression reaction. For instance, the reaction

may need to be performed at lower temperatures to change
folding kinetics or decreasing hydrophobic interactions and
self-aggregation. Currently, gene synthesis in combination with
new cloning methods like Gibson assembly of overlapping DNA
molecules (Gibson et al., 2009) offers a very flexible means to
quickly prepare expression templates based on publicly available
sequence information, including the results of high-speed

sequencing experiments. However, one should be careful in
selecting expression templates only based on assembled contigs
from sequencing reads. It is best to use fully annotated protein/
gene sequences if there is not a special reason for utilizing
experimental sequence data. Since the protein sequence is the
only needed information, gene synthesis may also be used to
optimize the expression template by analysis of the RNA
structure, looking for certain sequence elements, and to
optimize the codon use for expression in a given host
(Gustafsson et al., 2012; Athey et al., 2017) where codon
optimization for expression in WG-CFPS is offered by most

gene synthesis providers. Gene synthesis may further help
with preparing templates for expression of fusion proteins
having an affinity tag or creating artificial designer proteins
such as protein standards for mass spectrometry (Takemori
et al., 2017).

For many proteins, matching cDNAs have already been
prepared during large-scale cloning projects (Harbers, 2008),
and those clones can be obtained from public depositories or
distributors. Particularly for human genes, large-scale cDNA
collections are available including the ready-to-use open
reading frame clones from the Human Gene and Protein

Database (Goshima et al., 2008) or the international ORFeome
Collaboration (Collaboration, 2016). For example, most of the
cDNA clones in those two collections have been used in a study to

FIGURE 2 | Workflow to establish protein synthesis in a WGS, with key points given at each step.
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identify reference peptides for targeted proteomics on the human
proteome (Matsumoto et al., 2017). Since those clones are
provided in Gateway entry vectors, the cDNA inserts can be
easily transferred onto other vector formats (Reece-Hoyes and
Walhout, 2018). Those and other cDNA collections can be readily
searched for genes of interest as a convenient way to find cDNA
clones from distributors rather than requesting published

materials from other researchers or starting from scratch
preparing them by gene synthesis. In general, for inquiries on
a given gene, the “Gene” database at NCBI (https://www.ncbi.
nlm.nih.gov/gene/) is a very good starting point (Brown et al.,
2015; Coordinators, 2017). This database holds information on
reference sequences from RefSeqs, maps, pathways, variations,
phenotypes, and links to genome-, phenotype-, and locus-specific
resources. The information provided in Gene can be valuable to
learn more about a certain gene, while the sequence information
may be useful for domain analysis, using gene synthesis services,
or to confirm the sequence of a cDNA clone after an ID check.

Moreover, Gene provides links to worldwide resources including
cDNA clone providers (go to “Gene LinkOut,” you may have to
click on the + sign to see the entire list at the end of the web page).
NCBI allows suppliers to link (“LinkOut”) products and services
on the specified gene shown in the Gene output page to help
researchers to find resources in the public domain. This service is
best known for links from publishers in PubMed but can also be
used in other NCBI databases (https://www.ncbi.nlm.nih.gov/
projects/linkout/). Refer to the following link on NCBI for more
information on how to find cDNA clones in the public domain:
https://www.ncbi.nlm.nih.gov/genome/clone/finding_cdna.

shtml. In addition to the Gene database, there are many other
protein-focused databases, like UniProt (https://www.uniprot.
org/) that offers important information on the protein and its
annotation, families, domains, and isoforms. For annotated
proteins, the UniProt section on “amino acid modifications”

includes possible disulfide bonds (Feige and Hendershot,
2018), which are formed under oxidizing conditions and thus
may require changes to the protein expression and handling as
further outlined below. Disulfide bonds are important for protein
folding and stability and are mostly found in extracellular,
secreted, and periplasmic proteins. We describe in the next
chapter protein analysis tools available in the public domain

that can provide information for template design beyond the
information that is already provided in UniProt.

TEMPLATE DESIGN

Template design is the starting point for making a protein, and a
careful analysis of the protein and its features helps to prepare the
template. There are several tools freely available on the Internet

with information on protein properties, domain structures, or
folding (refer to http://molbiol-tools.ca/Protein_Chemistry.htm
and Table 1 for links to some of these tools).

While many proteins can be expressed in the WGS as full-
length proteins in their native form, it may also be of interest to
work on isolated domains or with other protein fragments
(Figure 3). For example, some protein domains can reduce
translation efficiency and may be removed from the
recombinant proteins such as leader peptides, if not
particularly needed for working with microsomes (Brodel
et al., 2015). Leader peptides can be rather hydrophobic and

frequently prevent correct folding of proteins. In general, the
sequences at the N-terminus of proteins can have a large impact
on protein yields in recombinant expression experiments.
Therefore, it can be helpful to modify the N-terminus to
improve yields for poorly expressed protein, for example,
using a systematic tag variation strategy in combination with
CFPS (Haberstock et al., 2012); a similar effect was described for

TABLE 1 | Protein analysis tools and selected databases.

Tool Description URL

Gene Reference database and resources https://www.ncbi.nlm.nih.gov/gene/
UniProt Protein sequence and functional information http://www.uniprot.org/
Wheat proteome Reference on background protein analysis https://www.wheatproteome.org/
Protein Chemistry Links to useful tools http://molbiol-tools.ca/Protein_Chemistry.htm
ProtParam tool Calculating physical and chemical parameters https://web.expasy.org/protparam/
Mfold RNA folding http://unafold.rna.albany.edu/?q�mfold
JPred Protein secondary structure prediction http://www.compbio.dundee.ac.uk/jpred/
Espript Alignment and secondary structure prediction http://espript.ibcp.fr/ESPript/ESPript/
Protter Visualization of proteoforms http://wlab.ethz.ch/protter/start/
Sable Solvent accessibility http://sable.cchmc.org
Scratch Protein predictor on protein structures http://scratch.proteomics.ics.uci.edu/
InterPro Protein classification and predicting domains https://www.ebi.ac.uk/interpro/
FFAS Folding and function assignment http://ffas.sanfordburnham.org/ffas-cgi/cgi/ffas.pl
CDTree Protein domain hierarchy viewer and editor https://www.ncbi.nlm.nih.gov/Structure/cdtree/cdtree.shtml
Cn3D Macromolecular structure viewer https://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml
VaProS Variation effect on Protein structure and function http://p4d-info.nig.ac.jp/vapros/
PSIPRED Protein sequence analysis workbench http://bioinf.cs.ucl.ac.uk/psipred/
PONDR Predictor of natural disordered regions http://www.pondr.com/
Protein data bank 3D structures of proteins http://www.rcsb.org/pdb/home/home.do
PyMOL Molecular visualization system https://www.pymol.org/
TM finder Transmembrane region finder http://tmfinder.research.sickkids.ca/cgi-bin/TMFinderForm.cgi
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N-terminal fusion with the GB1 domain (Michel and Wuthrich,
2012). Screening a library of 250,000 reporters led to the concept
of a “short translational ramp” indicating that the amino acids in
positions three and five impact protein yields (Verma et al., 2019).

Added sequences at the N- or C-terminus can have additional

functions. The protein of interest may further be expressed with
an affinity tag for later analysis and purification (see below).
Other helpful tools such as Expasy ProtParam can help elucidate
whether the primary sequence of the target protein is basic or
acidic; which protein family it belongs to (e.g., UniProt; InterPro);
whether it has hydrophobic stretches that need detergent or lipids
to correctly fold (e.g., TM finder, for a more detailed review look
at reference Punta et al., 2007); whether the protein has
subdomains (e.g., Jpred, Scratch, and InterPro); whether it
presents important functional motifs located directly at the N-
or C-terminal, with which an affinity tag could interfere (e.g.,

FFAS; CDTree); which functions it could fulfill (e.g., UniProt);
and what structures are predicted for folding (e.g., Protter).
Corresponding websites for those tools are given in Table 1.
Many of these tools are centralized on web portals, as, for
example, on the Network Protein Sequence Analysis server
(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page�/NPSA/
npsa_server.html). Other important questions relate to the
presence of cysteines and potential disulfide bonds in the
protein (e.g., annotations in UniProt). Because of the
importance of disulfide bonds for protein folding, stability, or
complex formation, different computational methods have been

described for working with them (Sun et al., 2017; Gao et al., 2020).

However, we should point out that some cysteines do not form
disulfide bonds in natively folded proteins. It can be important to
prevent those cysteines from forming artificial disulfide bonds,
since they can cause problems when proteins are refolding during
later processing. Therefore, it may be better to mutate such

cysteines to alanine or serine as done for the expression of the
G protein-coupled neuropeptide Y receptor type 2, which had
improved protein stability without any significant loss of
functionality (Witte et al., 2013; Krug et al., 2020); refer to
(Rawlings, 2018) for more information on membrane protein
engineering. Another important example to note is zinc-binding
motifs, which could require the use of additives like zinc ions or
chaperones in the CFPS system.

For WG-CFPS, cDNA clones from various clone collections
from different organisms (e.g., Arabidopsis, mouse, and human)
have been used with good success, and it was commonly not

necessary in those cases to do codon optimization. However,
codon optimization is often used when the cDNA template was
prepared by gene synthesis. This proved helpful when working on
malaria-related projects, because Plasmodium falciparum uses
very irregular A/T rich coding sequences (Arumugam et al.,
2014). Codon optimization has been widely used, however,
when expressing proteins in bacterial systems, which can have
vastly different codon preferences as compared to higher
organisms. It should be noted that codon usage has a direct
influence on the elongation rate and thus regulates
cotranslational folding (Yu et al., 2015). Theoretically, it could

be useful to adjust the tRNA concentrations in a cell-free

FIGURE 3 | Template design for expression of the protein of interest. (A) Design of the gene sequence. (B) Both circular and linear DNA templates can be used for
transcription.
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translation reaction to mimic those from the organism from
which the recombinant protein is originally derived or to redesign
the genetic code (Hibi et al., 2020). In principle, this could greatly
assist correct protein folding; however, such experiments remain

difficult without a good method to prepare individual tRNAs
(Berg and Brandl, 2020) on a large scale. We expect more work in
this area because studies on cancer genomes have revealed
relevant synonymous mutations in tumors (Diederichs et al.,
2016) that could function by changing protein folding via
manipulating translation speed. Furthermore, it is interesting
to note that structural limitations of tRNAs for binding to
tRNA-modifying enzymes may have restricted the genetic code
to 20 amino acids (Saint-Leger et al., 2016) and thus defined the
chemical space for proteins. However, today, several approaches
are in use to extend the genetic code and the space of amino acids

that can be introduced into proteins (Arranz-Gibert et al., 2018).
In addition to naturally occurring proteins, the WGS has also
been successfully used to express artificial proteins such as the
preparation of stable isotope-labeled peptide libraries (Takemori
et al., 2016). Here, representative peptide sequences have been
concatenated and expressed together in artificial proteins that
were subjected to tryptic digestion to release individual peptides.
This technique is a very cost-effective way to produce many
different peptides when needed for quantitative protein mass
spectrometry and proteome analysis.

USE OF AFFINITY TAGS

When designing the expression template, considerations should
also be given to means of protein detection, purification, or
further modifications for the expression of fusion proteins. As
mentioned above, fusion tags can have different functions
including enhancing heterologous protein expression when

placed at the N-terminus (Haberstock et al., 2012; Ki and
Pack, 2020). This allowed, for instance, to increase yields of a
GPCR 5–38 times, resulting in sufficient protein amounts for
structural-functional studies (Lyukmanova et al., 2012b). Most
fusion proteins have added sequences encoding an affinity tag
that can be added at either end of the cDNA; small tags may also
be added by primer extension PCR. Ready-to-use commercial
expression vectors are available for the WGS or have been
described in the literature (Bardoczy et al., 2008; Nagy et al.,
2020). While affinity tags can be especially useful in protein
purification, they also offer means for protein detection and
analysis (Kimple et al., 2013; Wood, 2014; Yadav et al., 2016).

Most affinity tags can be used in any protein expression system and
are commonly host independent, but the recently developed
AGIA-tag (Yano et al., 2016; Kido et al., 2020) and CP5-tag
(Takeda et al., 2017) systems have presently only been described
for theWG-CFPS. While epitope/antibody combinations allow for
short tags and high-affinity binding, larger tags may add undesired
functionalities to proteins of interest. It should also be noted that
antibody-based tag systems are often better for analytical purposes,
whereas they may be expensive for protein purification.

There is a preference for working with an affinity tag at the
C-terminus to make sure that only full-length proteins are

purified when translation is incomplete. Tags can be
eliminated after purification by insertion of an enzymatic
cleavage site for thrombin or Tobacco Etch Virus (TEV)
proteases (Waugh, 2011). Examples of other cleavage sites are

given in (Malhotra, 2009). Table 2 summarizes published affinity
tags that have been used in combination with the WGS.

The Histidine tag or short His-tag (Malhotra, 2009),
composed of 6 to 12 histidine residues, is very frequently used.
When fused at either the N- or C-terminal end, it allows for a
rapid, easy, and cost-effective purification on metal-chelating
resins with high binding capacity. Nickel and cobalt resins are
sensitive to reducing conditions such as those commonly used in
CFPS reactions, and hence crude reaction mixtures should be
diluted. Other commonly used purification tags like the
glutathione S-transferase (GST) tag (Malhotra, 2009) are larger

and can impart higher protein solubility when fused to the
N-terminus (Malhotra, 2009). With a length of 220 amino
acids (about 26 kDa in size), the GST-tag is large, which can
be helpful in pull-down assays, where the GST protein not only
facilitates the binding to a resin but also functions as a spacer to
better expose the fused protein used in binding assays. The main
drawback of the His-tag, and to a lesser extent of the GST-tag, is
the unspecific binding of endogenous proteins from the wheat
germ extract to metal-chelating and glutathione resins, which can
lead to significant contamination of the affinity-purified proteins
when working with proteins having low expression levels. This

limitation can be addressed when using extracts pretreated on a
nickel or glutathione resin for higher purity of His- or GST-
tagged proteins (Takai et al., 2010; Harbers, 2014). Such extracts
are commercially available (CellFree Sciences, Japan) for the His-
and GST-tags. Both tags can also be combined with other tags
where doubled-tagged proteins offer superior means to prepare
highly purified proteins. It should further be mentioned that,
against the His- and the GST-tag, commercial antibodies are
available that can be used in protein detection, which is very
handy to confirm protein expression when otherwise no
antibodies are available recognizing the target protein.

As alternative approaches, the FLAG (Einhauer and
Jungbauer, 2001) and Strep-tag II (Schmidt and Skerra, 2007)
tags do often better remove background contaminations than
possible for His- and GST-tagged proteins (Nagy et al., 2020). The
FLAG-tag is an octapeptide (DYKDDDDK) that is recognized by
a specific antibody which allows for sensitive protein detection.
Three combined FLAG-tags were described for working with a
WGS to achieve even higher binding affinity (Novikova et al.,
2018). While a tagged protein can be eluted by competition with
the peptide or by enterokinase cleavage, binding capacity of the
resin is low, making affinity purification quite expensive and less

attractive for large-scale routine protein production, but the
FLAG-tag is an excellent tool for binding assays to study
protein complexes. Here, the FLAG-tag has been used in
PerkinElmer AlphaScreen assays (Nemoto et al., 2018) in
combination with biotinylated proteins made in the WGS in
the presence of added biotin and the biotin ligase BirA (Matsuoka
et al., 2010). In contrast, the Strep-tag II (Schmidt and Skerra,
2007) allows for lower cost affinity purification, with high purity
levels reached already after a single purification step. It uses a
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TABLE 2 | Summary of tags whose use has been described for protein expression with the WGS.

Tag Examples of applications for WG-CFPS Parameters to be considered for the choice of a tag

Type Main types of

application

Position References Advantages Drawbacks

Single tag
His6 Translation setup and

protein detection
Purification by affinity
chromatography

N-ter
C-ter

(Malhotra, 2009; Vinarov et al., 2006a;
Aoki et al., 2009; Revathi et al., 2010;
Takahashi et al., 2012) (Aceti et al.,
2015; Li et al., 2016; Novikova et al.,
2018) (Fogeron et al., 2015a; Fogeron
et al., 2015b; Li et al., 2016; Fogeron
et al., 2017a; Minkoff et al., 2017)

Cost effective, easy, and fast purification
process
Affinity support endless reusable
Small size tag with low impact on protein
folding

WGE endogenous proteins
bind to the affinity support
Need for EDTA-free buffers

GST Translation setup at small
scale
Purification by affinity
chromatography

N-ter (Malhotra, 2009; Vinarov et al., 2006a;
Aoki et al., 2009; Revathi et al., 2010)

Solubility enhancement
Low impact on protein folding when fused
at the N-terminus
Elution by enzymatic cleavage or
competition
Affinity support reusable up to five times

WGE endogenous proteins
bind to the affinity support
Higher purification cost than
for His-tag
Degradation of GST under
reductive conditions

HaloTag Pull-down assays
Purification by affinity
chromatography
Protein detection by
Western blot

N-ter (Los et al., 2008; Bardoczy et al., 2008;
Nagy et al., 2020)

Covalent bound, elution by enzymatic
cleavage allowing for stringent washing
conditions
Higher binding capacity of the affinity
support
Highly specific interaction to the affinity
support
No binding of WGE endogenous proteins
to the affinity support

Large size of the tag (34 kDa)
Affinity support not reusable
High purification cost

FLAG Functional analysis
Structural analysis by
cryo-EM and
crystallography
Protein detection by
Western blot
Pull-down assays

N-ter (Einhauer and Jungbauer, 2001;
Bardoczy et al., 2008; Ramadan et al.,
2015; Novikova et al., 2018; Nagy et al.,
2020)

No binding of WGE endogenous proteins
to the affinity support elution by
enzymatic cleavage or by competition
high protein recovery and high purity level
in a only one-step purification process

Lower binding capacity of the
affinity support
Higher purification cost than
for other tags

C-ter (Novikova et al., 2018)

Strep-
tag II

Purification by affinity
chromatography

N-ter (Schmidt and Scerra, 2007; David et al.,
2019)

No binding of WGE endogenous proteins
to the affinity support
Cost-effective and easy purification
process
Elution by competition under native
conditions
Affinity support reusable up to five times

Slightly lower binding capacity
of the affinity support than for
His- and GST-tags
Higher purification cost than
for His- and GST-tags

C-ter (Fogeron et al., 2015a; Fogeron et al.,
2015b; Li et al., 2016; Fogeron et al.,
2017a; Minkoff et al., 2017; David et al.,
2019)

Dual tag
Double-
His6

Purification by affinity
chromatography

N-ter (Khan et al., 2006; Bardoczy et al.,
2008; Nagy et al., 2020)

Improved binding capacity
Increased detectability

GST-His6 Pull-down assays
Purification by affinity
chromatography
Protein detection by
Western blot

N-ter/
C-ter

(Bardoczy et al., 2008; Nagy et al.,
2020)

Solubility enhancement through GST
Efficient purification through GST
Elimination of GST by TEV cleavage
Highly sensitive detection through His-tag

GST-
AviTag

Pull-down assays
Purification by affinity
chromatography

N-ter/
C-ter

(Cull and Schatz, 2000; Bardoczy et al.,
2008; Nagy et al., 2020)

Solubility enhancement through GST
Efficient purification through GST
Elimination of GST by TEV cleavage
Avitag allows for biotinylation of the
protein

His-Flag In vitro binding assay
(AlphaScreen)

N-ter (Takahashi et al., 2012) Efficient purification through His-tag
Highly sensitive detection through
FLAG-tag

(Continued on following page)
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minimal peptide sequence (WSHPQFEK) with a high affinity to
native streptavidin or an engineered streptavidin having even
higher affinity for the tag (Strep-Tactin (Maertens et al., 2015)).
Affinity purification using the Strep-tag II is rapid and easy to
setup. The Strep-tag II is very suitable for routinely making
proteins in the WGS. When even higher affinity is needed
during purification, a Twin-Strep-tag (Schmidt et al., 2013) is
available that can also be used with WGS (Fogeron et al., 2016;
Boukadida et al., 2018; Jirasko et al., 2020).

The use of the HaloTag, a 297 amino acid peptide derived from

a bacterial haloalkane dehalogenase (Los et al., 2008), has been
recently described for the WGS (Nagy et al., 2020). Because the
HaloTag forms a highly specific covalent bond with its synthetic
ligand, this tag is of particular interest for pull-down assays,
allowing for more stringent buffer conditions and washing steps
(Los et al., 2008). Although affinity purification is possible,
elution of proteins having a HaloTag must be performed by
enzymatic cleavage (Nagy et al., 2020). This makes the method
quite expensive and thus not very suitable for large-scale
production.

In our hands, for NMR sample preparation, the Strep-tag II is

so far the best choice since it combines high purity of the protein
of interest with yields compatible with structural biology
(Fogeron et al., 2015a; Fogeron et al., 2015b; Li et al., 2016;
Fogeron et al., 2017a; Minkoff et al., 2017).

EXPRESSION TEMPLATES

For routine protein expression, working with a dedicated

expression vector is the best choice, although CFPS can also
be done with linear DNA templates. Several vectors are available
for use with the WGS, as outlined in (Bardoczy et al., 2008; Nagy
et al., 2020) and references therein. We have always relied on
vectors having the E01 enhancer (Kamura et al., 2005) to drive
cap-independent translation (available from CellFree Sciences,
Japan), but there are more expression vectors for WGS available
from commercial providers (e.g., pIVEX Wheat Germ Vector
Sets, biotechrabbit, Germany) and depositories (PSI:Biology-
Materials Repository (PSI:Biology-MR)) sometimes using other
initiation sites (Sawasaki et al., 2002b; Bardoczy et al., 2008).

Commonly, the gene of interest should be inserted as near as

possible to the E01 sequence to get better expression. For CFPS
systems, the vectors commonly have promoters for an RNA
polymerase like the SP6 or T7 RNA polymerases from
bacteriophages, which catalyze the synthesis of RNA in a 5′–3′
direction (Mcallister and Raskin, 1993). In addition, a ribosomal
binding site or translation enhancer is required to enable efficient
protein expression. For the WGS, as well as for other eukaryotic
systems, it is important to use a cap-independent translational
initiation sequence like the E01 enhancer (Kamura et al., 2005) to
avoid cumbersome steps for in vitro capping of the RNA

transcripts. Alternatively, Internal Ribosome Entry Sites have
been successfully used in various CFPS systems (Mikami et al.,
2008; Anastasina et al., 2014; Hodgman and Jewett, 2014; Quast
et al., 2016). This includes a Species Independent Translation
Initiation Sequence that could be applied to prepare an expression
vector for use in different CFPS systems, thus avoiding the need to
clone into multiple expression vectors (Gagoski et al., 2015).
Other translational enhancers in the 3′ untranslated region of the
template have been described in the literature (Fan et al., 2012)
that could potentially further improve protein expression (Ogawa
et al., 2014). However, such elements are not commonly used in

today’s expression systems. It was further reported that some
noncoding antisense RNAs can stimulate the translation of a
matching sense RNA. This observation led to developing
synthetic long noncoding RNAs named SINEUPs to enhance
protein translation in vivo or in vitro (Zucchelli et al., 2015a;
Zucchelli et al., 2015b). To date, no examples for the successful
use of this method in a WGS were published to our knowledge,
although this biological principle may also exist in plants.

CFPS experiments can readily utilize linear DNA templates
instead of circular vectors. While it is very convenient for many
applications to directly prepare a template by the PCR, it should

be noted that circular DNA templates are more stable and
commonly provide better protein yields than linear DNA
templates. Linear expression templates can be directly made by
PCR methods (Schinn et al., 2016) without cloning experiments
and thus allow for rapid expression screening. Different PCR
protocols have been developed to add regularity sequences at the
5′ and 3′ ends of the coding region using overlap-extension PCR.
In consecutive PCR reactions, a promoter to drive RNA
expression and an enhancer to induce protein synthesis are
added at the 5′ end; when working with the T7 RNA

TABLE 2 | (Continued) Summary of tags whose use has been described for protein expression with the WGS.

Tag Examples of applications for WG-CFPS Parameters to be considered for the choice of a tag

Type Main types of

application

Position References Advantages Drawbacks

Flag-His Structural analysis by
cryo-EM and
crystallography

N-ter/
C-ter

(Novikova et al., 2018) Two-step affinity purification for higher
purity

Twin-
Strep-tag

Functional analysis
Structural analysis
by NMR

C-ter (Schmidt et al., 2013; Fogeron et al.,
2016; Boukadida et al., 2018; Jirasko
et al., 2020)

Higher affinity than Strep-Tag

His6-MBP Purification by affinity
chromatography

N-ter (Aceti et al., 2015) Solubility enhancement through MBP
Efficient purification through His-tag

GST, glutathione S-transferase; MBP, maltose-binding protein; WGE, wheat germ extract.
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polymerase, a terminator sequence has to be added at the 3′ end.
In addition to the regulatory sequences, the PCR primers can also
be used to add short sequences encoding an affinity tag at either
end. Caution is required when working with linear DNA in CFPS

systems, because some extracts have an exonuclease activity that
will damage or even entirely destroy a linear DNA template
(Schinn et al., 2016). This problem was addressed by different
approaches to protect or to extend the noncoding regions of the
linear DNA templates. One elegant approach circularizes the PCR
products before use in the expression reaction (Wu et al., 2007).
However, the method uses the endogenous DNA ligase activity in
E. coli S30 extracts, and only a quarter of the PCR products can be
protected in this way. Other approaches to protect linear DNA
templates have been described in the patent literature (Heindl
et al., 2002). One easy-to-implement option is the use of

biotinylated primers during PCR and later addition of
streptavidin to the protein expression reaction to block
exonucleases attacking the template from the ends. The same
concept had been recently used when adding a DNA-binding
protein to linear templates having matching binding sites at the
ends (Zhu et al., 2020a). This approach had shown good template
protection when working with an E. coliCFPS system, though it is
less effective than circularizing the PCR product. The standard
“Split-PCR” protocol commonly used in combination with the
WGS uses an extended 3’ overhang to better protect the linear
DNA templates (Sawasaki et al., 2002b). Uncoupling of

transcription and translation reactions, as described below,
may further help to avoid DNA degradation by exonuclease
activities within the cell extracts used only in the translation
reaction.

Regardless of the approach taken, we advise analyzing
expression templates before use for having the correct
sequence and all necessary elements for successful expression.
It is our common routine to confirm the sequence of new
expression vectors. We further recommend analysis of vector
DNA on an agarose gel and determining the OD260/280 ratio to
assure the purity of the DNA preparation. CFPS reactions are

sensitive to the quality of DNA templates. If uncertain or
unforeseen problems occur, often a phenol/chloroform
extraction of the circular or even linear DNA templates can be
immensely helpful to resolve problems with expression.

TEST EXPRESSION

Once the expression vectors or linear templates are available, all
templates are then individually tested for expression of the target

protein. Besides the templates, different wheat germ extracts can
be compared for their properties foremost on the achieved
protein yields. Although no clear data have been published,
different extract preparations may lead to variations in
posttranslational modifications during expression. Variations
between extract preparations may be better controlled when
using commercial reagents, with wheat germ extracts
commercially available from different providers; alternatively,

FIGURE 4 | Protein analysis. (A) Typical flowchart for protein analysis
after small-scale expression test. Parameters to be considered are highlighted
in blue. (B) Small-scale expression test of the nonstructural protein 2 (NS2)
from hepatitis C virus (HCV). This membrane protein was produced in
the absence or presence of various detergents at a 0.1% concentration (w/v).
Samples were analyzed by SDS-PAGE followed by Coomassie blue staining
(upper panels) and Western blotting with an antibody against the Strep-tag II
fused at the C-terminus of NS2 (lower panels). CFS, total cell-free sample;
pellet, pellet obtained after centrifugation of CFS; SN-beads, supernatant
obtained after centrifugation of CFS and incubated with Strep-Tactin
magnetic beads to capture Strep-tag II-tagged NS2 protein; −, negative
control (no NS2); +, positive control (NS2 expressed in the absence of
detergent). The black arrowheads indicate NS2, adapted from Fogeron et al.
(2015a). (C) SDS-PAGE analysis followed by Coomassie blue staining of the
different steps from the affinity purification of the NS2 membrane protein
produced directly in a solubilized form in the presence of MNG-3, adapted
from Fogeron et al. (2015b).
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home-made wheat germ extracts can be used (Takai et al., 2010;
Fogeron et al., 2015a).

The user of a cell-free translation reaction must choose between
coupled or uncoupled reactions. In coupled reactions, transcription

and translation are performed in a single reaction step, allowing for
an easier setup and shorter overall time requirements. In
uncoupled or linked reactions, the mRNA is prepared
beforehand and then added to the wheat germ extract for the
translation step. With modern protocols, the mRNA can be used
directly after transcription without any prior purification (Takai
et al., 2010). Although coupled reactions have been described for
the WGS (Stueber et al., 1984), uncoupled reactions are usually
preferred (Sawasaki et al., 2002a; Endo and Sawasaki, 2004, 2006;
Takai et al., 2010). Uncoupling indeed allows for more flexibility to
work under optimal reaction conditions (e.g., temperature), to use

additives in the translation reaction without interfering with
transcription, or to better identify and solve problems when
they occur. These advantages clearly counterbalance the fact
that uncoupled reactions might be more time-consuming. Note
that both coupled and uncoupled reactions can be applied to the
different reaction formats described in the Large-Scale Protein

Production section.
Some proteins may require testing of different reaction

conditions, which can be done in parallel, as shown in
Figure 4 for added detergents. If there is an uncertainty on
which regions of a protein could give best yields, PCR-based

template generation can be used to test the expression of multiple
protein fragments before cloning them into an expression vector
(Novikova et al., 2018). Similarly, different affinity tags have been
tested in this way to see their effect on protein expression
(Haberstock et al., 2012; Kralicek, 2014).

Quick expression tests are preferably done in small batch
reactions by adding a labeled-lysine-charged tRNA
(FluoroTech™, Promega, United States) to expression
reactions. The fluorescently labeled lysine is randomly
incorporated at AAA codons into the synthesized protein
during the translation reaction, thus allowing for easy

background-free detection of proteins (Zhao et al., 2010;
Novikova et al., 2018). After completion of the translation
reaction, the labeled protein can be directly detected by SDS-
PAGE using a laser-based fluorescent gel scanner; we recommend
digesting the remaining labeled tRNA by RNase A treatment
before loading onto the gel. In an optimized expression system,
only the newly synthesized protein from the added template
should be visible on SDS-PAGE as there is no background
expression in the WGS. While the labeling reaction is
providing information on whether the protein can be made
from an expression template, it is good to also perform a

regular cell-free protein expression experiment without the
fluorescent label to further test protein yields, solubility,
purification methods, and possibly protein function (Fogeron
et al., 2017a), as it is unclear whether in certain cases the
randomly incorporated labeled lysine could interfere with
protein functions. The expression test experiments should be
further extended if the protein of interest requires disulfide bonds,
certain cofactors, the addition of metal ions or is, for example, a
membrane protein with expected low solubility. We will provide

below more information on additives that could be tested to
improve protein expression and quality.

PROTEIN ANALYSIS

SDS-PAGE analysis effectively assesses the expression and
solubility of the protein within translation reactions, where it
can be helpful to compare to a negative control expression
reaction lacking the template or using an empty expression
vector. While staining the proteins in the gel might be sufficient
for protein detection, it can be advantageous to detect the protein of

interest by Western blotting using a suitable antibody, which can
also be directed against an affinity tag. Treating samples with
benzonase, an endonuclease degrading DNA and RNA
independently of their shape allows removing nucleic acids
from the translation reaction. As indicated in Figure 4, both
the full reaction mixture, the supernatant and pellet after
centrifugation of the crude reaction mixture (e.g., at 20,000 g for
30 min) are analyzed to assess protein expression and solubility.
The protein in the supernatant fraction can, for better visibility on
the gel, be enriched using magnetic beads which can capture a
tagged protein via the tag. Magnetic beads are fast, easy, and very

convenient to use; they offer a higher binding capacity than
standard chromatography resins and allow for efficient
automation. Another fraction to be analyzed is the remaining
supernatant of the binding assay, to confirm that the tag had
worked properly.

SDS-PAGE of the full reaction already reveals if synthesis was
successful. The protein in this fraction can best be seen by
Western blotting, since there are many contaminating proteins
present in the crude reaction mixture. When insoluble, the pellet
fraction will be enriched in the protein target, which can typically
be the case for membrane proteins or nucleic-acid-binding

proteins like transcription factors. If this is the case, the
protein can sometimes be seen using Coomassie staining, since
there are few insoluble proteins present in wheat germ extracts.
Otherwise, it should be identified usingWestern blotting for more
reliable detection. The soluble fraction concentrated on beads will
show the protein when soluble and if it attaches correctly to the
beads via its tag. If the tag is inaccessible, the protein will remain
in the soluble fraction. Confirming binding of the tag can help
design the subsequent purification steps. Most structure
determination techniques require soluble proteins; still, solid-
state NMR and cryo-EM can be applied to proteins which are
localized to the pellet fraction, due to either their size or

aggregation state. One should however mention that while
pellets formed by autoassembling proteins, or RNA-interacting
proteins, can be correctly folded, membrane proteins found in the
pellet after expression in absence of a detergent are likely
misfolded. In the latter case, solubilization is an asset, as
membrane reconstitution can then be done subsequently.
Soluble expression can often be induced by additives (see
below); data analysis will be carried out in a similar way to
assess protein synthesis, solubility, and binding to the magnetic
beads as proxy for purification. In structural genomics studies, at
this point, one can distinguish if a protein will be directed to
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analyses using a soluble protein, like solution-state NMR or X-ray
crystallography, or if it will need approaches that can target
insoluble proteins, as solid-state NMR and cryo-EM.

SDS-PAGE also allows confirming expected protein size, as

well as stability, and the presence of degradation products (which
should be largely absent, since wheat germ extracts have no
significant protease activity). If a protein is expressed in a
soluble state and attaches to the magnetic beads, one can
proceed to column purification via standard protocols for the
used tag, and fractions can be analyzed using SDS-PAGE. The
purified protein can be used for the first biophysical
characterization using mass spectrometry, which allows
confirming its identity, as well as detecting possible
posttranslation modifications. The latter, typically
phosphorylation, was shown to be possible in the WGS and

took place on sites identified in vivo (David et al., 2019).
Acetylation was also observed (unpublished). An enzymatic
test on the translation reaction can often determine already
whether the protein is functional or not; precautions must be
taken on background activities in the wheat germ extract,
however. Also, when autoassemblies are expected to form,
electron microscopy analysis allows for their direct
observation, often also in the crude reaction (David et al.,
2018; Wang et al., 2019). In addition, the secondary structure
of the protein of interest can be investigated by circular dichroism
(Kelly et al., 2005).

TROUBLESHOOTING POOR EXPRESSION

When no expressed protein can be detected, the reaction
conditions and template design should be checked for possible
errors. Negative results are often about poor detection or the
inability to see the overexpressed protein over the background of

proteins from the extract. Also, often proteins may not show on
SDS-PAGE at the expected molecular weight. Both problems can
be addressed by Western blotting. Using the FluoroTect™
labeling method described above, we have seen only very few
cases where no protein could be detected after expression in the
WGS, as the method is very sensitive (note that the free label will
run at the front of the gel which may interfere with very small
proteins and thus may be better removed before SDS-PAGE
analysis).

Further troubleshooting should consider the following points
working with uncoupled reactions to better understand potential
problems during transcription and translation: 1. Confirm the

expression template was made correctly and no mistakes have
been made during template design and preparation. 2. Confirm
theDNAquality of the template on an agarose gel andmeasuring the
OD260/280. 3. Confirm the RNA quality using agarose gel or capillary
electrophoresis; CFPS reactions must be done under RNase-free
conditions. 4. Confirm reagent quality by working with a positive
control known to work well in the expression system.

Regarding the template design, an N-terminal tag can have an
impact on the secondary structure of RNA, and thus on protein
expression where, for example, hairpin loops tend to repress

translation. RNA secondary structures can be analyzed using the
Mfold software (Zuker, 2003) (http://unafold.rna.albany.edu/?

q�mfold/RNA-Folding-Form). In case of low protein yields,
changes to the N-terminus could also be considered as, for
example, shown for making Growth Hormone Secretagogue
Receptor in a CFPS (Pacull et al., 2020). Further, for optimal
purity of the DNA template, a phenol/chloroform extraction is
recommended. A sign for an efficient transcription reaction is the
appearance of a white magnesium pyrophosphate precipitate.
Agarose gel electrophoresis allows verifying the expected size of
the RNA. When working with circular DNA and an SP6 promotor,
the RNA can form a ladder as the polymerase may run several times
around the vector. While wheat germ extracts can be stored for an

extended time at −80°C, they are overly sensitive to freeze/thawing
cycles, or any storage at higher temperatures. We advise using a
positive control like, for example, expressing an easy-to-detect Green
Fluorescent Protein (GFP) to confirm the performance of wheat
germ extracts and other reagents. Moreover, commercial buffers are
preferred since they are less error prone.

OPTIMIZING EXPRESSION REACTION
CONDITIONS

Expression Conditions
The expression yield is an important parameter, especially for
structural studies which require higher amounts of protein. The
temperature during translation reactions can have an impact on
both expression yield and protein folding. When protein yields
are not satisfying, it is thus worth testing different temperatures
for protein synthesis within a range from 4 to 25°C; wheat germ
extracts lose activity above 25°C. The lower the temperature is, the
longer the translation reaction must be.

TABLE 3 | Maximal concentration for added ions.

Ion Salt Maximal concentration (µM)

Mn2+ Chloride 100
Acetate 100

Mg2+a Chloride 100
Acetate 100

Ca2+ Chloride 100
Acetate 100

Cu2+ Chloride 100
Acetate 100

Cd2+ Chloride 100
Acetate 100

Co2+ Chloride 100
Acetate 100

Fe2+b Chloride 10
Ni2+ Chloride 100

Acetate 100
Zn2+ Chloride 10

Acetate 100

Data obtained for expression of GFP using wheat germ extract WEPRO7240 (CellFree

Sciences, Japan) on a bilayer format.
aCFPS systems are critically dependent on the Mg concentration.
bAbout 25% reduction of protein yield when using 100 µM ferrous chloride.
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Additives
In vitro reactions allow for the addition of factors that may be
required for optimal protein folding, function, or solubility. Most
common examples are the addition of isotope-labeled amino

acids (Makino et al., 2010), metal ions like zinc (Okada et al.,
2009) and iron (Samuel et al., 2015), redox reagents supporting
the formation of disulfide bonds (Saaranen and Ruddock, 2019),
or detergents and lipids (Sachse et al., 2014). Additionally,
chaperones may be used to support or modulate folding.
However, one should test beforehand whether additives do not
interfere with protein synthesis. Note that wheat germ extracts
commonly contain some lipids and metal cofactors that may
assist already protein expression (Goren et al., 2009).

Additives, such as detergents, lipids, or chaperones may also
help to improve protein yields. We have experienced that adding

detergent to protein synthesis could improve their expression
level and purity.

Ions

Besides zinc and iron ions, other ions can be used in the WGS.
Refer to Table 3 for different ions that had been tested for use in
the WGS (unpublished data provided by F. Tanabe and R.
Morishita). In the table, we give the highest ion concentrations
that can be used in the translation reactions without inhibiting
synthesis in separated transcription and translation reactions.

Goren and Fox (Goren and Fox, 2008) described the preparation
of a functional human stearoyl-CoA desaturase complex by
coexpression in the WGS, which requires nonheme iron for its
catalytic function. Because the wheat germ extract lacked the
necessary amount of iron ions and heme, ascorbate stabilized Fe2+

was subsequently added to their proteoliposome preparation to
activate the complex. They also provide information on an
elemental analysis of a wheat germ extract. As another
example, the yeast (m2G10) methyltransferase (a Trm11 and
Trm112 complex) was prepared using the WGS for coexpression
and complex formation (Okada et al., 2009). Since Trm112
contains two zinc fingers, the authors showed that the system

could be used in the presence of up to 20 µM added ZnCl2
without reducing protein yields.

Detergents and lipids

Detergents and lipids are of special interest for working with
membrane proteins, which are today the most important drug
targets for therapy (Hopkins and Groom, 2002; Arinaminpathy
et al., 2009). However, membrane proteins are notoriously
difficult to express in living cells since they are often toxic and
may depend on the lipid composition of membranes (Harayama

and Riezman, 2018). This makes CFPS a highly valuable
alternative, where the use of CFPS systems for the preparation
of G protein-coupled receptors for structural investigations was
recently reviewed (Kögler et al., 2019). Three dedicated protocols
were established for their expression in CFPS systems: 1) the
precipitate mode, 2) working in the presence of detergents, or 3)
working in the presence of lipids. In the first mode, protein
precipitates form during synthesis and can be afterward

efficiently solubilized with a detergent (Klammt et al., 2004).
Although there is evidence that detergent solubilization of
membrane protein precipitates produced in the E. coli CFPS
systems could result in functionally folded proteins (Klammt

et al., 2004; Sansuk et al., 2008), it was also shown that such a
process could lead to inactive proteins (Klammt et al., 2005;
Klammt et al., 2007). Examples for solubilization and refolding
after expression in E. coli CFPS have been published for the
Growth Hormone Secretagogue Receptor (Pacull et al., 2020) and
Neuropeptide Y2 Receptor (Krug et al., 2020). As lipids are not
fully removed during wheat germ extract preparation, they may
bind to proteins (Schwarz et al., 2008), which could explain why
membrane proteins expressed in the precipitate mode are
sometimes partially soluble.

An interesting alternative is the production of membrane

proteins in the presence of detergents. While ionic detergents
often denature proteins, nonionic and zwitterionic detergents are
mild for membrane protein solubilization and in many cases
preserve protein folding. Above the critical micelle concentration
(CMC), detergents in aqueous solutions spontaneously form
micellar structures (Garavito and Ferguson-Miller, 2001;
Seddon et al., 2004). The CMC is influenced by pH, ionic
strength, temperature, and the presence of protein, lipid, and
other detergent molecules. Membrane protein expression in the
presence of detergent leads to the formation of proteomicelles.
Detergents are available instantly at the ribosomes, eliminating

problems encountered regarding the transport to membranes and
translocation processes of synthesized proteins (Schwarz et al.,
2008). Importantly, not all detergents are compatible with CFPS
systems. Their use in E. coli lysates has been broadly reported
(Berrier et al., 2004; Elbaz et al., 2004; Ishihara et al., 2005;
Klammt et al., 2005; Schwarz et al., 2008; Deniaud et al., 2010;
Miot and Betton, 2011), suggesting that mild detergents with low
CMC values allow for optimal solubilization yields without
interfering with expression yields. However, some detergents
affected protein expression levels in the WGS (Genji et al.,
2010). Table 4 summarizes detergents whose use was

described for the WGS. Detergent concentration can also
impact both protein expression and solubilization levels.
Alternatives to traditional detergents, such as the linear
carbohydrate-based polymer NVoy (Guild et al., 2011) and
peptide surfactants (Periasamy et al., 2013), have been
described for use in the WGS as well. In addition, the use of
fluorinated compounds (Park et al., 2007; Park et al., 2011;
Blesneac et al., 2012) and amphipols (Popot, 2010) has been
reported for E. coli based systems and supports direct membrane
protein reconstitution into membranes (Nagy et al., 2001; Park
et al., 2007). Note however that there is only one commercially

available amphipol compatible with CFPS (NAPol) (Popot, 2010;
Park et al., 2011). To be analyzed in a native-like environment,
membrane proteins expressed in the presence of traditional
detergents or alternative surfactants can be reconstituted in
lipids after purification (Seddon et al., 2004; Fogeron et al.,
2016; Lacabanne et al., 2017; Jirasko et al., 2020), which has
been described as the most successful approach for membrane
protein insertion into membranes (Bayburt and Sligar, 2010). As
protein loss needs to be minimized, fast lipid reconstitution
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TABLE 4 | Summary of detergents whose use has been described to produce membrane proteins with the WGS.

Detergents Proteins Yield Solubility References Applications/comments

Anionic

Cholate 3,7,12-Trihydroxy-5-cholan-24-oic
acid

AtPPT1 ▽ (Nozawa et al., 2007)

Insect odorant receptor
subunits

– (Carraher et al., 2013)

Nonstructural proteins
from HCV

▽ (Fogeron et al., 2015a) Protein expression

Deoxycholate 3,12-Dihydroxy-5-cholan-24-oic acid Insect odorant receptor
subunits

– (Carraher et al., 2013)

N-Lauryl
sarcosine

Insect odorant receptor
subunits

▲ (Carraher et al., 2013) Not suitable for functional or
structural studies

SDS Sodium dodecyl sulfate Insect odorant receptor
subunits

▲ (Carraher et al., 2013) Not suitable for functional or
structural studies

Zwitterionic

CHAPS Steroid derivative (3-((3-
cholamidopropyl)dimethylammonio)-
1-propansulfonat)

AtPPT1 ▽ (Nozawa et al., 2007)

Bacteriorhodopsin ▽ (Genji et al., 2010)
CrdS (Agrobacterium curdlan
synthase)

▽ (Periasamy et al., 2013) Protein expression

Nonstructural proteins
from HCV

▽ (Fogeron et al., 2015a)

CD36 ▽ ▲ CFS
EDG3; GPR84 ▽ CFS

DPC Monochain phosphocoline (dodecyl-
phosphocholine)

Nonstructural proteins
from HCV

▽ (Fogeron et al., 2015a) Protein expression

LDAO Lauryl dimethyl amide oxide Nonstructural proteins
from HCV

▽ (Fogeron et al., 2015a) Protein expression

LPPG 1-Palmitoyl-2-hydroxy-sn-glycero-3-
[phospho-rac-(1-glycerol)]

F2R, CDC91L1, EDG3, PINK1,
CCR7, GPR84

▲ CFS

Zwittergent
3–16

Insect odorant receptor
subunits

▲ (Carraher et al., 2013) Insertion of purified proteins
into preformed liposomes

Nonionic

Brij-35 Polyoxyethylene alkyl-ether AtPPT1 ▲ (Nozawa et al., 2007)
Bacteriorhodopsin ▲ (Goren and Fox, 2008)
hSCD1 (human stearoyl-CoA
desaturase)

▲ (Goren and Fox, 2008)

Insect odorant receptor
subunits

▲ (Carraher et al., 2013) Insertion of purified proteins
into preformed liposomes

F2R, CDC91L1, CD36, PINK1,
CCR7, and GPR84

▲ CFS

EDG3 ▲ ▲ CFS
Brij-58 Polyoxyethylene alkyl-ether AtPPT1 ▲ (Nozawa et al., 2007)

Olfactory receptors (GPCRs) ▽ ▲ (Kaiser et al., 2008)
Bacteriorhodopsin – (Genji et al., 2010) Protein not functional
CrdS (Agrobacterium curdlan
synthase)

▲ (Periasamy et al., 2013) Insertion of purified protein
into nanodiscs

Insect odorant receptor
subunits

▲ (Carraher et al., 2013) Insertion of purified proteins
into preformed liposomes

F2R, CDC91L1, CD36, PINK1,
CCR7, and GPR84

▲ CFS

EDG3 ▲ ▲ CFS
Brij-78 Polyoxyethylene alkyl-ether AtPPT1 ▲ (Nozawa et al., 2007)

Insect odorant receptor
subunits

▲ (Carraher et al., 2013) Insertion of purified proteins
into preformed liposomes

Brij-97 Polyoxyethylene alkyl-ether AtPPT1 ▲ (Nozawa et al., 2007)
Brij-98 Polyoxyethylene alkyl-ether AtPPT1 ▲ (Nozawa et al., 2007)

Insect odorant receptor
subunits

▲ (Carraher et al., 2013) Insertion of purified proteins
into preformed liposomes

C12E8 Dodecyl octaethylene glycol ether Nonstructural proteins
from HCV

▲ (Fogeron et al., 2015a) Protein expression

Digitonin Steroid derivative AtPPT1 ▽ ▲ (Nozawa et al., 2007)
Olfactory receptors (GPCRs) ▲ (Kaiser et al., 2008)
Bacteriorhodopsin – (Genji et al., 2010) Protein not functional

(Continued on following page)
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TABLE 4 | (Continued) Summary of detergents whose use has been described to produce membrane proteins with the WGS.

Detergents Proteins Yield Solubility References Applications/comments

CrdS (Agrobacterium curdlan
synthase)

▲ (Periasamy et al., 2013)

Insect odorant receptor
subunits

▲ (Carraher et al., 2013) Insertion of purified proteins
into preformed liposomes

F2R, CDC91L1, CD36, EDG3,
PINK1, CCR7, and GPR84

▲ ▲ CFS

DM Alkyl glucoside (n-decyl-D-maltoside) Bacteriorhodopsin ▽ ▲ (Chae et al., 2010a)
Nonstructural proteins
from HCV

▽ (Fogeron et al., 2015a) Protein expression

DDM Alkyl glucoside (n-dodecyl-D-
maltoside)

AtPPT1 ▽ (Nozawa et al., 2007)

Bacteriorhodopsin ▽ ▲ (Chae et al., 2010a)
hVDAC1 ▽ ▲ (Nozawa et al., 2007) Protein crystallization
AAC (ADP/ATP carrier) ▽ (Long et al., 2012)
Insect odorant receptor
subunits

– (Carraher et al., 2013) Insertion of purified proteins
into preformed liposomes

Nonstructural proteins
from HCV

▽ ▲ (Fogeron et al., 2015a) Protein expression

F2R ▽ ▲ CFS
MNG-3 Lauryl maltose neopentyl glycol Bacteriorhodopsin ▲ (Chae et al., 2010b)

Nonstructural proteins
from HCV

▲ Structural analysis by NMR
Functional analysis

Envelope proteins from duck
hepatitis B virus

▲ (David et al., 2018; David
et al., 2019)

Nonidet P-40 Polyethylene glycol derivative AtPPT1 ▽ ▲ (Nozawa et al., 2007)
CrdS (Agrobacterium curdlan
synthase)

▽ (Periasamy et al., 2013)

CDC91L1 ▽ CFS
CD36, EDG3, and PINK1 ▲ CFS
CCR7 and GPR84 ▽ ▲ CFS

β-OG Alkyl glucoside (n-octyl-D-
glucopyranoside)

Insect odorant receptor
subunits

– (Carraher et al., 2013)

CrdS (Agrobacterium curdlan
synthase)

▽ (Periasamy et al., 2013)

Nonstructural proteins
from HCV

▽ (Fogeron et al., 2015a) Protein expression

EWSR1, CDC91L1, CD36,
PINK1, and GPR84

▽ CFS

Triton X-100 Polyethylene glycol derivative AtPPT1 ▽ ▲ (Nozawa et al., 2007)
CrdS (Agrobacterium curdlan
synthase)

▲ (Periasamy et al., 2013)

Insect odorant receptor
subunits

▲ (Carraher et al., 2013) Insertion of purified proteins
into preformed liposomes

F2R ▽ ▲ CFS
CDC91L1, CD36, EDG3,
PINK1, CCR7, and GPR84

▲ CFS

Triton X-114 Polyethylene glycol derivative Insect odorant receptor
subunits

▲ (Carraher et al., 2013) Insertion of purified proteins
into preformed liposomes

Tween-20 Polyoxyethylene alkyl-ether AtPPT1 ▽ (Nozawa et al., 2007)
F2R, CD36, PINK1, and CCR7 ▽ ▲ CFS
EWSR1, CDC91L1, and
GPR84

▽ CFS

EDG3 ▲ CFS
Tween-40 Polyoxyethylene alkyl-ether AtPPT1 ▲ (Nozawa et al., 2007)
Tween-60 Polyoxyethylene alkyl-ether AtPPT1 ▲ (Nozawa et al., 2007)
Tween-80 Polyoxyethylene alkyl-ether AtPPT1 ▲ (Nozawa et al., 2007)

CrdS (Agrobacterium curdlan
synthase)

▲ (Periasamy et al., 2013)

Mixtures

Fos-choline FC-12 or FC-14 Bacteriorhodopsin ▲ (Genji et al., 2010;
Nozawa and Tozawa,

2014b)

Counteracting the inhibitory
effect of detergent
Expression and purification
of functional protein

CHAPS

▽, decrease in yield or solubility.

▲, increase in yield or solubility.

–, no effect on solubility level.

HCV, hepatitis C virus. CFS, CellFree Sciences (M. Denda et al., poster presentation at PepTalk 2011).
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without the need for extensive protein handling is an asset. This is
possible by using, instead of lengthy dialysis for detergent
removal (Althoff et al., 2012; Lacabanne et al., 2017),
complexation of the detergents with cyclodextrin (Degrip

et al., 1998). Proteoliposomes can then simply be separated by
centrifugation for further analysis (Jirasko et al., 2020).

Another option is to express the proteins in the presence of
lipids, as membrane proteins can cotranslationally incorporate
into the lipid bilayer to form directly proteoliposomes (Nozawa
et al., 2007). Different protocols have been developed in this
context (Shadiac et al., 2013; Zhou and Takeda, 2020). Although
the endoplasmic reticulum (ER) is removed during wheat germ
extract preparation, mimicking the natural membrane
environment is indeed possible with the addition of lipids to
the translation reaction. CFPS systems tolerate relatively high

concentrations of lipids and lipid mixtures, and even slightly
beneficial effects have been observed on the expression efficiency
(Klammt et al., 2004). Most often lipids are used in the WGS in
the form of liposomes (Akbarzadeh et al., 2013), which are
artificial spherical vesicles formed by lipid bilayers from either
synthetic lipids or biological lipid extracts (Akbarzadeh et al.,
2013). Insertion of membrane proteins into liposomes leads to the
direct formation of proteoliposomes which are generally isolated
by ultracentrifugation on density gradients (Nozawa et al., 2011;
Periasamy et al., 2013). Such proteoliposomes can be easily
purified and have been used in studies on membrane proteins

(Banerjee and Datta, 1983; Rigaud, 2002; Wang and Tonggu,
2015). Lipid type and composition are highly important to ensure
cotranslational insertion (Periasamy et al., 2013), and screening
biologically relevant lipids instead of using commercially
available lipids might be a better choice. Examples of
membrane proteins produced in the presence of liposomes
using a WGS are summarized in Table 5. This approach is in
theory very attractive, but not all proteins can be integrated into
liposomes, some requiring a more complex lipid environment
and others depending on the translocon machinery (Sachse et al.,
2014). The absence of the translocon can, however, be

problematic for the topology of multispanning membrane
proteins. Also, when low lipid-to-protein ratios are crucial, it
might be that these ratios cannot be reached using lipid addition,
since spontaneous insertion might not be quantitative.

Another possibility is the addition of microsomes, which are
membranous vesicles obtained from the ER often from dog
pancreas (Jackson and Blobel, 1977), oocytes (Kobilka, 1990;
Lyford and Rosenberg, 1999), or oviduct cells (Rosenberg and
East, 1992). Canine pancreatic microsomal membranes are
commercially available (Promega, United States) and allow for
signal peptide cleavage, membrane insertion, translocation, and

core glycosylation according to the maker. In the presence of
microsomes, membrane proteins having a signal peptide are
translocated through the translocon of the ER membrane and
then can be glycosylated within the lumen of the membranes
(Dobberstein and Blobel, 1977; Katz et al., 1977; Lingappa et al.,
1978). Since the protein synthesis machinery is present only
outside the vesicles, a prevalent inside-out orientation of
membrane proteins can be expected (Schwarz et al., 2008).
There are, however, few reports on this approach using the

WGS (Dobberstein and Blobel, 1977; Jackson and Blobel,
1977; Katz et al., 1977; Lingappa et al., 1978), mainly because
of low expression yields making this approach only suitable for
functional protein analyses.

Alternatively, cotranslation insertion in a synthetic membrane of
block copolymer vesicles has been described for the CXCR4 GPCR
(DeHoog et al., 2014). Other alternatives to liposomes and biological
membrane vesicles are bicelles and nanodiscs (Ritchie et al., 2009;
Bayburt and Sligar, 2010; Dürr et al., 2012; Lyukmanova et al., 2012a;
Sachse et al., 2014). The diameter of nanodiscs ranges from 10 to
20 nm, depending on the length and type of the membrane scaffold
protein (Sachse et al., 2014). During synthesis, membrane proteins
are incorporated into nanodiscs in a passivemanner and can later on
be extracted from them in a native functional form (Ranaghan et al.,
2011). Amajor advantage is that nanodiscs keepmembrane proteins

soluble in a detergent-free environment, possibly yielding
monodisperse and homogenous samples (Borch and Hamann,
2009; Henrich et al., 2015; Danmaliki and Hwang, 2020). A tag
fused to themembrane scaffold protein allowsmoreover for a simple
purification procedure (Bayburt and Sligar, 2010). Recent examples
of membrane proteins produced in the presence of nanodiscs using
theWGS are summarized inTable 5. This includes, for example, the
synthesis of the G protein Signaling 1 (AtRGS1) protein from
Arabidopsis thaliana (Li et al., 2016). A major drawback of
nanodiscs in solid-state NMR is that they might result in low
signal-to-noise ratios due to high lipid-to-protein ratios (Jirasko

et al., 2020). For solution NMR, optimized nanodiscs have been
developed with smaller diameters (Hagn et al., 2013). Nanodiscs can
be unstable, and therefore polymer-enhanced versions have been
described to extend the use of this promising platform for studies on
membrane proteins (Chen et al., 2020).

To summarize, there are different alternatives to produce
membrane proteins in a native form. The most suitable one
depends mainly on the nature of the protein and the final
application. For our purposes in NMR sample preparation, the
expression directly in a detergent-solubilized form, followed by
affinity purification and lipid reconstitution, has given the most

convincing results, since it also allowed the selection of a lipid-to-
protein ratio which minimizes the amount of lipids in NMR
rotors (Lacabanne et al., 2019; Jirasko et al., 2020). In one special
case, membrane envelopes of the duck hepatitis B virus were
autoassembled when using the WGS in the presence of mild
detergents, likely using lipids present in the wheat germ extract
(David et al., 2018), which made reconstitution dispensable.

Chaperones

Molecular chaperones are important protein factors often

needed for correct conformational folding of proteins. A
recombinant E. coli CFPS system, the PURE system, was used
to systematically test the impact of chaperones on the solubility of
∼800 proteins (Niwa et al., 2012) without interference of other
proteins from a cell extract, showing their importance to improve
protein quality. The eukaryotic translation machinery is thought
to have been optimized through evolution to support
cotranslational protein folding (Endo and Sawasaki, 2006).
Newly synthesized proteins in the WGS can indeed be
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stabilized by eukaryotic chaperones promoting folding. This is
best documented for the formation of disulfide bonds. Since
translation reaction buffers commonly contain the reducing

agent dithiothreitol (DTT), the production of disulfide bond-
containing proteins is a delicate issue. However, lowering DTT
concentration commonly leads to decreased expression yields,

TABLE 5 | Summary of lipids whose use has been described for the production of membrane proteins with the WGS.

Lipid composition Proteins References Applications/comments

Anionic lipids

DOPG CrdS (Agrobacterium curdlan synthase) (Periasamy et al., 2013) No protein expression
Cationic lipids

DOTAP CrdS (Agrobacterium curdlan synthase) (Periasamy et al., 2013) No protein expression
Zwitterionic lipids

Asolectin AtPPT1 (Arabidopsis thaliana phosphoenolpyruvate/
phosphate translocator 1) and 40 other membrane
proteins

(Nozawa et al., 2011; Periasamy et al., 2013) Functional analysis
Isolation on density gradient

AtDTC (Arabidopsis thaliana dicarboxylate/
tricarboxylate carrier)

(Nozawa and Tozawa, 2014b)

PfDTC (Plasmodium falciparum dicarboxylate-
tricarboxylate carrier homolog)

(Nozawa et al., 2011; Periasamy et al., 2013) Transport activity

CrdS (Agrobacterium curdlan synthase) (Periasamy et al., 2013)
Human dopamine D1 receptors (Arimitsu et al., 2014) Receptor binding activity
Ant1p (Saccharomyces cerevisiae adenine nucleotide
transporter)

(Nozawa and Tozawa, 2014a) Transport activity of ATP/
AMP exchange

DMPC Bacteriorhodopsin (Genji et al., 2010) Bacteriorhodopsin not
functional

CrdS (Agrobacterium curdlan synthase) (Periasamy et al., 2013)
DOPC Cytochrome b5 (Nomura et al., 2008) Transport activity

CrdS (Agrobacterium curdlan synthase) (Periasamy et al., 2013)
EYPC Cytochrome b5 (Nomura et al., 2008) Transport activity
POPC CrdS (Agrobacterium curdlan synthase) (Periasamy et al., 2013)
POPE CrdS (Agrobacterium curdlan synthase) (Periasamy et al., 2013)
Lipid mixtures

Soybean total extract,
containing 20% lecithin

Human stearoyl-CoA desaturase complex (Goren and Fox, 2008) (Goren et al., 2009) Functional and structural
analysis by NMR

TbSLS4 (Trypanosoma brucei sphingolipid synthase 4) (Sevova et al., 2010) Enzymatic specificity
analysis

PilD (Pseudomonas eruginosa prepilin peptidase) (Aly et al., 2012) Enzymatic activity
Shaker potassium channels (Jarecki et al., 2013) Oocyte injection
AtRGS1 (Arabidopsis thaliana regulator of G protein
Signaling 1)

(Li et al., 2016) Functional and biochemical
analysis

DMPC/cholesterol (70/30,
mol/mol)

Cytochrome b5 (Nomura et al., 2008) Transport activity

DOPG/POPE (2/3, w/w) CrdS (Agrobacterium curdlan synthase) (Periasamy et al., 2013)
POPC/CL/POPS/POPA
(54/24/16/4/2, mol/mol)

AAC (ADP/ATP carrier) (Long et al., 2012) Transport activity

E. coli lipids CrdS (Agrobacterium curdlan synthase) (Periasamy et al., 2013)
Lipid/detergent mixtures

Asolectin liposomes
Brij-35

AtPPT1 (Arabidopsis thaliana phosphoenolpyruvate/
phosphate translocator 1)

(Nozawa et al., 2007)

Other mixtures

Asolectin/20% glycerol
(glycerosome)

HRH1 (human histamine H1 receptor, GPCR) (Suzuki, 2018) New drug delivery system

Nanodisc

MSP1D1
Cardiolipin

AtRGS1 (Arabidopsis thaliana regulator of G protein
Signaling 1)
Arabidopsis thaliana receptor-like kinase (RLK)
FERONIA

(Li et al., 2016) (Fogeron et al., 2015a; Fogeron et al.,
2015b; Li et al., 2016; Fogeron et al., 2017a; Minkoff
et al., 2017)

Functional and biochemical
analysis
Functional and structural
characterization

MSP1E3D1
POPC/POPE/tocl (40/40/
20, mol/mol)

Tim23 (subunit of the TIM23 protein transport complex) (Malhotra and Alder, 2017) Functional and structural
characterization

Liposomes. DOPG (1,2-dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol)); DOTAP, 1,2-dioleoyl-3-trimethylammonium-propane; DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine;

DOPC, 1,2-di-oleoyl-sn-glycero-3-phosphocholine; EYPC, egg yolk phosphatidylcholine; POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; POPE, 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphoethanolamine; CL, 19,39-bis[1,2-dioleoyl-sn-glycero-3-phospho]-sn-glycerol; POPS, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine; POPA, 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphate.

Nanodiscs. MSP1D1, membrane scaffold protein 1D1; MSP1E3D1, membrane scaffold protein 1E3D1; TOCL, 1′,3′-bis[1,2-dioleoyl-sn-glycerol-3-phospho-]-sn-glycerol.
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although disulfide bond formation was demonstrated in a DTT-
deficient reaction in the presence of a protein disulfide isomerase
(PDI) (Kawasaki et al., 2003). The addition of chaperones that
catalyze disulfide bond formation to the translation reaction

therefore might be necessary for correct folding (Saaranen and
Ruddock, 2019). As an example, the cooperative role of quiescin
sulfhydryl oxidase (QSOX) and PDI was investigated for the
generation of native pairings in unfolded reduced proteins (Rancy
and Thorpe, 2008; Gad et al., 2013). Interestingly, glutathione-
based redox buffers are not needed for efficient folding using a
combination of QSOX and PDI (Rancy and Thorpe, 2008). If
used, the ratio of reduced and oxidized glutathione might have to
be optimized depending on the protein of interest. The use of a
combination of a PDI and Ero1α system (Inaba et al., 2010;
Shergalis et al., 2020) was established by CellFree Sciences for the

synthesis of an anti-AGIA-IgG antibody Fab fragment exhibiting
antigen-binding capacity after protein synthesis (https://www.
cfsciences.com/eg/resources/application-note/519-note-9). In
addition to using exogenous chaperones, pretreatment of E.
coli extracts with the alkylating agent iodoacetamide (IAA)
which covalently blocks the free sulfhydryl groups of enzymes
has been reported to support oxidative folding (Kim and Swartz,
2003; Yin and Swartz, 2004). This approach could be considered
for the WGS as well to prevent aggregation and to improve both
solubility and activity, yielding more of the disulfide bond-
containing proteins. Fine-tuning of redox conditions for

disulfide bond formation has been described for human and
mouse prion-like Doppel proteins and mouse interleukin-22
(Michel and Wuthrich, 2012) and has also proven to be
efficient for disulfide bond formation in virus-like particles
(Bundy and Swartz, 2011), all these proteins being produced
using E. coli lysates. This approach was further shown to support
the formation of intramolecular disulfide bonds during the
synthesis of antibody fragments using an insect cell lysate
(Stech et al., 2014). Although there are few data available
about this approach for the WGS (Rancy and Thorpe, 2008;
Gad et al., 2013), it could definitely be of interest when disulfide

bond formation is desired. Since disulfide bonds are commonly
found under oxidizing conditions, further considerations should
be given to the storage and processing of proteins carrying this
modification. Several methods have been published for the
analysis of disulfide bonds including Ellman’s reagent [5,5′-
dithiobis-(2-nitrobenzoic acid) or DTNB] used to quantify the
concentration of thiol groups (Ellman, 1959; Winther and
Thorpe, 2014), mass spectrometry (Lakbub et al., 2018), NMR
(Denisov et al., 2019; Wiedemann et al., 2020), or simpler
methods using PEG-maleimide to modify free thiol groups.
Proteins may also be analyzed under nonreducing and

reducing conditions by SDS-PAGE (Braakman et al., 2017).
However, posttranslational formation of disulfide bonds in
CFPS experiments or later during processing of proteins has
its own challenges as not every cysteine may form correct bonds.
As a first indication for correct folding, we suggest looking for an
increase in protein solubility and, where possible, to confirm
protein activity in a functional test or take an NMR spectrum.

The chaperone function of Ric-8 proteins was shown to be
required for proper folding of heterodimeric G proteins (Chan

et al., 2013). More recently, it was also shown that coexpression of
J-domain containing chaperone proteins with potassium
channels is essential for their folding, stabilization, and
tetrameric assembly (Li et al., 2017). Another example of the

correlation between cofactor binding and protein folding was
demonstrated for the Flavin Mono Nucleotide- (FMN-) binding
protein (Abe et al., 2004). The WGS allows for coexpression of
two or more proteins in the same translation reaction, where the
expression of binding partners may assist proper expression.
Direct preparation of protein complexes in cotranslation
experiments will open new ways to make use of chaperones to
assist the production of functional proteins.

LARGE-SCALE PROTEIN PRODUCTION

Cell-free protein expression systems can use different reaction
formats, and the choice of the best suited reaction format depends
on the application. This can include functional and structural
investigations for research or clinical purposes, small-scale assays,
high-throughput screening or large-scale production including
industrial use for diagnostic or therapeutic applications.
Commonly, protein quantities for structural and functional

studies or antigen production are in the range of milligram
amounts, while much larger quantities could be desired for
industrial applications. All those needs have been achieved by
different CFPS. Therefore, the main parameters to be considered
include the size and nature of the protein of interest, ease of
implementation, productivity, reaction time, ability to scale, and
the cost of the platform. To meet those needs, WG-CFPS
reactions can be performed in either one-compartment or
two-compartment reactions, and final yields between 1 and
20 mg of GFP per mL wheat germ extract can be achieved
using high-quality extracts (Harbers, 2014).

The batch mode (Kawasaki et al., 2003) is a one-compartment
reaction in which all reagents are mixed in a single container and
is thereby the least complicated. The system works, however, only
for a few hours, mainly due to the accumulation of inhibitory
byproducts in the single reaction compartment (Schwarz et al.,
2008), and the amount of the synthesized protein is usually not
sufficient for structural investigations (Sawasaki et al., 2002a). The
batch mode is ideal for small-scale high-throughput expression
screening experiments (Sawasaki et al., 2002a; Schwarz et al.,
2008). One alternative to the regular batch reaction format is the
so-called repeat-batch or discontinuous batch mode (Harbers,
2014). After incubation, the batch reaction is concentrated by

a centrifugation step; then, fresh reaction buffer is added to
provide new substrates. Multiple concentration cycles can thus
be performed, leading to higher protein yields than the batch
mode (Harbers, 2014). An automated discontinuous batch system
was described for the production of soluble Galdieria sulphuraria
protein DCN1, leading to a yield higher than 2 mg/mL in the
reactionmixture allowing for its structure determination by X-ray
crystallography from a 10 mL reaction (Beebe et al., 2011).
This approach has also been applied to the production of
membrane proteins in the presence of detergents or lipids
(Beebe et al., 2011).
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The continuous-exchange cell-free (CECF) system is a two-
compartment setup in which the cell-free protein expression
reaction is separated from the feeding buffer by a
semipermeable membrane (Katzen et al., 2005). The cell-free

expression reaction takes place in the dialysis device, and the
dialysis buffer containing fresh substrates can diffuse in, while
byproducts passively diffuse out (Figures 5A,B). Mini- and maxi-
CECF reactors, as well as further CECF reactor designs, have been
described in detail (Schneider et al., 2009). Interestingly, a
microfluidic platform was also described for CECF, allowing
for reduced reaction volumes and simultaneous expression of
up to 96 proteins (Jackson et al., 2014). Making proteins for NMR
use, we standardly use 500 μL and 3 mL commercial dialysis
cassettes and the CECF system (David et al., 2018; Wang et al.,
2019) (Figures 5A,B). When larger protein amounts are needed,

larger dialysis cassettes can be used, or more generally, CECF
reactions can be run in parallel as described in (Aoki et al., 2009).

The continuous-flow cell-free (CFCF) system is another two-
compartment setup like CECF. First described by Spirin (Spirin
et al., 1988; Spirin, 2004), the CFCF system provides, through the
use of a pump, the automated and continuous supply of substrates
into the reaction chamber and the removal of byproducts which
are pushed out through an ultrafiltration membrane,
simultaneously retaining the protein of interest (Endo et al.,
1992). The translation reaction can thus proceed for more than
two days, which is more than ten times longer than the batch

mode, and can yield up to several milligrams of protein (Spirin
et al., 1988;Morita et al., 2003). This approach has been reported to
be not suitable for high molecular weight proteins over 300 kDa
(Spirin, 2004). Continuous reaction formats such as CECF and
CFCF are nonetheless attractive for industrial protein production,
and automated systems have been optimized in this direction
(Vinarov et al., 2006a; Aoki et al., 2009; Revathi et al., 2010).

The bilayer method is a simplified and less expensive version
of CECF and CFCF (Sawasaki et al., 2002a). In contrast to the

CECF and CFCF systems, the two compartments are not
separated by a semipermeable membrane, and the total
reaction has thus to be harvested for further analysis
(Figure 5C). This method allows for the synthesis of protein

amounts compatible with functional and structural analyses. The
substrate buffer is overlaid onto the translation mixture, forming
two separate layers through their different density, thus allowing
for a diffusion-controlled translation process (Sawasaki et al.,
2002a; Takai et al., 2010). The bilayer method can be fully
automated for large-scale and efficient screening (Endo and
Sawasaki, 2004; Vinarov et al., 2006b). Moreover, its flexible
format permits screening different additives for the translation
reaction, such as detergents or lipids for the expression of
membrane proteins in a soluble form (Harbers, 2014), and can
be readily scaled up from 96-well plates to 6-well plates

(Figure 5D). Over 13,000 human cDNA clones have already
been tested for protein expression using this method (Goshima
et al., 2008). Bilayer expression is easier to handle and less
expensive than the CECF and CFCF modes but much more
efficient than batch reactions. While yields are about three times
higher in the dialysis mode, the cost is proportionally higher in
the case of protein labeling because of the larger buffer volume. In
addition, solubility could be an issue in the dialysis mode since
proteins are more concentrated.

For much higher throughput, protein synthesis using
microfluidics approaches was also described for the WGS and

has been used for the kinetic analysis of transcription factor-DNA
interactions (Geertz et al., 2012) and to perform 96 dialysis
reactions in parallel. The microfluidics approach can improve
protein expression, offering much higher yields as compared to
batch reactions (Jackson et al., 2014). These methods have the
potential to become more important in the context of biomedical
and diagnostic approaches as well as applications in systems
biology looking at many proteins at the same time (Ayoubi-
Joshaghani et al., 2020).

FIGURE 5 | Different reaction formats for protein expression using theWGS. (A) Schematic representation and (B) picture of a 500 μL dialysis cassette for medium
scale CECF production. (C) Schematic representation of the bilayer method which is performed either in a 96-well plate for small-scale expression test or in a 6-well plate
for larger-scale production (D), adapted from Fogeron et al. (2015a), Fogeron et al. (2015b); Fogeron et al. (2017b). (E) Schematic representation of the dialysis method
and (F) picture of a CECF mini-reactor manufactured at ETH Zurich by Andreas Hunkeler in Beat H. Meier’s laboratory, according to Schneider et al. (2009). In this
reaction format, a 24-well plate is used. For all panels, the translation mix is represented in yellow while the feeding buffer is represented in blue.
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In the context of NMR sample preparation, we mainly use the
bilayer method for small-scale expression tests and screening of
additives in 96-well plates (Fogeron et al., 2015b). We have also
implemented the mini-CECF reactor (Schneider et al., 2009) in
our laboratory for samples that need to be more concentrated for
analysis (Figures 5E,F, unpublished). When sample
concentration is not an issue, the bilayer method is definitely
the method of choice when working at a small scale and to reduce
the volumes needed for translation reactions and feeding buffer
or while adding stable isotope-labeled amino acids. For larger-

scale production of labeled NMR samples, we usually perform the
translation reaction either using the bilayer method in 6-well
plates followed by affinity purification (Fogeron et al., 2015b) or
in the CECFmode using dialysis cassettes followed by isolation of
the protein on a density gradient in the case of proteoliposomes,
capsids, or viral envelope assemblies (David et al., 2018; Wang
et al., 2019). In our hands, proteins in this setup typically yield
between 0.2 and 1 mg protein per mL wheat germ extract used.
The cost for this screening is around 300 € per reaction using
1 mL wheat germ extract (including purification), where the
triply labeled amino acids only represent about 120 €. For

1 mg of protein, sufficient for solution and solid-state NMR
experiments (0.7 mm rotor), this results in a cost of 600–1,200
€ for a 2H/13C/15N labeled sample. When using commercial
extracts, the cost of the extract must be added to this. The
production of home-made wheat germ extracts can be done at
negligible cost when only reagents are considered. Our lab
routinely produces around 100 mL wheat germ extract per
year, with eye sorting of the wheat germs done on a single day
every two months by the entire group (<10 people). The extract is

then prepared in two days by one person (Fogeron et al., 2015a).
In bacterial expression, a triply 2H/13C/15N labeled protein
preparation costs around 1700 €/L culture; the sample cost
then depends on the yields which can be achieved but for
complex systems are often not above 1–5 mg/L. Costs for
triply labeled samples are thus rather similar, until proteins
express with high yield in bacteria. 13C/15N labeling in WG-
CFPS is not much less costly than triple labeling and reduces the
cost of amino acids by only a factor of two, whereas in bacterial
expression, the factor is nearly ten. Therefore, it makes most sense

to use CFPS for complex proteins where bacterial expression fails
and in cases where deuteration is of high importance.

APPLICATION TO STRUCTURAL BIOLOGY

While CFPS is important for a variety of applications, we will give
some examples from structural biology (Figure 6), where most
experiments are done on recombinant proteins. While in many

cases E. coli expression gives satisfactory results with respect to
yield, it does not produce well-folded proteins in all cases. From
experience, expression in cells corresponding to the origin of the
protein (e.g., often mammalian cells) would be the most adapted
approach with respect to correct folding; though, yield is often
prohibitively low. CFPS, notably using eukaryotic systems, is a
good compromise for mammalian proteins, providing sufficient
yield and inmany cases correct folding. The eukaryotic ribosomes
are also ensuring a slower synthesis as compared to bacterial
systems, which in turn promotes cotranslational folding.
Furthermore, CFPS-generated proteins are easy to purify,

FIGURE 6 | Structural characterization of proteins produced from cell-free protein expression.
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which is important for crystallographic studies. The WGS can
easily provide around 50 μg of protein needed for cryo-EM and
even more than the minimum of around 1 mg needed for X-ray
crystallography and NMR. The following section illustrates some

examples of how WGS was successfully applied in the past years
for structural biology approaches, including solution and solid-
state NMR, cryo-EM, and X-ray crystallography.

NMR
WGS is particularly attractive for its ability to produce complex
eukaryotic (membrane) proteins for NMR and importantly
combines this with the major advantage other CFPSs have, that
is, the efficient and specific isotopic labeling required for NMR
protein studies. Indeed, only the cell-free synthesized protein is
isotopically labeled during expression (Morita et al., 2003);

therefore, even if some remaining contaminants are present in
the sample, they will be invisible in the NMR spectra. Amino acid
selective labeling, easily implemented in CFPS by simply adding
the desired amino acids into the reaction mixture, can also be used
in WGS (Morita et al., 2004; Kohno and Endo, 2007; Tonelli et al.,
2011; Fogeron et al., 2015a; Jirasko et al., 2020). Selective labeling
results in significantly reduced NMR spectral complexity and
enables application to higher molecular weight systems
(>50 kDa) (Tugarinov et al., 2006). In the case of WGS,
15N-selective labeling was shown to be efficient for most amino
acids, except for Ala, Glu, and Asp (Morita et al., 2004). For these

residues, the addition of inhibitors for transaminases and
glutamine synthase during protein synthesis is required to avoid
scrambling (transfer of isotope labels between amino acids)
(Morita et al., 2004). This method was first demonstrated on
the RNA-binding protein RbpA1 and yeast ubiquitin (Morita
et al., 2004) and then successfully applied to produce specific
labeling schemes in β2-microglobulin (Kameda et al., 2009), a
structural component of amyloid fibrils. The specific labeling
scheme was crucial in the structural characterization of the
refolding intermediate of β2-microglobulin and enabled to
reveal the regions important for amyloidogenicity (Kameda

et al., 2009). Another example is the 15N-Val selectively labeled
yeast ubiquitin, where the four valine residues could be observed in
the 1H–15N HSQC spectrum (Kohno, 2010).

For NMR studies, it is sometimes necessary to deuterate the
protein, except for the amide protons, to improve the spectral
linewidth. In theWGS, deuterated amino acids can be used, while
the expression is done in H2O to obtain labeling. Hence, there is
no need for a posteriori proton back exchange as in cell-based
expression, since amide protonation is achieved directly during
synthesis, avoiding a denaturation and refolding step, which can
compromise the native fold of proteins. The usefulness of this

approach was reported in the case of HBV capsids, where 20% of
amide protons from the hydrophobic core are missing when
bacterial expression is used (Lecoq et al., 2019), while they are
present in samples prepared by WG-CFPS (Lecoq et al., 2019). It
has been shown that metabolic scrambling cannot be avoided,
and proton back exchange can occur on CH groups of Gly, Ala,
Asp, Glu, Gln, and Lys (Tonelli et al., 2011). This problem can be
alleviated by using similar transaminase inhibitors (Morita et al.,
2004; Tonelli et al., 2011). The WGS and NMR were also applied

to NS5A from the hepatitis C virus (HCV), where it revealed
phosphorylation sites on the protein (Badillo et al., 2017).

With advances in MAS solid-state NMR, membrane proteins
can be studied in lipids (reviewed in (Ladizhansky, 2017)).

Recently, MAS frequencies exceeding 100 kHz have allowed
structural investigation of submilligram amounts of protein
(Agarwal et al., 2014; Andreas et al., 2016), as typically can be
produced using WGS. This has enabled studies of HCV NS4B
(Figure 7A) (Fogeron et al., 2016; Jirasko et al., 2020) and NS5A.
NMR could show that the NS5A dimer in lipids presented a
different orientation than in crystals and a model could be
forwarded which proposes a binding mode for the directly
acting antiviral Daclatasvir (Jirasko et al., 2020) (Figure 7B). It
was also shown that high-quality NMR spectra can be obtained
on HBV capsids (Figure 7C) and envelope proteins (the latter

from the duck virus variant) proteins (Figure 7D) (David et al.,
2018; Wang et al., 2019) which are spontaneously self-assembled
in the WGS (Lingappa et al., 2005; David et al., 2018; Wang et al.,
2019). For the HBV capsid, the combination of WGS and solid-
state NMR allowed studying the effect of capsid assembly
modulators at the exit from the ribosome (Wang et al., 2019).

Solution NMR applications of the WGS were advanced in the
field of structural genomics by Markley and coworkers, who used it
to screen 238 eukaryotic hypothetical proteins from A. thaliana and
human genomes (Vinarov et al., 2004). Nearly half of these proteins
were found to be soluble, and 40% yielded 1H–15N HSQC spectra

indicative of folded proteins. Several solution NMR structures were
solved of WG-CF-synthesized proteins, including the A. thaliana
protein At3g01050.1 (Figure 7E) (Vinarov et al., 2004). A detailed
comparison of E. coli expression with the WG-CFPS revealed that
solubility and folding reached a higher success rate in the WGS
(Tyler et al., 2005). The implementation of a high-throughput cell-
free translation platform at the Center for Eukaryotic Structural
Genomics enabled the use of WGS for fast screening and solution
NMR structural determination (Makino et al., 2010; Makino et al.,
2014; Vinarov and Markley, 2014).

Another recent work reports WG-CFPS of virtually all SARS-

CoV-2 accessory proteins and M and E structural proteins, which
showed that most of them can be produced and purified in soluble
form and in milligram amounts (Altincekic et al., 2021)1.

X-Ray Crystallography and Cryo-EM
The first X-ray structure of a protein expressed in the WGS was
solved in 2007 (Miyazono et al., 2007; Watanabe et al., 2010), on
the cytotoxic R.PabI (Figure 7F), one of the 4 bp cutter restriction
enzymes, which are highly toxic to the cells. Recent literature shows
further examples (Novikova et al., 2018), including the hexameric
assembly of the dioxide-concentrating mechanism protein

(CCMK) (Novikova et al., 2018). Also, diffracting crystals of the
glutamine synthetase from O. tauri complex were obtained from a
crystallization screen using WGS (Novikova et al., 2018). Further
negative-stain EM data provide indications that autoassemblies of
larger superstructures are commonly observed when working with
WGS, without showing aggregation nor disordered complexes,
suggesting highly homogeneous samples compatible with high-
resolution studies (Novikova et al., 2018). Furthermore, the EM
envelope of the pyridoxal 5′-phosphate synthase-like subunit
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(PDX1.2) from A. thaliana (Figure 7G) was solved (Novikova
et al., 2018). As WGS application for cryo-EM is now just

emerging, we expect a much wider use of WGS for preparation
of samples for cryo-EM studies.

DISCUSSION

Today, CFPS is a mature technology that can serve most needs in
protein expression. In recent years, the technology has made
interesting contributions to the new fields of synthetic biology

and the development of minimal cells. In contrast to in vivo
expression systems, CFPS reactions enable manipulation of the

reaction conditions in accordance with the requirements of a
given protein. They can also be implemented in fully automated
protein production to obtain larger yields or throughput and are
thus a suitable approach to rapidly screen many mutations for
changes to protein function and later production on a larger scale to
obtain structural data. A former disadvantage ofWG-CFPS used
for structural studies was the lower yield when compared to
bacterial cell-free or cell-based expression. However, structural
studies currently need less protein, which makes these lower

FIGURE 7 | Examples of structural studies on proteins expressed in WGS using NMR, X-ray crystallography, and cryo-EM. (A) Solid-state NMR spectrum of the
HCV membrane protein NS4B reconstituted into DMPC lipids (Jirasko et al., 2020). (B) Dimer orientation in lipids of the HCV helix anchor and domain 1 (AHD1) of the
NS5A protein as determined by solid-state NMR (Jirasko et al., 2020). (C) Solid-state NMR spectra of the hepatitis B virus capsid (Wang et al., 2019) and of (D) the
subviral particles made of duck HBV small envelope protein (DHBs S) (David et al., 2018). The three spectra have been recorded at 110 kHz MAS on an 850 MHz
spectrometer. Both HBV capsids and subviral particles were autoassembled during cell-free synthesis; their negative-staining electron microscopy images are shown
inside the corresponding spectrum. (E) 20 conformers obtained by solution NMR of At3g01050.1 protein (Vinarov et al., 2004) (PDB 1se9, figure prepared using PyMoL
(https://pymol.org/2/). (F) Structure of restriction endonuclease PabI obtained by X-ray crystallography (Miyazono et al., 2007;Watanabe et al., 2010) (PDB 2dvy). (G) 3D
cryo-EM reconstruction of PDX1.2 complex at 15 Å resolution (Novikova et al., 2018). Figures were adapted with permission from Jirasko et al. (2020) for panel A, from
Wang et al. (2019) for panel C, and from David et al. (2018) for panel D and reprinted with permission from Jirasko et al. (2020) for panel D, from Miyazono et al. (2007),
Watanabe et al. (2010) for panel F, and from Novikova et al. (2018) for panel G.
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yields less of a barrier. Therefore, WGS today is fully compatible
with high-resolution structural biology methods such as cryo-
EM, X-ray crystallography, solution NMR, and solid-state
NMR. The unique possibilities of this system for studies on

cytotoxic proteins (Miyazono et al., 2007), complex membrane
proteins (Fogeron et al., 2016; Badillo et al., 2017; David et al.,
2018), or molecular assemblies in a native-close state shall thus
create opportunities for structural approaches to study complex
and difficult proteins. The examples given in this review
demonstrate that CFPS production can be a powerful
alternative to cell-based methods and thus could enable
entirely new applications.

With recent developments in bioinformatics and methods of
applied synthetic biology, we foresee rapid progress for new
approaches to optimize protein expression using CFPS

systems. These approaches will take advantage of
computational protein design (Gustafsson et al., 2012), rapid
template generation by gene synthesis, and working with linear
DNA templates. Such linear templates can be used in fully
automated and highly parallel testing of different template/
protein designs and translation reaction conditions using
robotic or microfluidic devices to perform effective expression
tests yielding optimized proteins and conditions for their
functional synthesis in a truly short timeframe (Ayoubi-
Joshaghani et al., 2020; Borkowski et al., 2020). Conditions can
subsequently be scaled to produce the protein for further use.

This progress will largely be driven by the unique features of
CFPS systems and the freedom they offer to adopt the system as
this is already done for rational biodesigns (Laohakunakorn,
2020). Another important aspect for future developments will
be the production of proteins having posttranslational

modifications, where approaches have already been discussed
for tyrosine and serine phosphorylation, lysine acetylation, and
lysine methylation (Venkat et al., 2019). Similarly, we expect
more progress on protein glycosylation and engineering

glycosylation reactions in CFPS (Hershewe et al., 2020;
Kightlinger et al., 2020), a key aspect for making biologicals
for treatment. With this outlook, we expect remarkably
interesting development`s for new methods and applications
that will involve a CFPS step as an essential part of the assay
system. We hope that the WGS will contribute to these
developments as it proved to be one of the most effective
eukaryotic CFPS systems.
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