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It is shown that there exist approximations of the Hencky (logarithmic) finite strain 
tensor of various degrees of accuracy. having the following characteristics: ( 1 ) The 
tensors are close enough to the Hendcy strain tensor for most practical purposes and 
coincide with it up to the quadratic tenn of the Taylor series expansion; (2) are easy 
to compute (the spectral representation being unnecessary); and ( 3 ) exhibit tension­
compression symmetry (i.e .• the strain tensor of the inverse transfonnation is minus 
the original strain tensor). Furthennore, an additive decomposition of the proposed 
strain tensor into volumetric and deviatoric (isochoric ) parts is given. The deviatoric 
part depends on the volume change, but this dependence is negligible for materials 
that are incapable of large volume changes. A general relationship between the rate 
of the approximate Hendry strain tensor and the defonnation rate tensor can be 
easily established. 

Introduction 
The Hencky strain tensor H (Hencky. 1925. 1928). which 

is also called the logarithmic strain tensor, the true strain tensor 
or the natural strain tensor (Nadai. 193:]; Davis. 1937). is not 
the simplest finite strain measure to use. Many investigators 
nevertheless considered the Hencky strain measure to be attrac­
tive (e.g .• Hill. 1970; Freed. 1995). Certain advantages. which 
overcome the shortcomings of the updated Lagrangian descrip­
tions in finite-strain plasticity, have been pointed out by Hei­
duschke (1995a. b. c. 1996). 

The Hencky strain measure has four advantageous properties: 

The strain tensor for the inverse transformation is sym­
metric in the sense that it is equal to minus the strain 
tensor for the original transformation; and in particular 
the compression and tension are symmetric in the sense 
that the normal strain corresponding to principal stretch 
A is equal to minus the normal strain component corre­
sponding to principal stretch 11 A. 

2 The trace of the strain tensor for isochoric deformations 
(i.e .. deformations at constant volume) vanishes. 

3 Subsequent co-axial strains are additive (which means 
that. after one deformation. the new configuration can be 
taken as the reference state for computing the additional 
strain for a further deformation. 

4 In consequence of the additivity. the strain tensor can. in 
particular. be separated into volumetric and isochoric 
strain tensors that are additive and independent even if 
both the shear strain and the volume change are large. 

The last property is very useful for generalizing to finite strain 
the existing small-strain complex constitutive laws for pressure­
sensitive frictional dilatant materials such as concrete or soil. If 
the volume change is small. this property can be approximately 
attained for any finite strain tensor by introducing a certain 
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~pecial definition of the volumetric and deviatoric finite strain 
tensors (Baiant, 1996). But the error of the approximate addi­
tive volumetric-deviatoric split becomes significant if the vol­
ume change is large. 

Although the Hencky strain tensor is used in some commer­
cial finite element codes. it has. unfortunately. three serious 
computational disadvantages which have so far prevented wide­
spread practical applications: 

The conjugate stress tensor is in general very difficult to 
calculate. 

2 The general relationship between the rate of Hencky strain 
tensor and the deformation rate tensor is very complicated 
(Hill. 1968; Storen and Rice. 1975; Gurtin and Spear. 
1983; Hoger, 1987). A recent claim that a simple relation 
can be established (Freed. 1995) has turned out to be 
invalid. 2 

3 The computations of the Hencky strain tensor. which need 
to be based on the spectral representation (e.g .. Malvern 
1969; Ogden 1984) and require calculating the principal 
strains and principal directions. are still quite expensive 
in very large finite element programs in which the finit~ 
strain may have to be computed as many as 10 8 to IO 
times. 

The increments 6.H. instead of being calculated from the rate 
of H. can of course be calculated directly by taking the differ­
ence of two subsequent tensors H evaluated by spectral repre­
sentation. But such an approach poses high demands on com­
puter time. In the case that two or three principal strains are 
equal. a choice of the principal direction vectors among infi­
nitely many possible such vectors must be made in a manner 
consistent between two successive states, and this causes further 
complications. 

If the elastic part of strain is small. which is usually true for 
plastic and brittle materials. the aforementioned disadvantage 1 

, Freed presented an elegant and powerful new approach. but his final expres­
sion for A: in Eq. (31). which is F -'d F. is not symmetric (the notations are 
defined later in this paper). This was pointed out and demonstrated by Rice 
(1996). Another demonstration: E = FTd F: so d = F-TEF T ~ F-T(FTF + 
FTF)F-'r. = (F-TF T + FF-')/1 = sym(FF-'). Therefore. F-'d F = F-' F-rX 
= GX where X = FTd F. which is symmetric. and G = F-'F- T = (FTF)-'. also 
symmetric. But tensor GX is generally not symmetric. 
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can be circumvented by adopting a nonconjugate strain measure. 
This of course requires certain caution in order to ensure the 
nonnegativeness of dissipation (Bafant. 1997). The purpose .of 
this article is to present a new class of easy-to-comrute fi~lte 
strain tensors (recently proposed by Baiant. 1995) which satisfy 
property I exactly and properties 2-4 approximately but cl~sely 
enough. while at the same time avoiding the aforemen~lOned 
disadvantages 2 and 3. As for disadvantage I. the conjugate 
stress tens;r will be much easier to calculate for the proposed 
class of tensors. 

Finite Strain Tensors With Symmetric Inverse 
Most of the finite strain tensors practically used in the past 

belong to the class of Doyle-Ericks~n tensors (c.g .. Ogden. 
1984; Baiant and Cedolin. 1991. Section 11.1) defined as: 

for m '* 0: E(m) = .!. (vm - I). 
m 

for m = 0: E IO
) = H = In V (1) 

Here m is a real parameter. and V is the right stretch ten~or. 
defined by the polar decomposition F = RV of the deformatIon 
!rradient F. with R being the rotation tensor. For m = 2 this 
~xpression yields the classical Green's Lagrangian finite str~in 
tensor E; for m = I the Biot strain tensor e = V-I (I bemg 
the unit tensor): and for m = 0 the Hencky (logarithmic) strain 
tensor H. Incremental stability formulations and objective stress 
rates that are associated with the tensors for m = -I and m = 
- 2 have also been used (see Table 11.4.1 in Bazant and Cedo­
lin. 1991). The dependence of Elm' on parameter In is continu­
ous because 

H = lim.!. (vm - I) 
..--0 m 

Let us now replace m by -m in Eq. (1): 

E(-m) = .!. (I - V-m) 
m 

(2) 

(3) 

Evaluating (1) and (3) for various m. one may note that the 
deviations from In V are of opposite signs and similar magni­
tudes. Thus. the average of these two expressions. namely the 
tensors 

Blm) = _I (vm _ v-m) 
2m 

(4) 

(Baiant. 1995) should be much closer to H. It is also obvious 
that 

In ~ = lim _I (vm - V-m
) 

..--0 2m 
(5) 

and the convergence to H should be much faster. 
The replacement of V with V -I in (4) merely changes the 

sign of B(m). and so the compression-tension symmetry (prop­
erty I) is satisfied exactly. So the Hencky strain tensor is not 
the only one with this advantageous property. 

The two simplest special forms of tensor B(m) are:' 

for m = 1: B = 4 (V - V -I) (6) 

for m =~: n = (V 1/2 
- V- I12

) (7) 

Noting the binomial series expansion: 
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we obtain the Taylor series expansion: 

Blm) = 2~ {[ (7) (-lm )]e + [(;) (-2m
) Je2 

+ [(;) (-3m )]e3 T ••. } 

12m2 + 2 ~ m
2 + I 

= e -:;e + ---e' - --4-e4 +... (9) 
• 6 

For m -+ O. the expansion of B,m) coincides with the expansion 
of H. which reads: 

H = In V = In (I + e) = e - ie 2 + je3 - ~e4 + ... (10) 

For any m. this expansion coincides with the Taylor series 
expansion (10) of Hencky strain up to the quadratic term. On 
the other hand. this expansion coincides with the Taylor series 
expansion of the Doyle-Ericksen strain tensors (I) for m '* 0 
only up to the linear term. 

For the purpose of the analysis of critical load at the stability 
limit. only the quadratic term of the Taylor series expansion 
matters (see. e.g .• Chapter II in Baiant and Cedolin. 1991). 
Therefore, the solutions of the critical loads of initially stressed 
bodies based on finite strain tensors Hand B 1m) will be identical. 
The same will be true for the associated objective stress rates 
or increments, and for the associated tangential elastic moduli. 
However. the postcritical behavior and the stability conditions 
at the critical state will differ because they depend on the higher­
than-quadratic terms of the potential energy expression. 

Numerical Comparisons 
According to the spectral representation, every finite strain 

tensor can be expressed (in cartesian components) in the form: 
3 

Ekl = 2: f(A/)n~nf where AI are the principal stretches (princi-
1=1 

pal values of V). n~ (k = 1.2.3) are the components of the 
unit vector of principal direction I. andf(A) (for A > 0) is a 
smooth monotonically increasing function such that f( I) = 0 
and f ' ( I) = I. Since all the strain tensors are coaxial. the 
judgment of how close the tensors B(m) approximate the Hencky 
tensor H can be made by comparing the values of f(A) for 
the maximum principal stretch Amax and the minimum principal 
stretch Amin' 

For various values of A = Am .. or Anun. Table I gives the 
corresponding principal values HI, EI , B I and EI of tensors H. 
E. B and B (where HI = In A). Table I also gives (in percent­
ages) the relative deviations of these values from the maximum 
or minimum principal Hencky strain. i.e. from In A = In Amax 
or In Anun. which are defined as 

8 =...!.1..._ I, 
EI 

I, 8£=--
• In A In A 

BI 
I. 

EI 
1. (11 ) 8 --- 8g = --

B - In A In A 

where el = A - I. For B (m = 1) and principal stretches 
between j and ~. these deviations are seen to be at least an order 
of magnitude smaller than the deviations of e. and even much 
smaller than those of E. For Ii (m = i). these deviations are 
at least two orders of magnitude smaller than the deviations of 
e. The deviations from In A within this very broad range are 
seen to be under 2.8 percent for B and under 0.7 percent for B. 
which is less than the errors that inevitably arise from imperfect 
knowledge of the constitutive relation when the strains are cal­
culated from the stresses. 
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Table 1 P.rincip:U ~trains correspond~ng t? various principal stretch Values, and their percentage deviations from the 
correspondmg pnncJpal Hencky (loganthmtc) strains 

A H, E, B, H, 8, 8, 

1.005 .0050 .0050 .0050 .0050 .0050 .0050 
1.01 .0100 .0100 .0100 .0100 .0100 .0100 
1.03 .0296 .0304 .0296 .0296 .0296 .0296 
1.05 .0488 .0512 .0488 .0488 .0488 .0488 
1.1 .0953 .1050 .0955 .0953 .0953 .0953 
1.3 .2624 .3450 .2654 .2631 .2626 .2624 
1.5 .4055 .6250 .4167 .4082 .4060 .4055 
2 .6931 1.5000 .7500 .7071 .6924 .6931 
4 1.386 7.500 1.875 1.500 1.227 1.378 
8 2.079 31.50 3.938 2.475 .2355 1.998 

1/1.005 -.0050 -.0050 -.0050 -.0050 -.0050 -.0050 
1/1.01 -.Ql00 -.0099 -.Ql00 -.0100 -.Ql00 -.Ql00 
1/1.03 -.0296 -.0287 -.0296 -.0296 -.0296 -.0296 
111.05 -.0488 -.0465 -.0488 -.0488 -.0488 -.0488 
111.1 -.0953 -.0868 -.0954 -.0953 -.0953 -.0953 
111.3 -.2624 -.2041 -.2654 -.2631 -.2626 -.2624 
111.5 -.4055 -.2778 -.4167 -.4082 -.4060 -.4055 
1/2 -.6932 -.3750 -.7500 -.7071 -.6924 -.6931 
114 -1.386 -.4688 -1.875 -1.500 -1.227 -1.378 
118 -2.079 -.4922 -3.938 -2.475 -.2344 -1.998 

Improved Approximation by Linear Combination of 
B(m) 

It may be expected that a linear combination of tensors B(m) 
for various m values should provide an even better approxima­
tion of H. Let us consider the tensors 

(12) 

where k is a constant. These tensors are almost as easy to 
calculate as B,ml and Bfn). 

At first thought. it might seem that the best linear combination 
is that which makes the fourth term in the Taylor series expan­
sion the same as for the Hencky tensor. i.e., equal to -e' / 4. 
This is achieved for k = (n 2 + 2)/(n 2 

- m2
). For m = t and 

n = 1. this yields k = 4 and 1 - k = -3. However. it turns 
out that this makes the approximation of H better only for 
very small strains (I e, I < about 1 percent), for which the 
approximations by Band 11 are already extremely close. For 
larger strains, the approximations become worse. 

Therefore, the optimum approximation has been determined 
numerically from the condition that the magnitude of the maxi­
mum percentage deviation of the uniaxial strain from In ,\ within 
the range 0.5 < ,\ < 2 be minimized. The results are the follow­
ing two tensors: 

13 = B'1.2) = 1.307B(1) - 0.307B':) 

= 0.6535 (U - U-I) + 0.07675(U-1 - U 1
) 

B = B"I2.I) = 1.326B(1/2) - 0.326B") 

= 1.326(U"2 
- U-l/l) + 0.163(U- 1 

- U) 

(13) 

(14) 

in which B(2) = E = Green's Lagrangian strain tensor, B") = 
e = Biot strain tensor. and U 2 = FTf' = C = Cauchy-Green 
deformation tensor. Tensors Band 13 are almost as easy to 
calculate as B' II or B' 112), respectively. 

Table 1 gives the principal values B, and B, of the tensors 
Band B. As we see. B is better than 11 approximately for the 
range J < ,\ < 3, and B much better than 11 for the entire range 
calculated, i.e. ~ < ,\ < 8, and its deviation from the Hencky 
strain does not exceed about 2 percent within this large range. 
This should suffice for m~st ima,Sinable practical applications. 

However, the tensors Band B are not monotonic. because 
of the negative sign in Eq. ( 13) and ( 14). Therefore, unlike all 
the other tensors we have considered. they are not usable as 
measures of finite deformations for an unbounded range. The 
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.2498% .5004% .0004% .0001% .0000% .0000% 

.4992% 1.002% .0017% .0004% .0001% .0000% 
1.493% 3.015% .01.+6% .0036% .0012% .0001% 
2.480% 5.042% .0397% .0099% .0031% .0002% 
4.921% 10.17% .1515% .0379% .0117% .0008% 
14.34% 31.50% 1.151% .2871% .0763% .0053% 
23.32% 54.14% 2.763% .6864% .1336% .0096% 
44.27% 116.4% 8.202% 2.014% -.1024% -.0034% 
116.4% 441.0% 35.25% 8.202% -11.46% -.6164% 
236.6% 1415.% 89.35% 19.02% -88.67% -3.914% 

-.2490% -.4971% .0004% .0001% .0000% .0000% 
-.4959% -.9885% .0017% .0004% .0001% .0000% 
-1.463% -2.898% .0146% .0036% .0012% .0001% 
-2.400% -4.724% .0397% .0099% .0031% .0002% 
-4.618% -8.953% .1515% .0379% .0117% .0008% 
-12.04% -22.19% 1.151% .2871% .0763% .0053% 
-17.79% -31.49% 2.763% .6864% .1336% .0096% 
-27.87% -45.90% 8.20% 2.014% -.1024% -.0034% 
-45.90% -66.19% 35.25% 8.202% -11.46% -.6164% 
-57.92% -76.33% 89.35% 19.02% -88.67% -3.914% 

tensor is monotonic (and thus usable) if every principal stretch 
,\ lies within the following range: 

for 13: 0.2232 < .\. < 4.4807 

for B: 0.05453 < .\. < 18.340 

(15) 

(16) 

The practical applicability range is somewhat narrower than 
this range. 

Trace of Strain Tensor at Isochoric Deformations 
For constitutive modeling of complex material behavior, it is 

advantageous if the trace of the finite strain tensor for isochoric 
deformations (deformations at constant volume) is zero. This 
property is satisfied only by the Hencky strain tensor, i.e .• Hv 
= (Tr H)/3 = 0 (Tr denote~ the trace of a tensor, and subscript 
v denotes the volumetric component of the tensor). 

The symmetric tensors proposed here have the advantage that 
their trace for isochoric deformations is negligibly small for 
most practical purposes. To check it consider the following two 
isochoric right stretch tensors, which represent the extreme 
cases between which other isochoric deformations lie: 

[ '\. U b = 0, 

O. 

O. 0] 
1/'\, 0 

0, 1 

(17) 

U' = 0, 1/5.., 
[

,\, 0, 

II~] (18) 

D, 0, 

U b represents a biaxial isochoric strain, and U ' a triaxial iso­
choric strain. 

The volumetric components Ev, ev, Bv, !Jv, Bv. Bv defined as 
t of the trace of the tensors E, e, B, B, B, B, are calculated 
in Tables 2 and 3 for the biaxial and triaxial isochoric strains. To 
indicate how close the volumetric components are to vanishing, 
Tables 2 and 3 also give the percentages of these volumetric 
components compared to the principal Biot strain el = '}o.. - I, 
defined as follows: 

ev I, 
Ev 

1, = Bv_ 1, r. =-- r£ = -- r8 
el el el 

!Jv 
1, 

Bv 
I. 

Bv (19) rlJ= -- riJ =-- rJj =--
e, el el 
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Table 2 Volumetric strains corresponding to various biaxial isochoric stretches, and their ratios (in percentages) to the 
principal Biot strains 

A Ey ey By /J,. By 

1.005 .000008 .00002 0 0 0 
1.01 .00168 .00170 0 0 0 
1.03 .00834 .00850 0 0 0 
1.05 .01501. .01543 0 0 0 
1.1 .03168 .03335 0 0 0 
1.3 .09834 .1133 0 0 0 
1.5 .1650 .1067 0 0 0 
2 .3317 .4983 0 0 0 

111.005 .000008 .00002 0 0 0 
111.01 .00168 .00170 0 0 0 
111.03 .00834 .00850 0 0 0 
111.05 .01501 .01543 0 0 0 
1I1.I .03168 .03335 0 0 0 
111.3 .09834 .1133 0 0 0 
1/1.5 .1650 .1067 0 0 0 
112 .3317 .4983 0 0 0 

For a close approximation of the Hencky strain tensor, these 
values should be as small as possible. In the range 1 < ~ < 2, 
Bv at isochoric deformations does not exceed 2.9 percent of the 
maximum principal stretch A; Bv does not exceed 0.7 percent 
of A; Bv does not exceed 0.1 percent of A; and Bv does not 
exceed 0.05 percent of A. In the range ~ < A < 4, Bv does not 
exceed 0.4 percent of A. In the range k < A < 8, Bv does not 
exceed 3 percent of A. 

Efficient Computation of IncremeIits of Proposed Ten­
sors 

The use of tensor B in large finite element programs requires 
efficient computation of the right stretch tensor V and of its 
inverse V-I. This can be achieved by calculating first in each 
load step or time step the increments .6.R of the rotation tensor 
R according to the Hughes-Winget (1980) algorithm (used, 
e.g .. in ABAQUS; Hibbitt et al.. 1995) or another similar 
algorithm by Rashid (1993). Then V can be effectively evalu­
ated as 

(20) 

where F = OxloX = deformation gradient, and X and x are 
the initial and final coordinate vectors of material points. This 

By 'E " 'g '/J '4 's 

0 .166% .337% 0 0 0 0 
0 16.7% 16.96% 0 0 0 0 
0 17.8% 28.32% 0 0 0 0 
0 30.02% 30.86% 0 0 0 0 
0 31.67% 33.35% 0 0 0 0 
0 32.78% 37.78% 0 0 0 0 
0 33.00% 41.34% 0 0 0 0 
0 33.17% 49.83% 0 0 0 0 

0 .166% .337% 0 0 0 0 
0 16.7% 16.96% 0 0 0 0 
0 27.8% 28.32% 0 0 0 0 
0 30.02% 30.86% 0 0 0 0 
0 31.67% 33.35% 0 0 0 0 
0 32.78% 37.78% 0 0 0 0 
0 33.00% 41.34% 0 0 0 0 
0 33.17% 49.83% 0 0 0 0 

procedure is computationally much more efficient than calculat­
ing V = rc as a matrix square root by spectral representation; 
C = FTF. Besides, R often needs to be calculated anyway, 
even if V is not needed. The dots in singly contracted tensorial 
products are omitted in this paper, as in (20). 

Since the Hughes-Winget algorithm is only approximate, an 
error may accumulate after many steps and V 2 might not repre­
sent C with sufficient accuracy, that is, the difference of the 
norms ~ = I C I - I V 2 1 might exceed a certain small tolerance 
~o. The value of V obtained from (20) may then be improved 
by adding a small correction ~ U, such that (V + ~ V) 2 = C 
or V 2 + 2V~U + (.6.V)2 = C. The term (aV)2 is second­
order small and can be neglected. This yields the correction: 

(21) 

If the corrected value V - V + ~ U still does not satisfy the 
given tolerance, one may again substitute this corrected V into 
(21) and calculate a second correction. However, this is usually 
unnecessary because the convergence is very fast. 

An alternative algorithm in which the use of R is unnecessary 
is also possible if the loading steps are very small. The known 
old value of V for the beginning of the loading step can be 
substituted into (21), along with the current new value of F. 

Table 3 Volumetric strains corresponding to various biaxial triaxial stretches, and their ratios (in percentages) to the 
corresponding principal Biot strains 

A BE B, By /Jy By By 'E " 'g '/J '4 '4 

1.005 .0000 .0000 .0000 .0000 .000000 .000000 .124% .249% .0001% .00003% .00001% .00000% 
1.01 .0000 .0000 .0000 .0000 .000000 .000000 .248% .4967% .0004% .00010% .00003% .00000% 
1.03 .0002 .0004 .0000 .0000 .000000 .000000 .732% 1.471 % .0036% .00090% .00028% .00002% 
1.05 .0006 .0012 .0000 .0000 .000000 .000000 1.100% 2.421% .0097% .00242% .00076% .00005% 
1.1 .0023 .0047 .0000 .0000 .000003 .000000 2.308% 4.697% .0361 % .00902% .00278% .00019% 
1.3 .0180 .0381 .0008 .0002 .000048 .000003 6.013% 12.69% .2519% .06278% .01589% .00112% 
1.5 .0443 .0972 .0028 .0007 .000114 .000008 8.866% 19.44% .5612% .13923% .02287% .00166% 
2 .1381 .3333 .0143 .0035 -.000500 -.000027 13.81% 33.33% 1.430% .34951% -.05004% -.00265% 
4 .6667 2.2500 .1250 .0286 -.052484 -.002832 22.22% 75.00% 4.167% .95318% -1.74948% -.09441% 
8 1.9024 10.1083 .4875 .1001 -.596779 -.001612 27.18% 145.83% 6.965% 1.4309% -8.51541% -.37314% 

111.005 .0000 .0000 .0000 .0000 .000000 .000000 -.125% -.150% .0001% .00003% .0000% .00000% 
111.01 .0000 .0000 .0000 .0000 .000000 .000000 -.250% -.498% .0004% .0001% .0000% .000000% 
111.03 .0002 .0004 .0000 .0000 .000000 .000000 -.746% -1.485% .0037% .0009% .0003% .000002% 
111.05 .0006 .0011 .0000 .0000 .000000 .000000 -1.240% -1.460% .0101% .0025% .0008% .000056% 
111.1 .0022 .0044 .0000 .0000 -.000003 .000000 -2.460% -4.848% .0397% .0099% .0031% .000213% 
1/1.3 .0165 .0320 -.0008 -.0002 -.000048 -.000003 -7.162% -13.85% .3275% .0816% .0207% .001452% 
111.5 .0387 .0741 -.0028 -.0007 -.000114 -.000008 -11.62% -22.22% -.8418% .2089% .0343% .002490% 
1/2 .1095 .2083 -.0143 -.0035 .000500 .000027 -21.90% -41.67% 2.860% .6990% -.1001% -.005305% 
114 .4167 .8438 -.1250 -.0286 .052484 .002832 -55.56% - II2.50% 16.667% 3.8127% -6.9979% -.377653% 
118 .9273 2.1693 -.4875 -1.002 .596779 .026120 -105.98% -247.92% 55.719% 11.4474% -68.2032% -2.985126% 
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Equation (21) thus yields the first estimate of the increment 
AV for the current loading step. The first estimate of U for the 
end of the current step is U +- U + AU. To further improve 
the estimate, the updated U may be substituted again into (21). 
Further updates are usually not needed if the loading step' is 
smalL 

A similar procedure may also be used for efficient computa­
tion of U III from U. which is needed for the tensor B = 
B' 1/2). Let UOld and Vn•w be the values of U for the beginning 
and the end of the current loading step or time step. Let U~:J 
= A. whose value is known. We need to find the increment 
AA such that (A + 6.A)2 = Un• w or A 2 + 2A~A + AA 2 = 
V n• w • If the step is small, AA 1 may be neglected, and this yields 
the approximation: 

AA = !A -I~U, AU = Un• w - UOld (22) 

This can be further improved by iterations. To this end, VOid 
and Un .... are redefined as the values for the end of step before 
and after the current iteration, and A is the redefined value of 
U~[J. Substituting into (22) the updated value A +- A + AA 
and using the redefined AV, one can obtain an improved ap­
proximation. 

Additive Volumetric-Deviatoric Split 
Many types of constitutive equations require that the strain 

be decomposed into its volumetric and deviatoric parts. This 
decomposition has traditionally been expressed in the multipli­
cative form V = FoVv where Vv = JillI = isotropic tensor, 
describing the volumetric deformation. and Fo = J- 1/3V = 
strain tensor describing the deviatoric \ deformation, which is 
isochoric (causes no change of volume) (Flory, 1961; Sidoroff, 
1974; see Bazant, 1996), and J = det F = det V = det Vv = 
Jacobian of the transformation. However. the available small­
strain constitutive models for concrete or soils use an additive 
volumetric-deviatoric decomposition. They cannot be easily 
generalized to finite strain using the multiplicative volumetric­
deviatoric decomposition. 

As recently shown (Baiant. 1996). the finite strain tensors 
of the Doyle-Ericksen class can be decomposed into volumetric 
and deviatoric parts also in an additive manner. The volume 
change vanishes for purely deviatoric deformations and the de­
viatoric part vanishes for purely isotropic deformations. The 
additive decomposition was successfully used in a generaliza­
tion of the microplane model for concrete to moderately large 
serains (Bazant et al.. 1996a. 1996b). It will now be shown that 
the additive decomposition is also possible for the tensors B,m) 
proposed here. 

According to the definition of tensor B' m, in Eg. (4). the 
volumetric strain is characterized by the following isotropic 
tensor: 

B ~m' = ~ (V';: - V V m) = _1_ (r lJ - rmlJ) I (23 ) 
2m 2m 

Subtracting now this tensor from the total strain tensor B' m) , 

we obtain the additive deviatoric part: 

B~'") = Beml - B'vm) 

= _1_ (vm _ U-m) __ 1_ (JmlJ _ J-mlJ)I 
2m 2m 

= ~ (JmIJF;;1J _ J-mIJFomlJ) __ 1_ (JmlJ _ J-mlJ)I 
2m 2m 

(2-1-) 

This strain tensor has the property that it vanishes for purely 
volumetric deformation. for which F D = I. and therefore it can 
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be regarded as a measure of the deviatoric (isochoric) deforma­
tion_ The tensor B ~m) vanishes for a purely deviatoric (isochoric) 
deformation, and therefore it can be regarded as a measure of 
purely volumetric deformation. 

One feature. shared with the additive deviatoric tensor pro­
posed by Baiant ( 1996), should now be noted. The additi ve 
deviatoric tensor is not independent of the volume change, char­
acterized by J, except if m = 0 (i.e., in the case of Hencky 
strain). This would. of course. be an undesirable feature for 
constitutive modeling. However, for dilatant pressure-sensitive 
materials such as concrete or soil, this feature has only a negligi­
ble effect_ 

These materials can exhibit only very small volume changes 
while being capable of very large shear (or isochoric) strain if 
the hydrostatic pressure is very high. For pressures equal to 

about lOx the uniaxial compressive strength, recent. yet unpub­
lished test results at Northwestern University show that Portland 

. cement concrete can sustain normal Biot strain of 35 percent 
while still remaining compact and retaining about ~ of its origi­
nal uniaxial compressive strength. However, the accompanying 
volumetric strain is small, of the order of -I percent. In the 
compressive uniaxial strain tests of concrete, a pressure as high 
as - 2070 MPa (-300,000 psi) has been achieved. but the 
corresponding volumetric strain was only about - 3 percent and 
the porosity was reduced to only about ~ (Baiant et aI., 1986). 
In most practical applications, the volume changes of concrete 
'are much less, well below 1 percent in magnitude. So we can 
reckon that the value of JI/3 - I is practically always less than 
0.003. The change of the additive volumetric parts of Green's 
Lagrangian strain tensor proposed by BaZant ( 1996) is then less 
than about 0.6 percent in magnitude, which is quite negligible 
compared to the uncertainty in the constitutive equation. For 
the additive volumetric part of the Biot strain tensor proposed 
by Baiant ( 1996), the correction is less than 0.3 percent. which 
is even more negligible. 

For the improved linear combination tensors B("') given by 
Eq. (12), their volumetric and deviatoric parts are likewise 
defined as: 

Bom.n> = B'm.n' - B'v""" (25) 

For Bo"'·". the dependence on J is much weaker than it is for 
B om), and is negligible (within the aforementioned ranges of 
A) for all practical purposes, even for highly compressible 
materials. 

Rate of Proposed Approximate Hencky Tensor 
In contrast to the Hencky strain tensor. a general relationship 

between the rate of one of its aforementioned approximations 
and the deformation rate tensor d (velocity strain) or the rate 
of the right stretch tensor can be easily established. The incre­
ment ~U for a given time interval ~t may be calculated from 
d using the Hughes-Winget algorithm. as already explained. 
Then V "'" ~u/ i:::..t where the superior dot denotes the time 
rate. The rate of one of the approximate Hencky tensors then 
follows by using the following relations: 

d, . . 
- (u-) = UU + L"U 
dt 

(26) 

(27) 

-c-Itc-I (28) 
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"Wee also that d(U 2 )/dt = t = 2E and E = FTd F. By inver­
sion, d = F-1}tF- I

. Consequently, 

d = ~ F-T(Uu + U{J)F- 1 (29) 

So the deformation rate tensor d corresponding to any given 
U lDay be evaluated from (29) and, at the same time, the rates of 
the approximate Hencky tensors may be evaluated from (26) -
(28). 

If d is given, then (29) represents a system of three linear 
algebraic equations for the components of U , which may replace 
the use of the Hughes-Winget algorithm. 

Conclusions 
1 There exist approximations of the Hencky (logarithmic) 

finite strain tensor that 

(a) exhibit tension compression symmetry (i.e., the strain 
tensor of the inverse transformation is minus the origi­
nal strain tensor), 

(b) coincide with the Hencky strain tensor up to the qua­
dratic term of the Taylor series expansion, 

( c ) are close enough to the Hencky strain tensor for most 
practical purposes, and 

(d) are easy to calculate, and in particular the spectral repre­
sentation of tensor is not needed. 

Approximations of various accuracy are given by Eqs. 
(6), (7), (13), and (14). 

2 The more accurate approximations ( 13 ) and ( 14) are not 
monotonic and thus the ranges of their usability as mea­
sures of finite strain are not unpounded. However, the 
range is sufficiently broad for most practical purposes, 
especially for tensor (14). 

3 A general relationship between the rate of the approxi­
mate Hencky strain tensor and the deformation rate tensor 
can be easily established. 

4 The proposed strain tensor can be decomposed into volu­
metric and deviatoric (isochoric) parts in an additive 
manner. The deviatoric part depends on the volume 
change but this dependence is negligible for materials that 
are incapable of large volume changes. 
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