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easyJet® Pricing Strategy: 
Should Low-Fare Airlines Offer Last-Minute Deals? 

 
 

Abstract 

easyJet, one of Europe’s most successful low-cost short-haul airlines, has a simple pricing 
structure. For a given flight, all prices are quoted one-way, a single price prevails at any point, 
and, in general, prices are low early on and increase as the departure date approaches. We 
observe from these policies and from the empirical section of this paper that easyJet employs 
three distinct strategies: 1) it does not offer last-minute deals, 2) it offers a single class and lets 
price be the sole variable that controls demand, and 3) it varies the time at which tickets are 
first offered for sale (duration of sale). The first two policies are in stark contrast to traditional 
airline pricing strategies. Many airlines offer last-minute deals, either directly or via resellers. 
Second, the current prevailing practice is to control demand via seat allocation to various 
classes rather than by offering a single class and letting price be the sole variable that controls 
demand. 
 
The main objective of this research is to study the conditions under which offering a last-
minute deal is optimal under the single-price policy. We also learn how the duration of ticket 
sales is affected by consumer characteristics. We find that, for an intermediate capacity level, 
uncertainty with respect to the arrival of the business segment will cause the firm to offer last-
minute deals and thus partially price-discriminate within the tourist segment. The same is true 
for uncertainty with respect to the actual behavior of the firm: if consumers are uncertain 
whether the firm will offer last-minute deals, then, in equilibrium, both in a one-shot game and 
in a repeated game, the firm will, with some probability, offer such deals. In addition, we 
found that for an intermediate capacity level, the larger the number of segments (that differ in 
price sensitivity), the longer the duration of the period in which tickets are offered for sale. 
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1. Introduction 

Low-cost carriers have become major players in the airline industry around the world. 

Airlines such as easyJet and Ryanair in Europe and Southwest and JetBlue in the U.S. are 

forcing major changes in pricing schemes. easyJet has emerged as one of the most successful 

low-cost airlines in Europe since its launch in 1995. One key aspect of its marketing strategy is 

a simple fare structure in which all fares are quoted one-way and a single price is quoted for 

all seats on a given flight at any point in time and without any restrictions (such as a required 

Saturday-night stay). However, the price charged for a seat on a given flight changes over the 

period between seats on the flight being made available for booking and the date of departure. 

All easyJet sales are booked directly either online or by telephone. The company’s website 

(www.easyJet.com) describes its pricing policy as being “based on supply and demand, and 

prices usually increase as seats are sold on every flight. So, generally speaking, the earlier you 

book the cheaper the fare will be.” 

In Figures 1a and 1b, we plot over time the number of seats sold on a given date and the 

price charged per seat for a flight between Liverpool, England, and Alicante, Spain, departing 

on a Monday in the winter of 2003 and another between Stansted (a London airport) and 

Edinburgh, Scotland, departing on a Monday in the summer of 2003. Certain distinct patterns 

are evident from Figures 1a and 1b. We note that seat sales in both cases exhibit a discrete 

pattern: for the Liverpool-Alicante flight, sales are spread out over time but there is a surge in 

sales two to three weeks after the flight becomes available for booking; for the London-

Edinburgh flight, sales are sparse in the first half of the period, followed by a surge in sales on 

a certain date and then moderate activity toward the end of the period. Thus, there seems to be 
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some uncertainty in the pattern of demand. Moreover, while in both cases there is a clear 

upward trend in the price charged, there is a distinct difference in the magnitude of the change. 

Figure 1a: Seats sold and prices paid (in British pounds) for a one-way ticket from 
Liverpool to Alicante (flight date January 27, 2003) 

 

Figure 1b: Seats sold and prices paid (in British pounds) for a one-way ticket from 
London to Edinburgh (flight date July 21, 2003) 

 

For the Liverpool-Alicante flight, the price increases about 2.5 times, from about £40 to 

£100, whereas the price increase for the London-Edinburgh flight is about 4.5 times, from 

around £20 to a high of £90. 
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We observe from these policies and from the empirical section of this paper that easyJet 

employs three distinct strategies: 1) it does not offer last-minute deals, 2) it offers a single 

class and lets price be the sole variable that controls demand, and 3) it varies the time at which 

tickets are first offered for sale (duration of sale). The first two policies are in stark contrast to 

traditional airline pricing strategies. Many airlines offer last-minute deals, either directly or via 

resellers. For example, in some European airports, one can buy tickets at greatly reduced 

prices for same-day flights. Second, as we show in the next section, the current prevailing 

practice is to control demand via seat allocation to various classes rather than by offering a 

single class and letting price be the sole variable that controls demand. 

The main objective of this research is to study the conditions under which offering a last-

minute deal is optimal under a single-price policy. We also learn how the duration of ticket 

sales affects the consumer characteristics. We find that, for an intermediate capacity level, 

uncertainty with respect to the arrival of the business segment will cause the firm to offer last-

minute deals and thus partially price-discriminate within the tourist segment. The same is true 

for uncertainty with respect to the actual behavior of the firm. That is, if consumers are 

uncertain whether the firm will offer last-minute deals, then, in equilibrium, both in a one-shot 

game and in a repeated game, the firm will, with some probability, offer such deals. In 

addition, for an intermediate capacity level, we found that the larger the number of segments 

(that differ in price sensitivity), the longer the duration of the period in which tickets are 

offered for sale. 

The rest of this paper is organized as follows; in section 2, we relate our research to the 

extant literature on airline pricing. In section 3, we describe our empirical study that analyzes 

the pattern of the data to construct the model’s assumptions. In section 4, we present the 

structure of the model and its underlying assumptions. This presentation is followed by the 
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derivation of our primary analytical results in section 5. In section 6, we conclude by 

identifying issues for future research. 

 

2. Airline Ticket Pricing and Yield Management 

Our research on airlines’ low-fare strategies draws from the literature on airline pricing in 

economics (Dana 1998, 1999; Kretsch 1995; Borenstein and Rose 1994; Morrison and 

Winston 1990) and marketing (Biyalogorsky et al. 1999, 2005 Carpenter and Hanssens 1994) 

and on revenue-management literature in operations research. Our modeling of consumers’ 

choices is in line with that of Dana (1998), who assumed that there are two types of 

consumers—leisure travelers and business travelers—who have differing (point) valuations for 

the service and differing probabilities of usage. In our model, we assume that the consumer 

segments’ valuations are derived from differing (uniform rather than point) distribution 

functions. Like Dana (1998), we also assume that the two segments have differing levels of 

uncertainty regarding flights. We assume that leisure consumers regard the flight with 

certainty but that business consumers have uncertainty regarding the need to take the flight 

and thus the value placed on it. A major difference between our model and Dana’s (1998) is 

that, when demand exceeds capacity, Dana’s model resolves excess demand by rationing 

while in our model the firm uses price to control demand. The resulting continuous 

distribution allows us to let price depend on remaining capacity and thus control remaining 

demand. 

The analysis here also ties into operations research literature on revenue (yield) 

management. McGill and van Ryzin (1999) provide a detailed survey of revenue management 

wherein they discuss four areas: forecasting, overbooking, seat inventory control, and pricing. 
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Traditionally, the operations literature on airline revenue management has been concerned 

with seat inventory and capacity-planning problems (see Talluri and van Ryzin (2004) for an 

extensive review). This is in contrast to revenue management in other industries; Talluri and 

van Ryzin (2004) noted that “some industries use price-based RM (retailing), whereas others 

use quantity-based RM (airlines). Even in the same industry, firms may use a mixture of price- 

and quantity-based RM. For instance, many of the RM practices of the new low-cost airlines 

more closely resemble dynamic pricing than the quantity-based RM of the traditional carriers” 

(p. 176). 

Recently, a growing body of revenue-management research has examined pricing 

decisions, including Talluri and van Ryzin (2004), You (1999), Feng and Gallego (1995), 

Gallego and van Ryzin (1994, 1997), and Watherford and Pfeifer (1994). The majority of this 

research assumes that consumers are myopic. In a recent survey on dynamic pricing, 

Elmaghraby and Keskinock (2003, p. 1298) wrote that “An important element that is largely 

missing, both in most of the academic literature and price optimization software, is the 

consideration of strategic customer behavior” and that “An interesting but equally challenging 

research direction would be to incorporate into the models customers’ strategic purchasing 

behavior in response to the firm’s pricing strategy.” For example, while Talluri and van Ryzin 

(2004) focus almost exclusively on myopic consumers, when they do consider strategic 

consumers they consider only the case in which the firm has no capacity constraint. Recent 

exceptions that include strategic consumers are the working papers by Jerath, Netessine and 

Veeraraghavan (2007), Ovchinnikov and Milner (2007), and Liu and van Ryzin (2006). 

Our research thus differs from past research in several aspects. First, we assume that 

consumers are forward-looking and therefore behave strategically. Note that although airline 

tickets are a perishable good, there are some similarities to the strategic behavior of consumers 
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in durable goods (see Desai, Koenigsberg and Purohit (2004), and Shulman and Coughlan 

(2007) for recent examples). Second, under the condition in which the single-price business 

model is used by low-cost carriers, we investigate the conditions under which it pays to offer 

last-minute deals. Third, in most other yield-management models, demand exceeding capacity 

was resolved by rationing while in our model firms use price to control demand. 

 

3. Empirical Analysis 

In this section we utilize data from a European low-cost carrier, easyJet, first to observe 

its pricing and demand patterns. Using these observations, we learn about the existence of 

market segments that vary by price sensitivity, a central assumption of our model.  

For our empirical analysis, we collected data on twenty-three easyJet flights between six 

different European city pairs during the year 2003, some in winter and others in summer. The 

flights departed on two different days of the week, Monday and Sunday. For each flight, the 

data include the number of seats sold per day (if any) and the price at which each seat was 

sold, from the first day on which seats went on sale through the date of departure. This period 

ranged from 63 days for a flight between Liverpool, England, and Alicante, Spain, to 211 days 

for a flight between East Midlands, England, and Barcelona, Spain. Additionally, we received 

data on the total number of seats available for each of easyJet’s flights between the city pairs. 

Since we later assume the existence of two segments of consumers (tourists and business 

travelers), the first phase of analysis was to test the validity of this assumption. The data 

suggest that customers arrive at discrete points in time, so a latent-class Poisson regression 

model is an appropriate method (Wedel et al. 1993). 
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The negative binomial (NB) distribution also has been used in previous research to model 

aggregate demand for airline seats as it overcomes some well-known limitations of a Poisson 

model. We note that an aggregate NB model for demand can be derived by assuming that 

demand is Poisson at the individual level and by accounting for heterogeneity among 

individuals using a gamma distribution. In our analysis, we model demand at the individual 

level using a Poisson model but account for heterogeneity using a latent-class approach, which 

also can be interpreted as providing a finite approximation to any mixing distribution, such as 

the gamma. Therefore, the demand model we use is quite flexible. We also added a time 

dimension to the Poisson regression so as to capture the fact that both bookings as well as 

price increase towards final flight time. 

Let the index j denote the relevant latent segment. If the customers’ arrival rate is given 

by ( ))(exp tgp jjjj += βλλ
0

, for some increasing continuous function g(t), then the 

probability that in any given period y customers buy tickets at a price p is 

( ) ( !/exp,,/
1

ypyYP j
y
j

L

j
jjj λλθθβ −== ∑

=

) ,  where  ∑
=

=
L

j
j

1
1θ

In the preceding equation, θj is the probability that the arriving customer belongs to the 

latent class, or segment j = 1, 2,…, L. Since we noted from the data that bookings seem to 

increase at an increasing rate with time, we have the specified the function g(t) as a quadratic 

equation of time. We estimate the parameters of the latent-class Poisson regression model 

using maximum-likelihood methods. Because the number of segments is unknown, we 

incrementally add segments until there is no improvement in the fit of the model as measured 

by the Bayesian information criterion (BIC); in other words, we increase the number of 
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segments from one to two to three and so on until the BIC value is minimized (see 

Chintagunta, Jain, and Vilcassim (1991)). The results of the estimation are shown in Table 1. 

We note from Table 1 that the fit of the Poisson regression model improves considerably 

when going from one segment to two segments in all cases except for two. For all flights, the 

two-segment solution fits the data better than the three-segment solution. Thus, there is strong 

empirical support for our modeling assumption of two segments of customers. 

Table 1: Bayesian information criterion for the twenty-three flights 

BIC Values Flight Number 
One Segment Two Segments Three Segments 

1 111.6 107.1 121.3 
2 103.2 87.8 101.9 
3 186.6 153 169.8 
4 202.8 131.1 147.6 
5 72.2 84.4 98.5 
6 80.3 87.2 99.0 
7 247.7 166.9 169.9 
8 149.2 127.1 142.5 
9 116.8 89.0 102.6 
10 126.9 116.3 132.2 
11 175.0 140.3 157.4 
12 170.4 145.9 162.3 
13 170.3 70.3 81.8 
14 166.6 100.7 116.0 
15 165.3 156.7 167.7 
16 171.3 158.8 175.3 
17 99.2 73.2 84.8 
18 76.2 75.4 86.6 
19 178.5 143.8 154.9 
20 152.4 140.3 155.0 
21 142.4 138.2 153.1 
22 160.4 148.1 165.2 
23 161.5 141.6 159.4 
 
 

We next examine the relationship between airline seat prices and time and how the nature 

of this relationship depends on available seat capacity. For each time period (Timeit, a week in 

this case) and for each flight (twenty-three flights in all), we estimate the following regression 

model for the price variable: ititiiit Timeice εβα ++=Pr . 
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To determine how the preceding relationship varies with seat capacity, we let 

 iii DummySundayDummySummerC μλδηνβ +++⋅+= __   

where Ci denotes the capacity of flight i and where Summer_Dummy = {1 if the flight is in the 

summer and 0 if it is in the winter} and Sunday_Dummy = {1 if the flight is on a Sunday and 

0 if it is on Monday} are two control variables that we introduce because they could affect the 

rate at which price changes. The results of the regression are given in Table 2. 

Table 2: Regression results: Price vs. capacity 
Regression Analysis  
Price – Time 
Regression 

 Price Slope – Capacity 
Regression 

Flight 
Number 

Intercept 
(αι) 

Price 
Slope (βi) 

 
Variable 

Estimate 
(standard error) 

1 12.1 0.856 
2 14.2 0.485 
3 17.4 1.799 

Intercept 6.597 
(2.569) 

4 12.8 1.382 
5 20.5 0.203 
6 12.0 0.426 

Capacity –4.058 
(1.967) 

7 7.0 0.821 
8 7.6 0.492 
9 18.1 0.780 

Summer_Dummy –1.148 
(0.623) 

10 30.2 –0.302 
11 51.5 0.542 
12 48.8 0.485 

Sunday_Dummy 0.051 
(0.617) 

13 12.5 2.497 
14 21.6 0.267 
15 60.6 0.645 

R-Square 25.8% 

16 44.7 1.293   
17 13.7 5.430   
18 13.5 5.618   
19 142.8 –1.031   
20 128.1 –0.564   
21 42.3 0.706   
22 48.1 0.889   
23 53.3 0.679   

Mean 
Slope 

 1.061   
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We see from Table 2 that, in the price versus time regression, twenty of the twenty-three 

slope coefficients (βi) are positive and the overall mean is positive (1.061). Thus, price 

increases over time. We also note from the price-slope-versus-capacity regression in Table 2 

that the coefficient of the capacity variable is significantly different from zero and negative, 

implying that the rate at which price changes decreases as capacity increases. 

Another way to look at the relationship between price and capacity is to regress price 

against remaining capacity. For each time period (Timejt, a week in this case) and for each pair 

of cities (six pairs), we estimate the following six regression models for each city pair (four 

flights per city for five city pairs and three flights per city pair for a single flight) for the 

remaining capacity variable (RemCapjt, j = 1, 2, . . .  J). 

 
.__RePr jtjtjijt DummySundayDummySummermCapice ξλδγα ++++=

 
Table 3: Regression results: Price vs. remaining capacity 
 
 

Route 

 
No. of 
Flights 

γ - Effect of Remaining 
Capacity on Price 

 (standard error) 

 
R-square 

London (Stansted) –  Edinburgh 4 –0.316 
(0.026) 

75.4% 

East Midlands –  Edinburgh 4 –0.155 
(0.011) 

74.6% 

London (Stansted)  –  Rome (Ciampino) 4 –0.128 
(0.023) 

85.8% 

East Midlands –  Barcelona 4 –0.25 
(0.029) 

87.7% 

Liverpool –  Alicante 4 –0.137 
(0.098) 

65.2% 

London (Luton)  –  Malaga 3 –0.145 
(0.041) 

49.6% 

 

Based on the previous result, our hypothesis is that the parameters jγ  are negative. The 

results of the regression are given in Table 3. We see from Table 3 that, for price versus 

remaining capacity, all of the slope coefficients ( jγ ) are negative with an overall mean of 
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 -0.189. In addition, the fit of the models as measured by the R-Squared values suggests that 

this relationship between capacity and price is well captured. 

To summarize, our main descriptive empirical findings are that ticket prices increase over 

time and that the rate of increase varies negatively with remaining seat capacity. Also, we find 

clear evidence for at least two segments of consumers that vary according to their arrival 

times. In addition, we observe that easyJet does not resort to any last-minute deals to clear 

capacity. The interesting question we address next is whether and under what conditions these 

pricing polices are optimal. 

 

4. Model Development 

We consider a one-way airline route between two cities with a monopoly service 

provider. We assume two segments of customers: Higher valuation and lower valuation 

consumers. We define higher valuation consumers as business travelers (denoted by B) and 

lower valuation consumers as tourist travelers (denoted by T) although as Talluri and van 

Ryzin (2004, p. 517) note, in practice the distinction between business and leisure travels is 

not so clear cut. The consumers can arrive in two, three, or four time periods depending on 

whether the firm offers last-minute deals, on the duration of the sales period, and on consumer 

characteristics (as specified later). The tourists’ utility from the travel is uniformly distributed 

over an interval of (0, α). The business travelers’ utility from the travel is distributed 

uniformly over an interval of ),( αα . 

Both tourist and business consumers arrive in the first two periods. Tourist consumers 

who did not purchase tickets in period 1 or 2 also arrive during the third period. Since our 

main interest is in the proportion of business and tourist travelers, we assume that all tourists 
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and a fraction γ of the business segment arrive during the first period. The remainder (1 – γ) of 

the business segment appears in the second period (alternatively, we could have made the dual 

assumption that business consumers arrive in both periods and only a fraction of the tourists 

arrive in the first period). The business consumers who arrive during the second period have 

uncertainty with respect to their utility. With probabilityθ, the business segment learns during 

period 2 that business meetings that require air travel will be held at the destination city and its 

utility is distributed over the interval of ),( αα . With probability (1 – θ), these business 

meetings are not held and the utility from the air travel thus equals zero. To create a clear-cut 

segmentation between business travelers and tourists, we assume that the upper bound of the 

valuation of the business traveler is much higher than that of the tourist; in other words, 

2/αα < .  

There are two events in period 1: first the airline announces the price and then consumers 

decide whether to buy. There are three events in period 2: the airline announces the price, 

uncertainty about the state of the business passengers is resolved, and, finally, consumers 

decide whether to buy tickets. In period 3 (if it exists), the firm may announce a price and 

tourist consumers who have a higher valuation than this price purchase tickets. Let fi (x) (i = B, 

T) be the density of consumer distribution. Because the tourist customers are distributed 

uniformly in the interval (0, α), if the price in period 1, 2, or 3 is p, then the tourists whose 

utility is greater than the price will buy tickets. Thus, the proportion of tourists who buy seats 

at price p is represented by . Similarly, the proportion of business 

passengers buying tickets at price p is represented by 

∫ −=
α

αα
p

T pdxxf /)()(

∫ −−=
α

ααα
p

B pdxxf )/()()( . 
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When we define the number of tourist passengers as MT and the number of business 

passengers as MB, their respective demands at price p are given by MT (α - p) /α  and MB ( -p) 

/ ( -α). To simplify notations, we normalize the market sizes as follows: N

_

α

_

α T = MT /α  and ΝΒ 

= MB / (  - α). An important part of our model is that consumers are forward looking, and 

therefore will decide to purchase a ticket in period i (i = 1, 2, 3) if the utility in the period will 

be positive and higher than the utility of purchasing in other periods. Therefore, the following 

equations represent demand in the three periods:  

B

_

α

( )
⎩
⎨
⎧

>>−

<+−
=

αααγ

αγα

111

111
1 )(

1
pifpLN

pifMpLN
Dperiod

BB

BTT   

( )
⎩
⎨
⎧

>>−−

<−+−
=

αααθγ

αγα

222

222
2 )()1(

)1(
2

pifpLN

pifMpLN
Dperiod

BB

BTT  

( )
⎩
⎨
⎧

>
<−

=
α

αα

3

333
3 0

3
pif

pifpLN
Dperiod TT  

Lji is an identity function that equals one if and only if segment j (j = T, B) purchases the 

product in period i; it is zero otherwise. Without loss of generality, let the marginal cost of 

supplying the seat be zero. Let the capacity (the number of airline seats) be fixed at C. 

Restrictions on capacity play a dominant role in our analysis, as will be explained later. 

 

5. Analysis 

We start this section with analysis of the simpler case in which tourist consumers do not 

arrive during the third period. Analysis of this case will provide the necessary intuition for 

analysis of the more complicated cases. Later, in section 5.2, we analyze the extended model 
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in which there are three periods and forward-looking tourist consumers, who, when making 

their first-period purchasing decisions, take into account the option of waiting until the third 

period and purchasing tickets at a reduced price if such tickets are available. 

 

5.1. Two-period game 

In this case, we consider two scenarios that relate to the proportion of business and tourist 

consumers: if the business segment that arrives during the first period is large enough 

(γNB > NB T), then, regardless of capacity, the airline charges a high price and sells only to 

business consumers in both periods and completely ignores the tourist segment. Optimal prices 

are given by 
))1((21 θγθ

α
−+

−==
BN

Cpp  for C <  and 1C 2/21 α== pp for ≤ C where 1C

2/))1((1 θγθα −+= BNC  is the optimal quantity to sell to the business segment. The proof 

of this case is the same as the proof of Proposition 1, mutatis mutandis. All proofs are given in 

the appendix, which is available to download at easyjetpricing.homestead.com. 

If the tourist segment is large enough (NT > γNB), however, the airline should consider 

three cases. In the first case, capacity is so low that the airline sells only to business 

consumers. In the second case, capacity is binding but high enough that the airline can 

effectively discriminate so it sells to both markets. In the third case, capacity is high enough 

and is not effectively binding. To set the boundaries of these cases, we define S(C) as 

B

CNNCS BT −−+−+= 2/])1()([2/)( αθγααγα . We later show that S(C) is the capacity 

shortage or the difference between demand (at unconstrained prices) and capacity. 

Proposition 1:  With low capacity, C < C2, the firm sells only to the business segment. With 
intermediate capacity, 32 C CC << , the optimal pricing scheme is to increase 
the price over time so as to discriminate between the two segments while 
restricting demand for both segments. With excess capacity, C > , the 3C
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airline price discriminates between the two segments while adjusting the first-
period price to take into account early-arriving business consumers.  

 

In the following, we expand on the intuition behind this result. 

Prices and profits with low capacity: When capacity is low, the airline is better off 

selling exclusively to business consumers, who have higher valuations and thus will pay more. 

This case can be divided into two subsections: low capacity and very low capacity. Consider 

the extreme case in which the airline has only one seat available. Obviously, the airline would 

rather sell it to a business consumer who has the higher valuation. As we increase capacity, 

this policy remains valid until capacity exceeds the optimal quantity to sell to the business 

segment C1. To find the value of , note that, when capacity equals , the airline charges 

the optimal monopoly price p =

2C 1C

2α  and sells only to the business segment. When capacity 

increases further, the airline does not immediately decrease the price in period 1 to capture 

more demand from the tourist segment and compensate by increasing price in period 2 to the 

business segment. The airline employs this policy only when the additional revenue from the 

tourist segment compensates for the loss in revenue from the business segment. Up to this 

capacity (defined as ), the airline keeps the price constant at p =2C 2α in both periods and 

serves only the business segment. We derive the value of  in the appendix. 2C

Prices and profits with intermediate capacity: Recall that, without capacity 

constraints, if an airline could perfectly discriminate between the two segments, it would 

charge monopoly prices 2α to the tourist segment and 2α  to the business segment. One 

might have expected that when capacity increases above C2 the airline would continue to sell 

to business consumers at a price of p = 2α  and start to sell to tourist consumers at a reduced 

price as fillers to increase utilization of the airplane. However, this approach is problematic; if 
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the airline reduces the price to attract tourists, seats are “unfortunately” sold at the reduced 

price to business consumers who arrive during the first period. Therefore, the optimal behavior 

is to decrease the price in period 1 below 2/αα < and increase the price in period 2 

above 2α . In this section, we show that the optimal pricing scheme is to increase the price 

over time so as to discriminate between the two segments when the capacity is intermediate in 

value, , where C32 C CC << 3 is given by S (C3) = 0 (i.e., for any capacity for which C > C3, 

there is no shortage). 

Prices and profits with high capacity: Finally, when the capacity constraint is not 

binding, the airline discriminates between the two segments by charging monopoly prices. 

With these prices, it is straightforward to compute the overall demand D: 

2/])1()([2/ αθγααγα −+−+= BT NND . It is now clear that S(C) is indeed the 

difference between demand and capacity (D – C), or, the capacity shortage. 

In the high-capacity case, the airline practices price discrimination between the two 

segments. In the intermediate case, the airline adjusts the level of prices for both segments. 

That is, it does not serve the business consumer first and use the tourists as a buffer in case it 

has some excess capacity. Rather, it restricts the demand for both segments (by raising 

appropriate prices) so as to equate capacity to expected demand. Only in the low-capacity case 

does the airline forgo the tourist segment and serve the business segment exclusively. We also 

note that, when capacity is high, prices in the two periods are independent of capacity and thus 

the difference between the prices in the two periods is independent of capacity as well. When 

capacity is low or medium, prices do depend on capacity. 

The airline does not sell all seats in two different scenarios. First, as one expects, the 

airline does not sell all seats when capacity is very high (C > ). More interestingly, when 3C
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capacity is relatively low ( < C < ), the airline’s optimal policy is to keep some seats 

unsold. The reason is that, when capacity equals , the airline charges the optimal monopoly 

price and sells only to the business segment. If capacity increases, the airline does not instantly 

decrease the price in period 1 to capture more demand from the tourist segment and 

compensate by increasing the price to the business segment. Rather, it employs this policy 

only when the capacity is large enough that the additional revenue from the tourist segment 

compensates for the loss in revenue from the business segment. Thus we have the following 

result: 

1C 2C

1C

Result 1a: For a given market size, there are two capacity ranges, < C <  and 
 C > , that the airline should never choose for its operating capacity. In these 
capacity zones, as capacity increases, neither the price nor the demand change and 
thus the airline pays more for its capacity while its revenue remains unchanged. 

1C 2C

3C

 

5.2. Analysis of the three-period game: Last-minute deals 

We observe that, in practice, last-minute deals are occasionally offered, often at very low 

prices. If the airline decides to engage in such offers, either directly or via a reseller, it can set 

a new price that will attract the lower end of the tourist segment that did not purchase tickets 

in period 1. Last-minute deals are often made very close to the actual flight time. For example, 

in some European airports, one can buy tickets at greatly reduced prices for same-day flights. 

Thus, in actual practice as well as in our models, last-minute deals are rendered irrelevant for 

the business segment. If the price in period 3 (the last-minute period) is low, then the airline 

has to worry about consumers from the tourist segment waiting to buy tickets in period 3 

instead of buying them in period 1. Indeed, some will; the question is how to fence the higher-

utility consumers out of this segment. High-utility tourist consumers do not wait for last-

minute deals because of uncertainty with respect to the existence of such deals. There are two 
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sources for this uncertainty. First, consumers are uncertain with respect to the airline’s policy 

as the airline might randomize with respect to offering last-minute deals. The second source is 

uncertainty with respect to the actual arrival of business consumers in period 2. We begin by 

analyzing the case of consumers’ uncertainty with respect to the airline’s policy and continue 

with the case where the source of uncertainty is arrival of the business segment. 

 

5.2.1. Modeling uncertainty with respect to the airline’s strategy 

We model the uncertainty of consumers regarding airline strategy with the help of an 

additional parameter, β. Consumers’ expectations are such that with probability β the airline 

will offer last-minute deals and with probability (1 – β) the airline will not. We start with a 

single-shot, three-period game and continue with a repeated game in which each round is 

composed of a three-period game. To separate the two uncertainties (firm strategy and 

consumer arrival), in this section we treat θ as the proportion of business travelers who arrive 

during the second period. In the next section (5.2.2), we treat θ as consumers’ arrival 

uncertainty. 

When < C, the airline has to consider two cases. First, the airline should consider the 

intermediate case  < C < C

'
3C

'
3C 4  in which the airline is constrained during period 3 and thus 

fills all seats with last-minute consumers. The second is the large-capacity case in which 

capacity exceeds C4 and the airline is not constrained, in which case it sells to only some of the 

remaining tourist consumers. The following proposition summarizes our findings with respect 

to last-minute deals. The solution of the last-minute model and proofs of proposition 2 is given 

in the appendix: 
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Proposition 2: As long as consumers are not certain that the airline will offer last-minute 
deals (β < 1), the airline should always offer a last-minute deal. As β increases, 
the airline has less incentive to offer last-minute deals. If β = 1, the airline does 
not offer a last-minute deal.  
  

With asymmetric information, the optimal policy is to offer last-minute deals. This policy 

is optimal because the airline succeeds in discriminating between two classes within the tourist 

segment based on valuation. This discrimination is possible, however, only with the existence 

of consumer uncertainty. Consumers with higher valuation will not care to wait for the last-

minute deal as this causes them uncertainty with respect to flight availability. The tourist 

consumers with lower valuation will indeed wait, hoping to buy at the last minute if tickets are 

still available and knowing that the flight could sell out. 

If the probability β that the airline will offer a last-minute deal is very low, then 

consumers behave myopically in that they hardly take into account the possibility of a price 

reduction in the third period. That obviously increases the attractiveness of such a deal for the 

airline. However, as the probability β increases and consumers expect that the airline may 

offer a last-minute deal, the price reduction in the third period diminishes and therefore the 

additional profit from employing a deal decreases and is actually equal to zero for β  = 1. 

Interestingly, first-period prices with the last-minute deal can be greater or less than the 

constrained first-period price in the two-period model. In the large-capacity case, our intuition 

about the direction of prices holds and the airline charges a first-period price that is higher 

than the corresponding price from the two-period model. Under intermediate capacity, price 

depends on consumers’ uncertainty, β. The following example provides additional intuition 

into this result. Consider the following values: MB = 50, MT = 150, γ = 0.4, α  = 1, α  = 2.2,  
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C = 98, and θ = 0.3. We then analyze both the two-period setting and the last-minute model 

for two different values of consumer uncertainty, β = 0.55 and β = 0.9. 

As shown in Tables 4a and 4b, the airline serves twenty-eight business consumers; 

twenty arrive in the first period and eight arrive in the second. In Table 4a, the difference 

between the two-period model and the last-minute model is the treatment of the tourist 

segment. In the latter game, the airline raises the first-period price by 17% and lowers the 

third-period price by 5%. This 22% difference yields more tourists being served (seventy 

compared with sixty-five) at a higher average price (0.58) and greater profits relative to the 

case in which no last-minute deal is offered. As shown in Table 4b, the airline succeeds in 

discriminating between the tourist segments but does so at prices that are lower than the 

optimal price of the tourist segment in the two-period model.  

 
Table 4a: Low Consumer Uncertainty, β  = 0.55 
 P1 D1 P2 D2 P3 D3 Profits 

 
Two Periods 0.57 20B, 65T 1.1 8B – – 57 
Last-Minute Deal 0.67 20B, 25T 1.1 8B 0.54 45T 63 
 
Table 4b: High Consumer Uncertainty, β = 0.9 
 P1 D1 P2 D2 P3 D3 Profits 

 
Two Periods 0.567 20B, 65T 1.1 8B – – 57 
Last-Minute Deal 0.565 20B, 25T 1.1 8B 0.53 45T 58 

 

Note that in all cases prices to tourists are higher than they would be in the absence of the 

business segment. In this example, the latter price would have been 0.5 while the lowest price 

charged in the last-minute deal is 0.52. This leads us to the next proposition: 

Result 2a: In both the two-period and the last-minute game, tourist consumers subsidize the 
business segment. In the absence of business consumers, the tourist pays a lower 
price and in the absence of tourists the business consumer pays a higher price.  
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If the airline could plan for the arrival of each segment, it would be better off if tourist 

and business consumers arrived separately. In such a case, the airline would be able to 

perfectly discriminate between these two segments. Unfortunately for the airline and the 

tourists, this is not the case. Business and tourist consumers arrive together and therefore the 

airline raises the price above what it would have charged in the case of separate arrival. Note 

that, for a fixed capacity, Result 2a confirms Dana’s (1999) result that tourist travelers 

subsidize business consumers. However, this is not the case when capacity changes; when 

< C < , an increase in capacity causes the number of tourists to increase and the price to 

business consumers to decrease. On the other hand, when capacity is at point C

2C 3C

2, the airline 

moves from selling only to business consumers at a relatively low price of p = 2α to 

practicing price discrimination between the two segments by selling to business consumers at 

a much higher rate and to tourists at a much lower rate. Thus, at this capacity, business 

consumers actually suffer from having the tourists join the flight because business consumers 

pay a higher price. Note also that in general tourists subsidize the business segment in terms of 

flight frequencies and possible destinations. Absent tourists, the number of flight would be 

reduced. 

One can raise a question about the way the consumer learns about the probability that the 

airline will offer a last-minute deal and whether this uncertainty will be resolved over time. 

Even though our game involves three periods, it is played only once. For learning to occur, the 

game should be repeated. In such a case consumers would have an opportunity to learn about 

the firm’s policy and thus it might not be optimal for the firm to employ last-minute deals. In 

that case, we can model a repeated game in which consumers in a steady state know the 

probability of the firm employing a last-minute deal (β) and the firm optimally chooses β. 
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Note that, even though consumers can learn the probability of a last-minute deal being offered, 

they still cannot know whether the firm is going to offer a last-minute deal for a specific flight. 

The equilibrium in such a game depends on capacity. Under low capacity, the firm is indeed 

better off not offering last-minute deals. Under large capacity, however, the firm optimally 

will include last-minute deals as part of the equilibrium. 

 

5.2.2. Modeling uncertainty with respect to the business segment’s arrival 

During the first two periods, consumers maximize their utility and the airline maximizes 

profits based on its expectations regarding the arrival of business consumers. However, when 

the airline and consumers make third-period decisions, they already know how many business 

consumers have arrived and therefore how many seats are left for sale during this period. Note 

that we make two simplifying assumptions to keep the analysis tractable. First, we assume that 

either all business consumers arrive with probability θ or none of them arrive with probability 

(1 – θ). Second, we assume that no business consumers arrive during the first period; in other 

words, γ = 01. The following proposition summarizes our results (for the proof, see Appendix): 

 
Proposition 3: For intermediate capacity range (C12 < C < C23) the equilibrium is such that 

the airline sells to tourist consumers during the first period at a relatively high 
price and decreases the price in the third period. In this case, if the business 
demand materializes in the second period, there are no seats left for the third 
period; if the business demand does not materialize, the airline is capacity-
constrained in the third period and thus partially price-discriminates within the 
tourist segment. 
 
For low or high capacity range (C < C12 or C > C23) the airline cannot price 
discriminate within the tourist segment by offering last minute deal. 

 

                                                 
1 We also modeled the case in which each business consumer faces this uncertainty individually but only a 
numerical solution can be achieved. Assuming that there is no heterogeneity among business consumers 
regarding the uncertainty allows us to capture the main trade-off and keep the solution tractable. 
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Consider the case in which capacity is very high; in that instance, strategic consumers 

who know the capacity of the flight realize that the airline will always have seats for sale in 

the third period and therefore will choose to wait and purchase tickets during the third period. 

This consumer behavior forces the airline to charge unconstrained profit-maximizing prices 

during periods 2 and 3 and to sell none during period 1; in other words, the airline would not 

benefit from price discrimination within the tourist segment. On the other hand, consider the 

case where the initial capacity is very low; in this case, the airline again is better off not selling 

tickets during the first period at all and then offering a second-period price that is set to sell all 

available seats to some of the business consumers if they arrive. If they do not arrive, the 

airline then has an opportunity to sell to tourist consumers during the third period. Just like in 

the previous case, the airline cannot price-discriminate within the tourist segment in this case. 

In contrast to the preceding cases, the airline employs price discrimination between the 

two segments, as well as within the tourist segment, in the case of intermediate capacity. In 

this case, the optimal policy is to sell to some tourists during period 1 and then to sell to 

business consumers during period 2 if they arrive. The third-period policy in such cases 

depends on the arrival of business consumers.  

The intriguing conclusion from this proposition is that there are only limited cases in 

which the airline will price-discriminate within the tourist segment: Ex ante, the firm tries to 

price-discriminate only if capacity is bounded. Ex post, the firm will succeed in price-

discriminating within the tourist segment only if business consumers do not arrive. 

So, for example, we might have expected that the airline would reserve some seats for the 

third period under larger capacity so it could discriminate within the tourist segment. In the 

optimal strategy, however, this is not the case. As soon as capacity increases, the airline should 

sell entirely to the business segment in the second period and to the tourist segment in the third 

 23



without price-discriminating within the tourist segment. Note the centrality of the assumption 

of strategically playing consumers. It is easy to ascertain that the firm can always employ full 

price discrimination if consumers are not looking forward and playing strategically. 

 

5.3. The effects of duration: When to release ticket for sale 

Looking at easyJet’s flights, it is obvious that they release tickets for sale at different 

periods before actual flight times. In this section, we show the conditions under which the 

duration decision is a strategic variable and analyze the effect of duration on the ability of the 

firm to price-differentiate among its customers. 

Consider the case where consumers arrive earlier. Should the firm introduce tickets 

earlier? The most likely segment to purchase the ticket earlier—if the firm does release tickets 

earlier—is a price-sensitive segment. However, if their valuations come from the same 

distribution as the rest, then there is no advantage in selling tickets earlier. Obviously if 

capacity is tight and these consumers’ valuations are below other consumers’ valuations, the 

firm should not start selling tickets earlier. If, on the other hand, capacity is very large, the 

firm again should not start selling tickets earlier as the firm’s optimal strategy is to offer 

monopoly prices. Thus, the only case when it matters is when capacity is at an intermediate 

level. Recall that in our model time is a discrete rather than a continuous parameter and thus 

the duration decision is simply adding a period before what we earlier called period 1. We 

define this period as period 0. Next, consider the case where a fraction (1-δ) of the MT 

consumers arrives at period 0 and has a valuation for the flight that is drawn from a uniform 

distribution (0,α ) where α < 2/α . We call this segment Low-Tourist. The rest of the tourist 

segment (δ MT) arrives in period 1 with a valuation for the flight that is drawn from a uniform 
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distribution (α ,α ). We call this segment High-Tourist. The following proposition 

summarizes what happens in this case.  

Proposition 4: For an intermediate capacity range, CL < C< CU , the equilibrium is such that 
the airline sells to Low-Tourist consumers during the period 0 and increases 
prices and sell to High-Tourist consumers and business consumers in periods 1 
and 2 respectively. If the business demand in the second period materializes, 
there are no seats left for the third period; if the business demand does not 
materialize, the airline is capacity-constrained in the third period and thus 
partially price-discriminates within the Low-Tourist segment. 

 

This proposition and the discussion preceding it lead to the following result: 

Result 4a: For an intermediate capacity level, the larger the number of segments (that differ 
in their price sensitivity), the longer the duration of the period in which tickets are 
offered for sale. 

 
The airline would choose to sell earlier only in cases in which selling earlier enables the 

firm to better discriminate price inter-temporally. However, note that period 0 does not replace 

last-minute deals. It only allows the airline to refine its price discrimination within the lowest-

valuation segment.  

 

6. Conclusions and extensions 

To summarize, our paper has shed some insight into the pricing strategy of low-cost 

short-haul airlines. In our model, the airline faces two or three segments of consumers that 

gain different utilities from the flight. We find empirically that the assumption of the existence 

of two or three segments is consistent with the data, as is the point at which price in each 

period is a function of the remaining capacity at that point in time. We examined the 

phenomenon of last-minute discounting by introducing into the analysis a third period in 

which the airline has unsold seats. For an intermediate capacity level, uncertainty with respect 

to the arrival of the business segment will cause the firm to offer last-minute deals and thus 
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partially price-discriminate within the tourist segment. The same is true with uncertainty with 

respect to the actual behavior of the firm: if consumers are uncertain whether the firm will 

offer last-minute deals, then, in equilibrium, both in a one-shot game and in a repeated game, 

the firm will, with some probability, offer such deals. In addition, for an intermediate capacity 

level, we found that the larger the number of segments (that differ in price sensitivity), the 

longer the duration of the period in which tickets are offered for sale. 

We have modeled consumers as risk-neutral to capture the main point we wanted to 

make. In deliberating the effect of adding risk aversion, consider for example Proposition 3 in 

the intermediate-capacity case. In solving this case (in the appendix), we define x to be the 

tourist with the highest utility who will purchase a ticket in period 3 at price p3. Thus this 

consumer is indifferent between purchasing a ticket in the first period at price p1 and 

purchasing a ticket at the last minute at price p3. The firm then sets the price in the third period 

as x/2 (if it is not constrained, it sets the monopoly price for this residual segment). With risk 

aversion, the consumer who is indifferent between purchasing a ticket in the first period at 

price p1 and purchasing a ticket at the last minute at price p3 will have a lower utility x’ 

(equivalently, the same marginal consumer x will demand a lower third-period price to remain 

indifferent). Since , this will lower the price in the third period. Thus risk aversion 

will require deeper cuts for the last-minute deals. 

2/3 xp =

The effects of competitive entry into a city-pair market could affect our results. The way 

to have a feel for the effect is to note that direct competition by another low-cost carrier in the 

same city-pair route would reduce demand for the incumbent airline’s seats for these routes, 

or, alternatively, would create excess capacity. Our scenarios for large capacity would not 

change as, obviously, the airline had excess capacity before the competitor’s entry. If, 
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however, capacity is constrained, then consider Proposition 3. It can be easily verified (see the 

appendix for details) that the first-period price will increase but second- and third-period 

prices will decrease with the implied change in capacity. Thus the response of the airline to 

entry is to lower the slope of the price curve over time between the first and second period; 

that is, the price discount for early buying is reduced, but the last-minute deal is more 

pronounced. The reason is that the airline responds to entry by trying to attract the more 

profitable business segment by lowering its price and limiting the demand of the tourist 

segment by increasing the price in the first period. If business demand does not materialize, 

the airline cuts its price deeply to attract tourists with a last-minute deal. This adds to our 

claim that the tourist segment subsidizes the business segment as it can also be verified that 

the average price to the tourist segment (in periods 1 and 3) is higher in the post-entry market 

structure. Thus, with added competitive pressure, the airline responds by lowering the price to 

the business segment and raising the average price paid by tourists. 
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