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Abstract

Purpose We present a different approach for annotating laparoscopic images for
segmentation in a weak fashion and experimentally prove that its accuracy when
trained with partial cross-entropy is close to that obtained with fully-supervised
approaches.

Methods We propose an approach that relies on weak annotations provided as
stripes over the different objects in the image and partial cross-entropy as the
loss function of a fully convolutional neural network to obtain a dense pixel-level
prediction map.

Results We validate our method on three different datasets, providing quali-
tative results for all of them and quantitative results for two of them. The ex-
periments show that our approach is able to obtain at least 90% of the accuracy
obtained with fully-supervised methods for all the tested datasets, while requiring
∼ 13x less time to create the annotations compared to full supervision.

Conclusion With this work we demonstrate that laparoscopic data can be seg-
mented using very few annotated data while maintaining levels of accuracy com-
parable to those obtained with full supervision.

Keywords Computer assisted interventions, laparoscopy, instrument detection
and segmentation

1 Introduction

Laparoscopic surgery has changed surgical practice by reducing operative trauma,
risk of co-morbidity, visible scars and hospitalization period. In such minimally
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(a) (b) (c)

Fig. 1 Our approach to perform semantic segmentation with weak labels. (a) shows the
original image, (b) the proposed annotations and (c) the full pixel-level segmentation mask
obtained. We label our data using straight lines along the longitudinal axis of the instruments
and train our network with partial cross-entropy as loss, obtaining very similar results to full
supervision while drastically reducing the density of the annotations needed.

invasive surgery (MIS), surgeons access the body through several small incisions
and observe the internal anatomy using cameras. Most interactions with the inter-
nal anatomy and organs are therefore recorded digitally. The availability of such
visual data together with the necessity to enhance surgeons’ capabilities to meet
the difficulty and complexity of MIS (hand-eye coordination, restricted mobility
and narrow field of view [2]) has driven computer assisted interventions (CAI)
and computer vision based approaches to analyse laparoscopic video [19]. The
localization and segmentation of surgical instruments (or even anatomy) are a
prerequisite for many potential CAI applications ranging from intra-operative as-
sistive systems for better navigation or surgical robotics to enhanced image fusion
or video retrieval systems [2, 17].

Recent vision-based methods for tool localization and segmentation in images
tend to take a supervised approach [2–4, 8–10, 13, 15, 18] while historical tech-
niques are model based and not data driven [4]. Supervision is usually provided as
bounding box coordinates for tool localization and as pixel-level annotations for
tool segmentation. While bounding box annotations are relatively easy to collect
compared with pixel-level annotations, they normally include a large portion of
the background. As a result, it is not feasible to localise the tools precisely. On
the other hand, providing pixel-level annotations enables models to localise tools
accurately. However, the process to create such fine-level annotations is very time-
consuming and tedious or expensive if implemented at scale. To alleviate these
problems, we propose to localise tools using what we define as weak “stripe” an-
notations (Figure 1). We use this type of annotation for two main reasons: (1) it
is as quick to do as bounding box annotations and (2) it represents the geometric
nature of surgical instruments better, as most of them are mostly rigid and highly
linear.

2 Related Work

Surgical instrument localization and segmentation are extremely difficult tasks due
to background variability and challenges such as smoke, blood, visual occlusions,
shadows and specular reflections. These effects and challenges are often present in
laparoscopic videos. In the literature, most attempts to perform either localization
or segmentation of tools are based on fully supervised methods (i.e. with pixel-
level annotations) [4] using Fully-Convolutional Neural Networks (FCNN), the de



EasyLabels: Weak labels for scene segmentation in laparoscopic videos 3

facto choice for approaching this kind of problem, not just in CAI, but in general
computer vision.

For example, Garcia-Peraza-Herrera et al. [9] combine a FCNN and optical
flow to accomplish real-time segmentation and tracking of non-rigid surgical tools.
Pakhomov et al. [15] develop deep neural networks with residual connections to
segment instruments in robotic surgery. Laina et al. [10] leverage FCNNs to per-
form concurrent segmentation and localization of surgical instruments. Shvets et
al. [18] propose the combination of different FCNNs to tackle both binary and
multi-class segmentation of robotic instruments. Finally, some works still rely on
traditional methods, such as the one of Bondenstedt at al. [3], which makes use
of Random Forests and features such as histograms over hue and saturations,
gradients or SURF features, to achieve real-time instrument classification for la-
paroscopic surgery. Nevertheless, they often face the same problem: the lack of
annotated data due to the difficulty of annotating with pixel-level labels. Most
of the available datasets consist only of a few thousand images with a maximum
of 5-6 sequences [4]. This is a limiting factor on the research of new methods for
segmentation or localization.

For this reason, there has been a rise in the interest of finding methods that
can overcome this limitation (i.e. achieve accurate segmentations without full an-
notations). There are two different ways to address the segmentation with weak
labels: one consists in artificially creating “fake” full segmentation masks (“pro-
posals”) and then treating the problem as a fully supervised one (minimizing the
cross-entropy w.r.t such “proposals”/masks) [21]; whereas the other relies on using
only small portions of the whole image or “scribbles”1 to train the network while
ignoring the rest of the image (i.e. minimizing the cross-entropy w.r.t. only the
pixels within the “scribbles”) [1,12,20,23,24]. The proposals approach often leads
to worse results since the created “fake” masks are usually wrong, which reinforces
the network to learn wrong patterns, and eventually makes it fail in producing ac-
curate, correct segmentation masks [20]. In contrast, approaches using “scribbles”
have recently shown greater accuracy and robustness, as they focus on making the
network learn from less but still informative, correct information.

Some of these approaches are using points [1, 11], scribbles [12, 20], bounding
boxes [24] or even image labels [23]. However, to the best of our knowledge, none
of them has yet been applied to surgical data for segmentation purposes. There
exist some works trying to alleviate the burden of fully labeling datasets, such as
the one of Ross et al. [16], who employ Generative-Adversarial Networks (GANs)
to reduce the amount of labeled data needed for training. However, they still
use full pixel-level segmentation masks. Vardazaryan et al. [22] implement a fully
convolutional neural network and use class peak response for surgical instrument
localization employing as ground truth only the image labels. However, this work
is not yet able to obtain a segmentation mask of the surgical instruments.

There are some other different paths to try to alleviate this problem, such as
crowd-sourcing or label propagation [7]. In the case of crowd-sourcing, it does not
reduce the burden, just re-distributes it, and could also benefit from weak labels.
Label propagation consists on fully annotating a single image and then propagate
these labels, correcting them when needed. Although it increases the speed, it is

1 For simplicity, even if there are approaches either using points, bounding boxes or scribbles,
we will refer to this approach as just “scribbles”.
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still necessary to check if the propagated labels are correct and if they are not, to
correct them, which leads us back to the same problem. For all these reasons, we
propose an alternative to alleviate these caveats.

In summary, in this paper we introduce a fast method for annotating surgi-
cal datasets which can be used to perform semantic segmentation with results
close to fully-supervised methods while requiring significantly less effort to create
the annotations, as can be observed in Figure 1. To support it, we present an
experimental evaluation on three different datasets showing the benefits of the
introduced method for surgical segmentation tasks.

3 Methods

The proposed method takes an alternative approach for labeling images in a weak
manner for CNN segmentation, combined with a slight modification of plain cross-
entropy.

3.1 Stripes: our annotation method for weakly-supervised tasks

The proposed method consists in using straight rigid lines (i.e. defined by two
points) to annotate the foreground objects along their longitudinal dimension
(Figure 1 (b)). We call these lines “stripes”. There is no need to annotate the
background, since it is automatically annotated using an artificially generated
grid and the stripes corresponding to the foreground objects. By simplifying the
annotation process, we are able to drastically reduce the time needed to annotate
surgical data. These “stripes” along the foreground objects allow us to effectively
train a network able to learn the patterns needed to perform accurate segmen-
tation. As a rule of a thumb, lines must be close to boundaries among different
classes at some point in order to give better accuracy in these regions. Indeed,
by placing the lines as if they mimic the skeleton2 of the blobs present in a hy-
pothetical pixel-wise mask, our method encourages the network to focus on the
most discriminating patterns so that it is able to generalise and segment the rest
of the image in an accurate way. We employ two types of annotations: the auto-
matic ones obtained by computing the skeleton of the full annotation masks and
the manual ones performed by humans. Furthermore, we also test an additional
reduced human annotations set to check how a decrease in the amount of labeled
data affects the accuracy of the method.

3.1.1 Automatic weak mask generation for foreground objects from full

annotation masks

We compute the distance-based skeleton on the foreground blobs to automati-
cally obtain the stripes using a full annotation mask as input. As the background
mask is automatically generated (see Section 3.1.3) we keep only the annotations
corresponding to foreground objects. We call these annotations “auto stripes”.

2 Please note that the skeleton is computed as the ridge of the distance transform.
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3.1.2 Human weak mask generation for foreground objects

To prove that the computed skeleton is comparable to the annotations a human
would do, we also annotate the Endovis15 dataset manually. In addition, to be able
to assess how the amount of data affects this kind of annotations, we manually label
this dataset in two different ways. On the one hand, we annotate the foreground
objects using two stripes covering the different ends of the tool and crossing in the
middle. This allows us to annotate both the center of the tool and the extremes
at the same time, as shown in Figure 2 (c), first row. In case there is a hole in the
shape, we use enough stripes to “round the hole”, as shown in Figure 2 (c), second
row. We call these annotations “human stripes”. On the other hand, we create
another set of annotations called “reduced human stripes” in which we keep the
annotations as simple as possible, employing a single stripe per blob, except when
holes are present, where we employ two lines (Figure 2, last column).

(a) (b) (c) (d)

Fig. 2 Comparison of automatic and human annotations: (a) correspond to the full annotation
mask, (b) to the automatically computed weak annotation mask, (c) to the manual annotations
and (d) to the reduced set of manual annotations. Note that the background grid is always
automatically computed using the foreground annotations.

3.1.3 Background grid generation

The background grid employed in this work consists of four lines forming a star
and three concentric circles (Figure 3 (b)). However, this grid can be modified
according to the needs of each dataset. Then, we employ the previously explained
foreground stripes to automatically create a binary background/foreground mask
that will remove the unnecessary pixels from the background grid. This binary
mask excludes the regions covered by the bounding boxes obtained from the stripes
(either automatically computed or manually labeled). Figure 3 (d) shows the result
of applying the background/foreground mask to the background grid. To obtain
the complete weak mask, we combine the foreground and background masks to-
gether and assign all the remaining pixels a value to indicate that we can ignore
them when computing the loss, as shown by Figure 3 (e). This approach allows us
to automatically label the background even when the full annotation mask is not
available, and it further reduces the time needed per annotation, since it removes
the necessity of manually labeling the background. In average, our weak labels
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account for less than 5% of the full annotation masks, while yielding promising
segmentation results, as Section 6 shows.

(a) (b) (c) (d) (e)

Fig. 3 Pipeline to automatically create our background weak annotations for each dataset:
(a) shows the original full mask (except for Bypass, the dataset without full annotation masks
available, where the original image is shown instead), (b) the automatically created background
grid, (c) the foreground annotations (manual when available, automatic elsewhere), (d) the
automatic background annotations obtained from (b) and (c) and (e) the final weak annotations
mask.

3.2 Deep Learning architecture

The model employed in this work belongs to the family of the U-shaped Fully
Convolutional Networks (FCN). These networks normally consist of an encoder,
composed by several convolutional blocks that extract features from the input
image while down-sampling the feature maps; and a decoder, that works similarly
but up-sampling the feature maps while attempting to map the computed features
to the correct classes. For this work, we use the DeepLabv3+ [5] architecture, a
FCN that consists of an encoder and a decoder. The encoder is based on the
Xception network [6], which allows to build a rich representation of the input data
while keeping the number of parameters low thanks to the depth-wise separable
convolution. Then, the decoder makes use of atrous convolutions to retain more
information from the boundaries, which yields better representations for the final
segmentation mask. We trained DeepLabv3+ both using our ground truth and
partial cross-entropy as loss, and using the full masks and normal cross-entropy
when available. All the experiments were ran on two NVIDIA GTX 1080 Ti GPUs
with 11GB of VRAM memory each. We chose the Stochastic Gradient Descent
optimizer with a batch size of 10 and learning rate of 1e−4. The number of epochs
was established at 100 for Endovis, and 50 for the other datasets. As our objective
was to give a baseline of how accurate results it is possible to obtain by just using
“stripes” and partial cross-entropy as loss, we did not attempt to optimize the
hyper-parameters of the model.
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3.3 Partial Cross Entropy as Loss Sampling

Cross-entropy loss is probably the gold standard when training neural networks for
classification tasks. It computes the negative log-likelihood between the predictions
and the true labels. In the case of partial cross-entropy, the same operation is per-
formed but only for the indicated elements. Therefore, the only difference between
plain cross-entropy and partial cross-entropy is the use of an indicator function
that samples the loss to compute only those pixels within the weak annotations.
It can be mathematically defined as:

∑

p∈Ω

−up · logS
yp

p (1)

where Ω is the image domain, Sp ∈ [0, 1]K describes the network’s output for
p ∈ Ω, yp is the true label of p, K is the number of classes, and up is the indicator
function, defined as up = 1 for p ∈ ΩL and 0 otherwise. L is the subset of the
image domain Ω corresponding to the weak annotation pixels.

4 Datasets

We tested our method on three different datasets: two developed and labeled
in-house, and the third one publicly available Endovis 2015 Rigid Instruments
dataset [2, 14]. We describe them in detail in the following subsections.

4.1 Endovis 2015 Rigid Instruments dataset

This dataset consists of 40 2D in-vivo images for each of the 4 laparoscopic colorec-
tal surgeries with their corresponding annotated masks for training (160 images),
and 140 images for testing: 10 images from each of the 4 training videos and 50
images from 2 new videos. Two types of full masks are provided: one with the
background, shaft and manipulator labeled; and another in which each tool in-
stance on an image is annotated with a different label. For this work, we select the
ground truth differentiating among background, shaft and manipulator. Since the
available ground truth for this dataset consists of full masks, we followed the two
different approaches previously explained (automatic and manual) to obtain the
weak annotation masks. Furthermore, we perform an additional annotation pass
reducing the amount of annotations, as explained in Section 3.1.2, to test how the
amount of data affects our approach.

4.2 Sleeve Gastrectomy dataset

We tested our approach on another dataset consisting of 5 videos recorded during a
laparoscopic sleeve gastrectomy totalling 3600 frames with their corresponding an-
notations. These annotations are full pixel-level segmentation masks differentiating
among the different surgical instruments, anatomy and background. Concretely,
this dataset consists of the following 14 labels for instruments and anatomy: sta-
pler, stapler handle, stapler trigger, atraumatic grasper handle, atraumatic grasper
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tip, liver retractor, ligasure tip, ligasure handle, marylands tip, marylands handle,
bandage, liver, stomach and background. Since the available annotations for this
dataset are dense pixel-wise masks, we follow the procedure explained in Section
3.1 to automatically compute the weak masks. Figure 4 shows some examples of
the original images, the full annotation masks and the computed weak masks.

(a) (b) (c) (d)

Fig. 4 Some sample images from our Sleeve Gastrectomy dataset (a) together with their
corresponding pixel-level full annotation masks (b), the annotation mask we generated from
the full mask to test our approach (c) and an overlay of the original image with our proposed
ground truth (d).

4.3 Gastric Bypass dataset with “stripes”

Our other dataset consists of 20 videos of laparoscopic gastric bypass totalling
46606 frames with their corresponding weak annotations. These annotations were
carried out in-house by informed participants using our “stripes” approach. Con-
cretely, this dataset consists of 14 labels for the following instruments: atraumatic
grasper, bowel clamp, clip applicator, drain, harmonic scalpel, hook, ligasure, liver
retractor, marylands, needle holder, o’reilly, scissors, stapler and suction irrigation.
Figure 5 shows two sample images with their corresponding proposed weak anno-
tations.

(a) (b) (c)

Fig. 5 Some sample images from our Gastric Bypass dataset. (a) shows the original images,
(b) our proposed ground truth and (c) an overlay with the original image.
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5 Validation studies

5.1 Endovis 15

We begin our validation studies with the Endovis 15 dataset using the same splits
as proposed by the challenge in 2015 for its evaluation, that is, following a leave-
one-video-out 5-fold cross-validation. The amount of weak annotations needed is
an important matter to study so we can minimise the efforts of annotating data.
Therefore, in addition to the full versus weak comparison, we perform an extra
experiment with Endovis15 using a reduced set of annotations, as explained in
Section 3.1.2. We provide results for each of the 5 folds and their average for each
version of the dataset: full masks, automatically computed weak masks, manually
annotated weak masks and reduced version of manually annotated weak masks.

5.2 Sleeve Gastrectomy dataset

To evaluate our approach on this dataset, we carry out two experiments: one with
full masks and one with the automatically computed weak masks. We perform a
5-fold cross-validation following a leave-one-video-out fashion. This means that for
each fold, four videos were used for training and one for evaluating. We evaluated
our method for each fold using the automatically generated weak annotations and
compared our results with those obtained with full segmentation masks.

5.3 Gastric Bypass dataset

Out of the 20 available videos, we employed 16 videos (37100 frames) for training
and 4 (9506 frames) for testing. Since we do not have full pixel-level masks for this
dataset, we only show qualitative results.

5.4 Time comparison

We measured the time taken by 5 in-house annotators for labeling a subset of 30
images of our Sleeve Gastrectomy dataset with pixel-level full annotations, and
compared it to the time they needed to perform our “stripes” annotations on
the same images. The time of each image was averaged for each annotator, and
then all means were averaged to produce the final result. All of these images were
non-consecutive frames, so the measures reported are for the worst case scenario.
Commercial software was employed for the full annotations, while for the “stripes”
annotations a software developed in-house was used.

6 Results

6.1 Endovis 2015 results

Table 1 presents the results obtained by our approach on the Endovis 2015 dataset
with our annotations computed automatically, manually by a human, and with full
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supervision. It also shows the accuracy when the amount of annotations is reduced.
Our method achieves almost 97% of the accuracy full supervision achieves. How-
ever, if the reduced annotations are used, there is a significant drop in the accuracy
of the segmentation. Figure 6 shows some examples of the segmentation performed
by our approach (with the annotations computed automatically) compared to the
segmentation obtained with full supervision and the ground truth. In addition,
Table 2 shows the amount of annotated pixels per class for each approach.

Table 1 Segmentation results for Endovis 2015. Per-class and averaged IOU values are re-
ported for each fold. Folds indicate in which videos the model was evaluated. “weak human”
and “weak human red.” refer to the human annotations and the reduced set of human anno-
tations (as explained in Section 3.1.2), respectively. Last column shows how similar the results
are to those obtained with full supervision, from 0 to 1.

fold mask background shaft manipulator avg sim. (%)

OP5-OP6

weak human red. .9957 .6934 .3585 .6172 .8783
weak human .9893 .8584 .5817 .7028 1
weak auto .9895 .8890 .5157 .7001 .9963
full .9947 .8868 .5325 .7027 -

OP4

weak human red. .9857 .7126 .6833 .6929 .9309
weak human .9737 .8562 .7260 .6943 .9328
weak auto .9813 .8044 .7543 .7005 .9412
full .9908 .8704 .6662 .7443 -

OP3

weak human red. .9928 .7906 .7173 .7652 .9298
weak human .9865 .8721 .8453 .7942 .9650
weak auto .9894 .8893 .7605 .7937 .9644
full .9969 .8539 .7870 .8230 -

OP2

weak human red. .9892 .7986 .3750 .6618 .9036
weak human .9746 .9125 .5552 .6869 .9379
weak auto .9770 .6936 .5695 .6772 .9246
full .9898 .9060 .5139 .7324 -

OP1

weak human red. .9972 .6521 .5467 .7022 .9129
weak human .9847 .8384 .8030 .7619 .9905
weak auto .9852 .8024 .7172 .7036 .9147
full .9960 .8196 .6687 .7692 -

avg

weak human red. .9921 .7295 .5362 .6879 .9120
weak human .9818 .8675 .7022 .7281 .9652
weak auto .9845 .8557 .6634 .7150 .9479
full .9936 .8673 .6337 .7543 -

Table 2 Total amount of pixels annotated per class for Endovis 2015 dataset.

full weak auto weak human weak human red.
# # % # % # %

background 83,561,953 3,759,618 4.50 3,781,461 4.53 3,959,571 4.74
shaft 5,625,442 213,460 3.79 462,043 8.21 225,559 4.01
manipulator 2,972,605 174,232 5.86 323,779 10.89 171,490 5.77

total 92,160,000 4,147,310 4.72 4,567,283 7.88 4,356,620 4.84
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Fig. 6 Example results comparing the segmentations we obtain with our weak labels and the
ones obtained with the full masks on the Endovis 2015 dataset. First column shows the original
frame, second one the ground truth, third one the fully-supervised results and the last one our
weakly-supervised results.

6.2 Sleeve Gastrectomy results

Table 3 compares the results obtained on the Gastric Sleeve dataset with our
approach and with full supervision. In this case, with a much more complicated
dataset, it can be observed that our approach gets in average 90% of the accuracy
that full supervision achieves. There are 5 classes that do not have presence in
every video and thus get IOU = 0 when these videos are in the test set. Figure
7 shows some examples of good and bad results. In addition, Table 4 shows the
distribution of per-class pixel annotations for full and weak masks.

Table 3 Segmentation results for Sleeve dataset. Per-class and averaged IOU values are re-
ported. The order of the classes is the following: stapler, stapler handle, stapler trigger, atrau-
matic grasper handle, atraumatic grasper tip, liver retractor, ligasure tip, ligasure handle,
marylands tip, marylands handle, bandage, liver, stomach and background. Star (* ) denotes
that there exist annotated pixels for the given class. Last column shows how similar the results
are to those obtained with full supervision, from 0 to 1.

fold mask 1 2 3 4 5 6 7 8 9 10 11 12 13 14 avg sim.

0
weak .86 .71 .81 .82 .68 .72 .33 .75 0 0 .74 .94 .85 .92 .62 .99
full .95 .77 .68 .86 .75 .45 .14 .45 0 0 .81 .94 .84 .96 .63

1
weak .89 .89 .83 .83 .63 .32 0 0 0 0 .87 .95 .96 .90 .62 .86
full .97 .95 .72 .95 .60 .62 0 0 0 0 .92 .96 .94 .97 .72

2
weak .91 .61 .91 .77 .88 0 0 0 0* 0* .81 .92 .95 .90 .45 .83
full .97 .68 .67 .86 .83 0 0 0 0* 0* .81 .96 .96 .96 .54

3
weak .85 .87 .93 .84 .87 0 0 0* 0 0 .51 .52 .92 .86 .49 .80
full .97 .97 .56 .89 .72 0 0 0* 0 0 .67 .77 .91 .94 .61

4
weak .77 .68 .71 .62 .60 .15 .30 .75 0 0 .73 .76 .81 .92 .47 .96
full .78 .73 .52 .70 .56 .08 .15 .86 0 0 .81 .77 .76 .97 .49

avg
weak .86 .75 .84 .78 .73 .50 .32 .58 0* 0* .73 .82 .90 .90 .53 .90
full .93 .82 .63 .85 .69 .38 .15 .44 0* 0* .80 .88 .88 .96 .59
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Table 4 Total amount of pixels annotated per class for Sleeve dataset.

full weak %

1 stapler 194,058,923 4,945,339 2.55
2 stapler handle 42,229,230 579,960 1.37
3 stapler trigger 3,723,493 390,791 10.50
4 atraumatic grasper handler 45,430,250 1,852,076 4.08
5 atraumatic grasper tip 15,273,911 1,027,326 6.73
6 liver retractor 7,566,696 333,742 4.41
7 ligasure tip 1,847,152 144,637 7.83
8 ligasure handle 3,082,359 168,734 5.47
9 marylands tip 73,861 3,732 5.05
10 marylands handle 110,951 7,513 6.77
11 bandage 126,062,766 5,004,185 3.97
12 liver 301,709,606 4,725,905 1.57
13 stomach 534,054,288 11,342,402 2.12
14 background 1,436,405,339 29,260,588 2.04

total 2,711,628,825 59,753,930 2.20

Fig. 7 Examples of good and bad results obtained for the Sleeve dataset. First column shows
the original frame, second one the ground truth, third one the fully-supervised results and the
last one our weakly-supervised results. As for rows, the first two rows are good results, and
the last one bad results. Note how weak supervision works better than full supervision for
instrument tips.

6.3 Gastric Bypass results

In this Section, we show some quantitative results for the Gastric Bypass dataset,
the one which was fully annotated with our method and did not have any other
ground truth available. Figure 8 shows both accurate and not so accurate results
obtained by our approach for several sample images extracted from this dataset.

6.4 Time comparison

For pixel-level full annotations of the Sleeve Gastrectomy dataset, it took our team
428 (±170) seconds per image, as opposed to the 31 (±17) seconds needed with
the proposed approach. Extrapolating for our complete dataset, which consists of
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Fig. 8 Example results comparing the segmentations we obtain with our weak labels on the
Gastric Bypass dataset. First two rows show good results, last one not so good.

3600 images, full annotations would need ∼ 53 days (assuming full dedication 8
hours/day), whereas our approach would cut that time down to ∼ 4 days, while
keeping the performance very similar.

7 Discussion

The results obtained with full supervision for the Endovis 2015 dataset show a
mean intersection over union (mIOU) of 75.43%, compared to 71.50% that we ob-
tain with our automatically computed weak annotations, 72.81% with the manual
annotations or 68.79% with the reduced manual annotations. This is very promis-
ing, as the percentage gain with full supervision is small compared to the time
needed to create full labels. However, this is a rather simple dataset. Therefore,
we also tested our approach with two much more complex datasets (Bypass and
Sleeve). For Bypass, we obtain 59% of mIOU for full supervision and 53% for our
weakly-supervised approach. These experiments supports the findings that our
weak annotations only degrade the quality of the output by a small percentage
difference, even for complex datasets. The per-class IOUs show that full and weak
supervision obtain comparable results, and that there is a significant drop (∼ 5%)
when there is less data available. At the light of these results, weak segmentation
appears to work better for small, surrounded shapes (e.g. liver retractor, instru-
ments tip, stapler trigger, etc). On the other side, full segmentation generally
performs better on coarse, big shapes. That might be caused by the proximity of
the annotations to the boundaries: small, thin shape annotations are closer to the
boundaries than those of big, coarse shapes. Although it needs further experiment-
ing, this may prove the intuition that weak segmentation is less accurate close to
boundaries, since weak masks do not hold this kind of information.

We also observe that the accuracy obtained with both datasets remains coher-
ent, with our approach achieving between 90− 95% of the mIOU obtained by full
supervision. Furthermore, we prove that our automatic annotations represent the
annotations performed by a human.

The last set of experiments were performed using the Gastric Bypass dataset,
for which we show qualitative results and appear to be coherent as well. In addi-
tion, if we pay attention to the first row of Figure 7, we can see as sometimes our
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approach is able to obtain even more accurate results than the fully-supervised
approach, although this observation is anecdotal. We also observed how Endovis15
dataset works better when more annotations than just a stripe along the longitu-
dinal axis are available, so more labeled data help to obtain more accurate results.
Compared to traditional scribble-based segmentation methods, we assume our
method more accurate, since these methods have been outperformed by FCNNs,
and our approach achieves very similar accuracy to fully-supervised FCNNs.

8 Conclusion

The presented methodology is a step towards reducing the amount of data needed
for segmentation of surgical data and speeding up the research in this field, which
suffers from the lack of data. We show that we are able to obtain similar accuracy
with our weakly-supervised method and with full supervision in three different
datasets. However, our work has some limitations. We tested the influence of the
amount of data on a very simple and small dataset, so further research must be
done to find the amount of annotations needed to obtain the highest possible
accuracy, and its relationship with the size of the dataset. Another drawback is
that we still need fully annotated masks to test our weakly-supervised approaches.
However, this is a general problem of weak supervision and is not concrete to our
approach. Future lines of work include incorporating different loss functions or
post-processing techniques, checking how erroneous annotations would affect our
approach (compared to full supervision) and investigating if our method could be
used as a previous step to full-segmentation reducing the amount of time needed.
Another interesting line of work would be to try to combine our scribbles with
label propagation. We could use a full mask as initialization and then compute
the skeleton of it to obtain the weak mask as the labels propagate. In this way, we
could allow some coarser fitting of the labels when propagating, because only the
skeletons would be used when training.
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