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Abstract Support vector machines (SVMs) are

supervised learning models traditionally employed for

classification and regression analysis. In classification

analysis, a set of training data is chosen, and each

instance in the training data is assigned a categorical

class. An SVM then constructs a model based on a

separating plane that maximizes the margin between

different classes. Despite being one of the most popular

classification models because of its strong performance

empirically, understanding the knowledge captured in

an SVM remains difficult. SVMs are typically applied

in a black-box manner where the details of parameter

tuning, training, and even the final constructed model

are hidden from the users. This is natural since these

details are often complex and difficult to understand

without proper visualization tools. However, such an

approach often brings about various problems including

trial-and-error tuning and suspicious users who are

forced to trust these models blindly.

The contribution of this paper is a visual analysis

approach for building SVMs in an open-box manner.

Our goal is to improve an analyst’s understanding of the

SVM modeling process through a suite of visualization

techniques that allow users to have full interactive

visual control over the entire SVM training process.

Our visual exploration tools have been developed

to enable intuitive parameter tuning, training data
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manipulation, and rule extraction as part of the SVM

training process. To demonstrate the efficacy of our

approach, we conduct a case study using a real-world

robot control dataset.

Keywords support vector machines (SVMs);

rule extraction; visual classification;

high-dimensional visualization; visual

analysis

1 Introduction

A support vector machine (SVM) [1] is a supervised

learning method widely used in a variety of

application areas, such as text analysis [2], computer

vision [3], and bioinformatics [4, 5]. An SVM model

is a discriminative model which tries to split the

training data into two classes by creating a separating

hyper-plane at the place where the two classes are

furthest apart. The class of a new data point is

predicted by determining which side of the hyper-

plane it lies on.

While SVMs have been shown to have high

accuracy in classification [6], they also face a variety

of challenges when we want to use them for data

analytics. First, conventional SVM approaches are

black-box schemes in which details of the model

construction and prediction processes are hidden

from the user. The user simply provides the

SVM with a training dataset and relevant input

parameters, and a model is constructed for making

predictions from unlabelled data. Other outputs

that can be retrieved from the trained SVM model

are a vector that represents the feature weights, and

a set of training data instances called support vectors.

These outputs are unable to provide any insights

for domain users who want to better understand
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162 Y. Ma, W. Chen, X. Ma, et al.

the reasoning behind certain classification results.

Thus, while the automatic black-box model releases

the user from laborious interaction, it may hinder

the user in terms of understanding and insight.

Previous work by Tzeng and Ma [7] indicates that

users can gain much insight if allowed to apply

function-based techniques that can be explained

and validated. Such function-based methods enable

the interpretation of the classification process with

respect to the application domain. The importance

of gaining such insight has motivated data mining

algorithms [8, 9] that try to extract if-then-structured

rules from the classification model.

Another issue that makes gaining insight from

SVMs difficult is the use of non-linear kernels [10]

which typically improve the classification accuracy.

There is, however, a lack of systematic, effective

methods to select appropriate kernel functions

and input parameters to give good classification

results [11]. Thus, tuning parameters in this black-

box environment can be extremely difficult and time-

consuming for the user. In addition, the non-linear

characteristic further complicates the difficulties

of interpreting the classification process. While

recently developed local model techniques [11, 12]

have effectively reduced the complexity of non-

linear SVMs by approximating the boundaries with

multiple local linear planes, interpreting the complex

patterns and data distributions at the boundaries

remains complicated.

In order to overcome these challenges, we

have designed an open-box approach where the

user is embedded in the modeling process and

equipped with tools to explore and study complex

circumstances. We believe the key to shifting from

a black-box to an open-box approach is to empower

the user with a visual analytics interface which

will enable a better understanding of SVMs, the

underlying dataset, and the classification process.

Specifically, our interface design focuses on these

three questions:

• Q1: How can we help the user to be better

informed about the training dataset and the model

building process of SVMs?
• Q2: How can we enable the user to effectively

understand non-linear decision boundaries and

build local models that fit the boundaries?
• Q3: How can we help the user to interpret and

manipulate the prediction results in a user-friendly

way?
This paper presents our efforts in opening

the black box of model building and knowledge

extraction from SVMs. In this paper, we propose

our design and implementation of a web-based visual

analysis system that supports model building using

SVMs. To the best of our knowledge, this paper is

the first to address the issues of open-box analysis of

SVMs in the visual analytics literature. The main

contributions include:

• an interactive visualization method for exploring

data instances, linear SVMs, and their

relationships;
• a visual analysis approach for building local linear

SVM models that overcomes the non-linearity of

the underlying dataset;
• a visual rule extraction method that allows the

user to extract rules that best interpret the

models.
The remaining sections are organized as follows.

Related work is covered in Section 2. Section 3

presents an introduction to SVMs. The next section

describes our visual analysis solutions for three tasks:

model building and explanation, local SVM building,

and rule extraction. Section 5 demonstrates the

effectiveness of our solution through a case study

on robot control, and is followed by a discussion in

Section 6 and conclusions in Section 7.

2 Related work

The work presented in this paper is related to three

broad topics: (i) support vector machines, (ii) visual

exploration of high-dimensional data, and (iii) visual

classification.

2.1 Support vector machines

SVMs are currently regarded as a state-of-the-art

classification technique [6], and studies have revealed

that SVMs perform well when compared to other

classification techniques [13]. This performance can

be partly attributed to the use of non-linear kernels

which unfortunately make it difficult to interpret

the models. In addition, the production of the

boundary function is often quite difficult. Work by

Wahba [14] explored the use of SVM functionals to

produce classification boundaries, exploring tradeoffs

between the size of the SVM functional and the

smoothing parameters.

In practice, it is very difficult for non-experienced
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users to tune an SVM [15]. However, recently, a

set of methods were developed to simplify model

complexity while managing non-linearity [16, 17].

One representative scheme is to build multiple local

models to approximate the global one [11, 18, 19].

Local modeling methods train a series of linear

SVM models near decision boundaries by using

training data instances in the corresponding local

regions. Unlabelled instances are then classified by

the nearest local models in the prediction stage.

This method is able to approximate the non-linear

boundaries by a series of local linear ones. No

intuitive indications are given by the local models

about how complex the local regions are, or what

kinds of patterns are represented in the regions.

Rule extraction is an important component for

the interpretation of SVMs or other classification

techniques [20, 21]. Martens et al. [8] provided a

comprehensive study of rule extraction from SVMs.

These methods commonly employ an automatic

optimization process and result in an axis-parallel

representation. However, the targets and interests

may vary according to the user and analysis task. It

is likely that a visual analysis process can enable the

user to explore both the input parameter space and

the classification boundaries.

Unfortunately, there is little work dedicated to

visualizing SVMs. Caragea et al. [22] applied a

projection method to transform data instances into

2D space. The separating hyper-plane is sampled

in the data space, and projected onto the 2D

plane. The work by Aragon et al. [23] utilized

SVMs as part of a visual analysis system for

astrophysics, but provided no general support for

SVM exploration. In Ref. [24], we presented an

interactive visualization system for visualizing SVMs

and providing interactions for users to perform

exploration in the dataset.

2.2 Visual exploration of high-dimensional

data

One key challenge in opening up SVMs is the

need for high-dimensional data exploration methods.

Recent work in this area has utilized multi-

dimensional projections to map data instances

in high-dimensional data space to the low-

dimensional (2D) space. The key issue is how to

explore the underlying dataset with informative

projections. Previous works, such as grand tour [25]

and projection pursuit [26], generate a series of

projections that allow the user to dynamically

explore various lower-dimensional projections of the

data in a systematic way in order to find a

preferred projection. Other exploration techniques

help the user by giving controls for the projection

matrix (e.g., Refs. [27, 28]). Nam and Mueller [29]

proposed a projection navigation interface, where the

exploration and navigation activities are decomposed

into five major tasks: sight identification, tour path

planning, touring, looking around & zooming into

detail, and orientation & localization. Additionally,

an N -dimensional touchpad polygon is provided

to navigate in high-dimensional space by adjusting

the combination of projection weights on each

dimension.

Alternatively, high-dimensional data can be

visualized with a scatterplot matrix [30], a

parallel coordinate plot (PCP) [31, 32], or radar

charts [33]. Previous work has also employed

interactive exploration and navigation within

scatterplots to fill the gap between projections and

axis-based visualization techniques. Elmqvist et

al. [34] presented an interactive method to support

visualization and exploration of relations between

different 2D scatterplots in high-dimensional space.

Similarly, 3D navigation [35] on the basis of

rigid body rotation can be employed for viewing

3D scatterplot matrices. 3D rotation interaction

improves the user’s ability to perceive corresponding

points in different scatterplots for comparison.

2.3 Visual classification

Some visual classification approaches, such as

decision and rule-based classifiers [36, 37], employ

so-called white-box models, in which the detailed

process is easy to understand. Teoh and Ma [38]

considered the process of building decision trees as

a knowledge discovery method, and argued that

visualization of the decision tree model can reveal

valuable information in the data. Van den Elzen

and van Wijk [39] presented a system for interactive

construction and analysis of decision trees with

operations including growing, pruning, optimization,

and analysis.

Another category of work focuses on designing

model-transparent frameworks in which the user is

allowed to provide training datasets and view the

results. Thus, low-level classification techniques can



164 Y. Ma, W. Chen, X. Ma, et al.

be directly employed without modification of the

analytical process. Heimerl et al. [40] proposed to

tightly integrate the user into the labelling process

and suggested an interactive binary classifier training

approach for text analysis. Höferlin et al. [41]

presented a system to build cascades of linear

classifiers for image classification.

For open-box visual analysis approaches, one of

the most similar works to our approach is from

Tzeng and Ma [7]. It combines several visualization

designs for artificial neural networks to open the

black box of underlying dependencies between the

input and output data. Unlike our interactive visual

analysis approach, their open-box scheme is limited

to presenting a static visualization of the model

structure and does not provide a means of data

exploration and interpretation of the classification

process.

3 An introduction to SVM

classification

Given a set of training data points each with m

attributes and an associated class label, the SVM

attempts to separate these points using an (m − 1)-

dimensional hyper-plane. In this section, we will

briefly describe this process with the help of Fig. 1.

Suppose that xi ∈ R
m, i = 1, . . . , n, are n training

data instances in two different classes, and yi ∈

{−1, +1}, i = 1, . . . , n, are their corresponding class

labels. A linear support vector machine aims to

construct a hyper-plane:

wTx + b = 0 (1)

in the m-dimensional data space R
m that has

the largest distance to the nearest training data

instances of each class (the functional margin).

√

Tw x+b=0
Tw x+b=--1

ξ<1
ξ>1

ξ=0

K(x ,x )=Φ(x )Φ(x )i j i j
Tw x+b=+1

w

b

Functional margin =

Misclassified
point

Support vector

Support vector

2
Tw w

Fig. 1 A linear support vector machine.

Equation (1) can be solved by solving the following

optimization problem:

min
w,b,ξ

1

2
wTw + C

n∑

i=1

ξi (2)

subject to yi(w
Txi + b) > 1 − ξi, ξi > 0, i = 1, . . . , n

where C is a user-adjustable parameter to control

the relative importance of maximizing the margin or

satisfying the constraint of partitioning each training

data instance into the correct half-space. The dual

problem to Eq. (2) is derived by introducing

Lagrange multipliers αi:

max
1

2

n∑

i,j=1

αiαjyiyjK(xi, xj) −
n∑

i=1

αi (3)

subject to
n∑

i=1

αiyi = 0, 0 6 αi 6 C, i = 1, . . . , n

Here, K(xi, xj) = Φ(xi)Φ(xj) = 〈Φ(xi)Φ(xj)〉 is

called the kernel function. For a linear SVM,

its kernel is the dot product of xi and xj ,

i.e., K(xi, xj) = xT
i xj . Support vectors are those

training data instances xs whose corresponding

Lagrange multipliers are above zero. Finally, the

decision function for classifying a new data instance

x̂ is

ŷ = sgn(
n∑

i=1

yiαiK(xi, x̂) + b) (4)

4 EasySVM: Open-box visual modeling

of SVMs

As previously stated, the shortcomings of SVMs

lie primarily in the fact that they are difficult to

interpret and explore. A general visual modeling

approach for a linear SVM has two requirements:

(i) visualization of the training data instances, the

SVM model, and interaction between data instances

and model, and (ii) user-guided construction of the

SVM model. These basic operations underpin the

entire analysis process. Figure 2 shows the analytical

Open-box visual modeling
of linear SVM

Visual local SVM
building

Visual 

Training data instances

rule extraction
Classification rules

Analytical loop

Fig. 2 Overview of our approach.
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scheme for our solution which consists of three

components:

Open-box visual modeling for SVMs.

To enable the user to quickly determine item

relationships, we map the data instances and

SVM models into a 2D plane with an orthogonal

projection. We have designed an interactive

projection control scheme to support flexible

exploration of the dataset and the model in different

ways.

Local SVM building through visualization.

Once the data instances and models have been

visualized, the user may recognize non-linearities

within the model space. The underlying SVM

model can then be progressively approximated with

a sequence of linear localized SVM models. An

integrated suite of visual linkage and comparison

operations enable analysts to explore relations

between data instances and SVM models as well as

to manipulate local models.

Visual rule extraction. Rule extraction is

interactively performed along each axis. The user

can either select segments on the axes or select

regions from the projected results of data instances

and the SVM models. Each extracted rule can be

represented using a hierarchical tree structure.

This scheme is encapsulated in our EasySVM

system, a web-based interactive visualization system

depicted in Fig. 3. The system consists of four main

views: a scatterplot view, a projection management

view, a dimension selection view, and a rule

extraction view.

4.1 Open-box visual modeling of linear SVM

The traditional SVM model building process can

be summarized as the following fours steps: (i)

Fig. 3 Interface of EasySVM: (a) the data view, (b) the view of multiple projections, (c) the SVM model building view, (d) the rule extraction

view, and (e) the dimension selection view.
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preprocess the data, (ii) select parameters, (iii)

train the model, and (iv) validate the training

result [15]. If the validation result does not pass

the test (i.e., gives low prediction accuracy on the

test dataset), the process is restarted from step (ii)

again until it meets the user’s requirements. In

our visual model building process, each of these

model building steps is enhanced by interactive

visualization and visual exploration methods to

facilitate understanding during the model building

process. Meanwhile, additional data exploration and

manipulation can be performed during any model

building step. Figure 4(a) shows our iterative visual

model building process.

Data exploration and initial training. The

user can explore the training dataset to approximate

the classification boundaries. Then a global model

is trained with all training data instances using

an initial parameter C in the global SVM model

building panel (Fig. 3(c)). After this initial step, the

user can perform analysis and operations iteratively

using the following two steps.

Visual model exploration and validation.

For a trained model, an initial projection is

generated in the direction of the side view. The

user can evaluate the model starting from the side

view to locate misclassified instances, check their

distributions and patterns with projections, view

the boundaries near the separating hyper-plane,

and make decisions on data operations. Compared

with the traditional machine learning procedure, the

visual exploration of the training result provides

insight into the reasons why the training result is

as it is. Meanwhile, the prediction accuracy on

the training dataset is computed and displayed as

another reference for model validation.

√√

Visual model exploration 
& validation 

Identification of ROIsIdentification of ROIs

Selection of training data Selection of training data Visual validation Visual validation 

Tr
ai

ni
ng

 
Tr

ai
ni

ng
 

(a) Global model building(a) Global model building

(b) Local model building(b) Local model building

Data exploration & initial training

Non-linear boundaries foundNon-linear boundaries found

InstancesInstances
manipulatedmanipulated

C=0.1C=0.1

Visualization ofVisualization of
multiple local modelsmultiple local models

Potential non-linear boundaryPotential non-linear boundary

Local SVM #1Local SVM #1

ROIROI Local SVM #2Local SVM #2

Local SVM #3Local SVM #3

Tr
ai

ni
ng

 

Data manipulation & 
parameter tuning

C=10C=10

Possible outliers, 
noises, etc.

Fig. 4 (a) Global SVM model building process. If a non-linear decision boundary is found, the user can enter the local model building process

(b).
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Data manipulation and parameter tuning.

After exploration, some training data instances that

affect model building can be modified by changing

their labels or deleting them from the dataset if they

are considered to be noise or instances with invalid

values. In addition, the parameter C can be tuned

in this step to balance the trade-off between margins

of the hyper-plane and prediction accuracy on the

training dataset. It is required to re-train the model

after these two operations to update the model and

classification results. The model building process

stops when the validation result satisfies the user’s

requirements, such as prediction accuracy on a test

dataset. It should be noted that for a dataset with

non-linear, complex decision boundaries, local linear

models are needed.

4.1.1 Visualization of training data and the SVM

model

The data view (see Fig. 3(a)) in our system is

based on a scatterplot in which data instances are

projected into a low-dimensional subspace. We use

an orthogonal projection to embed high-dimensional

data instances and the SVM model in a 2D plane.

This view features two panels: a top menubar that

contains exploration tools for the scatterplot, and a

projection control panel that provides visualization

of the dimension axes and control methods for

interactive projection control. Two reasons for

providing this are: (i) it is a powerful technique

for visualizing the training dataset, and (ii) it

simultaneously makes clear the geometrical relations

between data instances and the hyper-plane, like

relative positions and distances between each other

that are essential for the user to understand the

structure of SVM models.

Orthogonal projection. Given an orthogonal

projection matrix Am×2 = [f1, f2], two m-

dimensional vectors f1, f2 span a 2D plane in

the m-dimensional data space onto which all data

instances are projected. Applying it to a high-

dimensional data instance yields a corresponding

data point on the 2D plane, i.e., the coordinates of

the data point in the scatterplot view x′

i = xiA. It

should be noted that the 2D projection formula of

the separating hyper-plane is very hard to find. We

first sample a set of points on the separating hyper-

plane, and then project sample points onto the 2D

plane to approximate the hyper-plane. Specifically,

the sample procedure contains the following four

steps:

1. project all training data instances onto the

separating hyper-plane;

2. calculate a bounding-box of the projections in step

(1);

3. uniformly sample Nsample points in the bounding-

box on the separating hyper-plane;

4. project the Nsample sample points onto the 2D

plane with A.
Visual encoding. To encode the data instances,

three visual channels are employed as illustrated in

Fig. 5. The input label of each data instance is

encoded with a filled color. If the predicted label by

the SVM is different from its input label, a border

color other than the filled color is employed. The

shape represents whether a data instance is a support

vector; we use a rectangle for a support vector and a

circle otherwise. Furthermore, the opacity of a data

instance encodes the distance from the corresponding

separating plane.

For the separating hyper-plane of the SVM model,

the sample points are drawn on the view as dots in

grey with a smaller size than the data points (shown

in Fig. 6(a)). Additionally, to visualize the density of

training data instances, a density map is computed

and rendered. For each class, the density maps of two

colors are generated separately, then the two maps

are composed on the view. Figure 6(b) shows the

result.

4.1.2 Visual exploration of the projected scatterplot

In our visual exploration, an interactive projection

control method is provided for manipulating the

direction of the selected projection. Our method

is based on Ref. [28], where the control is similar

to the trackball control in a high-dimensional data

Channel Description

Filled color

Border color
(optional)

Shape

Opacity

The input label of a training 
data instance

If the label assigned by the SVM 
is different from the input label

Whether it is a support vector

Distance to the corresponding
separating plane

Input label = -1

Input label = +1

Classified as +1
(with the input label = -1)

No Yes

Near Far

Classified as -1
(with the input label = +1)

Example

Fig. 5 Our visual encoding scheme.
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Fig. 6 Examples of projections: (a) visual encoding applied to data

points, (b) a density map composition.

space. A weight is specified first for each dimension

to determine which one is going to be manipulated,

then the user can rotate the projection plane

by dragging the mouse in the scatterplot view.

Finally the user’s mouse action is translated into a

rotation matrix and applied to the projection matrix,

thus changing the scatterplot. However, a gimbal

lock problem exists in the method, which limits

the rotation at the singular point. We improve

their method by using quaternions to compute the

rotation to avoid this issue.

To assist the user in the exploration of the

relationships between multiple projections, we offer

a view of multiple projections (Fig. 3(b)). Each

projection glyph holds a snapshot of the interesting

scatterplot inside the glyph with the projection

matrix. We define the similarity between two

projection glyphs as the Euclidean distance between

two corresponding projection matrices, i.e., ‖A1 −

A2‖2. Thus, the layout of the glyphs is determined

using a local affine multi-dimensional projection

algorithm [42]. The user can plan a rotation path

containing a sequence of projection glyphs among

the multiple projection glyphs, then a rotation

animation is generated based on interpolation

between adjacent projections along the path [27]

with a slider to control the position of the animation.

Two categories of exploration actions can be

performed to extract knowledge from the dataset and

SVM model.

Data distributions, clusters, or outliers.

Data distributions and patterns in the projections

indicate the potential location and direction of a

separating plane. The exploratory discovery of

distributions and patterns can be performed at each

stage of the analytical process. For example, before

training any SVM models, the user can explore

the training dataset to inspect boundaries between

two classes; after an SVM model is trained, data

distributions along the separating hyper-plane and

specific patterns in support vectors, such as outliers,

may illuminate the direction of further exploration,

label manipulation, or parameter tuning.

Side views of the separating hyper-plane.

When one of the basis vectors f1, f2 is equal to

the weight vector w of the SVM model, all the

sample points will be projected into a line in the

view. This can be easily proved: let f1 = w, for all

sample points with wTx + b = 0; the coordinates of

f1 are constant. We call a view under this kind of

projection matrix a side view. Figure 7 shows some

examples of a side view. Side views are useful when

investigating or validating a trained model, because:

• the boundaries of each class and gaps between

them are shown clearly in the projection;

• the distance from each data point to the hyper-

plane on a 2D plane and the actual distance

in high-dimensional data space are in the same

proportion, leading to an intuitive illustration

of the spatial relations between training data

instances and the separating hyper-plane.
A useful exploration strategy is to start from the

side view of the separating hyper-plane. The user can

rotate the projection through a small range of angles

using interactive projection control, allowing data

distributions near the hyper-plane to be displayed

and explored.

Orthogonal projection is unable to show high-

dimensional data separation which may cause

profound visual clutter. A dimension selection

view (Fig. 3(e)) is provided for filtering out non-

informative dimensions in the classification task. In

Distance between the data instance 

and the separating hyper-plane

Fig. 7 Examples of a side view.
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this view, three bar charts rank all the dimensions

of the training data instances according to three

measures: correlation coefficients between the

dimension and the class labels, signal-to-noise ratio,

and weighting by a linear SVM [43]. The user

can select the most informative dimensions, which

will be highlighted in the candidate list. After the

selection is confirmed, the projected scatterplot will

be updated to apply the changes. Dimensions that

are filtered out will not take part in the projection

process and the future model building process.

4.2 Visual local SVM building

For clarity, we use the term global model to represent

the SVM model built with the process described

in Section 4.1, which covers all the training data

instances in the dateset. A local model, on the

contrary, is trained on a selected subset of training

data instances.

4.2.1 Visual exploration of decision boundaries

Before building local SVM models, it is necessary

to perform a preliminary exploration of the decision

boundary and an evaluation of complexity. First,

it is necessary to explore the data distributions,

because the data distribution near the decision

boundaries is a strong indication of the boundary

complexity. The user can control the projection

interactively and inspect the patterns of boundaries

between pairs of classes of data points. Additionally,

the user can explore the decision boundaries guided

by the global SVM model. Although not applicable

to low prediction accuracy in complex circumstances,

the separating hyper-plane of the global SVM model

can act as a guide to the decision boundary. Training

data instances lying on opposite sides of the hyper-

plane always imply local regions containing non-

linear boundaries, or even non-classifiable areas with

mixed distributions of a pair of classes. The user can

locate the regions in the projected scatterplot, check

the patterns visually, and make further analysis.

4.2.2 Visual local model building process

Our visual local model building process extends the

previous global one in Section 4.1. The key issues are

to (i) locate regions-of-interest, and (ii) select proper

subsets of training data instances for each local SVM

model. We propose the following four steps to build

local models iteratively (see Fig. 4(b)).

Identification of regions-of-interest. The

target regions are located using the visual

exploration methods given in Section 4.2.1. It

should be pointed out that when some local models

have been created, any of them, not just the global

model, can be considered as a starting point for

visual exploration and location. Local models with

different numbers of training data instances and

ranges of coverage in high-dimensional data spaces

will provide diverse levels of details. The user can

select the starting point as desired.

Selection of training data instances. The

training data instances of a new local model can

be selected directly by user interaction in the

projection view. Moreover, we propose a hierarchical

model creation method based on split-and-merge

operations on the models created. A local model

can be split into two new ones by dividing its

corresponding training dataset into two subsets and

training two new models on each subset. The training

data instances from several models can also be

merged together. A new local model is trained on the

merged dataset to replace the existing ones. Both

operations change the level of detail, in opposite

directions. When a model is split into several

multiple ones, the details of the decision boundary

can be made more precise, while in merging, a

set of models carrying much detailed information

is replaced by a generalized model. Such level-of-

detail exploration and incremental model creation

allow the user to determine the decision boundaries

and understand the distributions.

Training. Once the parameter C is set for each

model, the newly created or updated local models

are re-trained in this step.

Validation. In this step, the training result is

validated in two ways. For a single local model, the

same validation methods for the global model are

applied; for checking relations and coverage between

multiple models, the projection rotations between

multiple models can be considered as indications of

their positions and directions.

After the local model building process is done,

the models can be employed for predicting new data

instances. A prediction algorithm is provided based

on the set of local models, where the query instances

are labeled by the nearest local SVM. Algorithm 1

gives the prediction process.
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Algorithm 1 Prediction procedure of local SVMs

Input:

The decision functions of n local SVMs, Hi(x), i =

1, . . . , n;

The training dataset of n local SVMs, Xi, i = 1, . . . , n;

The query instance, x̂.

Output:

Label of x̂, ŷi.

1: Xknn = k nearest neighbors of x̂ in
⋃

n

i=1
Xi

2: inearest = arg maxi |Xknn ∩ Xi|

3: ŷi = Hi(x̂)

4.2.3 Visualization and interactions of multiple

models

Statistical information about existing local SVM

models is displayed. In particular, a matrix is used to

encode the similarity between all models in terms of

the number of shared training data instances. Each

matrix cell (i, j) is defined as

similarity(i, j) =
#(TrSet(Hi) ∩ TrSet(Hj))

#(TrSet(Hi))

where TrSet(Hi) is the training dataset of the ith

local model. The matrix is visualized with an

opacity-modulated color (green in our system), as

shown in Fig. 3(c). The opacity of each cell is set to

its similarity.

Note that the side view best depicts the structure

of a linear SVM model, while rotating from the

side view of a local model to another can depict

the spatial relations between different models. This

is done by taking side view snapshots for each

model and creating a rotation path through multiple

projections.

4.3 Visual rule extraction

By a rule we mean a small-sized canonical subspace

of the input high-dimensional data space that may

encapsulate some domain knowledge. The subspace

is bounded by a set of dimension intervals, each of

which refers to one or several ranges of a dimension.

Thus, determining a rule is identical to specifying

one or several intervals in each dimension. Each rule

denotes a class and assigns the corresponding class

label automatically to the data instances in the rule.

As shown in the rule extraction view (see

Fig. 3(d)), we apply the flexible linked axes

method [44] to visualize the training data instance.

The positions and orientations of the dimension axes

can be arranged freely. Between pairs of axes, the

data instances are represented by parallel coordinate

(a) Selecting in the projected scatterplot 

(b) Brushing on axes

Rule glyphs

Fig. 8 Two ways of constructing rules.

plot-styled edges or scatterplot-styled dots. The

reason is that this allows the user to choose desired

dimensions based on their importance, and visualize

the data distributions in one dimension (on axis), two

dimensions (in a scatterplot), or multiple dimensions

(in a parallel coordinate plot).

The following two interaction methods are

provided for specifying classification rules.

Brushing line plots. The user directly brushes

the axis to select a range. Note that the number of

training data instances included in a range should

be maximized, as more training data instances lead

to higher confidence in the rule when classifying new

instances.

Selecting points in the projected

scatterplot. Selection of data points in the

projected scatterplot is linked in the rule extraction

view. When selecting an interesting cluster of

data instances in the projected scatterplot, the

corresponding dots or edges are highlighted, as well

as the range of their bounding-box on each axis.

After the set of selected ranges is committed, a

new rule glyph that represents the set of ranges,

i.e., the rule, is displayed. In the rule glyph, a

parallel coordinate plot is provided to summarize the

dimension intervals. The background color of the

rule glyph encodes its expected class with a unique

color. Next the user is given the option to explore

the relations between different rules for further

optimization. To express the similarity between

two rules, we use the force-direct layout based on

the Jaccard index between the sets of training data

instances in two separate rules as the similarity



EasySVM: A visual analysis approach for open-box support vector machines 171

measure. This layout enables a better understanding

of their intersecting areas. For instance, the glyphs

that are close to each other may be redundant.

5 Case study

5.1 System implementation

EasySVM is primarily implemented in JavaScript

for its front-end UI, employing D3.js as graphic

rendering library, the jQuery UI for user interface

components, and Backbone.js as the MVC

framework. For back-end computational support,

we designed a RESTful interface for communication

built on the Django Web Framework, and apply

scikit-learn as the SVM implementation.

5.2 Wall-following Robot Navigation dataset

For the Wall-following Robot Navigation dataset

[45], four moving actions (Move-Forward, Slight-

Right-Turn, Sharp-Right-Turn, and Slight-Left-

Turn) are to be determined based on the input values

from 24 ultrasound sensors (US0–US23). Given a

series of sensor values, a classifier is supposed

to be trained for predicting the best action. We

only use the data instances in Move-Forward and

Sharp-Right-Turn in our binary classification (4302

instances in total) and divide the dataset into two

parts: 50 percent as the training set, and the other

50 percent as the test set.

Data exploration. See Fig. 9(a). By default, the

initial projected scatterplot is the same as the 2D

scatterplot with only the first two dimensions (US0,

US1). The user starts from this initial projection and

performs interactive projection control by selecting

each of the other dimensions (US2–US23). While

manipulating dimension US14, a coarse gap appears

on a large branch on the right side, which indicates

a potential linear boundary. However, training data

(a)

(b)

Many misclassified
training data instances

(c)

Training result of the global SVM Global SVM

Two local SVMs

Two subsets of training data instances

Initial projection result

Initial projection result

Rough gap in the large branch

Fig. 9 Analyzing the Wall-following Robot Navigation dataset. (a) After adding the weight of projection for dimension US14, the dataset

is approximately separated into two branches in the blue and green boxes. A coarse gap appears in the large branch on the right side. (b)

The result of a global SVM model is not acceptable because too many data instances are misclassified (marked in the two red circles). When

increasing the projection weight on dimension US14, the projection result shows that the separating hyper-plane of the global SVM model is

located in a different direction to the gap found in the previous step. Two separate local models are created based on the two branches. (c)

Three classification rules are extracted based on the result of the local model built on the large branch.
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instances of different classes in a smaller branch on

the left side are overlapping, which seem impossible

to linearly separate. A snapshot is taken to support

further investigation.

Global SVM model building. See Fig. 9(b).

After preliminary data exploration, the user trains a

global SVM model with all training data instances.

However, the accuracy on the training dataset is

around 80% for various settings of parameter C,

meaning that the dataset is not linearly separable. In

the side view, a set of wrongly-classified instances is

observed, scattered near the separating hyper-plane.

Local SVM model building. See Fig. 9(b).

The user manipulates dimension US14 again to

investigate the probable boundary found earlier,

while the separating hyper-plane is located in a

different direction. Now the user decides to build

two separate models for the two branches. After

training two local SVM models, two side views show

that the two corresponding separating hyper-planes

are in different directions and give better separation

in the regions near their training datasets, which is

also indicated by the two accuracy values (around

91% for the model on the smaller branch and 94%

for the one on the larger branch). Animated rotation

between the side views of the global model and

the two local models partially depicts the relations

between three separating hyper-planes. Thus, the

global SVM model is replaced by the two local linear

ones.

Rule extraction. See Fig. 9(c). Rule extraction

operations are assisted by the two local models. The

user chooses to extract rules for the local model on

the large branch. From the weight vector of the

local model, it is obvious that dimensions US14 and

US20 dominate the direction of the separating hyper-

plane. Thus the user constructs a parallel coordinate

plot linking US14 and US20. The user brushes three

combinations of ranges on the two axes and generates

three rules.

Prediction accuracy. The global linear SVM

achieves 81% ± 1.0% prediction accuracy on the test

set, while the local SVM models achieve 88%±3.0%.

6 Discussion

In terms of non-linear SVM model building, our

approach presents an approximation method using

multiple linear models, which can be utilized as an

interpretation tool of the original training dataset

and a prediction tool for future unlabelled instances.

For example, each local linear SVM interprets the

boundary in a local area with its separating hyper-

plane, while a prediction can also be made with the

k-NN prediction algorithm.

The trade-off between complexity and

interpretability is important for building local

SVMs. Increasing the number of local linear models

will help to approximate the non-linear decision

boundary more accurately. However, it increases

the difficulty for the user to understand the decision

boundary at the same time. Meanwhile, some local

models may be redundant because they hold almost

the same information as other local models. In

addition, for a training dataset containing noise

around the decision boundary, over-fitting may

happen if some local models represent detailed

information from the noise.

One promising extension of our approach is to

improve its scalability, including the number of

training data instances as well as the number of

dimensions. For massive amounts of data, clustering

methods can be adopted before projection to reduce

the visual clutter caused by too many data points in

the 2D plane. For the dimensionality issue, we need

to design a more scalable visual dimension selection

procedure to reduce the number of dimension

candidates before projection is performed.

7 Conclusions

In this paper, we have proposed a novel open-box

visual analysis approach for building SVM models.

The user can perform visual exploration of the

dataset and the relations between data instances

and SVM models. Meanwhile, a visually-enhanced

local linear model building approach is dedicated to

expanding the traditional linear SVM to deal with

non-linear decision boundaries. Finally we provide a

visual rule extraction method to enable the user to

retrieve classification rules from the model building

results.
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from support vector machines. In: Proceedings of the

European Symposium on Artificial Neural Networks,

107–112, 2002.
[10] Schölkopf, B.; Smola, A. J. Learning with

Kernels: Support Vector Machines, Regularization,

Optimization, and Beyond. MIT Press, 2002.
[11] Ladicky, L.; Torr, P. Locally linear support vector

machines. In: Proceedings of the 28th International

Conference on Machine Learning, 985–992, 2011.
[12] Ganti, R.; Gray, A. Local support vector

machines: Formulation and analysis. arXiv preprint

arXiv:1309.3699, 2013.
[13] Baesens, B.; Gestel, T. V.; Viaene, S.; Stepanova,

M.; Suykens, J.; Vanthienen, J. Benchmarking state-

of-the-art classification algorithms for credit scoring.

Journal of the Operational Research Society Vol. 54,

No. 6, 627–635, 2003.

[14] Wahba, G. Support vector machines, reproducing

kernel Hilbert spaces, and randomized GACV. In:

Advances in Kernel Methods. Schölkopf, B.; Burges,

C. J. C.; Smola, A. J. Eds. Cambridge, MA, USA:

MIT Press, 69–88, 1999.
[15] Hsu, C.-W.; Chang, C.-C.; Lin, C.-J. A practical guide

to support vector classification. 2016. Available at

http://www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide.

pdf.
[16] Mangasarian, O. L.; Wild, E. W. Proximal support

vector machine classifiers. In: Proceedings of KDD-

2001: Knowledge Discovery and Data Mining, 77–86,

2001.
[17] Maji, S.; Berg, A. C.; Malik, J. Classification using

intersection kernel support vector machines is efficient.

In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 1–8, 2008.
[18] Blanzieri, E.; Melgani, F. An adaptive SVM nearest

neighbor classifier for remotely sensed imagery. In:

Proceedings of the IEEE International Symposium on

Geoscience and Remote Sensing, 3931–3934, 2006.
[19] Yin, C.; Zhu, Y.; Mu, S.; Tian, S. Local support vector

machine based on cooperative clustering for very large-

scale dataset. In: Proceedings of the 8th International

Conference on Natural Computation, 88–92, 2012.
[20] Barakat, N. H.; Bradley, A. P. Rule extraction

from support vector machines: A sequential covering

approach. IEEE Transactions on Knowledge and Data

Engineering Vol. 19, No. 6, 729–741, 2007.
[21] Fung, G.; Sandilya, S.; Rao, R. B. Rule extraction

from linear support vector machines. In: Proceedings

of the 11th ACM SIGKDD International Conference

on Knowledge Discovery in Data Mining, 32–40, 2005.
[22] Caragea, D.; Cook, D.; Wickham, H.; Honavar, V.

Visual methods for examining SVM classifiers. In:

Visual Data Mining. Simoff, S. J.; Böhlen, M. H.;
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