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Abstract 

Rapid developments in radio technology and processors have led to the emergence of small sensor nodes that provide 

communication over Wireless Sensor Networks (WSNs). The crucial issues in these networks are energy consumption 

management and reliable data exchange. Due to the limited resources of sensor nodes, WSNs become a vulnerable target against 

many security attacks. Thus, energy-aware trust-based techniques have become a powerful tool for detecting nodes’ behavior 

and providing security solutions in WSN. Clustering-based routings are one of the most effective methods in increasing the WSN 

performance. In this paper, an Energy-Aware Trust algorithm based on the AODV protocol and Multi-path Routing approach 

(EATMR) is proposed to improve the security of WSNs. EATMR consists of two main phases: firstly, the nodes are clustered 

based on the Open-Source Development Model Algorithm (ODMA), and then in the second phase, clustering-based routing is 

applied. In this paper, the routing process follows the AODV protocol and multi-path routes approach with considering energy-

aware trust. Here, the optimal and safe route is determined based on various parameters, namely energy, trust, hop-count, and 

distance. In this regard, we emphasize the evaluation of node trust using direct trust, indirect trust, and a multi-objective function. 

The simulation has been performed in MATLAB software in the presence of a Denial of Service (DoS) attack. The simulation 

results show that EATMR performs better than other approaches such as M-CSO and SQEER in terms of successfully detecting 

malicious nodes and enhancing network lifetime, energy consumption, and packet delivery ratio. 

 

Keywords  WSN, Trust, Energy-aware, AODV protocol, ODMA, Multi-path Routing. 

 

 

1 Introduction 

The wireless sensor networks (WSNs) consist of a large 

number of distributed sensor nodes and often a sink node (base 

station) that interacts with the environment through sensing 

physical parameters [1]. These nodes can be used to measure 

temperature, pressure, humidity, salinity, etc. WSNs are 

widely used in many fields such as intelligent transportation, 

smart cities, environmental monitoring, smart agriculture, and 

healthcare [2]. These networks have certain specifications and 

limitations which differentiate them from other networks. The 

location of the sensor nodes is not necessarily determined in 

advance. This feature might lead to distributing some of the 

nodes in dangerous or inaccessible environments. That is to 

say that WSN-based protocols and algorithms need to bear a 

self-organization capability [3, 4]. The self-organization 

capability for sensor nodes is important in order to meet 

network application and management requirements. This 

means that the sensor nodes need to be able to organize 

themselves within a network and subsequently be able to 

control and manage themselves efficiently [4]. 

Nodes in WSN rely on batteries that are limited in terms of 

energy, rechargeability, and replaceability [4-6]. In addition, 
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they have limitations such as storage, memory, processing, 

radio range and bandwidth. WSNs use radio signals to 

exchange data over the network, which highlights the 

importance of routing algorithms in energy consumption and 

network lifetime. Routing algorithms can specify the route for 

transmitting data packets from source to destination, where 

routing can be single-hop or multi-hop. Single-hop data 

transmission over a long distance consumes more energy than 

multi-hop data transmission over the same distance with 

shorter steps. Accordingly, data transmission is done based on 

clustering approaches through which only nodes with the 

Cluster Head (CH) role are responsible for exchanging data to 

the sink. Therefore, after the clustering is done, each node 

transmits data directly toward its CH and it. CHs can transfer 

data received from member nodes as a packet to a sink or a 

neighboring node [7]. Therefore, clustering-based routing in 

addition to multi-hop transmission can make it possible to 

remove additional data, as well as compressing and 

aggregating data. So far, various clustering-based routing 

algorithms have been proposed in WSN [4-6], but it is 

important to establish a safe route before performing routing. 

One of the effective tools to create a safe route is to use trust 

measuring techniques. 
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In the concept of trust, the difference between trust and 

security is important, even if they are sometimes used 

interchangeably to describe a safe system [8]. Measuring trust 

between nodes is often to assess the reliability of other nodes. 

Therefore, in addition to trust, other security mechanisms such 

as intrusion detection and firewalls should be implemented to 

increase network security. Misbehavior in WSNs is perceived 

in many forms such as packet loss, data restructuring, sending 

spurious packets, creating fake nodes, and so on. Therefore, 

the WSN must be able to quickly and accurately identify 

security breaches. Due to the inherent nature of sensor 

participation in WSN, malicious nodes change state well and 

attack to network resources. Therefore, how to select 

participating nodes in data transmission is very important to 

increase efficiency [9]. Trust models are a reliable tool to 

achieve this purpose. These models can help nodes to identify 

malicious behaviors as well as appropriate decision-making 

[10]. Due to the importance of trust in WSN and limitations 

such as energy, storage, memory and processing, the problem 

of measuring trust for nodes has been raised [8, 10]. 

Accordingly, the provision of scalable trust models based on 

these limitations is of particular importance. In this paper, a 

distributed trust model is proposed in which nodes use direct 

and indirect techniques to measure trust, so that each node 

stores only the trust values of its neighboring nodes. As a 

result, this way of measuring trust and distribution makes the 

model scalable. 

Many factors such as distance and energy affect the 

clustering of nodes. The amount of trust can also be 

considered as an important factor [11]. Meanwhile, most 

algorithms do not consider the trust factor for clustering and 

CHs selection [12]. Some algorithms use techniques such as 

cryptography and authentication to provide security on WSNs. 

In general, these techniques have poor connectivity and high 

computational overhead, which complicates the network [10]. 

Therefore, the need to provide an energy-aware trust 

technique with minimum complexity and overhead is essential 

to improve WSN security. Accordingly, we have developed a 

centralized clustering method based on optimization 

techniques to improve the routing process. EATMR uses 

ODMA and a multi-objective function to clustering and CHs 

selection. In this paper, the routing process is based on the 

AODV protocol and the multi-path routes approach. In AODV 

protocol based on multi-path routes, route request packet is 

sent from multiple routes to the destination, which leads to the 

discovery of different routes. Here, the optimal and safe route 

is determined based on various parameters such as energy, 

trust, hop-count and distance. Due to this routing process and 

how to measure trust, the proposed method is named as 

EATMR (Energy-Aware Trust based on the Multi-path 

Routing). 

The main contributions of this paper are summarized as 

follows: 

 Development of a clustering-based routing algorithm 

based on an energy-aware trust mechanism 

 Selection of safe nodes for routing based on a hybrid 

trust model 

 Using the ODMA for clustering and selecting CHs 

 Development of AODV routing protocol based on 

multi-path routes technique 

The rest of this paper is organized as follows: Section 2 

provides an overview of the challenges of WSN, ODMA, 

AODV protocol, and the energy model. Section 3 is devoted 

to literature review. Details of the proposed EATMR scheme 

are described in Section 4. Section 5 describes the results of 

the simulations and comparisons, and finally, Section 6 

summarizes the conclusion of the paper and presents future 

work. 

 

 

2 Background 

In this section, we first review the challenges of WSN. ODMA 

is then introduced as an evolutionary algorithm used in this 

paper for clustering. After that, the details of the AODV 

protocol that we use for routing are described. Finally, the 

energy consumption model used in this study is expressed. 

 
2.1 Challenges in WSN 

In general, there are many challenges in WSN, among which 

this paper mainly has focused on the trust problem. However, 

other challenges such as setup, clustering, CHs selection, and 

routing must be emphasized to make the network operational 

[5]. Some of the most important challenges of WSN are shown 

in Fig. 1, where the challenges studied in this paper are 

identified. Challenges such as energy consumption and 

network lifetime are often considered as objectives and 

evaluation metrics, while improving other challenges such as 

clustering and routing can improve them [1]. 

 

 
Fig. 1. Challenges of WSN along with the challenges examined 

 

2.2 ODMA 

In recent years, several meta-heuristic optimization algorithms 

have been developed to solve complex real-world problems 
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[14]. The two main categories of these algorithms are swarm 

intelligence and evolutionary. There are many benefits to 

using both algorithms without the hassle of combining them. 

The open-source development model algorithm (ODMA) is a 

novel meta-heuristic algorithm that takes advantage of the 

combination of both categories [14]. ODMA considers each 

solution as an open-source software and evolves inspired by 

the open development model and user communities. 

Over time, some software packages become the leading 

software (software that is more popular in user communities) 

or show a promising approach, and others may not be 

sufficiently developed and removed. In the open-source 

world, a promising software utilizes the efficient approaches 

of leading software to gain a better position in society. 

Approaching a leading software does not guarantee that a 

promising software will achieve a better position, so 

promising software may be in a better or worse position in 

society. In general, the main operations of this algorithm 

include (1) moving towards leading software, (2) evolving 

leading software based on its history, and (3) branching out 

from leading software [14]. 

 

2.3 AODV protocol 

One of the main routing protocols in WSNs is Ad-hoc On-

Demand Distance Vector (AODV) [15]. In this protocol, each 

node has a routing table, so that in this table the routes of all 

nodes in the network along with the distance to them are 

stored. This protocol uses control packets of Route Request 

(RREQ), Route Response (RREP) and Route Error (RERR) to 

determine the appropriate route [15]. RREQ, RREP, and 

RERR represent the destination sequence number, hop-

counts, and route failure, respectively. In general, routing in 

the AODV protocol involves two processes: route discovery 

and route maintenance. 

In the route discovery process, the source node broadcasts 

the RREQ packet to its neighbors. Each of the neighboring 

nodes that has an active route between the source and the 

destination in its routing table, notifies the source by sending 

an RREP packet. Otherwise, each node broadcasts the RREQ 

packet to its neighbors. This process is repeated until the 

RREQ reaches the destination or an intermediate node of an 

active route to the destination with a sequence greater than or 

equal to the RREQ sequence. After completing the RREQ 

broadcast step, the RREP is sent from the destination node in 

the reverse-routes of the intermediate nodes to the source 

node. When a node loses connectivity to its next hop, the node 

invalidates its route by sending an RERR to all nodes that 

potentially received its RREP. In the maintenance process, 

each node can inform its neighbors using a local broadcast, 

which is called Hello packets [15]. The routing process in the 

AODV protocol is as shown in Fig. 2. 

 

 
Fig. 2. Routing process in AODV protocol 

 
2.4 Energy model 

In this paper, the first order communication mode is used to 

energy management in the use of sensor nodes [5, 10]. In this 

model, the energy consumption for the transmitter and 

receiver nodes is defined according to Fig. 3. 

 

 
Fig. 3. First order communication mode 

 

A packet consisting of 𝑏 bits is transmitted between the 

transmitter (𝑇𝑥) and the receiver (𝑅𝑥) at a distance of 𝑑 meters 

based on the energy 𝐸𝑇𝑥 . The transmission energy for the 

transmitter node is defined by Eq. (1). 𝐸𝑇𝑥 = 𝑏 × 𝐸𝑒𝑙𝑒𝑐 + 𝑏 × 𝜀𝑎𝑚𝑝 × 𝑑𝜆 (1) 

Where, 𝐸𝑒𝑙𝑒𝑐  is the energy consumed by the transmitter 

circuitry for one bit and 𝑏 × 𝐸𝑒𝑙𝑒𝑐  is the energy required by the 

transmitter to propagate a packet with 𝑏 bits. 𝜀𝑎𝑚𝑝 is the 

energy of the transmitter signal amplifier over the distance, 

and 𝜆 represents the route drop constant, so that 𝜆 = 2 is 

related to free space propagation model and 𝜆 = 4 is related 

to the multi-path fading propagation model.  

The value of 𝜆 is determined depending on the transmission 

distance 𝑑 relative to the threshold distance 𝑑0 [5, 10], which 

is usually considered based on Eq. (2). 

𝑑0 = √𝜀𝑓𝑠 𝜀𝑚𝑝⁄  (2) 

In addition, the energy required to receive 𝑏 bits of data by 

the receiver are calculated according to Eq. (3). 𝐸𝑅𝑥 = 𝑏 × 𝐸𝑒𝑙𝑒𝑐 (3) 

Accordingly, the energy required to transfer data between 

nodes 𝑠𝑖 and 𝑠𝑗 (i.e., the transmission cost of the connection) 

is denoted by 𝑒𝑖,𝑗, as shown in Eq. (4). 𝑒𝑖,𝑗 = 𝐸𝑇𝑥(𝑖) + 𝐸𝑅𝑥(𝑗) (4) 

In this paper, the parameters of the energy model are 

adjusted according to [5, 10]. Therefore, the size of the data 

packets is 4 𝐾𝐵, the size of the Hello packets is 25 𝐵, the 

initial energy of the nodes is 0.2 𝐽, the energy required to sense 
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a bit of data from the environment is 5 × 10−9 𝐽/𝐵, the energy 

required to aggregate, compress and build a packet for each 

bit is 5 × 10−9 𝐽/𝐵, and the energy required for a node to 

awake (changing the state from sleep to wake) is 2 𝑛𝐽. In 

addition, 𝐸𝑒𝑙𝑒𝑐  is set to 50 𝑛𝐽/𝐵 and 𝜀𝑚𝑝 to 100 𝑝𝐽/𝐵/𝑚2. 

 

 

3 Literature review 

In this section, the research literature related to the problem of 

trust in WSN is reviewed and then the limitations and research 

gap are discussed. The structure of this section is similar to 

approach as [16]. In general, studies on the trust in WSN are 

often summarized based on various fields such as trust model, 

trust management system, and protocol optimization [17]. A 

classification of trust-related works is provided in Fig. 4. 

 

 

Fig. 4. Classification of trust-related works in WSN 

 

3.1 Trust model 

The trust model provides a reliable communication 

management mechanism between nodes through which safe 

nodes can be trusted to participate in the routing process. 

Extensive research has been proposed in the literature to 

design trust models in the WSN, some of which are discussed 

below. 

Gilbert et al. (2018) developed a Time Series Trust Model 

(TSTM) based on Trust-based Auto Regressive (TAR) and 

Toeplitz matrix for WSNs [18]. The performance of TSTM 

has been proven to identify malicious nodes based on 

reconstruction and aggregation against three different attack 

types. In this model, data reconstruction is performed based 

on the Basis Pursuit algorithm, which provides the best 

performance against bad-mouthing attack. Ghugar et al. 

(2019) introduced a Layer trust-Based Intrusion Detection 

System (LB-IDS) to improve the security of WSNs [19]. This 

model uses the standard deviation of trust in each layer on 

attacks to measure trust. LB-IDS can defend against sinkhole 

attack in network layer, back-off manipulation attack in MAC 

layer and jamming attack in physical layer.  

Zhao et al. (2019) proposed an Exponential-based Trust and 

Reputation Evaluation System (ETRES) for WSN [20]. 

ETRES uses the exponential distribution and interactions of 

nodes in the network to measure the trust of nodes. In this 

system, the entropy method is used to estimate the uncertainty 

of direct trust scores. Also, indirect trust is measured when the 

uncertainty of direct trust is relatively high. In addition, 

ETRES updates trust scores at various rounds to reduce the 

detrimental effects of malicious nodes. Kalidoss et al. (2020) 

developed the QEER (QoS aware Energy Efficient Routing) 

protocol and introduced the SQEER (Secured QoS aware 

Energy Efficient Routing) protocol [21]. QEER considers 

reliability over QoS and does not focus on security or latency. 

SQUIER provides reliability according to QoS, trust modeling 

and key-based authentication. In addition, SQEER performs 

routing based on the clustering technique and selects CHs 

based on security factors. 

Wu et al. (2019) proposed a Beta and LQI based Trust 

Model (BLTM) for WSN [22]. LQI is known as a link quality 

indicator and is used to stabilize the nodes trust with poor-

quality links. Therefore, BLTM considers the adverse effect 

of poor-quality links on the trust score to measure direct trust. 

Here, direct trust is measured based on energy, 

communication, and data, and then the weight of each factor 

is discussed. Anwar et al. (2019) proposed a Belief based Trust 

Evaluation Mechanism (BTEM) for WSN [23]. BTEM uses 

Bayesian belief to detect malicious nodes. Bayesian belief 

uses more of the data collected over time to measure direct and 

indirect trust. BTEM defends WSN well against DoS, On-Off 

and Bad-mouth attacks. Nie (2019) presented a Trust model of 

Dynamic optimization based on entropy (Trust-Doe) for 

WSNs [24]. This model groups the nodes based on the degree 

of global trust. Then, it uses the entropy method to determine 

the weight of the node in each group. Trust-Doe can measure 

and update the local trust score of nodes using the group local 

evaluation standard deviation and entropy values. Although 

this model improves the ability to detect malicious nodes, it 

does not take into account energy consumption. 

 

3.2 Trust management system 

Trust management systems in WSNs use behaviors and 

interactions between nodes in the network to identify 

malicious nodes and measure distributed trust scores. The 

reason for using the distributed policy for measuring trust in 

such systems is the limitations of the sensor nodes. Therefore, 

these systems have the advantages of scalability and flexibility 

in considering behaviors and interactions. There are several 

works in the literature that have presented trust management 

systems, some of which are discussed below. 

Jinhui et al. (2018) proposed an Intrusion Detection System 

based on Energy Trust (IDSET) for DoS combined attacks on 

the WSN [25]. The system can detect network intrusion using 

energy-aware trust and node energy analysis. The authors 

present an energy series correlation study based on the energy 

consumption prediction that can effectively reduce the impact 

of DoS combined attacks on network traffic. Firoozi et al. 

(2018) proposed a hierarchical trust management model for 

distributed WSN in which the network area is divided into 

cells of equal size [26]. This scheme is known as DiSLIP 

(Distributed Subjective Logic-based In-network data 
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Processing). This model generates reliable nodes based on 

interactions between nodes and considers temporal and spatial 

correlations. It also uses a subjective logic-based scheme to 

measure trust. In addition, this study proposes an energy 

saving mechanism to increase network reliability. 

Janani and Manikandan (2018) propose a public key 

infrastructure (PKI) model for mobile ad hoc networks 

(MANETs) [27]. This model is known as JANANI and uses 

the Bayesian theorem in hexagonally clustered MANET to 

measure the distributed trust score. Thus, JANANI provides 

an effective security approach based on distributed trust and 

hierarchical clustering for WSN. Sahoo et al. (2018) proposed 

a lightweight trust management model based on punishment 

and reward policy called GATE [28]. GATE uses a dynamic 

time sliding window mechanism to counteract various attacks 

and measure the trust scores. GATE detects malicious nodes 

more quickly and requires fewer resources than similar 

schemes. The disadvantage of this scheme is the lack of use of 

recommendations to measure trust, which has led to a decrease 

in efficiency against bad-mouthing attacks. 

 

3.3 Protocol optimization 

There are many approaches in the literature of protocol 

optimization in WSN that focus mainly on the two fields of 

trust management protocol and security optimization for 

routing. Most routing protocols in WSNs are based on 

clustering, known as Hierarchical Routing Protocols (HRPs) 

[10]. HRP uses intermediate nodes and multi-hop routing 

instead of sending data directly to the sink. To do so, HRP 

forms clusters and transmits data through CHs. In this 

subsection, some new methods related to protocol 

optimization are discussed. 

Patil et al. (2020) used the Monarch-Cat Swarm 

Optimization (M-CSO) algorithm for routing work in WSN 

[29]. M-CSO provides a trust-based opportunistic routing 

framework using hybrid optimization. M-CSO is a 

combination of Monarch Butterfly Optimization (MBO) and 

Cat Swarm Optimization (CSO). In this algorithm, first the 

safe nodes are selected based on the tolerant constant 

mechanism and then the opportunistic nodes are selected from 

the safe nodes. The tolerance constant is modeled based on the 

parameters of trust, connectivity and QoS. M-CSO provides 

the ability to detect and defend against DoS and Blackhole 

attacks by developing trustworthy and adaptive routing. Khan 

et al. (2020) proposed an Energy-aware Trust-based Efficient 

Routing Scheme (ETERS) for WSNs [30]. ETERS is a 

realistic multi-trust, comprehensive, and scalable model for 

dealing with internal attacks on WSNs that emphasizes beta 

distribution strength and weighting methods. The scheme uses 

a flexible penalty coefficient to prevent attacks according to 

the needs of the network. ECHSA measures the trust score 

with a trust-based attack detection algorithm (TADA) 

algorithm based on the parameters of ID, triple trust and 

location. In addition, ECHSA proposes an efficient CH 

selection algorithm that can maintain load balance for routing.  

Sun and Li (2017) proposed a comprehensive trust-aware 

routing protocol for WSN that uses attributes such as energy, 

communication, data, and recommendation [31]. The scheme 

is called TRPM (Trust-aware Routing Protocol with Multi-

attributes), which uses an improved sliding time window 

according to the frequency of attacks to identify attackers. The 

simulations show that TRPM increases the average packet 

delivery rate by about 19% compared to similar protocols. 

Wang et al. (2018) proposed an Energy-efficient Trust 

Management and Routing Mechanism (ETMRM) for 

software-defined networking based WSN [32]. In ETMRM, 

the SensorFlow table is first developed to implement the trust 

monitoring and evaluation plan, and then malicious nodes are 

identified based on the measured trust scores. In addition, the 

authors proposed an efficient message aggregation scheme to 

reduce energy consumption and increase the reliability of data 

exchange. Mehetre et al. (2019) proposed a Trustable and 

Secure Routing Scheme (TSRS) using a two-step security 

mechanism that aims to combat internal attacks in the WSN 

[33]. TSRS uses active initiative trust to ensure routing 

protocol and cuckoo search to identify reliable route. This 

scheme also ensures an increase in network lifetime. 

 

3.4 Limitations and research gap 

In general, the most highlighted limitation of trust 

management studies in WSNs is the lack of hardware and 

complex configuration of models for simulating large 

networks (networks with a high number of nodes). In addition, 

this limitation is mentioned in most similar studies, and the 

authors perform simulations only for small networks. In this 

regard, according to the simulation results in this paper, it can 

be predicted that the results will be similar for large networks. 

In general, WSN security research often focuses on areas 

such as defend against attacks, identify malicious nodes, and 

trust management. Malicious nodes can be identified in a 

timely manner by optimally computing the trust score. There 

are many parameters for computing the trust score that have 

been used in various studies, as discussed in the previous three 

subsections. As a conclusion, not all parameters in all works 

are considered to measure trust. This can be due to the 

complexity of measuring trust in WSNs with many 

parameters. In addition, there are many internal attacks on 

WSNs that can be referred to as DoS, bad-mouthing, 

collusion, on-off, sinkhole, blackhole, conflicting behavior 

and data forgery [16], where all studies consider some of these 

attacks to measure trust. Therefore, it is not necessary to use 

all the available parameters to measure trust in WSNs.  

However, we try to reduce the computational complexity 

and counter more attacks by considering some appropriate 

parameters for measuring trust. Howbeit, the simulation for 

the proposed scheme (i.e., EATMR) was performed only in 

the presence of a DoS attack, however, according to the 



6 

parameters considered to measure trust, this scheme has the 

ability to defend against various attacks such as bad-mouthing, 

on-off, sinkhole and blackhole. Table 1 summarizes the 

differences between the EATMR and the literature review 

based on the trust measurement parameters, and Table 2 shows 

this comparison for a set of internal attacks that works can 

defend against. 

 

Table 1. Comparison between our work and existing works for the trust measurement problem in WSNs 

Parameters 
Trust schemes 

Authentication Latency Traffic QoS Energy Connectivity Behavior Interaction 

× √ × √ × × √ √ TSTM 

× × × × × √ √ × LB-IDS 

× √ √ × √ × √ × ETRES 

√ × × √ × × √ √ SQEER 

× × √ × √ √ √ √ BLTM 

× √ √ × × × √ √ BTEM 

× √ × × × √ √ × Trust-Doe 

× × √ × √ × × √ IDSET 

× √ × √ √ × √ √ DiSLIP 

√ × × × × √ × √ JANANI 

× √ √ √ × × √ × GATE 

× × × √ × √ × √ M-CSO 

× × × × √ √ √ √ ETERS 

× × × √ √ √ √ √ TRPM 

× × × √ √ × × √ ETMRM 

× × √ × × √ √ √ TSRS 

× √ × √ √ √ √ √ EATMR 

Note: ‘√’ indicates the use of a parameter to measure the trust score and ‘×’ indicates not to use that parameter. 

 

Table 2. Comparison between our work and existing works based on the type of attacks detectable in WSNs 

Parameters 

Trust schemes 
Data forgery 

Conflicting 

behavior 
Blackhole Sinkhole On-off Collusion Bad-mouthing DoS 

√ × × × × × √ √ TSTM 

- × - √ + × - × LB-IDS 

- - × × √ √ × × ETRES 

- × √ - - - × √ SQEER 

√ - + - - × × √ BLTM 

× - - - √ - + √ BTEM 

- × × × × √ - × Trust-Doe 

× - × - - - - √ IDSET 

- × - - - - √ - DiSLIP 

- - √ √ × × × - JANANI 

× × - × √ × √ × GATE 

- × √ × - - + √ M-CSO 

- - √ √ - × × + ETERS 

+ + √ √ - - × + TRPM 

- × √ √ × × - × ETMRM 

× × √ × × × × × TSRS 

- + √ √ √ + √ √ EATMR 

Note: ‘√’ indicates the ability to defend against attack. ‘+’ indicates the ability to detect an attack. ‘-‘ indicates that it is unknown to the attack and ‘×’ indicates 

inability to detect and defend against the attacks. 

 

 

4 EATMR scheme 

Due to the complexity and high cost of WSN design, it is 

necessary to simulate and evaluate the network protocols 

before implementation. The purpose of the simulation is to 

discover new ideas faster under different conditions. So far, 

many routing protocols have been introduced to increase  
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Fig. 5. EATMR architecture 

 

security in WSN [31-33]. In this paper, an Energy-Aware 

Trust-based Multipath Routing (EATMR) scheme is proposed 

to improve security in WSN. EATMR is expressed in four 

main phases: (1) topology configuration and network setup, 

(2) determine safe nodes, (3) clustering and CHs selection, and 

(4) clustering-based routing.  

Safe nodes are determined in the second phase, which uses 

energy, connectivity and trust parameters. The third phase is 

related to the clustering and CHs selection, for which we use 

ODMA. In general, clustering is an effective way to reduce 

energy consumption in WSN that can extend network 

lifetime. 

  

In addition, nodes in WSN are susceptible to many 

security attacks, and the safe selection of CHs can improve 

WSN security. Hence, CHs in EATMR are selected based on 

a safety level. Finally, clustering-based routing is performed 

in the fourth phase, where only secure nodes will be involved 

in routing. The EATMR is based on an energy-aware trust 

routing algorithm that uses the AODV protocol and the multi-

path routes approach. The proposed routing algorithm 

analyzes all the routes detected by AODV based on a hybrid 

fitness function and then selects the optimal route to send data 

to the sink. The EATMR architecture is shown in Fig. 5. 

 

4.1 Network setup 

This study is designed in a small simulation environment in 

the range of 𝑀 × 𝑀 meters. The network topology consists of 

three types of nodes: normal node, malicious node and sink 

node. Normal nodes sense environment data and transfer it to 

the sink. Malicious nodes are also a type of normal node that 

has been attacked by DoS [17].  

From a topological point of view, the network consists of 𝑁 nodes whose node 𝑖 is represented by 𝑠𝑖. The placement of 

nodes in the environment is done randomly with a uniform 

distribution and the locations are fixed until the end of the 

simulation. From a communication point of view, each node 

has a limited radio range. The radio range of all nodes is the 

same and is determined by the distance 𝑑0. Therefore, the 

power of data exchange between two nodes is limited to 𝑑0. 

Sensor nodes are location-aware, i.e., equipped with a global 

positioning system (GPS). Therefore, the sink can calculate 

the distance between nodes with the Euclidean relation [1], 

which is used here to show the distance between nodes 𝑠𝑖 and 𝑠𝑗 of 𝑑𝑖,𝑗. Also, each node such as 𝑠𝑖 has limited energy which 

is indicated by 𝑒𝑖. Meanwhile, the sink has an unlimited 

amount of energy. 

Other hypotheses considered in the proposed scheme are as 

follows: 

 The behavior of the nodes is analyzed based on the 

packets sent and received between them. 

 Malicious nodes cannot communicate with each 

other. 

 The size of all Hello packets is the same, and this 

hypothesis also exists for data packets. 

 The sensed information is the same in all nodes and 

the aggregation function in CHs is calculated based 

on the average of the values. 

 Each node sends data to its CH according to the 

TDMA (Time-Division Multiple Access) scheduling 

and sleeps until the beginning of the next timeslot. 

After the nodes are completely deployed, the sink clusters 

the nodes and selects the appropriate CHs. It then notifies each 

node of its role by sending Hello packets. This is repeated by 

the sink if there is a change in clustering and CHs. In certain 

timeslots, each node sends the remaining energy and trust of 

its neighbors to its CH, and the CH also sends them to the sink. 

Therefore, the sink is aware of the trust and energy of all nodes 

and can use it to cluster nodes and select CHs. Each node, in 

addition to its internal memory, has a neighbor table and a 

routing table. In the memory of each node, in addition to the 

remaining energy, the parameters needed to measure the trust 

are also stored, where these parameters are sent to the nodes 

by the sink. 

Each node in certain timeslots measures the direct trust 

score of all its neighbors. It then sends the trust scores along 

with its residual energy to all neighboring nodes. Each node 

creates/updates its own neighbor table by receiving a Hello 

packet from a neighboring node. An example of a neighbor 

table structure is shown in Fig. 6. In this table, ‘NodeID’ 
contains the ID of the neighboring nodes, and each neighbor 

has an ‘ExpireTime’. ‘Energy’ refers to the amount of energy 
remaining in the neighboring node. ‘Turst’ and 
‘Recommended trust’ refer to the trust score and the 
recommended trust score for each neighbor, respectively. 

‘Safe’ with a binary value indicates the reliability of 

neighboring nodes, where nodes with a value of 1 are reliable 

and can participate in routing. The process of determining safe 

nodes is described in the next section. 

Trust fields are used to estimate indirect trust. Since not all 

neighbors of the two nodes are common, each node only stores 

its neighbors’ information in the routing table and does not 

consider the information received for the other nodes. In 

addition, due to the existence of common neighbor nodes, a 

Routing based 

on AODV 

protocol and 

multi-path 

routes using 

ODMA 

Clustering and Network 

Determine 

safe nodes 
Energy 

Connect

ivity 

Trust 

Energy 

Trust 

Distanc

Hop-
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node may receive more than one trust score for some of its 

neighbors. In this case, the trust score for these nodes is 

measured as the average. For example, let 𝐺 be a complete 

graph with a set of nodes {𝑎, 𝑏, 𝑐, 𝑑}. For a node such as 𝑑, the 

data received from nodes 𝑎, 𝑏, and 𝑐 are 𝑎 = [𝑒𝑎 = 0.1, 𝑇𝑏 =0.3, 𝑇𝑐 = 0.5, 𝑇𝑑 = 0.4], 𝑏 = [𝑒𝑏 = 0.15, 𝑇𝑎 = 0.5, 𝑇𝑐 =1, 𝑇𝑑 = 0.3], and 𝑐 = [𝑒𝑐 = 0.05, 𝑇𝑎 = 0.7, 𝑇𝑏 = 0.4, 𝑇𝑑 =0.6], respectively, where 𝑒 refers to energy and 𝑇 refers to 

trust. Since the data is sent to node 𝑑, 𝑇𝑑 is the recommended 

trust score to d by the sender node. Accordingly, the neighbor 

table of node d is based on Fig. 6. Here, the expire time for the 

neighborhood is 10 rounds. 

 

 
Fig. 6. Neighbors table structure 

 

Due to the use of AODV protocol for routing, routing tables 

are managed according to the policy of this protocol [34]. The 

AODV protocol needs to have the following information 

inside each of the routing table inputs: NodeID destination, 

destination sequence number, hop-count to destination, 

NodeID neighboring nodes for next-hop in route, route 

validity period, a list of other neighbors participating in this 

route, a buffer to ensure reviewing the route requests. In this 

paper, in addition to these fields, connectivity and distance are 

also stored in the routing table. We will use connectivity to 

compute the safety level of the nodes and distance to 

determine the optimal route. Based on these fields, the route 

between nodes is searched by the AODV protocol. A route is 

retained in the routing table as long as it is required during a 

route maintenance procedure. Therefore, routing tables are 

created dynamically on demand. 

 

4.2 Identifying safe nodes 

In EATMR, the safe nodes are determined based on the 

parameters of energy, connectivity and trust score, and the 

routing process is performed based on them. Energy and 

connectivity are available through neighbor and routing 

tables, respectively, and the trust score is measured as 

distributed by each node. Safe nodes are detected/updated at 

specific timeslots (for example, each 𝜃𝑆𝑁 routing round). Let 𝑆𝑉𝑗 be the safety level of node 𝑗. The trust score for all nodes 

is initially set to 1, so all nodes are safe in the first round. 

However, after analyzing the behavior of the nodes, the energy 

and the trust score for the nodes change and the safe nodes 

must be determined with a threshold. The EATMR uses the 𝜃𝑀𝑁 threshold to isolate safe and malicious nodes. Therefore, 

the ‘Safe’ field of the routing table is calculated based on Eq. 

(5). 

𝑆𝑎𝑓𝑒𝑗 = {0 𝑆𝑉𝑗 < 𝜃𝑀𝑁1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (5) 

Where, 𝑆𝑉𝑗 is computed based on the parameters of energy, 

connectivity and trust score, as shown in Eq. (6). Due to the 

difference between the type of parameters, the scale of all 

parameters is normalized between 0 and 1. In addition, each 

node is not allowed to compute its own safety level and can 

only compute the safety level of its neighboring nodes. 

Therefore, 𝑆𝑉𝑗 is computed by the neighboring nodes of 𝑠𝑗. 

𝑆𝑉𝑗 = 13 [𝐸𝑗 + 𝐶𝑗 + 𝑇𝑗] (6) 

Where, 𝐸𝑗, 𝐶𝑗 and 𝑇𝑗 are the energy rate, connectivity and trust 

score of 𝑠𝑗, respectively, which are discussed below. 

Energy rate: In most attacks such as DoS, Gray-hole, Sink-

hole and Black-hole, the malicious node shows itself as a node 

with high resources (memory, energy, etc.) [12]. Therefore, it 

is important to consider energy to determine safe nodes. In 

general, the energy rate is high when the energy of a node is 

less than that of the node with the most energy. Accordingly, 𝐸𝑗 is calculated by Eq. (7). 𝐸𝑗 = 𝐸0 − [𝑒𝑚𝑎𝑥 − 𝑒𝑗] (7) 

Where, 𝐸0 is the initial energy of the nodes, 𝑒𝑚𝑎𝑥 is the node 

with the most energy and 𝑒𝑗 is the energy of the 𝑗-th node. 

Connectivity: A fully-connected network can ensure safe 

data transfer [35]. Connectivity to a WSN requires that each 

node has at least one route available to connect to the sink. 

Basically, the connectivity is highly dependent on the location 

of the nodes. Here, the connectivity parameter is computed 

based on nodes with bi-directional links that can guarantee a 

fully-connected network. Accordingly, 𝐶𝑗 is calculated by the 

Eq. (8). 𝐶𝑗 = 𝑛𝑐𝑗𝐿  (8) 

Where, 𝑛𝑐𝑗 refers to the number of links of the 𝑗-th node and 𝐿 is the total number of connections in the network. 

Trust score: This parameter is defined based on the sum of 

direct trust and indirect trust, as shown in (9). 𝑇𝑗 is the trust 

score of the 𝑗-th node and is used to fill the ‘Trust’ field in the 

neighboring table. 𝑇𝑗 = 𝛼. 𝐷𝑇𝑗 + (1 − 𝛼). 𝐼𝑇𝑗  (9) 

Where, 𝐷𝑇𝑗  and 𝐼𝑇𝑗  are direct trust and indirect trust related to 

the 𝑗-th node. Also, 𝛼 is an impact coefficient for trust scores. 

The direct trust score depends on the interactions between 

the two nodes. Therefore, each node in the network can 

estimate the trust of its neighbor nodes. Accordingly, 𝐷𝑇𝑗 is 

measured according to the Eq. (10). 
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𝐷𝑇𝑗 = 𝛽. 𝑎𝑟𝑗𝑛𝑟𝑗 + (1 − 𝛽). 𝑎𝑡𝑗𝑛𝑡𝑗 (10) 

Where, 𝑎𝑟𝑗  is the number of acknowledgement packets 

received by the 𝑗-th node, and 𝑛𝑟𝑗 refers to the total number of 

packets received. Similarly, 𝑎𝑡𝑗 and 𝑛𝑡𝑗 are related to packets 

sent from the 𝑗-th node. Moreover, 𝛽 impact coefficient 

between packets sent and received to measure direct trust 

score. 

Indirect trust depends on the behavior of the node in 

relation to its neighbors and is measured according to the data 

in the neighboring table. Accordingly, 𝐼𝑇𝑗  is defined according 

to the Eq. (11). 

𝐼𝑇𝑗 = ∑ [𝑇𝑘 + 𝑇𝑘𝑗]𝑘∈𝑛𝑛𝑗|𝑛𝑛𝑗|  (11) 

Where, 𝑛𝑛𝑗 and |𝑛𝑛𝑗| refers to set of neighboring nodes and 

their number, respectively. Also, 𝑇𝑘𝑗 represents the 

recommended trust to 𝑠𝑗 by 𝑠𝑘 and 𝑇𝑘 is the trust score of 𝑠𝑗. 

 

4.3 Clustering and selection of CHs 

Increasing network lifetime and improving energy 

consumption is a major challenge in WSN development [1, 5]. 

Clustering-based routing is recognized as an effective way to 

meet this challenge. Clustering in WSN involves grouping 

nodes into a number of clusters so that in each cluster one node 

plays the role of CH. The task of CHs is to collect and 

aggregate data from member nodes and then create a packet 

and transfer it to the sink. The appearance of clustering and 

CHs selection can help reduce energy consumption in routing 

and thus increase the lifetime of the network. 

Applying node clustering at each routing round can 

increase the number of control packets, increase energy 

consumption, and increase network latency. For this reason, 

clustering is updated by the sink at specific timeslots (for 

example, each 𝜃𝐶𝐴 routing round). Hitherto, various 

algorithms for clustering have been developed in WSN, 

among which evolutionary algorithms are very popular [1, 5]. 

In this paper, ODMA [14] is used as a novel evolutionary 

algorithm for clustering. In the proposed scheme, in addition 

to the formation of clusters, the optimal number of clusters as 

well as CHs is determined. Here, the sink performs clustering 

and selects the CHs, and then informs the nodes of their 

details. 

In ODMA, each solution is known as a software, and the 

optimization work is done by evolving the software. Software 

evolves over time, and some become obsolete. Each software 

in this problem is an appearance of node clustering. The 

structure of the software representation is a vector of real 

numbers of length 𝑁. Here, the index of each element refers 

to the corresponding node, and the content of each element 

determines the cluster number of the node. In order to 

accelerate ODMA convergence, the cluster number of each 

node is limited to 2 to √𝑁 [10]. In this regard, according to the 

defined encoding, the initial population is created randomly 

with 𝑁𝑃 software. 

The fitness of each software is calculated based on a multi-

objective function. These objectives include (1) reducing the 

number of clusters, (2) increasing the intra-cluster density, (3) 

balancing the energy of the clusters, (4) balancing the 

candidate nodes in the clusters, and (5) reducing the distance 

of candidate nodes to the sink. Candidate nodes refer to safety 

nodes that are on the radio range of all members of their 

cluster. In fact, data exchange between candidate nodes and 

other members of the cluster can be done in a single-hop. 

Therefore, candidate nodes can be selected as CHs. In this 

paper, a candidate node with the highest level of safety is 

selected as CH from each cluster, where CHs are updated at 

each 𝜃𝐶𝐻 routing round. The fitness function is calculated 

based on the objectives defined in Eq. (12). min 𝑤1. 𝐾 + 𝑤2. 𝐷𝑣 + 𝑤3. 𝜎𝑒 + 𝑤4. 𝜎𝑐 + 𝑤5. 𝐷𝐶  (12) 

Where, 𝐾 is the total number of clusters in the 𝑖-th software. 𝐷𝑣  is the sum of the intra-cluster distance, which is considered 

as the average for all clusters. 𝜎𝑒 is the standard deviation of 

the energy of the clusters and minimizing it causes a better 

energy balance between the clusters. 𝜎𝑐 is the standard 

deviation of the number of candidate nodes from all clusters 

and minimizing it helps to optimally select CHs. Finally, 𝐷𝐶  

is the average distance of all candidate nodes to the sink. 

Given the differences between the intended objectives, we use 

the total weight technique to apply the effect of each object. 

Here, 𝑤 refers to the weight coefficient of each object in the 

fitness function, where 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 + 𝑤5 = 1.  

According to ODMA, software is sorted based on the value 

of the fitness function. Then, 𝑧 softwares are selected as the 

leading softwares, while other softwares are promising. In 

general, the evolution of ODMA takes place in three stages. 

In the first stage, promising software is developed based on 

leading software. To do this, for each promising software, a 

leading software is randomly selected based on the fitness 

function and the evolution process is performed. Here, the 

concept of evolution is expressed by defining a possible 

variable, where each element of the promising software varies 

with the probability 𝜌 according to its corresponding element 

in the leading software. In this regard, 𝜌 = 1 makes the 

promising software completely similar to the leading software 

and 𝜌 = 0 does not make any changes in the promising 

software. Figure 7 shows an example of this process based on 𝑁 = 10 and 𝐾 = 3, in which the clusters of nodes 2, 6 and 7 

are changed based on the probability 𝜌.  
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Fig. 7. Evolution of promising software based on leading software 

 

In the second stage, the leading software evolves based on 

its history. Here, evolution is based on the current position 

(𝑠𝑐𝑢𝑟) and the latest position (𝑠𝑜𝑙𝑑) of the leading software. 

Here, 𝑠𝑛𝑒𝑤  is the new position of the leading software and is 

defined as Eq. (13). 

𝑠𝑛𝑒𝑤,𝑗 =  ‖(𝑠𝑐𝑢𝑟,𝑗 + 𝑠𝑜𝑙𝑑,𝑗)2 + 𝑅𝑎𝑛𝑑(−1, +1)‖ ,∀𝑗 = 1,2, … , 𝑁  (13) 

Where, 𝑅𝑎𝑛𝑑 is a random number generation function and ‖∗‖ is a rounding function. Also, 𝑗 refers to the index of a node 

in software. 

In the third stage, new software is produced from the 

leading software. Here, a number of weak software with 

minimal progress are removed and replaced by new software. 

The process of producing a new software from a leading 

software (𝑠𝑟) is in accordance with Eq. (14). 𝑠𝑛𝑒𝑤,𝑗 =  ‖𝑠𝑟,𝑗 + 𝑅𝑎𝑛𝑑(−1, +1)‖,∀𝑗 = 1,2, … , 𝑁  (14) 

After completing the clustering process and determining 

the CHs, the sink informs the role of the nodes by sending 

Hello packets. Therefore, each node is aware of its role and 

also knows its CH. 

 

4.4 Proposed routing algorithm 

In this section, the details of the proposed routing algorithm 

are described. The proposed routing is based on clustering, 

i.e., routing is done through CHs. Hence, the environment data 

is first sensed by the nodes of a cluster and then this data is 

sent to CH. All member nodes on their CH radio range can 

send data in a single-hop. However, nodes outside the CH 

radio range must select another suitable node based on the 

routing table to send data to CH. After receiving the data, CH 

aggregates and compresses the data and build a data packet 

based on them. Thereupon, CH sends the data packet to the 

sink. When CH is on the sink radio range, this transmission is 

done as a single-hop, otherwise a multi-hop route is specified 

for transmission. An overview of the proposed routing process 

is shown in Fig. 8. 

 

 
Fig. 8. Proposed routing process 

 

Routing in EATMR is based on AODV protocol and multi-

path routes approach. The main purpose of routing is to create 

a safe route for transferring data from CH to the sink in multi-

hop mode. In AODV protocol based on multi-path routes, 

route request packet is sent from multiple routes to the 

destination, which leads to the discovery of different routes. 

Therefore, in the AODV protocol, RREQ is sent only to safe 

neighbor nodes instead of to all neighbors.  

In addition, the EATMR uses a multi-path routing 

technique. According to the AODV protocol, RREQ can be 

sent to the destination from several different routes, therefore, 

the source receives several RREP packets so that each of them 

can be one route. In the original AODV, the shortest route for 

routing is always specified. However, the EATMR analyzes 

all routes and determines the optimal and safe route based on 

the parameters of energy, trust, hop-count and distance. Based 

on these parameters, EATMR seeks to increase reliability and 

energy savings by choosing a shorter route. Therefore, 

EATMR is an energy-aware trust algorithm that uses only safe 

nodes in routing. The fitness function is formulated to select 

the route by Eq. (15). This function is calculated for each route 

and the route with the maximum value is considered for 

routing. max 𝜉1. 𝐸𝑟 + 𝜉2. 𝑇𝑟 − 𝜉3. 𝐻𝐶𝑟 −𝜉4. 𝐷𝑟  (15) 

Where, 𝐸𝑟 , 𝑇𝑟, and 𝐷𝑟  are the sum of the energies, trust scores, 

and distances of the nodes participating in route 𝑟, 

respectively, and 𝐻𝐶𝑟  refers to the hop-count in this route. 

 

4.5 EATMR algorithm 

According to the above discussions, the proposed scheme is 

presented in the Algorithm 1. 
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Algorithm 1. Energy-Aware Trust based the Multi-path Routing (EATMR) 

1. Start 

2. Network setup with 𝑁 node (i.e., normal node, malicious node, and sink 

node) in a 𝑚 × 𝑚 meter environment 

3. Calculating the safety level of nodes based on parameters of energy, 

connectivity, and trust 

4. Identifying safe nodes based on safety level and threshold 𝜃𝑀𝑁 

5. Clustering the nodes based on ODMA and selecting CHs based on the 

trust score of candidate nodes 

6. Determining the safe node based on TDMA 

7. Collecting data by CH and creating data packet 

8. Discovering safe route by applying AODV protocol based multi-path 

routing 

9. Calculating the fitness for routes discovered with a hybrid function 

10. Selecting optimal route based on fitness values for transferring data 

packet to sink 

11. Transferring packet from source to destination based on selected route 

and updating nodes energy 

12. Updating safe nodes and safety levels based on threshold 𝜃𝑆𝑁 

13. Clustering and updating CHs based on thresholds 𝜃𝐶𝐴 and 𝜃𝐶𝐻 

14. Repeating steps 6 to 13 to the end of the routing round 

15. End 

 

 

5 Simulation results 

In this section, the EATMR scheme is evaluated by 

performing simulations against schemes such as M-CSO [29] 

and SQEER [21]. We perform extensive experiments and 

comparisons to demonstrate the effectiveness of EATMR in 

improving WSNs security. All experiments are performed on 

the Asus N551JK Notebook with specifications of Intel Core 

i7 processor at 3.5 GHz, 16 GB of RAM and Windows 10 

operating system. The simulation was performed with 

MATLAB R2019a and the results were reported based on an 

average of 15 random deployments in WSN.  

Here, popular metrics in WSN such as network lifetime, 

energy consumption, packet delivery rate, detection rate of 

malicious nodes, and number of alive nodes are used for 

comparison. The network lifetime is calculated by the number 

of packets sent before the death of the first node. Energy 

consumption refers to the total energy consumed, which in this 

article is reported as a percentage of total energy consumed 

relative to the total initial energy of the network. Packet 

delivery rate shows the number of successful packets sent per 

total number of packets sent. A packet is sent successfully if 

the acknowledgment message is received for it. Detection rate 

of malware nodes is defined as the number of malicious nodes 

detected relative to the total number of malicious nodes. Alive 

nodes refer to the number of nodes that are active in the 

network (nodes with energy). All of these metrics can be 

measured as long as the last node in the network is alive. 

The continuation of this section consists of five 

subsections: simulation setup is discussed in the first 

subsection. The second subsection is related to EATMR 

analysis. The results of the comparisons are presented in the 

third subsection and discusses it in the fourth subsection. 

 

 

 

5.1 Simulation setup 

All nodes are homogeneous and have a fixed position, which 

are initially randomly deployed in an area of 100 × 100 𝑚2. 

The sink node is always placed in the center of the area. 

Routing is based on the TDMA schedule, where in each round 

a node is randomly selected as the source node to sense the 

environment data and transfer it to the sink [10]. Let the source 

node not be a set of malicious nodes. The simulation is 

performed with a number of different nodes 𝑁 (i.e., 25, 50, 

100 and 200) in the presence of a DoS attack. The simulation 

is performed for 5000 routing rounds and packets are 

transmitted based on Constant Bit Rate (CBR) traffic type 

[36]. 

The initial trust score of all nodes is set to 1. In each 

scenario, 𝑅𝑀𝑁 is the rate of malicious nodes relative to the 

total number of nodes, which are evaluated with different 

values of 0.05, 0.1 and 0.2. Malicious nodes have abnormal 

behaviors such as transmitting incorrect information, 

changing packet size, sending packets consecutively, and 

prevent sending packet. An example of the network topology 

tested with 90 normal nodes and 10 malicious nodes is shown 

in Fig. 9. 

 

 
Fig. 9. Example of network topology 

 

The efficiency and effectiveness of meta-heuristic 

algorithms depend on the precise setting of the parameters. In 

most research studies, the values of the parameters are 

adjusted based on the literature references or trial and error. In 

this paper, we also often determine the values of the 

parameters based on the literature references. However, some 

parameters are determined from the proposed scheme using 

the Taguchi technique [37] to achieve the best solution. This 

method ensures the identification of effective parameters and 

levels with fewer experiments by providing balance among the 

orthogonal index, parameters, and levels. The purpose of 

Taguchi technique is to maximize the S/N ratio (signal-to-

noise). Here, the values obtained for the parameters are 

calculated based on the standard table of orthogonal arrays 𝐿27 
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[38]. In this paper, the values assigned to the EATMR 

parameters based on [10, 20] as well as the Taguchi technique 

are as follows: 𝛼 = 0.6, 𝛽 = 0.5, 𝜃𝐶𝐴 = 50, 𝜃𝐶𝐻 = 25, 𝜃𝑆𝑁 = 10, 𝑁𝑃 = 15, 𝑧 = 5, 𝜌 = 0.2, 𝑤1 = 𝑤5 = 0.1, 𝑤2 = 0.3, 𝑤3 = 𝑤4 = 0.25, 𝜉1 = 𝜉2 = 0.3, 𝜉3 = 𝜉4 = 0.2. 

 

5.2 EATMR analysis 

Clustering in EATMR is done by ODMA where the reason for 

its choice is superiority over some similar algorithms. Here, 

we show that ODMA performs better in node clustering 

compared to the Imperialist Competitive Algorithm (ICA) and 

the Gray Wolf Optimization (GWO). A comparison based on 

the fitness function defined in Eq. (12) for 100 iterations is 

presented in Fig. 10. The results of this comparison clearly 

show that ODMA has better convergence to achieve the 

optimal value of the objective function than other algorithms. 

 

 
Fig. 10. Comparison of ODMA, ICA and GWO for node clustering 

 

The EATMR scheme detects malicious nodes by 

computing the trust score and taking into account the 𝜃𝑀𝑁 

threshold. Here, the accuracy of detecting malicious nodes is 

analyzed based on the different threshold levels relative to the 

rate of different malicious nodes (i.e., 𝑅𝑀𝑁). After determining 

the appropriate threshold, we justify the EATMR parameters 

accordingly. The accuracy of detecting malicious nodes based 

on different rates of 𝜃𝑀𝑁 (i.e., 0.05 to 0.3) and 𝑅𝑀𝑁 (i.e., 0.05, 

0.1 and 0.2) is shown in Fig. 11. The results of this simulation 

are presented with 100 nodes after 5000 routing rounds. As 

illustrated, most malicious nodes are identified by 𝜃𝑀𝑁 = 0.2. 

In fact, thresholds smaller than 0.2 prevent the detection of 

malicious nodes, and thresholds greater than 0.2 identify 

normal nodes as malicious nodes. 

 

 
Fig. 11. detection rate of malicious nodes 

 

The initial trust score of all nodes is 1, so the malicious 

nodes are not removed at first. As malicious nodes exhibit 

abnormal behaviors, the trust score as well as the packet 

delivery rate decrease. Therefore, during routing rounds and 

over time, malicious nodes are detected and slowly removed 

from the routing. As a result, abnormal behaviors in the 

network decrease, and trust scores and packets delivery rate 

increase. The results of the trust score and packet delivery rate 

relative to routing rounds in Fig. 12 and Fig. 13, respectively, 

confirm this. These results are presented for three different 

levels of malicious nodes (i.e., 0.05, 0.1, and 0.2), where the 

total number of nodes is 100. According to the results, it can 

be inferred that the network is more vulnerable in the initial 

rounds, but with increasing rounds, this vulnerability 

decreases. In addition, increasing the rate of malicious nodes 

speeds up network vulnerabilities in the early rounds. 

 

 
Fig. 12. Trust score of nodes relative to routing rounds 
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Fig. 13. Packet delivery rate relative to routing rounds 

 

In order to provide a comprehensive analysis, the trust 

score and packet delivery rate for the number of different 

nodes (i.e., 20, 50, 100 and 200) with different levels of 

malicious nodes are reported at the end of routing rounds. This 

comparison is presented in Table 3 in the presence of DoS 

attacks. EATMR provides similar results for simulations with 

different number of nodes, however, as the number of nodes 

increases, the values of these metrics increased relatively. The 

reason for this could be the increase in the number of 

neighbors and thus access to more information about the nodes 

interactions to measure the trust score. 

 

Table 3. EATMR evaluation based on trust score and packet delivery 

rate 

Packet delivery rate  Trust score 
Number of nodes 

0.2 0.1 0.05  0.2 0.1 0.05 

0.801 0.875 0.893  0.228 0.197 0.191 25 

0.826 0.907 0.920  0.251 0.224 0.208 50 

0.896 0.975 0.984  0.284 0.238 0.212 100 

0.887 0.979 0.997  0.294 0.250 0.236 200 

0.852 0.934 0.948  0.264 0.227 0.212 Average 

 

5.3 Comparison results 

This section presents the results of various evaluation metrics 

to compare the M-CSO, SQEER and EATMR schemes. The 

comparisons of this section are based on 𝑁 = 100, 𝜃𝑀𝑁 = 0.2 

and 𝑅𝑀𝑁 = 0.1. The first comparison based on the detection 

rate of malicious nodes is shown in Fig. 14. At all rounds, the 

EATMR effectively detects malicious nodes and provides 

better security for the WSN compared to other schemes. As 

illustrated, the detection rates at the end of routing rounds for 

M-CSO, SQEER and EATMR are 0.481, 0.467 and 0.493, 

respectively. These results clearly show the superiority of the 

proposed scheme in detecting malicious nodes. The reason for 

this superiority is to identify malicious nodes based on the 

proposed trust score and prevent their presence in the routing 

process. However, as the number of rounds increases, the 

detection rate of malicious nodes decreases, which is due to 

the energy consumption and death of the sensor nodes. 

 

 
Fig. 14. Comparison of detection rate of malicious nodes relative to 

routing rounds 

 

A comparison of packet delivery rate is shown in Fig. 15 

for different schemes in each routing round. As depicted, the 

results show the superiority of EATMR over M-CSO and 

SQEER. The reason for this superiority is the use of a trust-

aware mechanism in clustering-based routing, which has 

identified malicious nodes and transmitted more packets. 

Evaluation of different schemes shows the superiority of 

EATMR with a packet delivery rate of 0.976. These results are 

0.968 and 0.964 for M-CSO and SQEER, respectively. 

 

 
Fig. 15. Comparison of packet delivery rate relative to routing rounds 

 

Figure 16 shows the total energy consumed for different 

schemes in each routing round. Due to some EATMR features 

such as load balancing and reduced number of searches to 

discover the optimal route, the results are improved compared 

to other schemes. As illustrated, EATMR stores more energy 

than M-CSO and SQEER. Also, the EATMR tends to 
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consume the same amount of energy per round of routing. At 

the end of the routing rounds, EATMR with 13.6% residual 

energy performs better than other schemes. Meanwhile, 

energy consumption compared to M-CSO and SQEER 

improved by 9.2% and 15.1%, respectively. 

 

 
Fig. 16. Comparison of network energy consumption relative to routing 

rounds 

 

In another experiment, EATMR as well as M-CSO and 

SQEER schemes were compared based on the number of alive 

nodes. The results of this comparison for the 5000 routing 

rounds are shown in Fig. 17. EATMR leads to a rapid and 

simultaneous reduction of energy for most nodes, as this 

scheme provides a suitable distribution of energy consumption 

through clustering-based routing. Meanwhile, this reduction 

occurs later than other schemes. As illustrated, at the end of 

the routing, EATMR with 7 alive nodes is better than M-CSO 

and SQEER with 4 and 3 alive nodes, respectively. 

 

 
Fig. 17. Comparison of the number of alive nodes relative to routing 

rounds 

 

According to the definition of network lifetime, here the 

first dead node is created for EATMR in the 1172 routing 

round. In this regard, the network lifetime for M-CSO and 

SQEER is 868 and 743, respectively. Therefore, EATMR 

achieves better network lifetime with better clustering, better 

CHs selection, and load balancing on nodes. The reason for 

this superiority is the use of trust-based routing, which detects 

malicious nodes and thus transmits more packets. Therefore, 

based on the increase in packet delivery rate and improved 

detection of malicious nodes, the energy consumption of 

nodes is reduced and this has led to an increase in network 

lifetime. 

In order to provide a comprehensive comparison, the results 

of different schemes based on various metrics after 5000 

routing rounds are shown in Table 4. This comparison is for 

M-CSO, SQEER and EATMR and is based on the number of 

different nodes (i.e., 20, 50, 100 and 200). In addition, we 

provide the average results for the number of different nodes 

in the last column to clarify the schemes performance. The 

results in most metrics with different number of nodes prove 

the superiority of EATMR. Therefore, EATMR is an effective 

scheme to increase WSN security. 

 
Table 4. Comparison of M-CSO, SQEER and EATMR based on 

different metrics 

Number of nodes  
Schemes Metrics 

Average 200 100 50 25  

952 1706 868 774 460  M-CSO Network lifetime 

812.5 1532 743 591 384  SQEER 

1080 1804 1172 826 518  EATMR 

0.8735 0.568 0.926 1.0 1.0  M-CSO Energy 

consumption rate 
0.89325 0.606 0.967 1.0 1.0  SQEER 

0.844 0.514 0.864 0.998 1.0  EATMR 

0.9315 0.984 0.968 0.905 0.869  M-CSO Packet delivery 

rate 
0.923 0.977 0.964 0.890 0.861  SQEER 

0.93425 0.979 0.976 0.907 0.875  EATMR 

0.512 0.740 0.481 0.417 0.410  M-CSO Detection rate of 

malicious nodes 
0.4945 0.711 0.467 0.406 0.394  SQEER 

0.526 0.763 0.493 0.433 0.415  EATMR 

23.5 90 4 0 0  M-CSO Number of alive 

nodes 
21 81 3 0 0  SQEER 

26.25 97 7 1 0  EATMR 

 

5.4 Discussion 

This section discusses the evaluation and comparison of the 

proposed scheme with the most relevant prior works. 

Comparisons and analyzes have been performed with different 

scenarios of the number of network nodes and the level of 

malicious nodes in the presence of DoS attack. EATMR 

results have been compared with M-CSO [28] and SQEER 

schemes based on various metrics such as network lifetime, 

energy consumption, packet delivery rate, malicious nodes 

detection, and number of alive nodes. 
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Compared to M-CSO and SQEER, EATMR improves 

network lifetime by taking the residual energy and safe level 

of nodes into account in selecting the potential CH candidates. 

Here, nodes with more trust and energy, less distance to the 

sink, and less distance to other cluster members can be more 

likely to be selected as CH. In general, improving network 

lifetime is because of the strength of EATMR in maintaining 

an energy balance in the WSN. As shown in Fig. 17, the 

EATMR has the best performance over the network lifetime 

with 1172 packets sent. Based on these results, EATMR 

enhances the network lifetime compared to M-CSO by 35% 

and SQEER by 58%. This superiority is a confirmation of the 

power of cooperation between different nodes in estimating 

the trust score and identifying malicious nodes.  

Meanwhile, most nodes can work together for longer 

rounds, and then almost all the energies are drained together 

and die. This is clearly observable in Fig. 17, where the 

number of alive nodes drops sharply, and the nodes tend to die 

in groups instead of dying separately. This is while the line for 

M-CSO and SQEER is gradually decreasing. Therefore, most 

nodes in these schemes die in the early rounds, and the 

EATMR fixes this defect. After 2000 rounds of routing since 

the death of the first node in EATMR, more than 85% of the 

nodes are discharged and removed. In addition, analyzes show 

that when the rate of malicious nodes increases, the number of 

alive nodes decreases, which is due to a decrease in the 

number of reliable nodes in the routing. Increasing the rate of 

malicious nodes leads to sending packets with more hop-

counts, which consumes more energy and thus reduces the 

number of alive nodes. 

M-CSO analysis showed that it suffers from slow 

convergence because its structure is based on MBO and CSO 

algorithms with a complex combination mechanism. This 

computational complexity has reduced packet delivery rate 

and thus reduced network lifetime. In this regard, SQEER 

evaluation indicates that it sends successive Hello packets to 

detect routing. This leads to the depletion of energy of many 

nodes, and, as a result, the energy consumption of the network 

increases. In addition, the routing process in M-CSO and 

SQEER is single-route, and there are no alternative routes. 

Hence, most of the routes discovered in these schemes have 

longer distances, and this is a reason for the increase in 

collision and failure due to the presence of malicious nodes. 

In contrast, EATMR simultaneously seeks multiple routes; so, 

if a route is not available, another route would be replaced. 

The comparison in Fig. 15 clearly shows that the proposed 

scheme has a higher packet delivery rate than M-CSO and 

SQEER. Also, the analysis shows that as the rate of malicious 

nodes increases, the packet delivery rate for all schemes 

decreases, which is due to the reduction in the number of 

reliable nodes in the routing. 

The reason for the superiority of EATMR in detecting 

malicious nodes is the use of different factors in computing 

the distributed trust score. In addition to the trust score, the 

EATMR uses information about nodes' behavior with their 

neighbors to compute the level of node safety. Using energy 

to measure trust scores has made EATMR an intelligent 

energy-aware trust management scheme. The results of Fig. 

14 show that the proposed scheme can ensure WSN security 

by effectively detecting malicious nodes and not participating 

them in routing. Malicious nodes in EATMR are identified on 

the basis of a threshold, where according to the developed 

AODV protocol, these nodes cannot participate in routing. In 

general, M-CSO performs better than SQEER, but poorer than 

EATMR due to the lack of applying alternative routes. The 

superiority of EATMR can be seen in the use of the multi-path 

routes technique, the safe selection of CHs, and the intelligent 

computation of the trust score.  

 

 

6 Conclusion and future work 

Considering security in WSN is a challenging task due to the 

presence of malicious nodes. Due to the limitations of WSNs, 

cryptographic techniques for security are highly complex and 

would not provide the expected performance. However, trust-

aware routing schemes can provide better security with less 

complexity. In this regard, trust management models analyze 

sensor nodes for reliable routing and prevention of adverse 

effects against malicious nodes.  

In this paper, the EATMR scheme for safe routing in WSN 

is introduced. EATMR is a multi-path routing algorithm based 

on the AODV protocol that uses an energy-aware trust model 

to discover the optimal route. The AODV protocol determines 

the optimal and safe route based on various parameters such 

as energy, trust, hop-count, and distance. Furthermore, 

EATMR uses clustering-based routing techniques to improve 

energy consumption and enhance network lifetime. Here, 

clustering is performed by ODMA and a multi-objective 

function to select CHs. The performance of EATMR has been 

assessed through simulations in the presence of a DoS attack. 

The results show that the proposed scheme improves the 

primary metrics such as energy consumption, packet delivery 

rate, and network lifetime compared to similar algorithms. 

Accordingly, EATMR shows an average of 4.3% and 6.1% 

superiority over M-CSO and SQEER in different scenarios, 

respectively. For future work, EATMR can be evaluated on 

mobile multi-sink WSNs. Here, sinks can approach a set of 

low-energy nodes. 
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