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Abstract

We consider one of the quantum key distribution proto-
cols recently introduced in Ref. [Pirandola et al., Nature
Phys. 4, 726 (2008)]. This protocol consists of a two-way
quantum communication between Alice and Bob, where Al-
ice encodes secret information via a random phase-space
displacement of a coherent state. In particular, we study its
security against a specific class of individual attacks which
are based on combinations of Gaussian quantum cloning
machines.

1 Introduction

Recently [1, 2], we have shown how two-way quantum
communication can profitably be exploited to enhance the
security of continuous variable quantum key distribution
[3, 4, 5, 6]. In particular, we have investigated the security
of two-way protocols in the presence of collective Gaussian
attacks which are modelled by combinations of entangling
cloners [5]. Even though this situation is the most impor-
tant one from the point view of the practical implementa-
tion, the effect of other kinds of Gaussian attacks (i.e., not
referable to entangling cloners) must also be analyzed. In
this paper, we study the security of the two-way coherent-
state protocol of Ref. [1] against individual attacks where an
eavesdropper (Eve) combines two different Gaussian quan-
tum cloning machines (also called Gaussian cloners). In
particular, we are able to show the robustness of the two-
way protocol when the first cloner is fixed to be symmetric

in the output clones. This symmetry condition enables us
to derive the results quite easily but clearly restricts our se-
curity analysis to a preliminary stage. For this reason, the
optimal performance of Gaussian cloners against two-way
quantum cryptography is still unknown at the present stage.

2 Additive Gaussian channels and Gaussian
cloners

Consider a stochastic variable X with values x ∈ R dis-
tributed according to a Gaussian probability

GΣ2(x) =
1√

2πΣ2
exp

[
− x2

2Σ2

]
, (1)

with variance Σ2. This variable is taken as input of a classi-
cal channel that outputs another stochastic variable Y with
values y ∈ R. In particular, the classical channel is called
an additive Gaussian channel if, for every input x, the con-
ditional output y|x is Gaussianly distributed around x with
some variance σ2. As a consequence, the output variable Y
is a Gaussian variable with zero mean and variance Σ2+σ2.
According to Shannon’s theory, the classical correlations
between the input and output variables lead to a mutual in-
formation

I(X,Y ) =
1
2

log(1 + γ) , (2)

where γ ≡ Σ2/σ2 is the signal to noise ratio (SNR). This
formula gives the maximal number of bits per Gaussian
value that can be sent through a Gaussian channel with a
given SNR (on average and asymptotically).
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In quantum information theory, an example of an addi-
tive Gaussian channel is provided by the Gaussian quantum
cloning machine (GQCM) [7]. Consider a continuous vari-
able (CV) system, like a bosonic mode, which is described
by a pair of conjugate quadratures x̂ and p̂, with [x̂, p̂] = i,
acting on a Hilbert space H. Then, consider a coherent state
|ϕ〉 with amplitude ϕ = (x + ip)/

√
2. A 1 → 2 GQCM is

a completely-positive trace-preserving linear map

M : |ϕ〉〈ϕ| → ρ12 ∈ D(H⊗2) , (3)

such that the single clone states, ρ1 = tr2(ρ12) and ρ2 =
tr1(ρ12), are given by a Gaussian phase-space modulation
of the input state |ϕ〉〈ϕ|, i.e.,

ρk =
∫

dμΩσ2
k
(μ)D̂(μ)|ϕ〉〈ϕ|D̂†(μ) , k = 1, 2, (4)

where

Ωσ2
k
(μ) ≡ 1

πσ2
k

exp

[
−|μ|2

σ2
k

]
, (5)

and
D̂(μ) = exp(μâ† − μ∗â) . (6)

In Eq. (5), the quantities σ2
k are the error variances induced

by the cloning process on both the x and p quadratures of
the k-th clone. Notice that here we consider a GQCM which
clones symmetrically in the quadratures (in general, one can
have a Gaussian cloner which is asymmetric both in the
clones and the quadratures, with four different noise vari-
ances σ2

1,x, σ2
1,p, σ2

2,x and σ2
2,p.) The previous variances do

not depend on the input state (universal GQCM) and satisfy
the relation

σ2
1σ2

2 ≥ 1/4 , (7)

imposed by the uncertainty principle. In particular, the pre-
vious GQCM is said to be optimal if σ2

1σ2
2 = 1/4. In terms

of Shannon’s theory, each of the two real variables, x and p,
is subject to an additive Gaussian channel with noise equal
to σ2

k during the cloning process from the input state to the
output k-th clone.

3 Two-way coherent-state protocol

The protocol is sketched in Fig.1 and consists of two
configurations, ON and OFF, that can be selected by Alice
with probabilities 1 − c and c respectively.

Let Bob prepare a reference coherent state |β〉〈β|, with
amplitude β randomly chosen in the complex plane (e.g.,
according to a Gaussian distribution with a large variance).
Such a state is sent to Alice on the forward use of the quan-
tum channel. In the ON configuration, Alice encodes a sig-
nal on this reference state via a phase-space displacement
D̂(α) whose amplitude α ≡ (xA + ipA)/

√
2 is chosen in

the C-plane according to a random Gaussian distribution
Ω

Σ2

(

α

) with large variance Σ2. Notice that

β

)(ˆ αD

ζ

ϑ

'

β

1

2
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-

+

M

M’

c−1 c
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Figure 1. Two-way coherent-state protocol in
both the ON and OFF configurations.

(i) The signal amplitude α symmetrically encodes two sig-
nal quadratures, xA and pA, i.e., two independent and
real random variables distributed according to Gaus-
sian distributions GΣ2(xA) and GΣ2(pA).

(ii) The output state

D̂(α)|β〉〈β|D̂†(α) = |α + β〉〈α + β| ,

(8)

encodes the signal amplitude α, masked by the refer-
ence amplitude β chosen by Bob.

The state is finally sent back to Bob, who tries to guess Al-
ice’s two numbers xA and pA by a joint measurement of
conjugate observables. This is accomplished by a hetero-
dyne detection [8] of the state, which will give an outcome
ζ ≈ α + β. After the subtraction of the known value

β,

Bob achieves an estimate α′ of Alice’s complex amplitude
α, i.e., x′

A ≈ xA and p′A ≈ pA.
In the case of a noiseless channel between Alice and

Bob, the only noise in the whole process is introduced by
the heterodyne detection. This measurement can be seen
as a further Gaussian additive channel at Bob’s site, which
gives a Gaussian noise equal to 1 for each quadrature. Thus,
according to Shannon’s formula, we have

IAB = I(xA, x′
A) + I(pA, p′A) = log(1 + γAB) ,

(9)

with γAB = Σ2/1.
Let us now consider a noisy channel adding Gaussian

noise with variances σ2 (in the forward path) and σ
′2 (in the

backward path) for each quadrature. Then, the total noise of
the channel is σ2

ch = σ2 +σ
′2 and the total noise which Bob

tests, after detection, is equal to σ2
B = σ2

ch + 1, giving a
SNR γAB = Σ2/σ2

B . In the OFF configuration, Alice and
Bob estimate the noise in the channel by performing two
heterodyne detections. After receiving the reference state,
Alice simply heterodynes it with outcome β′ and then re-
constructs a coherent state |ϑ〉. This state is sent to Bob,
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who gets the outcome ζ ≈ ϑ after detection. In this way, Al-
ice and Bob collect the pairs {β, β′} and {ϑ, ζ} from which
they can estimate the two noise variances σ2 and σ′2 of the
channel via public communication. Notice that here we are
using the ON configuration to encode the key and the OFF
configuration to check the noise of the channel. This means
that we are implicitly assuming that Eve’s attack is disjoint
between the two paths of the quantum communication (i.e.,
Eve is using two distinct one-mode GQCMs). More gener-
ally, in order to exclude joint attacks between the two paths,
the ON and OFF configurations must be used symmetrically
for encoding and checking [1].

4 Eavesdropping via Gaussian cloners

In the previous two-way quantum communication, the
choices of the reference β and the signal α are two inde-
pendent processes. As a consequence, Eve has to extract
information on both the reference β and the total displace-
ment α + β in order to access Alice’s encoding α (this is
actually true because the attack is disjoint). Let us consider
two different attacks, one on the forward use of the channel
and the other one in the backward use, by using two optimal
GQCMs which we call M and M ′, respectively (see Fig. 1).

Since the reference β and the signal α are chosen with
large variances, such cloning machines must be universal,
and since the information is symmetrically encoded in the
two quadratures, we consider equal cloning noises in x and
p. For these reasons, Eve’s GQCMs are exactly of the kind
specified by Eq. (4) with σ2

1σ2
2 = 1/4. After cloning, Eve

must extract the information about α from her clones. She
can directly heterodyne the clones. Alernatively, she can
send the clones to a beam-splitter (BS), with suitable reflec-
tion and transmission coefficients r and t, and then hetero-
dynes the output ports.

In order to study the eavesdropping depicted in Fig. 1,
it is not sufficient to consider the reduced states ρk of the
two single clones at the output of M , but we have to com-
pute explicitly the whole bipartite state ρ12 of modes 1 and
2. In fact, mode 1 is sent to Alice (who displaces it) and
then cloned by M ′ into the output modes 1′ and 2′. The
second mode 2′ then interferes with the previous mode 2 on
the beam-splitter. For this reason, we have to keep all the
correlations between the various modes till the interference
process. One can prove that the bipartite state ρ12 at the
output of the optimal GQCM M is a Gaussian state with
correlation matrix (CM) equal to

V =
1
2

(
(1 + 2σ2)I I

I (1 + 1/2σ2)I

)
, (10)

where I is the 2 × 2 identity matrix. The CM of Eq. (10)
has positive partial transpose for every σ2 ≥ 0, and, there-
fore, ρ12 is always a separable state [9]. This means that

Eve cannot exploit strategies based on the entanglement be-
tween her clones and the ones of Alice and Bob. In the
particular case of symmetric cloning (σ2 = 1/2), we can
make the useful decomposition

ρ12 =
∫

d2μ Ω1/2(μ)×
|β + μ〉1〈β + μ| ⊗ |β + μ〉2〈β + μ| . (11)

Then, let us consider the case where the first cloner M is
optimal and symmetric (σ2

1 = σ2
2 = 1/2), while the second

cloner M ′ is optimal but asymmetric, with σ2
1′ ≡ ω2 and

σ2
2′ = 1/4ω2. In this case, at the output modes + and − of

the BS, we have the bipartite state

ρ+− =
∫

d2μ Ω1/2(μ) χ(μ) (12)

where

χ(μ) ≡
∫

d2λ Ω1/4ω2(λ)×
|θ+ + λr〉+〈θ+ + λr| ⊗ |θ− + λt〉−〈θ− + λt| ,

(13)

and

θ+ ≡ (μ+β)(t+r)+αr, θ− ≡ (μ+β)(t−r)+αt . (14)

If we now take a balanced BS (i.e., t = r = 1/
√

2) we
have θ− ≡ α/

√
2 and, therefore, the output port − no

longer contains the reference β. Here, the action of the
BS is very similar to the sum (mod2) performed over a
binary key (k) and the corresponding encrypted message
(k ⊕ m), operation that reveals the message in the classi-
cal case (k ⊕ m ⊕ k = m). On the other hand, the other
port + still contains a mixing between α and β and, there-
fore, does not provide further information about the signal.
Tracing out this port, we have

ρ− =
∫

d2λ Ω1/4ω2(λ) |(α + λ)/
√

2〉−〈(α + λ)/
√

2| .

(15)
Heterodyning such a state, Eve can estimate the value of α
up to a Gaussian noise with variance

σ2
E = 2 + (4ω2)−1 , (16)

for each quadrature. For Bob, instead, we have a total noise

σ2
B = 1 + σ2

ch , (17)

equal to the sum of the heterodyne noise (1) and the total
channel noise

σ2
ch = 1/2 + ω2 . (18)
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According to Shannon, Bob (B) and Eve (E) will share with
Alice (A) a mutual information equal to IAX = log(1 +
γAX) with γAX ≡ Σ2/σ2

X for X = B,E. Since [10]

IAB ≥ IAE ⇐⇒ γAB ≥ γAE ⇐⇒ σ2
B ≤ σ2

E , (19)

we can easily compute a security threshold for this kind of
attack, which is equal to

σ̃2
ch = (3 +

√
5)/4 � 1.3 . (20)

Such a threshold must be compared with the security thresh-
old (0.5) which characterizes one-way coherent-state proto-
cols [5, 6] against individual GQCM attacks.

5 Conclusion and discussion

In this paper we have considered one of the two-way pro-
tocols introduced in [1]. Then, we have explicitly studied its
security in the presence of a particular kind of individual at-
tack which is based on combinations of one-mode Gaussian
cloners. Our analysis indicates that the superadditive be-
havior of the security threshold should also hold against this
kind of Gaussian attack. However, our analysis is far from
complete since we have considered only particular combi-
nations of cloners and we have also excluded the possibil-
ity of a two-mode cloner (acting coherently on both paths
of the quantum communication). Furthermore, the analysis
covers the case of direct reconciliation only. Despite these
restrictions, the present work represents the first step in the
security analysis of two-way protocols against more exotic
kinds of Gaussian interactions.

Future investigations may involve the study of com-
pletely general two-mode Gaussian cloners, together with
the analysis of security in the case of reverse reconciliation.
It would be also interesting to analyze the security of the
other two-way protocol introduced in [1], where squeezing
and entanglement play an important role. Finally, the exten-
sion of the two-way coherent-state protocol to a multi-way
coherent-state protocol is another fascinating possibility to
be investigated. In this multi-way protocol, Alice and Bob
use n ≥ 2 rounds of quantum communication for encoding
several random displacements before detection. This kind
of protocol is currently under our study and will be the sub-
ject of a future work.
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