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ABSTRACT
Transactional Memory aims to provide a programming model
that makes parallel programming easier. Hardware imple-
mentations of transactional memory (HTM) suffer from fewer
overheads than implementations in software, and refinements
in conflict management strategies for HTM allow for even
larger improvements. In particular, lazy conflict manage-
ment has been shown to deliver better performance, but it
has hitherto required complex protocols and implementa-
tions.

In this paper we show a new scalable HTM architecture
that performs comparably to the state-of-the-art and can
be implemented by minor modifications to the MESI proto-
col rather than re-engineering it from the ground up. Our
approach detects conflicts eagerly while a transaction is run-
ning, but defers the resolution lazily until commit time. We
evaluate this EAger-laZY system, EazyHTM, by compar-
ing it with the Scalable-TCC-like approach and a system
employing ideal lazy conflict management with a zero-cycle
transaction validation and fully-parallel commits. We show
that EazyHTM performs on average 7% faster than Scalable-
TCC. In addition, EazyHTM has fast commits and aborts,
can commit in parallel even if there is only one directory
present, and does not suffer from cascading waits.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures

General Terms
Performance
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1. INTRODUCTION
Transactional Memory (TM) is a new technology which aims
to make parallel programming easier. TM is based on the
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idea of speculatively running “transactions” of memory ac-
cesses in parallel, while guaranteeing exactly-once semantics
as if the transactions were run in a serial order. If conflicts
are detected during the execution, some of these transac-
tions are aborted to maintain consistency.

To be effective, a TM implementation should provide high-
performance and scalability. The two key design questions
are: (i) How should speculative writes be handled: are they
written to shared memory eagerly, while keeping an undo
log so that they could be reversed, or are they buffered and
published only at commit time? (ii) How should conflicts be
detected and resolved: at the moment the problematic read
or write is attempted, or deferred to commit time?

In this paper we are chiefly concerned with the latter ques-
tion. To see how conflict management can affect the per-
formance of a TM system, consider the example shown in
Figure 1 (inspired by the work of Spear et al. [19]).

Figure 1: Why lazy conflict detection performs bet-
ter under contention?

Eager conflict detection (Figure 1a) attempts to minimize
the amount of wasted work performed in the system. Here,
transaction T1 conflicts with T2, and is stalled. Then, T2

later conflicts with T3, and gets stalled too. Note that
though T1 does not conflict with T3, it must stall until
T3 (and then T2) either aborts or commits. Most eager
HTM implementations suffer from these so-called cascading
waits [4]. With lazy conflict detection (Figure 1b), all trans-
actions execute until a transaction attempts to commit. In
the example, when T1 attempts to commit, it only aborts
T2. Once T2 aborts, T3 can also commit without conflicts.

In the above example, we make two observations. First,
lazy conflict resolution allows two transactions to commit,
while eager resolution allows only one. This difference is due
to a fundamental facet of eager conflict resolution: it must



address potential conflicts (caused by an offending access to
a shared location), while lazy resolution deals with conflicts
that are unavoidable in order to allow a transaction to com-
mit. Second, attempts by eager systems to reduce “wasted”
work are not always successful. In Figure 1a, for instance,
the eager system stalls T1. Since T1 does not eventually
abort, the work that was avoided had not been wasteful.
Even if T1 did abort, the amount to work saved would be
minimal, due to the small size of transactions.

In summary, eager HTM systems can suffer from the fol-
lowing problems:

1. They must speculate which transaction is more likely
to commit (and which should be aborted) when an of-
fending access is attempted. At this time, the system
has little information, but needs to speculate, which
is inherently suboptimal. Solving this problem accu-
rately requires sophisticated algorithms similar to [17].

2. Even if a successful prediction is made, a chain of wait-
ing transactions still cause a cascading wait and the
system needs to avoid deadlocks that may arise out of
such (cascaded) stalls. Alternatively, if conflicts result
in aborts, performance degrades due to unnecessary
aborts.

Previous research has illustrated how lazy conflict detection
can allow more parallelism [4,15]. Delaying the resolution of
conflicts to commit time avoids making the difficult decision
of which is the best transaction to abort. This can simplify
the system. Furthermore, lazy conflict detection can result
in higher performance than eager conflict detection when the
amount of “wasted work” saved by eager conflict detection
is offset by the number of unnecessary aborts that eager
conflict detection incurs.

Traditionally, the tasks of conflict detection and conflict
resolution are often conflated: they are either both per-
formed eagerly, or both performed lazily at commit-time.

The main idea of this paper is to separate these two tasks;
we perform conflict detection concurrently with a transac-
tion’s execution, but defer conflict resolution until either the
transaction tries to commit, or until a conflicting transac-
tion actually commits (at which point the tentative conflict
becomes unavoidable). Unlike traditional eager conflict de-
tection and resolution this means there is no need to an-
ticipate which transaction is more likely to commit. Unlike
traditional lazy conflict detection this means we can avoid
commit-time validation (so overheads are lower). We call
this an “EAger-laZY” approach, and our design EazyHTM.

With EazyHTM, we make several contributions:

• EazyHTM is the first instance of a transactional mem-
ory with eager conflict detection that defers conflict
resolution until commit time that is implemented com-
pletely in hardware. Besides having the advantage of
knowing the conflicts during the transaction execution,
EazyHTM has low requirements on the underlying sys-
tem. In particular, we do not require that directories
are split for parallelism [7], or that a specific intercon-
nection topology is used [8].

• Even with our pure-HTM protocol, EazyHTM allows
non-conflicting transactions to commit in parallel. More-
over, commits appear to be instantaneous to other run-
ning transactions and aborts are instantaneous and al-

most single cycle instructions. Furthermore, these im-
provements are provided while still guaranteeing that
pathological behavior [4] such as livelocks (“Friendly-
Fire”), starvation for writing transactions (“Starving-
Writer”), serialized commit or cascaded waits never oc-
cur.

• Our system takes advantage of core-to-core intercon-
nection links to manage conflicts. This reduces the
directory-core traffic, simplifies the design of the direc-
tory (which is largely unmodified), and allows greater
parallelism. This core-to-core interconnection traffic is
still small enough to have a practically null impact on
performance, for most benchmarks (see Section 5).

In Section 2, we introduce the basic EazyHTM protocol. Op-
timizations and extensions are shown in Section 3. Microar-
chitectural modifications are explained in Section 4. Experi-
mental results are discussed in Section 5. We discuss related
work in Section 6 and in Section 7 we present conclusions
and future work.

2. EAZYHTM: BASIC PROTOCOL
The EazyHTM protocol operates by cores sharing informa-
tion within each other on every possible conflict, but not
immediately aborting or stalling a transaction.

Figure 2: EazyHTM conflict detection and resolu-
tion: conflicts are detected eagerly, but transactions
continue “racing” until one of them commits. The
first to commit aborts the racing transaction.

In Figure 2, a transaction T1 reads a cacheline that has
been speculatively modified by transaction T2. The trans-
actions detect this situation, and note the conflict until they
terminate their execution. Conflicts are always in one di-
rection, i.e. the transaction that modifies a cacheline has a
conflict with, and can abort, the one that reads the same
line.

Since all conflicts are detected while a transaction is run-
ning, once a transaction (say T2) is ready to commit, it
knows exactly which transactions need to be aborted to
maintain the system consistency. Therefore, an abort mes-
sage is sent to all the conflicting transactions and once all
conflicting transactions confirm their abort, speculatively
written values are published. Both the abort request and
the acknowledge are sent over the core-to-core interconnect
to the corresponding core. The messages do not have to pass
through a centralized router, instead they hop from one core
to another until they get to the destination. Conflict reso-
lution only requires the participation of processors involved
in the conflict and does not involve the directory.



2.1 Conflict Detection
EazyHTM bases its conflict detection on the existing cache

coherency functionality, currently used for non-transactional
code to ensure that no races occur on shared accesses. Con-
cretely, in a directory based implementation of cache coher-
ence, this extension of the functionality only requires that
the directory responds to one new message corresponding
to a transactional access. Like any other directory protocol,
this protocol is completely transparent to running code.

Figure 3: Messages for conflict detection and resolu-
tion – three memory accesses, one commit and one
abort message: (a) Concurrent conflicting transac-
tional executions on processors P0 and P1; (b) Mes-
sages exchanged between two conflicting transac-
tions; messages are numbered in the order they are
sent; (c) Time diagram of the message exchange,
with time going from left to right. Thick horizon-
tal line segments on P0 line mark a single executed
instruction.

When a transaction accesses a line, it sends the directory
a special request txMark(@addr), regardless of the access
being a read or a write. The directory handles this request
almost like a read request in an ordinary directory protocol.
It marks the read for the line, and after allocating the line in
shared mode, responds with an acknowledgement indicating
how many other sharers the line has.

We illustrate message flow and conflict detection through
an example of two transactions running on the processors
P0 and P1(Figure 3). In this example, the transaction in P0

starts, and performs a read which does not conflict with the
read in P1. It then does a write which conflicts with the
transaction in P1. Finally the transaction in P0 commits
while aborting the transaction running in P1.

When P0 executes tx_read A a txMark(@A) message is

sent to the directory x1 . As with typical MESI protocols,
a processor only sends txMark(@addr) on the first access
to the line in the current mode (read or write). For sub-
sequent transactional access to the same line, the processor
uses values in its private cache. If the core has previously
sent a txMark due to a transactional read and now requires
to write a value, it resends the message to detect potential
new races.

The directory first acknowledges P0 with a txMarkAck(1)
message, where the parameter“1”indicates the current num-
ber of accessors for that cacheline x2 and then sends a

txAccess(#0, @A) message x3 to all the other accessors,
in this case P1. This is possible since the directory keeps
track of all speculative (transactional) or non-speculative
accesses to all cachelines. As P1 previously accessed the
cacheline A, the directory knows the list and the count of
all cacheline sharers. In the following text we are going to
use term “accessor” instead of a “sharer”, to represent both
non-transactional and transactional cacheline sharers, which
might have read and/or modified the line.

On receiving txMarkAck(1), P0 waits until it receives the
specified number of messages from all other accessors (in
this case, it waits until one message is received).

Meanwhile, txAccess(#0, A) initiates a point-to-point com-
munication between old accessors, P1, and the new one, P0.
Note that P1 knows that the new accessor is P0 because of
the first parameter in the txAccess message. The list and
explanation of all the messages that can be interchanged
between processor cores is given in Section 2.5.

Continuing with the example of Figure 3, P1 informs P0

that it is a reader of the line A by sending the reader(@A)

message x4 . When P0 receives a message, it sends a response
message reader(@A) to P1

x5 . Now both transactions know
the exact access mode of both transactions for the line, and
both of them know whether there is a conflict between them
or not. In this specific case, since both accesses are reads,
there is no conflict between transactions.

In the example, a conflict occurs when P0 executes the
tx_write A instruction. P0 sends a txMark message x6 to
the directory, which causes the directory to send exactly
the same messages as in the non-conflicting situation, x7
and x8 . At this moment, a point-to-point communication
starts again, with P1 sending a reader(@A) message to P0x9 . P0 responds with its access mode to the line, and sends
a writer(@A) message to P1

x10.
2.2 Tracking Possible Conflicts
The racers-list on processor Pi maintains a list of other pro-
cessors that run transactions which conflict with Pi’s current
transaction. This over-approximates the set of transactions
that need to be aborted when Pi’s transaction commits (e.g.
a conflicting transaction on another processor Pj may have
aborted, and a different non-conflicting transaction started
in its place).

To avoid false-aborts in this kind of case, each processor
maintains a killers-list of processors that are allowed to abort
its transaction.

Both the racers-list and the killers-list must be cleared at
the start of each transaction.

Figure 4: Racers-list (RL) and killers-list (KL).
The racers-list records transactions that need to be
aborted when this transaction commits. The killers-
list records transactions that have the permission to
abort this transaction.

Figure 4 presents an example with races. Initially, both



racers-list and killers-lists are empty on both processors. Af-
ter event x1 , the lists are still empty as both accesses were
reads. When P0 executes the write instruction x2 , it receives
a reader(@A) message from P1. This adds P1 to P0’s racers-
list. Also, since P1 gets a writer(@A) message from P0, it

adds P0 to its killers-list x2 .
After P1 commits the current transaction x3 and starts a

new transaction, the killers-list is cleared. This prevents P0

from aborting the next transaction running on P1
x4 , unless

a new race is established.

2.3 Committing a Transaction
At commit time, the racers-list and killers-list provide the
information for a transaction to know which other transac-
tions it is conflicting with it; further commit-time validation
is not required (unlike HTMs which use full lazy conflict
management HTMs [7, 8]). With EazyHTM, when a trans-
action is ready-to-commit, it must ensure that all the trans-
actions from its racers-list have terminated, either by being
aborted or committed.

Commit with conflicts and aborts: When the trans-
action running on P0 in Figure 3 reaches the commit in-
struction, it has to abort all the conflicting transactions in
order to ensure isolation. When P0 is ready to commit, it
first sends an abort message to all processors from its racers-
list (here, P1) x11. P1 aborts only if P0 is in its killers-list.

However, in both cases P1 sends an acknowledge x12 to P0’s
abort request.

Once P0 has received abortAcks from all conflicting cores,
it enters the committing state where it is guaranteed to com-
mit successfully. During this period the transaction can-
not be aborted and responds to all possible killers with an
abortNack .

The processor writes all speculatively modified cachelines
serially to the shared memory in the usual manner: ac-
quires exclusive access from the directory, for each line in
its write-set x13, which in turn invalidates copies held by all
other accessors. After publishing all the cachelines, it exits
the committing procedure and continues normal execution.
Also, see Section 3 for optimizations for this process.

Figure 5: Committing without conflicts: transac-
tions accessing different cachelines do not incur any
extra communication between them.

Commits without conflicts: In case no conflicts are
present, EazyHTM allows all non-conflicting transactions to
commit in parallel. Figure 5 shows the execution of two
non-conflicting transactions running on P0 and P1. Since
the transactions datasets are disjoint, the directory does not
send any txAccess message to processor cores during execu-
tions. Therefore, there are no core-to-core messages between
P0 and P1. Both transactions have empty racers-lists at the
moment of commit (not shown in figure).

Figure 5 also shows the low overhead EazyHTM imposes
on non-conflicting accesses. In particular, a non-conflicting

read/write results in the same number of messages as a nor-
mal, non-transactional read/write.

Racing commits: Though uncommon in practice, it is
possible for multiple racing transactions with mutual races
to reach the commit instruction at exactly the same time. In
this case, transactions would receive an abort request from a
transaction that they just sent an abort request to (and did
not receive an acknowledgement from). One of the transac-
tions must now abort to allow the other to proceed. Eazy-
HTM breaks ties in this case by allowing the transaction
running on a lower cpuid to win and commit. This transac-
tion sends an abortNack to the transaction running on the
core with the higher cpuid, which responds with an abortAck
and aborts itself. This situation is extremely rare, so we use
a simple criterion. Note that progress is still guaranteed.
Random, round robin and a number of other tie-breaking
policies may be easily added to eliminate the possibility of
pathological cases leading to starvation.

2.4 Aborting a Transaction
With EazyHTM, transactions may only be aborted for one
of the following reasons:

1. In response to an abort request sent by another trans-
action.

2. On exceptions or interrupts. In general, hardware trans-
actions are small enough to complete between occur-
rences of exceptions or interrupts. Even TLB misses,
which are unavoidable, become less important as the
TLB warms up, and do not significantly affect our sys-
tem.

3. When non-transactional code modifies a cacheline be-
ing accessed in a transaction: this allows us to sup-
port strong atomicity [3]. The feature is provided by
detecting a cache coherency invalidation message from
the directory and aborting if a part of the transaction
gets invalidated by the directory.

Aborting a transaction in EazyHTM discards all the spec-
ulatively performed updates and restarts the transaction
execution. Since we implement lazy version management,
caches can quickly invalidate all speculative changes. The
racers-list and killers-list (see section 2.2) are also cleared
on abort.

Once all speculative changes are discarded and the lists
cleared, the register file is restored to its previous state, just
before the beginning of the transaction, and the control flow
is reset to the first instruction.

2.5 Protocol State-Message Table
For completeness, we present a complete transactional state
table of a processor core (Table 1). Each cell in the table
describes the actions performed by a core upon receiving a
message, depending on its current transactional state. The
rows represent current state. The columns represent the in-
coming message from another processor core or from a direc-
tory. Dashes indicate impossible combinations. We define
each CPU core state as follows:

• Active: A transaction is being executed on the core.

• Ready to commit : The transaction has executed all
the code within the atomic block and is in the process



State/Message reader @ writer @ rdwr @ nonTXnal @ tryLater txAccess # @ abortAck abortNack abort

Active

No @ - - - - -
MSG nonTX-
nal #

- -
MSG abortAck, if
sender_id in KL:
ABORT

R @ MSG reader?
MSG reader?;
SKL

MSG reader?;
SKL

nop REDO INSTR MSG reader @ - -

W @
MSG writer?;
SRL

MSG writer?
MSG writer?;
SRL

nop REDO INSTR MSG writer @ - -

RW @
MSG rdwr?;
SRL

MSG rdwr?;
SKL

MSG rdwr?;
SRL; SKL

nop REDO INSTR MSG writer @ - -

Ready to commit - - - - - MSG tryLater
CRL if RL ==
0, then enter
committing

Wait all pending
abortAck/nack
and ABORT

if my_id > sender_id
then MSG abortAck,
ABORT else CRL,
MSG abortNack

Committing
No @ /
R @

- - - - -
MSG nonTX-
nal #

- - if sender_id in KL:
MSG abortNack else
MSG abortAck

W @ - - - -
write,
MSG non-
TXnal #

- -

NonTx/ Aborting - - - - -
MSG nonTX-
nal #

- - MSG abortAck

Table 1: State table for a core, showing the current state (left), and incoming message (top). Each cell shows the action to be
performed for a cacheline address @ and core ID #: SRL (set racers list), SKL (set killers list), CRL (clear racers list), MSG (send a
message).

of aborting all racing transactions. Lasts between the
beginning of the commit instruction and the reception
of the last abortAck or abortNack (if any).

• Committing : The processor core has aborted all rac-
ing transactions and is now committing speculative
changes. Once entered in this state, the transaction
is invincible: it cannot be aborted.

• No Tx : The core is not executing transactional code.

• Aborting : The transaction has received an abort mes-
sage and is processing it, i.e. flushing speculative changes.

In the following text we use symbol “@” for cacheline ad-
dress, and symbol “#” for processor core ID. Some messages
are related to one cache line and different actions may be
taken depending on whether this line is present in the read-
set, write-set or neither. Therefore, the states Active and
Committing have sub-states:

• R @ : The transaction has read @ speculatively, i.e. @
is in its read-set.

• W @ : The transaction has modified @ speculatively,
i.e. @ is in its write-set.

• No @ : Neither R @ nor W @ bit is set

• RW @ : Both R @ and W @ are set

The sub-states R @ and W @ are set in the private cache by
the processor core before a transaction sends the request for
the line to the directory. This makes sure that any incoming
message regarding that line is handled properly.

All the messages, except for txAccess(#, @), are core-to-
core communication. Following, all the new messages that
our approach introduces are described. P0 is the sender and
P1 is the receiver.

• reader(@): P0 indicates that @ is in its read-set.

• writer(@): P0 indicates that @ is in its write-set.

• rdwr(@): P0 indicates that @ is in its read-set and its
write-set.

• nonTXnal(@): P0 indicates that it is accessing @ in a
non-transactional way.

• tryLater(@): P1 is trying to access @ transactionally
but P0 cannot respond at the moment.

• txAccess(#, @): This message comes from the direc-
tory rather than from another core. It indicates the
receiver that the core # is accessing @ transactionally.

• abort : Request to abort, sent from P0 to P1.

• abortAck : P0, which just received an abort message
from P1, acknowledges to abort.

• abortNack : P0, which just received an abort message
from P1, does not acknowledge to abort.

Certain state-message combinations are worth explaining
since they may not be intuitive. For example, when a trans-
action is in Committing state and gets a txAccess(#, @)
message, a nonTXnal(@) message is sent as a reply (pre-
vious writing of the line if it is in the W @ sub-state). This
behaviour is so defined due to the “critical cacheline first”
approach, explained in Section 3.

Note that, for clarity, we have somewhat simplified the
part of the table related to the fields marked with a ? (in
the states Active R/W/RW @). The response messages are
marked as being a “response” so that they do not get re-
sponded again by a receiving processor.

3. EAZYHTM: OPTIMIZATIONS
In this section we introduce a series of optimizations to the
basic EazyHTM protocol. We describe how we use a critical-
cacheline-first commit policy (Section 3.1), track which lines
are being accessed only by readers (Section 3.2), and how
we use write-back when committing updates (Section 3.3).

3.1 Critical-Cacheline-First
Regardless of how little validation is performed at commit-
time, the duration of the commit-phase is bounded below by
the time it takes to write the values speculatively modified
by the transaction.



However, EazyHTM escapes this lower-bound by using
a critical-cacheline-first transaction commit policy. After
all transactions that were racing with the current transac-
tion have acknowledged an abort, we take this moment of
time (the moment of receiving last acknowledgement) as the
unique point in time when the transaction commits.

Once validation is complete, the transaction starts writing
all its speculatively modified lines to the shared memory, in
some arbitrary order. If during this phase any other trans-
action wishes to access some not-yet-committed cacheline
from the committing transaction, the committing transac-
tion will get notified from the directory. The commit order
is changed, and the critical cacheline gets committed first.

Figure 6: Critical Cacheline First illustration; while
P0 is committing values, P1 requests a not-yet-
written line A; this causes A to be written first, out
of normal commit order

After this, a tryLater(@) response is sent to the requester.
When the requester receives this message, it requests the
cacheline again. This time it gets the new value from the
shared memory and a nonTXnal(@) response from the com-
mitting transaction since the line will not be in the commit
set anymore. We have effectively saved the stalling time of
the requester which would be spent in waiting on the com-
mitting transaction to finish. An illustration of this situation
is shown on Figure 6 Since T2 receives a nonTXnal(@) mes-
sage (not tryLater or abort), it appears that T1 has finished
committing, and so commits seem to be instantaneous. An
evaluation of critical cacheline first is given in Section 5.

3.2 Transactionally Dirty Bit
If a transaction reads a line and all the other accessors are
readers then messages exchanged between them will be in-
forming one another about their reader-reader status. No
modifications will be done neither to the racers list nor to the
killers list. Therefore, these messages can safely be avoided.

In order to eliminate these messages, an extra bit per
cache line is maintained in the directory. This “Transac-
tionally Dirty” (TD) bit represents whether the cache line
is in the write-set of at least one active transaction or not.
To distinguish between transactional reads and writes, the
txMark(P, A) message to the directory has to be split in two
messages: txMarkRead(P, A) and txMarkWrite(P, A). The
directory handles these messages as follows.

• txMarkRead(P, A): (1) if the TD bit is set, a message
txAccess(P, A) is sent to every accessor, as explained
in Section 2. (2) If the TD is zero, no messages are sent
to the other accessors, because they are all readers.

• txMarkWrite(P, A): the directory sets the TD bit, and
a txAccess(P, A) is sent to every accessor (if any).

The TD bit is cleared on a non-speculative write to the
cache line; i.e. when either (1) a transaction commits and
thus writes all speculative values to the shared memory, or
(2) non-transactional code writes to the line. Note that al-
though this modifies the directory structure, the protocol
is not changed in an extensive way. An evaluation of the
transactionally dirty bit is given in Section 5.

3.3 Write-Back Commit
Following other lazy version management HTM proposals
[5,6,11,12], EazyHTM also implements the write-back com-
mit optimization. Lazy version management HTMs have
to publish (in some way) their speculatively modified lines
when transaction commits. What can be done as an opti-
mization is to publish only the addresses, and to leave the
updated cacheline contents in private caches. This is called
write-back commit.

EazyHTM implements write-back commit in the following
way. During the transaction execution lines are augmented
with speculative read/write status bits. When the transac-
tion comes to a commit, it aborts all racing transactions, re-
ceives confirmation of their aborts and then asynchronously
(without waiting for confirmation of every message before
sending the next one) sends the addresses of all speculatively
modified lines to the directory. The directory marks all these
lines as exclusive to the processor core. At the same time,
in private caches, the line is marked as non-speculatively
modified.

A write-back of the cacheline contents is performed when
either: (1) another core requests the line later in time, or
(2) a line has to be modified speculatively again, by another
transaction in the same processor core. In this case, the
cacheline access mode is reduced from exclusive or modified
to shared, and the execution continues.

4. MICROARCHITECTURAL CHANGES

Figure 7: EazyHTM hardware modifications
overview

This section introduces the hardware changes which are re-
quired for EazyHTM. Described hardware changes support
both the basic EazyHTM protocol and the optimizations de-
scribed in the Section 3. A graphical representation of those
changes is shown in Figure 7 where:

Register file checkpoint: keeps a snapshot of the register
file. The snapshot is taken at the beginning of the transac-
tion. It is used to restart the transaction’s execution in case
it aborts.



Racers-list: stores a list of all transactions that have to
terminate execution before this one can commit. It is im-
plemented as a simple bit vector (bitmap), with one bit per
core. Detailed explanation of Racers-list is given in Sec-
tion 2.2.

Killers-list: stores a list of all transactions that are allowed
to abort the transaction executing on this core. It is also
implemented as a bitmap, with one bit per core. Detailed
explanation of its functionality is given in Section 2.2.

Cache support: EazyHTM protocol requires tracking trans-
actional accesses to lines from private cache. Thus we ex-
tend the private caches with two extra bits: a speculatively-
read (SR) bit indicates that the associated cacheline has
been read by the currently running transaction, and the
speculatively-modified (SM) bit indicates that the cacheline
has been modified by the current transaction. Multiple lev-
els of private caches are possible, provided that they all track
this information.

Directory Support: As commented in Section 3 we add a
transactionally modified (TD) bit per directory entry. This
bit marks if a cacheline has been speculatively modified by
any transaction since its last non-speculative modification.
Note that this modification is independent of the number of
processors (i.e. if the system had more cores, the TD would
still be one bit per line).

5. EVALUATION
In this section we evaluate the performance of EazyHTM
using the STAMP benchmark suite [5]. We describe our
simulation environment in Section 5.1. Then, in Section 5.2,
we evaluate EazyHTM in comparison with a Scalable-TCC-
like HTM [7], and in comparison with an “ideal” HTM.

5.1 Simulation environment
To evaluate the proposal, we have tried to make a fair com-
parison with other state-of-the-art lazy HTM proposals. We
have decided to compare EazyHTM with another lazy (in-
stead of eager) conflict management system, since there is a
general agreement on their better performance when com-
pared with eager conflict management systems [4,15]. Among
current HTM proposals, we have chosen to compare with
Scalable-TCC (STCC) [7] which works on Distributed Shared
Memory (DSM) based memory systems and supports partly
parallel transaction commits. We used an Alpha 21264 Full-
System simulator, M5 [2]. This simulator models a bus-
based multiprocessor. We changed its memory hierarchy to
model a directory and core-to-core interconnection network
(ICN). The configuration of the baseline EazyHTM and the
STCC-like simulator used in our evaluation is shown on the
Figure 8.

Processor(s) 1-32 cores, 2 GHz, sequential execution

L1 data cache
writeback, private per core, MSI, 32 KB, 4-way,
64B line, 2 cycles hit

L2 cache
writeback, private per core, MESI, 512 KB, 8-
way, 64B line, 10 cycles hit

Main memory MESI based directory, 100 cycles per access
ICN 2D Mesh, 10 cycles per hop

Figure 8: Baseline EazyHTM and STCC-like Simu-
lator Configuration

We have tried to make the base simulator configuration
as similar as possible to the one found in the Scalable-TCC

proposal. Each processor has private L1 and L2 caches,
and with these large private L2 caches, we almost did not
have any transaction aborts due to cacheline evictions. This
result matches the one presented in the Scalable-TCC pa-
per [7]. If necessity arises, EazyHTM could be extended
to handle transactions larger than the private cache size
by implementing virtualization mechanisms like UTM [1],
VTM [14] and HyTM [10].

In both implementations, the memory and the memory
directory is placed after two levels of caches. One difference
is that STCC-like HTM has DSM memory modules private
per core. When processor needs to access an address that be-
longs to a memory module of another processor, it sends an
inter-node request over the ICN. In EazyHTM there is no ex-
plicit requirement for DSM memory distribution. The mem-
ory is equally accessible from all processors and all memory
addresses have the same access latency. We have also made
a simulator configuration with the global (entire) memory
directory, but this has been done in the evaluation just for
configuration fairness. EazyHTM can work just the same
with the shared-cache directory. For instance in this config-
uration it would be a directory in shared L3 cache.

All instructions have 1 cycle latency except loads, stores
and similar instructions which access memory. The directory
protocol we implemented for EazyHTM evaluation is MESI-
based.

The topology of our core-to-core ICN is 2D mesh. This
topology has technologically low cost, complexity and power
consumption with modest performance [9]. More advanced
interconnection topologies such as 2D torus or 3D torus/mesh
will likely be faster and reduce the average latency and hop
count between cores. The actual number of hops between
any two cores on the die is determined by the ICN. An
expected core-to-core ICN latency with today’s technology
would likely be 2-3 cycles per hop, plus 2-3 cycles per router.
For having a consistent simulator configuration and for mak-
ing a fair comparison with the Scalable-TCC HTM, we have
used 10 cycles per hop for both EazyHTM and STCC-like
implementations in all cross-comparisons.

5.2 Results
We compared EazyHTM with our Scalable-TCC implemen-
tation using STAMP benchmark suite and 9 different bench-
mark configurations: Labyrinth, Vacation-Low, Yada, In-
truder, SSCA2, KMeans-Hi, KMeans-Low, Vacation-Hi, and
Genome. “Hi”and“Low”workloads provide different conflict
rates [5].

Since we are only interested in the time spent in the par-
allel section, all the results pertain to this section only. The
time spent in transactions differs significantly from bench-
mark to benchmark. We show it in the first column in the
Table 2, for all evaluated applications.

As can be seen in Figure 9, SSCA2 and Genome spend
significant time in barrier-based thread synchronization (de-
picted as sleeping). Threads do spend some time sleeping in
all of the benchmark configurations, but it is only significant
in SSCA2 and Genome. As can be seen in this breakdown,
this use of barriers limits the scalability of these programs.

On the same figure, beside sleeping, the execution time
is split into Useful, Stall, Commit, and Wasted. We de-
fine “running time” as 1 cycle per instruction plus number
of memory accesses per instruction multiplied by L1 hit
latency. For committed transactions we break the execu-
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Figure 9: EazyHTM speedup (bold line) and execution time breakdown with 10 cycles per hop ICN
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Figure 10: Sensitivity analysis to the core-to-core ICN latency (cycles per hop). Smaller is better.

tion time into: “Useful” time, that is the same as running
time. “Stall” time is the time that all committed instructions
had to wait, either on cache misses (stallCache), directory
(stallDir) or intercore messages (stallIntercore). Stall time
is marked in the breakdown with one color, but different
causes of stalling have different hatchings. “Commit” time
is the time spent in transaction commits. “Wasted” time is
all the work that aborted transactions made, and is split
into running time (wastedRunning), cache misses (wasted-
Cache), directory accesses (wastedDir) and intercore mes-
sages (wastedIntercore). In both useful and wasted time,
the access is classified as a (i) cache access, when the line
is not present in the cache at the moment of request; (ii)
directory access, when the access mode has to be changed –
e.g. shared to exclusive.

We can see on the figure that Labyrinth has a practically
flat speedup curve. After inspecting the source code and
further examining the STAMP paper [5] we have found that
for Labyrinth to scale, an“early release” [16,18] of cachelines
has to be supported by HTM. Early release means that a
cacheline is explicitly removed from the transaction during
its execution, i.e. before commit. In Labyrinth, in the main
loop of the application, every transaction reads an entire

dataset (and thus adds it into the read set). On commit
every transaction writes to some part of the dataset. In a
simple HTM implementation, this part of execution is guar-
anteed to create a conflict on every commit. Since neither of
our HTMs support early release, we have a fully conflicting
execution.

On Figure 10 we show the sensitivity analysis of Eazy-
HTM to different core-to-core ICN latencies. We start from
an optimistic 2 cycles per hop and increase the latency to
the pessimistic 10 cycles per hop.

Having a slower ICN seriously affects only the execution
time of KMeans-hi with 32 threads, and Intruder with 16
and 32 threads. All other applications are mostly insensitive
to the ICN link speed. One interesting case is Genome with
32 threads, where having slower ICN actually decreases the
total execution time by 2%. The root of this is again in
barriers. Having slower ICN makes threads spend less time
sleeping in barriers: 101%, 97% and 96% of the time spent
in barriers with 0 cycles per hop ICN, for 2, 5 and 10 cycles
per hop, respectively.

To assess the overheads of EazyHTM, we also implemented
an Ideal MESI-based Lazy HTM that performs transaction
validation instantaneously (in zero clock cycles), without any



Application Proc %TX %ABO %CLF %TD %WBC

Labyrinth

1 99.9 0.0 0.0 0.0 4.4
2 99.9 22.5 0.5 33.6 1.9
4 99.7 46.5 0.5 67.5 1.7
8 100.0 68.3 1.0 85.6 1.7
16 100.0 82.6 0.4 94.2 0.3
32 96.1 90.4 6.3 96.1 2.7

Vacation-Low

1 85.9 0.0 0.0 0.0 12.2
2 86.0 0.0 0.0 27.5 8.3
4 86.8 0.1 0.0 60.2 7.6
8 86.0 0.3 0.0 80.3 7.0
16 83.7 0.7 0.0 90.0 6.8
32 80.4 1.5 0.0 94.9 6.6

Yada

1 100.0 0.0 0.0 0.0 8.9
2 100.0 5.2 0.0 30.0 11.3
4 100.0 9.2 0.1 57.7 5.7
8 100.0 15.5 0.0 75.1 4.5
16 99.6 23.7 0.3 84.6 3.7
32 100.0 35.2 0.7 90.4 8.4

Intruder

1 39.1 0.0 0.0 0.0 17.3
2 40.6 5.6 0.0 22.9 13.7
4 42.5 20.1 0.2 53.6 9.7
8 51.5 43.1 1.6 77.0 5.1
16 69.6 70.3 12.0 83.0 0.4
32 86.8 84.7 33.9 79.9 0.1

SSCA2

1 20.0 0.0 0.0 0.0 15.7
2 18.7 0.0 0.0 24.6 10.8
4 16.5 0.2 0.0 49.1 10.2
8 12.9 0.4 0.0 69.2 8.4
16 7.8 0.6 0.0 82.3 5.9
32 3.2 1.2 0.0 90.3 1.6

Application Proc %TX %ABO %CLF %TD %WBC

KMeans-Hi

1 9.5 0.0 0.0 0.0 4.8
2 9.5 1.0 0.0 3.2 4.2
4 9.5 3.2 0.0 8.7 4.4
8 9.5 8.9 0.1 22.4 4.0
16 9.9 26.4 1.1 35.6 1.9
32 13.0 72.9 17.6 36.8 1.5

KMeans-Low

1 3.8 0.0 0.0 0.0 2.1
2 3.8 0.6 0.0 2.5 2.0
4 3.8 2.3 0.0 6.6 2.1
8 3.8 3.6 0.0 8.6 1.9
16 3.8 5.3 0.0 13.1 1.9
32 3.8 11.9 0.8 23.4 1.7

Vacation-Hi

1 86.0 0.0 0.0 0.0 10.7
2 85.4 0.0 0.0 28.1 7.2
4 84.8 0.5 0.0 60.8 6.8
8 83.6 0.7 0.0 80.7 6.5
16 84.3 0.9 0.0 90.5 6.7
32 83.5 4.1 0.1 95.4 6.1

Genome

1 97.9 0.0 0.0 0.0 13.1
2 92.7 0.6 0.0 53.8 8.0
4 78.9 1.6 0.0 79.3 7.5
8 57.6 3.4 0.0 90.1 6.7
16 27.6 7.7 0.1 93.9 1.2
32 9.2 13.5 0.5 95.8 3.2

AVERAGE

1 60.2 0.00 0.0 0.0 9.9
2 59.6 3.97 0.1 25.1 7.5
4 58.1 9.30 0.1 49.3 6.2
8 56.1 16.0 0.3 65.5 5.1
16 54.0 24.2 1.6 74.1 3.2
32 52.9 35.0 6.6 78.1 3.6

Table 2: EazyHTM Execution Statistics.
Legend: %TX — Percentage of parallel section time spent inside transactions; %ABO — Percentage of aborts (abort
rate), calculated as aborts/(aborts+commits); %CLF — Number of critical cacheline first invocations divided by the number
of commits; %TD — Percentage of transactional directory messages saved with the TD bit in directory, calculated as
msgNotSent/(msgNotSent+msgSent) %WBC — Execution time reduction using write-back commit.
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Figure 11: Execution time comparison, EazyHTM and Scalable-TCC-like HTM. Smaller is better.

extra directory or core-to-core messages. After performing
the validation, transaction enters a write-back commit rou-
tine (see Section 3.3) and upgrades the access mode for all
speculatively modified cachelines to“modified”. At the same
time it cleans all speculative bits from private caches. This

entire commit process takes as much as is needed to send
all get exclusive messages to the directory. We have put a
fixed cost of 3 cycles per one speculatively modified cache-
line. While having this idealized lazy HTM in hardware
is almost impossible, it serves as a good upper bound on



the best-case lazy HTM performance and directly evaluates
all extra overheads of EazyHTM. The comparison of the
execution times between EazyHTM, STCC-like HTM, and
idealized lazy HTM is given in Figure 11.

EazyHTM shows a performance regression over idealized
lazy HTM mainly with one application from the STAMP
suite — Intruder. Intruder has a very high abort rate.
With 32 cores more than 85% of all started transactions get
aborted after performing some work (Table 2). This trans-
lates to the 84% of entire execution time being wasted, and
out of this 44% represents the time spent in the core-to-core
communication, 4% spent in sending and receiving directory
messages, 39% in cache requests, and 13% in normal execu-
tion. It is also interesting that in one benchmark configu-
ration, Yada with 1 processor, Scalable-TCC has 6% faster
execution time from both EazyHTM and the Ideal MESI-
based Lazy HTM. This is most likely the consequence of its
different directory protocol, which shows some advantages
in this specific memory access pattern. However, in some
other configurations, e.g. in Vacation (both low and hi)
and SSCA2, EazyHTM benefits better from their memory
access sequence. Overall, EazyHTM shows a performance
improvement of 7% over STCC-like HTM.

Table 2 shows an evaluation of the critical-cacheline-first
commit optimization. We can see that even with the write-
back commit optimization, some applications have many
invocations of critical-cacheline-first. For example, in In-
truder, the number of invocations is 1/3 of the number of
commits.

In the same Table 2 we show the execution statistics for
the transactionally dirty (TD) bit optimization in the direc-
tory. Here we have very encouraging results. Given that
STAMP benchmarks are optimized to have a high number
of cachelines with shared readers only, this optimization was
able to drastically reduce the number of additional messages
in the system. Of all the messages that would be sent with
the original EazyHTM protocol running on 32 cores, 78%
are filtered out on average. With some configurations, like
Genome-32, Vacation-Hi-32, and Labyrinth-32, this number
is over 95%.

6. RELATED WORK
Log-TM [13] describes a taxonomy of TM systems based on
version management and conflict detection, placing Log-TM
and Unbounded TM [1] into the eager-eager category. Large
TM [1] and Virtual TM [14] are classified as eager-lazy and
TCC [8] into lazy-lazy.

TCC [8] was the first hardware transactional memory with
lazy conflict detection and lazy conflict resolution. However,
it incurs from two bottlenecks: first, it utilizes a single com-
mon bus between processors; and second, all commits are
serialized with a commit token which has to be acquired by
a transaction at commit time.

Scalable TCC [7] enhances the original TCC proposal. It
uses lazy conflict detection and lazy version management
and supports partially concurrent transaction commits. It
also introduces an alternative to common MESI/MOESI
cache coherence protocols.

Scalable TCC assumes that execution is always transac-
tional, and non-transactional code is converted to implicit
transactions. This adds pressure to the importance of be-
ing able to perform commits in parallel. However, Scalable
TCC is limited in its scalability by the number of directo-

ries, and with a small number of directories, commits may
be often serialized. Currently, typical chip-multiprocessor
implementations have few directories.

Unlike Scalable TCC, EazyHTM is designed to work as
an extension to a traditional directory protocol, and to al-
low truly-parallel commits (rather than being limited by the
number of directories present in the system). Lastly, un-
like Scalable TCC, EazyHTM has explicit transactional and
non-transactional modes that do not require implicit trans-
actions.

Shriraman et al. introduce a mixed conflict resolution pol-
icy [15]. This handles conflicts eagerly or lazily depending on
their type. Write-write conflicts are resolved eagerly to save
wasted work and read-write conflicts are dealt with lazily, to
exploit concurrency. The main difference between [15] and
this work is that they both detect and resolve conflicts ea-
gerly on write-write and lazily on read-write. On the other
hand, we detect both kinds of conflicts eagerly and resolve
all of them lazily.

7. CONCLUSIONS AND FUTURE WORK
In this paper we demonstrate how making small hardware
modifications to already existing directory based, cache co-
herent chip multiprocessors allows us to implement a pure-
hardware transactional memory system that detects con-
flicts eagerly and resolves them lazily.

We have shown that it is possible to have a good trade-off
between hardware complexity, the performance, and the ca-
pabilities of the Hardware Transactional Memory systems.
Several optimizations have been applied to the initial Eazy-
HTM design, and we have obtained a significant reduction in
the total number of conflict detection messages by ignoring
those for read-only cachelines.

Performance evaluation was carried out using state-of-the-
art TM benchmarks. EazyHTM gets an average of 7% per-
formance improvement over current state-of-the-art HTM
— Scalable-TCC. At the same time, the EazyHTM proto-
col provides a complete and exact snapshot of all the con-
flicts of a transaction during its lifetime. Having this snap-
shot presents a wealth of useful information which could be
leveraged for further research into transaction prioritization,
performance optimizations and power management.
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