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A uniform theory of numerical approximation of multiple integrals of arbitrary

multiplicity is a long felt need of applied mathematics. In the absence of some-

thing better, the Monte Carlo method is the one most commonly used now (see

[6] and [7]). For the integration of functions of one variable, for which purpose

useful classical formulae exist, the error estimates are unsatisfactory inasmuch as

they involve derivatives of high order of the integrand. Moreover, no criteria are

available for the comparison of one quadrature method with another per se. In

the present paper we construct a theory of mechanical quadrature for fc-fold in-

tegrals (fc St 1), and set down a rational basis for the global comparison of different

quadrature methods. However, it should be pointed out that the theory yields no

error estimates applicable to individual integrands. We discuss the Monte Carlo

method at some length, and substantiate the educated guess that the method im-

proves with increasing multiplicity of the integrals. The theory developed here will

be used in a future paper to propose some new mechanical quadrature formulae.

The material of this paper formed a part of the author's doctoral dissertation

(University of Rochester, 1962). The work was suggested, supervised and inspired

by Professor W. F. Eberlein. The dissertation work was supported in part by funds

from the National Science Foundation; and the author's visit to the University of

Rochester was made possible by a Fulbright Travel Grant.

0. Introduction. Real multiple power series

(0.1) x(t)= ¿Zxnv..nk(ti)ni- ••(<*)"*,        (ni, •••,n*StO)

whose coefficients satisfy the condition

(0.2) IWIi=EK--»l<*

converge uniformly and absolutely for all points r in the fc-dimensional Euclidean

cube

S= {(ii, ■■■,tk) = r:-l ^ i,-g 1, 1 ^j Sk] .

The set of all functions defined by (0.1) and (0.2) can be identified with the se-

quence space h, as in [10], and is dense in the Banach space C( S) of all real con-

tinuous functions on 6 with the uniform norm. We denote the closed unit sphere
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of h by Sx and remark that S„ absorbs h. The integral / defined by

I(x)=2~k j^xdt

and an A/-point mechanical quadrature formula Jx defined by

(0.3) JN(x) = zZAmx(tM)
m=l

are continuous linear functionals on 6((S), and so is the error e defined by

e(x) = I(x) — JN(x) .

In (0.3), the 'weights' Am (1 g m í= N) are real numbers and the 'abscissae' r(m>

(1 ^ m ^ N) are points of S.

The problem of mechanical quadrature is so to choose the weights and the

abscissae of Jn that |e(x)| is minimised in a sense to be made precise. The ap-

proach of the present paper, following the lead of [5], is to choose an appropriate

subset Ct of C( S) and to minimise the average of |e(x)|2 over ffi. It is clear that we

must have a measure over a. Since, in practice, the functions to which one would

apply a mechanical quadrature enjoy a certain degree of smoothness, and since

such functions form a set of Wiener measure zero, the temptation to identify a

with C(S) has to be resisted. We choose a = S„. A countably additive measure

on Sx is constructed in [10], a generalisation of [4], and is called the Eberlein

measure and denoted by dsx. The corresponding integral over Sx is denoted by

E(-) or by jsx (■) dsx. The main results and notation of [10] are summarised in

the following section.

1. The Eber lein Integral. Let

x =  {xn¡...„k]

be an element of h; and Pn the projection operator on Zi into h, defined by requir-

ing that the fc-fold sequence P„x be obtained from the fc-fold sequence x through

replacing by 0 every xnv..„k with m 4- ■ ■ ■ + nk > n. We introduce the abbrevi-

ations

jk + i- 1)! A
Ci        (fc- 1)K!   '       Cn~ h° i  >

M* = n foi),   *.(*) = n (i - ii¿\-ixiiir*■ •
i-O í-1

If / is any weak* continuous real function or any bounded real weak* Baire func-

tion, then the Eberlein integral, E(f), of / is defined as the limit, when n —* °o, of

(11) J6l f.   [I&aU
2'" J IbvBrfi J  <t>n(x)  '

the integration in (1.1) being with respect to all the real variables xni...nie with

«i 4- • • • 4- nk :S n. Thus defined, the integral E is linear and positive; and

E(l) = 1. Moreover,
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MECHANICAL QUADRATURE FORMULAE 609

(1.2) /    (.!•„,.. .nk)pdEX = 0   if pis odd,
J s

00

(1.3) /    xmi...m.Xny..nkdEx = 0   if (mi, ■ ■ -, mk) ¿¿ (nu ■ ■ -, nP)

and

f    / ,2,_1_      2wi 4- • • • 4- nk
Jsjxni...„k)df:x- 3m=i(Ci.+ 1)(ci+2)-

Now, if

y = {y»v-nk\

is a bounded fc-fold sequence of real numbers, and if we write

\xj.y/   =   Z—i Xn1--.nkyni-.-i<k ,

the summation being over all nonnegative integers m, ■ • •, n*, then (x, y) is a

weak* continuous real function of x defined on Sx. A routine calculation using

(1.2), (1.3), and (1.4) shows that

(1.5) /    (x,y)pdEX = 0   if pis odd,
Jsx

and that

(1.6) /      (x,y)2dEX  =  ±± 2"  £n Ù/n,...n.)2

J*~ 3 -o n%i(c.-+D(ci+2)

where ~2Z'n denotes, here and in the rest of this paper, a summation over all non-

negative integers ni} • • •, nk with m 4- ■ ■ ■ 4- nk = n.

2. Optimal Quadrature Formulae. For all fc-tuples (nh ■ ■ -, nP) of nonnegative

integers, define the functions

Tni...nk(t) = (<!>•• • • • (<*)»*,        t <= 6,

and denote e(r»r..»4) by e„,...„A.. The sequence {eni...„k\ may be identified with e

on Sx. It is easily seen that,

eny.nk \1 J N) í ni- "nk

(2.1) = 2-k nl + (~^"' - £ A.fe«)" • • • (/,(M)r,
<-i      n¡ -\- i m_i

ki-»J á 1 4- X) |Am| ;
1B-1

and it follows that e Çz m = (l¡)*.

Writing (0.1) in the form

X\.r) / .    / .   Xnv..nkI Mr-■«/.\*) ,
n-0      n

we obtain
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(/  -   JN)(x)   =   ¿    JZ' Xní...nkH  -   Jv)(77ni...„,)
n = 0       n

*n(t°ni'*-nfc
n=0       n

= (x, e) .

Writing a2(I — Jat) for jSx (x, e)2dBx, and evaluating the integral with the

help of (1.6), (1.7) and (2.1), we get

(2.2) c2(l - Jn) = ÍZ^rSn,
n=0 OAn

where we have used the abbreviations

Xo = 1 ,        Xn = II (e, + l)(Cf 4-2)    for    n > 0 and Sn = zZ  (ßni...„k)  .
¿-1 n

<r'2(7 — JN) will be used as a measure for the error of the quadrature formula ./.v

over the space Sx equipped with the measure dsx. Using the expression (2.2), we

shall seek to minimize a2(I — Jn) as a function of the weights Am and the abscissae

r'm'.

Remark I. There is no Jn for which a2(I — Jn) = 0. In fact, the existence of

such a Jn implies, in particular, that

(2p 4- 1) E Am(tilm))2p = 1 ,        p St 0 ,
m-* 1

which leads to a contradiction when we let p —» oo.

Definitions. An iV-point mechanical quadrature formula Jn is completely op-

timal if a2(I — Jn) is an absolute minimum as a function of the weights and the

abscissae of Jn- With prescribed abscissae, a Jn for which a2 (I — Jn) is a mini-

mum in the weights is optimal in the weights. We shall denote such a formula by Wn-

Theorem I. For each A St 1, there exists a Wn corresponding to any preassigned

distinct abscissae rH), r(2), • • -, tW) in 6.

Proof. Consider the fc-fold sequences

r/2"V/2    *i-M-if
A3Xn/        U    m + l

and

éi = {d:)17"^)"' • • •fetí))n*} -   l *l ^ N

where n = ni -f-   • • •  4r nk and each n¿ assumes all nonnegative integer values.

Observing that cn St 1 and hence that X„ St 2"3" for all n St 0, we see that

»^¿[^■{r-n'-if^}]
n=o LOA«   „      i^ i=\      (jii +1)      ) -J

oo      cyn oo

^ EôTCn<E(2/3n+1)<

and similarly that
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MECHANICAL QUADRATURE FORMULAE 611

IUi||»*< ÎZêpcn< « ,     i^i^n.
n=0 áAn

Then gi, ■ ■ -, gN and / are elements of the sequential Hubert space U. As the

abscissae r(i) are preassigned, the gt are fixed vectors of h. It is clear from (2.2)

that a2(I — Jn) is the square of the distance between / and a variable vector in

the linear manifold spanned by gi, ■ • -, gN. Let us call this manifold M(N, t).

This manifold, being of dimension ^2V, is closed; and there is a unique vector

go G M(N, t).

(2-3) \\f - éo\U ̂  \\f - g\\i,       geM(N,t),

(see, for instance, [1, p. 11]). Writing ¿0 = zZ™=i Am°gm we see that the weights

AP, AP, ■ ■ -,AN° minimise o\I - JN) for the fixed abscissae r«>, • • -,*<">. Q.E.D.

The uniqueness of this representation of Wn is not obvious until we establish

the linear independence of gi, ■ ■ ■, gN.

Theorem II. The dimension of the linear manifold M(N, t) is strictly less than

N if and only if some two abscissae of Jn coincide.

Proof. The 'if part is obvious. To prove the 'only if part, assume dim M(N, t)

< N. Then there are real constants ai, a2, ■ ■ -, aN, not all zero, such that

X)f=i aigi = 0. This means that

zZaiitilT---itkU)Tk = o
i=i

for all nonnegative integers ni, ■ ■ -, nk. In particular, for an arbitrary choice of

ni, ■ ■ -, nk, we have

¿ ai(ti(l))(p-1)ni-- ■ (4(!))<p-1)Bi = 0 ,       p = 1, 2, • • -, N .

i=i

As the a's are not all zero, the determinant of this system of linear equations

vanishes; viz.,

n [«i<0r- • • (í*(i>r* - «i"*)"1- • • fe(y)n = o
¿<J=2

(see, for instance, [2, p. 41]). Then, for some pair of indices i, j (i ¿¿ j), we have

(¿l(i))ni   •  •  •   (tk^Yk   =   («1<")">   •  •  •   («*<")"* .

As this argument can be repeated an infinity of times—say, each íi¿ either zero

or odd—whereas there are only %N(N — 1) index pairs (i, j), we conclude that,

for some fixed index pair (i, j),

(ii*0)"' = (<i{i))"',       lúlúk,

for an infinity of odd values of n¡; and hence that

f<« = i<" . Q.E.D.

Corollary. With prescribed distinct abscissae, the representation of a Wn is

unique. If only M (<N) of the abscissae are distinct, then the Wn reduces to a Wu

and, as such, has a unique representation again.
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Remark II. Referring to the notation of Theorem I, we note that / is nearer to

go than to any other point of M(N, t). Consequently / — go is orthogonal to

M(N, t). Using the representation g0 = zZ™=i Amgm, we obtain

(2.4) zZAm(gm,gi)= (f,gi),        lúl UN,
m=l

where ( , ) is the inner product in l2. It may be noted that these equations are

identical with the equations

~a2il - Jn) =0,        l^l^N.

Lemma. Let the abscissae and optimal weights of a Wn be r(1), • • -, tW) and

cm, ■ ■ ■, ciN respectively. Let the abscissae and optimal weights of a Wn+i be

r«>, • • -, r<-v>, fW+D and ßh • • -, ßN, ßN+i respectively. Then a\I - WN+i) <

a2(I — Wn), unless ßN+i = 0 and ß, = ai for 1 ^ i ^ N.

Proof. The relation

<r2(7 - Wn+i) ^ a2(I - Wn)

is obvious. Suppose equality holds. The point of M(N, t) nearest to / is g' =

zZt-i <*iéi, and the point of M(N + 1, r) nearest to / is g" = ]£*# ß*gi- The

parallelogram law (see [9, p. 23]) implies that g* = \(g' 4- g") is no farther from

/than is g". But M(N, t) C M(N + 1, r). This gives rise to a contradiction unless

g' = ¿"—i.e. unless ßN+i = 0 and /3¿ = <*¿ for 1 á ¿ í Í.       Q.E.D.

Theorem III. Given a Wn, there is a properly better Wn+i—i.e. one such that

a°-(I - Wn+i) < o-\I - WN) .

Proof. Let the distinct abscissae of WN be r(I), ■ • •, tW) and let the optimal

weights be cm, ■ • -, ocn- Then the a's satisfy the system of linear equations

(2.5) £ oLiigi, gj) = (f, gi),        l^j^N.
i=i

Choose the abscissae of WN+i as those of WN augmented by tw+i), as yet unde-

termined except that we require

(2.6) rw+» ^ r<«,       1 á ¿ =á #.

Let the optimal weights of Wn+i be ßi, ■ ■ ■, ßN, ß.v+i—functions of r(A'+1). On the

strength of the Lemma, it is enough to show that r(JV+1) £ S can be so chosen as

to satisfy (2.6) and the condition: ßN+i ^ 0. The ß's satisfy the linear equations

N+l

(2.7 ) £ ßPgi, gi) = (f,gi),       IZjZN + l.
s=l

For 1 ¡S p á A* 4- 1, let Ap denote the Gram determinant

det [(gi, gi)],        i,j =1,2, ••-, p.

As r'1', r<2), • • -, r<v), r(v+1) are distinct, Theorem II shows that gh gi, ■ ■ -, gx,

gN+i are linearly independent, and hence that no Ap vanishes. Solving the system

(2.7), we get
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ftv+i = A/A.v+i

where the first N columns of A and An+i are identical, and the (jth row, (N + l)th

column) element of A is (/, g p. Subtract ¿Z^i on (ith column of A) from the

(N 4- l)th column of A, use relations (2.5), abbreviate / — zZ^-i atei as f°> and

see that

&V+1   =  "T (/ , gN+l)  ■

It remains to show that there is a r(V+1) £ 6 satisfying (2.6) and such that

(f°, g.v+i) 9e 0. Suppose, on the contrary, that

(2.8) (Io, gN+i) = 0

for every choice of r°v+1) satisfying (2.6). Then (2.8) holds on some neighbourhood

in g. Rewriting the left-hand side of (2.8) as

(2-9) ± \£- zZ' ani...nk(ti^r-- ■ (hlN+i)r],

where

k     1     I     / _ f V* • N
_ o—* TT       r  V     r; xr~>       /, (m)^»,        /, (m)\nk

a„v..nk = 2    11—      ,   1-¿-."mik    )   ---itk    )",

we see that the multiple power series (2.9) vanishes for all r(JV+I) in some neighbour-

hood in 6. Since (2.9) may be regarded as a complex convergent power series in

liw+1), • • -, tPN+1) restricted to a real environment, all the ani...r,k vanish (see [3,

p. 34]). But this means

I(Tni...„k) = WN(Tny..nk)

for all n\, • • •, nk St 0, and hence that

I(x) = WN(x)

for all x G Sx contradicting Remark I. Q.E.D.

3. Monte Carlo Quadratures. The A7-point Monte Carlo quadrature formula is

MN(x) =~ÍZ x(r(m))
•<»    m=l

where r(1), • • -, r(V> are random points in g. The variance of the error associated

with this method of quadrature is given by

cm2 = 2-kN f ■■■ f If   Uix) - Mxix)fdEx\ II dtiU)
—1 — 1   V.   Sx J     i,i

where H,,¿ dtp** denotes the product of all the differentials dtp''' (1 ^t^ fc,

1 => j =i N). Using Fubini's theorem, we rewrite this as

(3.1) o-Mi = 2-klf(    {    \dEx,
Jsx

where
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(3.2) Í     }-£••■ l\ [/(*) - jfí x(i(m))]" II dii°' ,

which reduces to

(2™/N){I(x*) ~[I(x)]2\.

Substituting this evaluation in (3.1), we get

(3.3) AW = /    I(x2)dEx-J     [I(x)fdEx.
sx sx

Going back to the representation (0.1) of x(r), we get after a routine calculation,

CX i\   Tl   2\   _   ^^_\Xnv--nk)_ -r-> _Xmi...mkXnx...nk_

{     '   {X } ~ 2f(2nl4-l)---(2nk4-\)'t V (m, + »i + 1)■ • • (mk + nk + 1) '

where J^ is a sum over all nonnegative integers ni, U2, ■ ■ ■ ,nk; and £2 is a sum

over all such nonnegative integers mi, ■ ■ -, mk, ni, ■ ■ ■ ,nk that each of mi -+- ni,

■ ■ •, m.k 4- nk is even and m, ¿¿ n¿ for at least one value of i. If we integrate (3.4)

term by term with respect to dEx over Sx, all the terms of £2 drop out, and we

are left with

(3.5)
L I{*)dEX = ? [nil L+1) L <*«-^M*"]

„éíLSX,,^ nti (2n,:+ 1)J '

where we have used the result (1.4). This disposes of the first term on the right-

hand side of (3.3). In much the same manner, we find

(3.6) /    [Iix)]2dEx=Í\^zZ'{tl^    *,)"!•
Jsx ,,=o L3X2„   „     U=i (2n,-4- 1) >■*

Substituting from (3.5) and (3.6) into (3.3) we obtain

o-M2 = (l/N)yk

where

7*

(3.7)
S L3Xn V   l M (2n,- + 1)/ J

¿j L3X2n V   (M (2ny + l)2/J

Integrals of high multiplicity occur often enough in applied mathematics to

justify a study of the asymptotic behaviour of yk for large values of fc. We note

that the terms for n = 0 in the two series in (3.7) cancel out, and that the term

for n = 1 in the first series is 2fc/f9(fc 4- l)(fc 4- 2)]. We write

_2fc
7* ~ 9(fc-|- l)(fc + 2) + <Xk

where
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ak = zZ
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"-z'ln-1-)!
and

n- j

J_\1
l_3X2n t   lía (2nj 4- l)2/-l

= z ¿-Z' n
We note that

c¿ = d(k) St i¿2,        ¿ St 2, fc St 1 ,

and that

(3-8) z' n ás'n ^ c„(fc)
tí (2n,- 4- 1)2J  == V   ly=i (2w,- 4- 1).

In view of these inequalities, we have the general term in series for ak

2" 1

3 ir« (*+!)<«*+2)
2" cn

Ç   lH (2ra,-4-1)

<

(ci+ l)(ci + 2)(cn+ l)(c„ + 2)

2" 1

n(c-+l)(c,-4-2) J
(fc4- l)(fc + 2)c-[3(ci)2]

< 2" IP
(8/fc4)".

3  ic2.ifc2-(ifc2)2n-4       24

By a similar argument, the general term of ßk is less than (fc4/24)(8/fc4)2\ Hence

This proves that, for la.-ge values of fc,

(3.9) 4- 0(fc-4) .
7i     9(fc+D(fc + 2)

It is worth noting that the inequalities

(3.10) 0 < 7*+i < lk

hold for fc = 1, 2, • • •.

That yk > 0 for all fc is obvious. We write yk = Ak + Bk, where

Ak = ± I"2*""1 v'(n    i   \l
n_l  L3X2n-l 2n-l   U_l   (2'Wj- 4-  1)J J

and

Bk = S Iä vÇ \U (2ny+i)/ ~ ? (H (2fly+D2//J
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In view of the inequalities (3.8) and the fact that c.-(fc) St fc for i St 1, the general

term of the series for Ak is less than §fc(2/fc2)2"-1. Then we have

A ' = 2fc 2fc j  A V 1112"'1
Ak ="9(fc + D(fc4-2) <Ai:<9(fc4-l)(fc4-2)+ 3 hlk2J

=_?fc_8_ „
9(fc+l)(fc + 2) + 3fc(fc4-4)_ '

It can be verified that Ak — A'P+i can be expressed as a ratio of two polynomials

in fc — 3 with positive coefficients, and hence that Ak — A'P+i is positive for fc St 3.

It follows that Ak+i < Ak for fc St 3. Treating Bk in the same manner, we see also

that Bk+i < Bk for fc St 3, and conclude that

0 < 74+1 < Ik,       fc St 3 .

When fc = 1, 2, or 3, we evaluate the first two terms of the series for Ak, the first

term of the series for Bk, and use estimates for the remaining terms to get

73 < 0.037 ,
0.038 < 72 < 0.040,

and

0.042 < 7i,

which completes the proof of the assertion (3.10).

To illustrate the utility of the formula (2.1) for the global comparison of quad-

rature methods, we take fc = 1 and find a2(I — GP) where we denote by (?2 the two-

point Gaussian formula. For G2 we have

¿«>=3-1'2,       Ai**\;       ¿<2) = -3-1'2,       Ai = i

(see [8, pp. 368, 369]). An easy computation shows a2(I - GP) < (0.07372)3~7.

To match this accuracy with a Monte Carlo formula Mn, one must take N > 1,000.

Bañaras Hindu University

Varanasi 5, India

1. N. I. Achieser & I. M. Glassmann, Theorie der Linearen Operatoren im Hilbert-Raum,
Akademie-Verlag, Berlin, 1954; English transi., Ungar, New York, 1961. MR 16, 596; MR 34
#6527.

2. A. C. AiTKEN, Determinants and Matrices, 9th ed., Oliver and Boyd, Edinburgh, 1956.
MR 1, 35.

3. S. Bochner & W. T. Martin, Several Complex Variables, Princeton Mathematical Series,
Vol. 10, Princeton Univ. Press., Princeton, N J., 1948. MR 10, 366.

4. W. F. Eberlein, "An integral over function space," Canad. J. Math., v. 14, 1962, pp.
379-384. MR 26 #4176.

5. W. F. Eberlein, Personal communication.
6. P. C. Hammer, "Numerical evaluation of multiple integrals," in On Numerical Approxima-

tion, edited by R. E. Langer, Univ. of Wisconsin Press, Madison, Wis., 1959, pp. 99-115. MR 20
#6788.

7. H. Kahn, "Multiple quadrature by Monte Carlo methods," in Mathematical Methods for
Digital Computers, Wiley, New York, 1960, pp. 249-257. MR 22 #8703.

8. Z. Kopal, Numerical Analysis, Wiley, New York, 1955. MR 17, 1007.
9. L. H. Loomis, An Introduction to Abstract Harmonic Analysis, Van Nostrand, New York,

1953. MR 14, 883.
10. V. L. N. Sarma, "A generalisation of Eberlein's integral over function space," Trans.

Amer. Math. Soc., v. 121, 1966, pp. 52-61. MR 33 #1714.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


