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ECAT11/L1td1 Is Enriched in ESCs and Rapidly Activated
During iPSCGeneration, but It Is Dispensable for the
Maintenance and Induction of Pluripotency
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Abstract

The principal factors that lead to proliferation and pluripotency in embryonic stem cells (ESCs) have been vigorously
investigated. However, the global network of factors and their full signaling cascade is still unclear. In this study, we found
that ECAT11 (L1td1) is one of the ESC-associated transcripts harboring a truncated fragment of ORF-1, a component of
theL1 retrotransposable element. We generated an ECAT11 knock-in mouse by replacing its coding region with green
fluorescent protein. In the early stage of development, the fluorescence was observed at the inner cell mass of blastocysts
and epiblasts. Despite this specific expression, ECAT11-null mice grow normally and are fertile. In addition, ECAT11 was
dispensable for both the proliferation and pluripotency of ESCs.We found rapid and robust activation of ECAT11 in
fibroblasts after the forced expression of transcription factors that can give rise pluripotency in somatic cells.However, iPS
cells could be established from ECAT11-null fibroblasts. Our data demonstrate thedispensability of ECAT11/L1td1 in
pluripotency, despite its specific expression.
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Introduction

Embryonic stem cells (ESCs) have been established from

mammalian blastocysts [1],[2],[3]. ESCs have the ability to

proliferate vigorously and differentiate into various cell types.

Therefore, they are attractive sources for cell transplantation

therapy and basic research. ESCs have been used for functional

analyses of numerous genes and differentiation processes.

Recently, induced pluripotent stem cells (iPSCs) were derived

from mouse and human somatic cells that have similar

differentiation potential to ESCs, and can overcome the ethical

problems and immune rejection associated with ESCs

[4],[5],[6].

The molecular mechanisms and pathways underlying the

pluripotency and proliferation of ESCs and iPSCs are still

unclear. In mouse ESCs, pluripotency can be maintained by

leukemia inhibitory factor (LIF) and several transcription factors.

LIF activates Stat3 signaling and its downstream cascades [7] that

are involved in pluripotency. Oct4 [8], Sox2 [9] and Nanog

[10],[11] are also pivotal regulators, and maintain the undiffer-

entiated state of ESCs. Klf4 [12] is also an important factor for

the maintenance of ESCs. The Kluppel-like factor (Klf) family,

involving Klf4, Klf2 and Klf5, regulates the self-renewal of ESCs

[12]. Therefore, pluripotency is maintained by the regulatory

networks of many transcription and other factors.

To identify new genes involved in the molecular network of

pluripotency, we have previously performed a digital differential

display analysis (DDD) of the expressed sequence tag libraries

among various mouse tissues and cell lines [10],[13],[14],[15],

[16],[17]. Candidates were selected based on their specific

expression in ESCs, and included many well-known pluripotency

related genes, such as Oct4 and Nanog, as well as a variety of novel

genes which we designated the ‘‘ECATs’’ for ES cell-associated

transcripts. We have shown that ECAT4 encodes the transcription

factor Nanog, which plays critical roles in pluripotency [10],

whereas ECAT5 encodes Eras, which promotes the proliferation of

mouse ESCs [14].

In this study, we evaluated the expression and function of

another ECAT, ECAT11, also known as L1ltd1. Wegenerated

ECAT11 knock-outmice and ES cells by inserting the enhanced

green fluorescent gene (EGFP) cDNA into the ECAT11 locus.

Our study showed that ECAT11 is dispensable for the

development and maintenance of pluriptotency, despite its specific

expression pattern. We also found that ECAT11 is rapidly

activated by Oct3/4, Sox2 and Klf4 in fibroblasts, but is

dispensable for the generation of iPSCs.
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Figure 1. Protein structure andexpression of ECAT11. (A) Amino acid sequences of ECAT11 from various species. The boxes indicate the
conserved Transposase_22 motif. Double asterisks indicate equivalent regions of arginin residues responsible for the RNA binding activity of L1ORF1.
Black letters on a white background; non-similar residues, blue letters on a cyan background; consensus residues derived from a block of similar
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Results

ECAT11 expression, protein structure and localization in
mouse ESCs
We identified ECAT11 by a digital differential display analysis

of expressed sequence tag (EST) databases [10] as a novel

transcript enriched in mouse ESCs. The predicted ECAT11 open

reading frame encodes 848 amino acids, showing a similarity to

ORF-1, one of the two protein components of the L1 transposable

element (L1). L1 is a non-LTR type of retrotransposon, which can

move within the genome as a transcribed RNA intermediate.

There are .599,000 copies of L1 that occupy 19% of the mouse

genome [18]. L1 encodes two proteins, ORF1 and ORF2. ORF1

has a Transposase_22 motif, which is responsible for the RNA

binding activity of ORF1 [19],[20],[21]. ORF2 encodes a protein

with an endonuclease and reverse-transcriptase activity. ORF1 is

mainly localized inthe cytoplasm as an RNA-protein particle,

together with ORF2, and supportsthe L1 transition [22]. In the C-

terminus of ECAT11, we found high homology with the C-

terminus ofthe ORF of L1 TFspa, a subtype of L1 [23]. The

identity of the protein sequence in this region was 33% (Figure 1A

motif2). The N-terminus of ECAT11 also showed homology with

Transposase_22, withan identity of 30% (Figure 1A motif1).

ECAT11 paralogs can be identified in humans, rhesus

macaques, rats and dogs (Figure 1A). The overall identity of these

proteins to mouse ECAT11 is relatively low (,23.1%), but the

second ORF1-like domain showed 45.8% identity with the mouse

protein. The identity of the first ORF1-like domain is 43.4%,

excluding dog ECAT11, which lacks this region. However, two

arginine residues (R297 and R298) of the L1 TFspa ORF1, which

are critical for its RNA binding and chaperone activity [24], are

not conserved in ECAT11. Therefore, it was unclear whether

ECAT11 hadRNA binding and chaperone activity.

An RT-PCR analysis confirmed that ECAT11 is abundantly

expressed in mouse ESCs and is suppressed upon differentiation

induced by retinoic acid (Figure 1B). The expression was

undetectable in most of adult somatic tissues, however, weak

expression was observed in the testes, ovaries, and brain. In

humans, ECAT11 transcripts were identified in ESCs, an

embryonic tumor cell line, testes, ovaries, spleen, and placenta

(Figure 1B). As a result, the expression pattern of ECAT11 seems

to be similar between mice and humans.

Generation of ECAT11-EGFP knock-in mice and ESCs
To elucidate the effect of ECAT11disruption and pursue its

expression, we generated an ECAT11-EGFP knock-in construct

on a bacterial artificial chromosome (BAC) vector. We

first replaced the protein cording region of ECAT11 with

anEGFP-IRES-Puro cassetteby enzyme-mediated recombina-

tion (Figure 2A). The manipulated BAC was then introduced

into ESCs by electroporation. After drug selection, we obtained

750 drug resistant colonies. We first screened for the

recombination by genomic PCR and then confirmed the

recombination by Southern hybridization, in which the wild-

type and targeted locus gave rise to bands of 17.2 kbp and

14.5 kbp, respectively (Figure 2B). We found that one out of the

750 clones had the correct homologous recombination. The

ECAT11WT/EGFP ESCs were positive for GFP fluorescence, but

became negative when differentiation was induced by retinoic

acid treatment (Figure 2C), thus suggesting that our reporter

recapitulated the endogenous expression. By introducing the

ESC clone into blastocysts, we established chimeric, and

subsequently ECAT11 knock-in, heterozygous mice.

ECAT11-EGFP localization in mouse embryos
To study the expression of ECAT11 during mouse develop-

ment, we observed the developmental process from egg to

embryonic day (E) 15.5 embryos using ECAT11-EGFP expression

(Figure 2D). While EGFP fluorescence was not observed until

themorula stage, an obvious expression was noted in the whole

blastocyst from the blastula stage (Figure 2D (i)–(vi)). The

expression was conspicuous in both embryonic and extraembry-

onic tissue onE7.5 (Figure 2D (vii)). GFP fluorescence gradually

decreased until E9.5, and had completely disappeared by E10.5

(Figure 2D (viii), (ix)). The signal of ECAT11-EGFP appeared

again at E13.5 inthe interdigitregions and lower jaw (Figure 2D

(x), (xi)). ECAT11-EGFP expression was also observed in the testes

and ovaries (Figure 2D (xii)). The fluorescence in the lower jaw

and inter-digit regions was detectable until E15.5 (Figure 2D (xiii)).

The effects of ECAT11 disruption in the entire mouse and
ESCs
To elucidate the effects of ECAT11 disruption, we compared the

ECAT11EGFP/EGFP andWTmice. The interbred ECAT11WT/EGFP

mice yield F1 pups, including ECAT11 null mice, according to the

Mendelian rule (Wild-type:ECAT11WT/EGFP:ECAT11EGFP/EGFP=

43:74:46). ECAT11-null mutant mice were normal in gross

appearance and by the X-ray analyses(Figure S1), and were found

to be fertile. Therefore, ECAT11EGFP/EGFP is dispensable in mouse

development and fertilization.

To investigate the functions ofECAT11 in ESCs, we obtained

25 blastocysts from intercrosses of ECAT11WT/EGFP hetero-

zygous mice and established 14 ESC lines. Among them, two

lines were wild type, nine were ECAT11WT/EGFP, and 3 were

ECAT11EGFP/EGFP. We usedonewildtype line (#6202), two

ECAT11WT/EGFP lines (#7491 and #7061), and three

ECAT11EGFP/EGFP lines (#6206, #7571 and #7572), as well as

the RF8 parental ESC line, in the subsequent analyses. A Western

blot analysis confirmed the absence of ECAT11 expression

in the ECAT11EGFP/EGFP ESC lines (Figure 3A). Immunos-

taining also confirmed the absence of the ECAT11 protein in

ECAT11EGFP/EGFP ESC lines (Figure 3B). In wild-type ES cells,

immunofluorescent microscopy using an anti-ECAT11 antibody

detected ECAT11 in the cytoplasmin a spotty pattern, which is similar

to that of the L1ORF1 protein (Figure 3B) [22]. No such signal was

detected in the ECAT11EGFP/EGFP ESC lines (Figure 3B).

ECAT11EGFP/EGFP ESCs showed normal morphology and

proliferation (Figure 3C). They also showed similar global gene

expression profiles asthe wild type ESCs as determined by a

microarray analysis (Figure 3D). ECAT11EGFP/EGFP ESCs did not

exhibit significant change in comparison with wild-type ESCs

(.2-fold, p,0.05). When subcutaneously transplanted into

residues at a given position, black letters on a green background; consensus residues derived from the occurrence of .50% of a single residue at a
given position, red letters on a yellow background; consensus residues derived from a completely conserved residue at a given position, green letters
on a white background; residues weakly similar to the consensus residue at a given position. (B)The expression profiles of mouse (upper)and human
(lower) ECAT11. RNA was isolated from ESCs, differentiated ESCs, human ESCs (H9), human dermal fibroblasts (HDF), an embryonic tumor cell line
(NCR-G3)and various tissues from adult mice or humans, and were used for an RT-PCR analysis. The differentiation of mouse ESCs was achieved by
retinoic acid (RA) treatment (300 nM) for 7 days. The amplification cycles are shown at right. NAT1 was used as a loading control.
doi:10.1371/journal.pone.0020461.g001
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immunodeficient mice, ECAT11EGFP/EGFP ESCs formed terato-

mas, which consisted of various tissues of all three germ layers,

such as neuronal cells, epithelium, and cartilage (Figure 3E).

Therefore, ECAT11 is also dispensable for theself-renewal of

pluripotent ESCs.

Induction of ECAT11 expression in mouse embryonic
fibroblasts
We examined whether ECAT11 can be activated by pluripo-

tency-associated transcription factors (Oct4 (O), Sox2 (S), Klf4 (K),

c-Myc (M) and Nanog (N)) in mouse embryonic fibroblasts

(MEFs). We introduced various combinations of the five

transcription factors into MEFs established from ECATEGFP/EGFP

embryos (Figure 4). Two days after the transduction of 31 possible

combinations, we examined the expression of ECAT11-EGFP by

a flow cytometer. No single factor was able to induce EGFP

fluorescence. However, we observed arapid and robust (.10%)

activation by three combinations, OSK, OSKM, and OSKMN

(Figure 4). Modest activation (,5%) was obtained by OK, OKN,

and OKM. These data indicated that ECAT11 is rapidly activated

by Oct3/4 and Klf4, together with Sox2.

ECAT11 is dispensable for iPSC generation
The rapid activation of ECAT11 in MEFs by OSK(M)

prompted us study whether iPSCs can be generated without

ECAT11. We introduced the four reprogramming factors

(OSKM) by retroviruses into ECAT11EGFP/EGFP MEFs. Five

days after transduction, cells were re-seeded onto SNL feeder cells

and selected with puromycin. Approximately 20 days after

transduction, we observed many puromycin-resistant colonies.

These cells were expandable, and showed a morphology and

proliferation similar to ESCs (Figure 5A). These cells expressed

pluripotency-associated genes, such as Nanog, at comparable

levels to those in ES cells (Figure 5B). They also formed teratomas

containing various tissues representing all three germ layers

(Figure 5C). These data demonstrated that ECAT11 is dispensable

for mouse iPSC generation.

Discussion

In this study, we generated ECAT11-EGFP knock-in/-out mice

and studied the expression and functions of ECAT11. We

confirmed that ECAT11 is expressed in early mouse embryos

and undifferentiated ES cells. We also found that ECAT11 is

rapidly activated during iPSC generation. Despite this specific

expression, ECAT11-deficient ES cells were normally self-renewed

and remained pluripotent. We were able to generate iPSCs from

ECAT11-null fibroblasts. These data demonstrated that ECAT11

is dispensable for the induction and maintenance of pluripotency,

despite its specific expression.

It has been reported that a lot of truncated sequences derived

from L1 are dispersed in the mouse genome [25], indicating that

these fragments might work as complementary factors for

ECAT11. Indeed, some dispersed L1 sequences are still active in

several types of somatic cells [26],[27] and germ cells at various

developmental stages [28]. L1 expression was also observed in the

blastocyst, from which ESCs are derived [29]. The L1ORF1

protein binds to RNA in a sequence non-specific manner [30]. In

addition, other putative proteins containing Transposase_22 are

interspersed in the mouse genome (EMBL-EBI: IPR004244

Transposase_22: http://www.ebi.ac.uk/interpro/IEntry?ac=

IPR004244). Therefore, these related proteins might compen-

sate for a loss of function of the ECAT11 protein.

The expression of ECAT11-EGFP in MEFs was effectively

promoted by the forced expression of three factors, Oct4, Sox2

and Klf4. This induction was further enhanced by c-Myc. Previous

reports of studies using chromatin-immunoprecipitation assays

showed that the promoter region of ECAT11 is occupied by Klf4

and c-Myc in mouse ESCs [31],[32]. Oct4 and Sox2 have been

shown to regulate the transcriptional activity of target genes

through the interaction with their recognition sequences, octamer-

and SRY-binding sites, respectively. The database analysis of

transcription factor binding sites using TFSEARCH (http://

www.cbrc.jp/research/db/TFSEARCH.html) identified multiple

octamer- and SRY-binding sites in the 59- flanking region of the

mouse ECAT11 gene. However, genome wide mapping of Sox2

and Oct4 binding sites by ChIP-seq could not detect their

interaction in these regions in ESCs [32]. It therefore remains to

be determined whether Oct3/4 and Sox2 directly activate the

transcription of ECAT11.

In conclusion, we have herein demonstrated that ECAT11

disruption does not affect the function of ESCs, mouse

development or fertility. By using a reporter mouse, we found

that the ECAT11 promoter is rapidly activated by ectopic

expression of Oct4, Sox2 and Klf4. Nevertheless, iPSCs can be

generated from ECAT11-null fibroblasts. Therefore, ECAT11/

L1ltd1 is considered to be dispensable for the induction and

maintenanance of plutipotency, despite its specific expression.

Materials and Methods

Cell culture, induction of transcription factors and
reprogramming
ESCs (RF8mouse ES cell line [33] and all other embryonic stem

cell lines established in this research)were maintainedin DMEM

supplemented with 20% FBS(Invitrogen), 0.1 mM non-essential

aminoacids(Invitrogen), 2 mM L-glutamine(Invitrogen), 50 U/ml

penicillin-streptomycin(Invitrogen), 0.11 mM 2-mercaptoethano-

l(Invitrogen)and LIF on feeder layers of mitomycin C-treated SNL

cells [34] or gelatin coated dishes. As a source of leukemia

inhibitory factor (LIF), we used conditioned medium (1:1000

dilution) from Plat-E cell cultures that had been transduced with a

LIF expression vector. ESCs were passaged every 2 days. Plat-E

packaging cells, which were also used to produce retroviruses,

were maintained in DMEM containing 10% FBS, 50 units/

50 mg/ml penicillin/streptomycin, 1 mg/ml puromycin (Sigma),

Figure 2. Generation of the ECAT11-EGFP knock-in reporter and mice. (A) Schematic representations of the structures of the mouse ECAT11
gene (WT), targeting BAC (BAC), and targeted loci (Targeted). The positions of the probes (blue lines), and recognition sites of BspHI (B) are shown.
The black box indicates the ECAT11 coding region. Open arrowheads indicate the 39 screening primer pair that amplified only the recombinant allele.
DT-A: diphtheria toxin A, IRES: internal ribosomal entry site, Puro: puromycin resistance gene, bGHpA: bovine growth hormone poly A sequence, FRT:
flippase recognition target. (B) The results of the Southern blot analysis of ECAT11WT/EGFP ESCs. (C)The morphology of the ECAT11EGFP/EGFP ESCs
grown on gelatin-coated dishes. The phase and EGFP fluorescence images of undifferentiated (left panels) and differentiated (right panels) cells are
shown. Cells were cultured with RA for eight days before taking the photographs. Bars; 100 mm. (D) ECAT11-EGFP expression in mouse embryos.
Bright field and EGFP fluorescence images of fertilized eggs (i), 2 cells (ii), 4 cells (iii), 8 cells (iv), morulae (v), blastocysts (vi), E7.5 gastrulae (vii), E9.5
embryos (viii), E10.5 embryos (ix), E13.5 embryos (x), limbs of E13.5 embryos (xi), reproductive glands of E13.5 embryos; left, testis; right, ovary (xii),
and the E15.5 embryo of an ECATEGFP/EGFP mouse (xiii) are shown. WT: wild type. EGFP: ECAT11EGFP/EGFP.
doi:10.1371/journal.pone.0020461.g002
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and 10 mg/ml of blasticidin S (Funakoshi). H9 human embryonic

stem cells (WiCell) were maintained in Primate ES medium(Re-

proCELL, Japan) supplemented with 4 ng/ml recombinant

humanbasic fibroblast growth factor (bFGF, WAKO, Japan).

Retroviral transductions and induction of nuclear reprogramming

were performed as described previously [35].

Mice
All mice used in this study were bred and sacrificed

appropriately following code of ethics of animal research

committee in Kyoto University.The animal care and experimental

procedures of this subject were approved by the Animal Research

Committee, Kyoto University and carried out according to the

Regulation on Animal Experimentation at Kyoto University

(approval ID : I-6-5).

Construction of targeting vectors for targeted disruption
of ECAT11 in mouse ESCs
We purchasedthe bacterial artificial chromosome (BAC) clone

RP24-326M13 containing ECAT11 from the BACPAC resources

Figure 3. ECAT11 is dispensable for mouse ESCs. (A)A Western blot analysis of the ECAT11 expression in ESC lines. The data are shown in
duplicate. (B) Immunocytochemistry of ECAT11. Red: ECAT11, Blue: DAPI. Bars; 20 mm. (C)The proliferation of ECAT11 knock-in ESCs. Ten thousand
cells were plated, and counted on days2, 4, 6 and 8. We used 2 WT, 2 ECAT11WT/EGFP, and 3 ECAT11EGFP/EGFP ESC lines for this analysis. The data are
shown as the averagesand standard deviations. (D) Scatter plots showing a comparison of the global gene expression determined by the microarray
analyses between the WT and ECAT11EGFP/EGFP ESCs. The data from 2 WT ESC lines and 3 ECAT11EGFP/EGFP ESC lines cultured on gelatin coated dishes
were averaged and used for this analysis. (E)Hematoxylin and eosin staining of teratomas generated from ECAT11EGFP/EGFP ESCs. The gross image
(upper left), neural tissue, gut-like epithelia, and cartilage are shown. The scale bars are 200 mm in the gross image and 100 mm in the other images.
doi:10.1371/journal.pone.0020461.g003
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center. By using the RED/ET recombination technique (Gene

Bridges), we replaced from the translation initiation site to exon 5

that contained the ECAT11 coding region with an EGFP-IRES-

Puro cassette and inserted a diphtheria toxin A cassette 8.7 kbp

upstream of the 59 arm. After linearization with BspTI, the

modified targeting vectors were introduced into RF8 ESCs by

electroporation. Genomic DNA isolated from puromicin-resistant

colonies was screened for homologous recombination by PCR,

and correct targeting was confirmed by a Southern blot analysis of

BspHI-digested DNA with a specific probe. The Southern blot

analysis was performed following the manufacturer’s protocols.

For the sequences of the primers and probes, see Table 1.

Generation of ECAT11-deficient mice and ESCs
The ECAT11 disrupted (ECAT11WT/EGFP) heterozygous ESCs

were microinjected into C57BL/6 blastocysts and implanted into

pseudopregnantJcl:ICR females to obtain chimeric mice. The

chimeric founders were mated with each other or C57BL/6 mice

to generate heterozygous ECAT11WT/EGFP mice, which were then

intercrossed to produce homozygous ECAT11EGFP/EGFP mice. All

of the phenotype analyses were performed with littermates on a

mixed 129/Sv and C57BL/6 background.

To establish ECAT11EGFP/EGFP ESCs, ECAT11WT/EGFP or

ECAT11EGFP/EGFP female mice were injected with 10 mg of

tamoxifen (Sigma) and 1 mg of depo-provera (Sigma) subcutane-

ously on the third day after mating. Four days later, pregnant mice

were sacrificed, and embryos in diapause were flushed out of the

uterus by PBS supplemented with 10% FBS. These blastocysts

were cultured on SNL feeder cells in four-well plates in DMEM

supplemented with 10% FBS, 0.1 mM non-essential aminoacids,

2 mM L-glutamine, 50 U/ml penicillin-streptomycin, and 0.11

mM 2-mercaptoethanol. After 6 days, the central mass of each

explant was harvested, rinsed in PBS, and placed in a drop of

trypsin for 5 minutes. The cell mass was collected with a finely

drawn-out Pasteur pipette preloaded with medium, ensuring

minimal carryover of the trypsin. The cells were gently transferred

into a fresh well with medium containing 20% FBS. The resulting

primary ESC colonies were individually passaged into the wells of

four-well plates containing SNL feeder cell layers. Thereafter, cells

were expanded by trypsinization of the entire culture. Genotypes

of established clones were confirmed by genotyping PCR (For

primers, see Table 1).

RT-PCR and real-time PCR
Total RNA from mice was purified with the TRIzol reagent

(Invitrogen) and treated with a Turbo DNA-free kit (Ambion) to

remove genomic DNA contamination. Total RNA of dermal

fibroblasts and various tissues from adult humans were purchased

from STRATAGENEH and CELL APPLICATIONS, Inc. One

microgram of total RNA was used for the reverse transcription

reaction with ReverTraAce-A (Toyobo, Japan) and the dT20

primer, according to the manufacturer’s instructions. PCR was

performed with Ex Taq HS (Takara, Japan).

Generation of anti-ECAT11 polyclonal antibodies
The coding sequence of aa275 to 360 of ECAT11 was amplified

by PCR (For primers, see Table 1). The PCR product was

subcloned into pENTR/D-TOPO (Invitrogen), and was trans-

ferred into pDEST17 (Invitrogen) by LR recombination. After

introduction of the resulting expression vector, pDEST17-

mECAT11-275360, into BL21-AI E. coli (Invitrogen), recombi-

nant protein production was induced according to the manufac-

turer’s protocol. Histidine-tagged ECAT11 was purified using Ni-

nitrilotriacetic acid agarose (Qiagen) under denaturing conditions

in the presence of 8 M urea. After dialysis against 6 M urea, the

recombinant proteins were consigned to SCRUM Inc. to generate

anti-ECAT11 rabbit polyclonal antibodies.

Western blot analysis
The cells in a semiconfluent state were lysed with M-PER

(Thermo Scientific) supplemented with protease inhibitor cocktail

(Roche). Ten microliters of the cell lysate were separated by

electrophoresis on 8% SDS-polyacrylamide gels, then were

transferred to a polyvinylidinedifluoride membrane (Millipore),

and probed with the primary antibody against ECAT11 (1:1000)

or b-actin (1:5000, A5441, Sigma). Signals were detected with

anti-mouse IgG-HRP (1:3000, #7076, Cell Signaling) or anti-

rabbit IgG-HRP (1:2000, #7074, Cell Signaling).

Immunocytochemistry
ESCs were fixed with PBS containing 4% paraformal-

dehyde for 20 min at room temperature. After washing with

PBS, the cells were treated with PBS containing 5% normal goat

serum (Millipore), 1% bovine serum albumin (BSA, Nacalait-

esque), and 0.2% Triton X-100 for 45 min at room tempera-

ture. After 3 washed with PBS, 8 ml of primary antibody (anti-

ECAT11 rabbit whole serum) was diluted in 800 ml of PBS

containing 1% BSA and added into blocked cells. The

secondary antibody used was cyanine 3 (Cy3)-conjugated goat

anti-Rabbit IgM (1:500, Millipore).

Teratoma formation
The cells were harvested by 0.25% trypsin/1 mM EDTA

treatment, collected into tubes, and centrifuged, and the pellets

were suspended in 10% FBS/DMEM. One million of the cells

were injected subcutaneously into the dorsal flank of a nude mouse

(CREA, Japan). Eight weeks after the injection, tumors were

dissected, weighed, and fixed with PBS containing 4% parafor-

maldehyde. Paraffin-embedded tissues were sliced and stained

with hematoxylin and eosin.

Cell proliferation assay
Ten thousand cells were plated in duplicate onto 60 mm gelatin

coated dishes. Before counting cells, these cultured dishes were

washed with 1 ml PBS and cells were dispersed with 500 ml of

0.25% trypsin. Thereafter, 2 ml of medium were added, and 100 ml

of the suspension was used for counting. The number of cells was

counted on days 2, 4, 6, and 8 using a Z1 Coulter Particle Counter

(Beckman coulter). This procedure was repeated three times.

Microarray analysis
Total RNA from wild-type and ECAT11EGFP/EGFP ESCs were

labeled with Cy3, and were hybridized to oligonucleotide

microarrays (Agilent) according to the manufacturer’s protocol.

Hybridization was repeated with ESCs representing two indepen-

dent wild-type clonesand three ECAT11EGFP/EGFP clones. The

Figure 4. Activation of the ECAT11 promoter by forced expression of Oct4, Sox2 and Klf4. The expression of the ECAT11-EGFP
fluorescent marker was induced by various combinations of transcription factors. EGFP fluorescence was analyzed by flowcytometry two days after
retroviral transduction. O: Oct4, S: Sox2, K: Klf4, M: c-Myc, N: Nanog.
doi:10.1371/journal.pone.0020461.g004
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arrays were scanned with a G2565BA Microarray Scanner System

(Agilent). The data were analyzed using the GeneSpringGX ver.

11.5 software program (Agilent). Each chip was normalized to the

75th percentile of the measurements. The flag settings were set as

described below. Absent;Spot feature is not uniform, saturated or

population outlier, Marginal; spot feature is not positive or not

above background:, Present;spot feature is other than those above.

The genes having present flag in at least one out of the five

Figure 5. Generation of iPSCs from ECAT11EGFP/EGFP MEFs. (A) Morphology of an ECAT11EGFP/EGFP iPSC colony, which was picked on day 23
after induction of four factors (Oct4, Sox2, Klf4 and c-Myc) and cultured on feeder cells for three passages. Scale bars: 100 mm. (B) The expression
levels of three pluripotency markers (Nanog, ECAT1 and Zfp42), and four transcription factors (Oct4, Sox2, Klf4 and c-Myc). Total RNA was collected
from four clones of ECAT11EGFP/EGFP iPSCs(686F1, 686I5, 686L5 and 686O2) established using four factors (Oct4, Sox2, Klf4 and c-Myc), and four clones
(686E1, 686H7, 686K1 and 686N1)established usingthree factors (Oct4, Sox2 and Klf4). The iPSCs selected with Fbx15 orthe Nanog reporter (20D17),
MEFs, and ES cells were also usedas controls. For reprogramming factor detection, RT–PCR analyses were performed with primers that amplified
endogenous transcripts only (endo) and transgene transcripts only (tg) to detect the viral vector silencing. (C) Hematoxylin and eosin staining of
teratomas generated from ECAT11EGFP/EGFP iPSCs. Scale bars: 50 mm.
doi:10.1371/journal.pone.0020461.g005
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samples wereused for the analyses.We compared wild-type and

ECAT11EGFP/EGFP ESCs and analyzed the result based on

unpaired t-statistics with Benjamini and Hochberg false discovery

rate (.2-fold change, p,0.05). Microarray data are available in

GEO (Gene Expression Omnibus, http://www.ncbi.nlm.nih.gov/

projects/geo/index.cgi) with the accession number GSE28145.

MEF establishment
MEFs were derived from ECAT11EGFP/EGFP embryos at E13.5.

After removal of the head and gastrointestinal tract, the embryos

were minced, and dissociated with trypsin. The cell suspensions

were plated onto gelatin-coated dishes through 70 mm mesh. Five

days after plating, the established MEFs were counted, and 56106

cells were stored using freezing medium. The MEFs were thawed

and used for induction assays after one passage.

FACS analysis
Cells were harvested by incubation in 0.25% trypsin/1 mM

EDTA for 5 min at 37uC, and single-cell suspensions were

obtained by repetitive pipetting and transfer through a 70 mm cell

strainer. After washing with PBS supplemented with 3% FBS, cells

were resuspended in PBS containing 1/1000 volumes of DAPI

and analyzed by a FACSAria II instrument (BD Biosciences).

Dead cells were excluded by staining with DAPI. The data were

analyzed with the Diva 6.1 software program (BD Biosciences).

Supporting Information

Figure S1 X-ray analysis of ECAT11EGFP/EGFP mice. X-

ray evaluation of ECAT11EGFP/EGFP or WT mice (2-week-old).

(TIF)
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