
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 10, Number 2, pages 277–292, July 2020

ECC Atomic Block with NAF against Strong Side-Channel Attacks on Binary Curves

Yusuke Takemura

Interdisciplinary Graduate School of Science and Engineering, Shimane University,
1060 Nishikawatsucho, Matsue, Shimane, 690-8504, Japan

Keisuke Hakuta

Institute of Science and Engineering, Shimane University,
1060 Nishikawatsucho, Matsue, Shimane, 690-8504, Japan

Naoyuki Shinohara

Security Fundamentals Laboratory,
National Institute of Information and Communications Technology,

4-2-1 Nukui-Kitamachi, Koganei, Tokyo, 184-8795, Japan

Received: February 15, 2020
Revised: May 5, 2020

Accepted: June 11, 2020
Communicated by Yasuyuki Nogami

Abstract

Various side-channel attacks against elliptic curve cryptography (ECC) have been proposed
so far, including simple power analysis, horizontal collision correlation analysis, improving the
Big Mac attack, and differential power analysis. Developing countermeasures against such at-
tacks is considered as an important research task in cryptography. They are executed by analyz-
ing power consumption while a device implemented in a cryptosystem performs cryptographic
processing. To address this problem, we propose using three atomic blocks serving as the coun-
termeasures against such attacks on ECC over finite fields of characteristic two. Two of them
are basic atomic blocks, while the third one is an improved version of these two, having lower
computational cost. In this paper, concerning the possibility of more sophisticated side-channel
attacks appearing in the future, we propose a threat model based on the atomic blocks that is
constructed to be secure for strong side-channel attacks with more powerful abilities.

Keywords: Elliptic curve cryptography, side-channel analysis, atomic block, non-adjacent form
(NAF), scalar multiplication

1 Introduction

Elliptic curve cryptography (ECC) is a public cryptosystem proposed by Koblitz [9] and Miller [12].
ECC is capable of providing a particular security level, such as 128-bit security, using a shorter key
length compared to that of RSA, and herefore, deemed suitable for low-specification hardware. The
security level of ECC depends on hardness of solving an elliptic curve discrete logarithm problem

0This paper is an extended version of a paper from WICS’19 [16].

277



ECC Atomic Block with NAF against Strong Side-Channel Attacks on Binary Curves

(ECDLP), which is defined as a problem of computing a secret integer d such that Q = [d]P for
given rational points P and Q on a given elliptic curve. The time complexity of the most efficient
algorithm to solve ECDLP is exponential; therefore, ECC is considered secure. However, even if
ECDLP is difficult to solve, side-channels can be utilized to leak confidential information processed
in ECC.

In ECC, computation of a point [d]P is referred to as elliptic curve scalar multiplication (ECSM).
Most of the algorithms developed to compute ECSM correspond to two types of algorithms: elliptic
curve addition (abbreviated to ECADD) and elliptic curve doubling (abbreviated to ECDBL). In
ECSM, [d]P is computed through a sequence of computations corresponding to ECADD and ECDBL,
and the information within this sequence has to be hidden, as it contains partial information about
a secret integer d. To obtain the information about the sequence, side-channel attackers attempt
to identify differences in the side-channel information between ECDBL and ECADD. Kocher et al.
proposed a method of breaking the hardware implementations of ECC by using simple power analysis
(SPA), to obtain the side-channel information regarding changes in computation patterns [10]. Use
of atomic blocks, as proposed by Chevallier-Mames et al. [4], can serve as a countermeasure against
these attacks. However, Kocher et al. demonstrated that differential power analysis (DPA) can be
applied to fail such atomic blocks [11]. Then, Coron proposed the use of randomization techniques as
a countermeasure against DPA [5]. However, it is known that the leakage of additional side-channel
information besides computation patterns can lead to ECC failure even under the application of
randomization techniques. For example, Walter proposed an improved single-trace attack for RSA
protected from SPA and DPA [17]. This idea served as a foundation for implementing horizontal
collision correlation analysis (HCCA) [3] and the improved big mac attack (IBMA) [6] for ECC. As
mentioned above, side-channel attacks using power consumption on ECC have researched more than
20 years, and are major research topics in cryptography. Countermeasures against SPA and DPA on
binary curves treated in this paper have already been proposed [4,5], however, these countermeasures
can not defeat HCCA or IBMA. Therefore, it is desirable to construct a countermeasure to defeat
all these four attacks (SPA, HCCA, IBMA, DPA).

This paper proposes the implementation of three atomic blocks (represented in Table 1, Table 2
and Table 5) as the countermeasures against SPA, DPA, HCCA, and IBMA attacks. Furthermore, we
discuss the computational costs associated with each atomic block, indicating that the computational
efficiency of the proposed improved atomic block (Table 5) is 1.625 and 1.8 times better than that
of the basic atomic block (Table 1), and another (Table 2), respectively.

This paper is organized as follows: In Section 2, we introduce the mathematical back ground
on ECC, ECDBL, ECADD, and López-Dahab projective coordinates. The four above side-channel
attacks are explained in Section 3. And in that section, we propose two basic atomic blocks and
explain that they are countermeasures against those side-channel attacks. We propose more effective
atomic block using NAF method in Section 4. The computational costs of our atomic blocks are
discussed in Section 5. Section 6 concludes the paper and future work.

2 Elliptic curve arithmetic over F2m

One of the elliptic curves recommended by the National Institute of Standards and Technology
(NIST) for use in ECC is an elliptic curve on a finite field F2m [8, Appendix D]. NIST proposed
several types of elliptic curves over F2m . In this paper, we focus on K-curves and B-curves which
NIST recommended. A detailed explanation of the minimal mathematical background to understand
the algorithms proposed in this paper can be found in [7].

2.1 Elliptic curves over a binary field

An elliptic curve E/F2m over a finite field F2m is represented by

E/F2m : y2 + xy = x3 + ax2 + b,

where a ∈ F2m and ∆ := b ∈ F∗
2m (∆ is the discriminant of the curve [7]). For K-curves and B-curves,

a = 0 or a = 1. An ECDBL is a calculation to compute [2]P for a point P = (x1, y1) on E/F2m .

278



International Journal of Networking and Computing

The coordinates x3 and y3 of [2]P are given by

x3 = λ2 + λ+ a,

y3 = x2
1 + (λ+ 1)x3,

λ = x1 +
y1
x1

. (1)

Also, an ECADD is a calculation to compute P + Q for two different points P = (x1, y1) and
Q = (x2, y2) on E/F2m . The coordinates (x3, y3) of P +Q are given by

x3 = λ2 + λ+ x1 + x2 + a,

y3 = λ(x1 + x3) + x3 + y1,

λ =
y1 + y2
x1 + x2

. (2)

2.2 Elliptic arithmetic with López-Dahab projective coordinates

When performing these ECADD and ECDBL operations, multiplicative inverse operations over a
finite field are required to compute λ in Equation (1) and Equation (2). The calculation of multi-
plicative inverses in a finite field is computationally more expensive than other arithmetic operations
in a finite field. However, by using López-Dahab projective coordinates (LD coordinates), it is pos-
sible to perform ECADD and ECDBL calculations without computing multiplicative inverses over
a finite field. This section introduces LD coordinates to perform ECDBL and ECADD calculations.
A point P on an elliptic curve in LD coordinates is represented as (X : Y : Z), and its affine
projective coordinates (x, y) are associated with the LD projective coordinates by the relationship
x = X/Z, y = Y/Z2 for some Z ∈ F∗

2m . When introducing LD projective coordinates, an elliptic
curve E/F2m over a finite field F2m is represented as

E/F2m : Y 2 +XY Z = X3Z + aX2Z2 + bZ4. (3)

For a point P = (X1 : Y1 : Z1) in LD projective coordinates, the ECDBL point [2]P = (X3 : Y3 : Z3)
can be calculated using Algorithm 1 [7, Algorithm 3.24].

Algorithm 1 ECDBL using LD coordinates [7, Algorithm 3.24]

Input: P = (X1 : Y1 : Z1) in LD coordinates on E/F2m .
Output: [2]P = (X3 : Y3 : Z3) in LD coordinates.
1: T1 ← Z2

1 .
2: T2 ← X2

1 .
3: Z3 ← T1 · T2.
4: X3 ← T 2

2 .
5: T1 ← T 2

1 .
6: T2 ← T1 · b.
7: X3 ← X3 + T2.
8: T1 ← Y 2

1 .
9: If a = 1 then : T1 ← T1 + Z3.

10: T1 ← T1 + T2.
11: Y3 ← X3 · T1.
12: T1 ← T2 · Z3.
13: Y3 ← Y3 + T1.
14: return (X3 : Y3 : Z3).

When performing an ECADD operation, the LD projective and affine coordinates can be used
to obtain the results in LD projective coordinates. That is, for the two different rational points
P = (X1 : Y1 : Z1) and Q = (x2, y2), the ECADD point P + Q = (X3 : Y3 : Z3) can be calculated
using Algorithm 2 [7, Algorithm 3.25].

279



ECC Atomic Block with NAF against Strong Side-Channel Attacks on Binary Curves

Algorithm 2 ECADD using LD and affine coordinates [7, Algorithm 3.25]

Input: P = (x2, y2) in affine coordinates on E/F2m ,
Q = (X1 : Y1 : Z1) in LD coordinates on E/F2m .

Output: P +Q = (X3 : Y3 : Z3) in LD coordinates.
1: T1 ← Z1 · x2.
2: T2 ← Z2

1 .
3: X3 ← X1 + T1.
4: T1 ← Z1 ·X3.
5: T3 ← T2 · y2.
6: Y3 ← Y1 + T3.
7: Z3 ← T 2

1 .
8: T3 ← T1 · Y3.
9: If a = 1 then : T1 ← T1 + T2.

10: T2 ← X2
3 .

11: X3 ← T2 · T1.
12: T2 ← Y 2

3 .
13: X3 ← X3 + T2.
14: X3 ← X3 + T3.
15: T2 ← x2 · Z3.
16: T2 ← T2 +X3.
17: T1 ← Z2

3 .
18: T3 ← T3 + Z3.
19: Y3 ← T3 · T2.
20: T2 ← x2 + y2.
21: T3 ← T1 · T2.
22: Y3 ← Y3 + T3.
23: return (X3 : Y3 : Z3).

Scalar multiplications of rational points on an elliptic curve (abbreviated to ECSM) appear in
ECC operations. For example, a value d, such as a secret key, is used to calculate the product
[d]P of d and a point P on the elliptic curve. ECSM can be performed by using the left-to-right
algorithm, which is implemented using ECADD and ECDBL operations. Algorithm 3 is an ECSM
using left-to-right algorithm with LD projective coordinates. Algorithm 3 looks at each bit of d in
turn, starting from the bit dl−2 and ending with the least significant bit d0. If bit di is zero, only the
ECDBL operation is performed; otherwise the ECDBL and ECADD operations are performed in
sequence. Therefore, an attacker that has some way of determining the difference between the case
when ECADD and ECDBL operations are performed inside the equipment will be able to identify
the bits of the secret information d, thereby retrieving the value of d.

Algorithm 3 Left-to-Right Scalar Multiplication Algorithm

Input: d = (dℓ−1, dℓ−2, . . . , d1, d0)2, P = (x2, y2) ∈ E/F2m , where dℓ−1 = 1.
Output: [d]P .
1: Select Z ∈ F∗

2m randomly.
2: Q← (xZ : yZ2 : Z). (Q in LD coordinate)
3: for i = ℓ− 2→ 0 do
4: Q← [2]Q. (compute ECDBL with Q)
5: if di = 1 then
6: Q← Q+ P . (compute ECADD with P and Q)
7: end if
8: end for
9: return Q.

280



International Journal of Networking and Computing

3 Side-channel attacks and countermeasures

One of the possible ways attack ECC is to perform a side-channel attack, a generic term denoting
attack methods that are used to gather and analyze information about the data corresponding to
electronic hardware, such as its power consumption or processing timing, registered during crypto-
graphic processes. Using the results of such analysis, the confidential information processed on the
hardware can be retrieved. Various side-channel attacks on ECC have already been proposed, and
therefore, it is important to include side-channel attack countermeasures to operate ECC securely.

In this section, we discuss various ECC side-channel attacks and their countermeasures. Then,
we describe how our proposed atomic blocks can be applied to protect against these attacks. In
this paper, we assume that side-channel attacks are launched by an attacker having information
about the used ECC elliptic curve and corresponding coordinates in the hardware, as well as the
algorithms used for ECADD, ECDBL, and scalar multiplication. Recent trends in side-channel
attacks are discussed in [1]. Concerning the elliptic curve defined in Equation (3), the ECDBL
and ECADD operations are performed differently depending on whether the coefficient a is 0 or 1,
according to step 9 in Algorithm 1 and Algorithm 2. If the differences between the ECADD and
ECDBL operations are identified by the attacker, the secret information d used in Algorithm 3 can
be recovered, as mentioned in Section 2.2. As the algorithms used to perform ECADD and ECDBL
should be constructed in such a way to prevent attackers from distinguishing the difference between
the ECDBL (Algorithm 1) and ECADD (Algorithm 2) operations for each coefficient a = 0, 1, we
develop basic atomic blocks (Table 1 and Table 2) considering both possible values of coefficient a.

3.1 Simple power analysis

Simple Power Analysis (SPA) is a side-channel attack proposed by Kocher et al. [10] in which secret
information d can be identified on the basis of a power consumption waveform corresponding to
the hardware that performs cryptographic processing. The underlying concept of SPA is that an
attacker can classify the type of field arithmetic processing based on a power trace registered for a
cryptographic device.

3.1.1 SPA attack methodology

The computational time and power consumption associated with field multiplication are greater than
those associated with field addition. As a result, an attacker can identify whether the hardware exe-
cutes field multiplication or field addition, by analyzing its power consumption. Therefore, the order
in which field multiplication and field addition operations are executed can be determined. Here,
when ECC is implemented näıvely using Algorithm 1 and Algorithm 2, the ECDBL computations
start with a sequence of six-field multiplication operations, while the ECADD computations start
with a sequence of two-field multiplications, followed by a field addition operation. Analyzing such
differences, an attacker can distinguish between the ECADD and ECDBL computations, thereby
recovering the secret information d.

3.1.2 Using side-channel atomicity to defeat SPA

As SPA attacks are based on the differences in a sequence of field multiplication operations run
on cryptographic hardware, it is possible to take countermeasures against them by performing the
ECADD and ECDBL operations, including filed multiplications and additions, in the same order.
According to this strategy, the concept of atomic blocks has been proposed as a countermeasure
against SPA on ECC [4]. Atomic blocks are the algorithms based on atomic patterns that compute
ECADD and ECDBL, such as those represented in Table 1 and Table 2. Furthermore, an atomic
pattern has a unified order of field addition and multiplication calculations for executing ECADD
and ECDBL on a device.

In this paper, we propose basic atomic blocks, as described in Table 1 and Table 2. For one-time
computation of ECDBL in the case of a = 0, the column ECDBL of Table 1 is executed one time.
For one-time computation of ECADD in the same case, the column ECADD1 is run followed by

281



ECC Atomic Block with NAF against Strong Side-Channel Attacks on Binary Curves

Table 1: Our atomic block for a = 0
Step ECDBL ECADD1 ECADD2 Atomic pattern

1. T1 ← Z2
1 ⋆ T10 ← T 2

8 R1 ← R2
2

2. D1 ← T1 × x2 T1 ← Z1 × x2 T13 ← Z3 × x2 R3 ← R4 × x2

3. T4 ← T1
2 T2 ← Z1

2 T14 ← Z3
2 R5 ← R4

2

4. ⋆ T3 ← X1 + T1 T11 ← T9 + T10 R6 ← R7 +R8

5. T2 ← X2
1 ⋆ ⋆ R9 ← R2

10

6. Z3 ← T1 × T2 T4 ← Z1 × T3 D4 ← Z3 ×D5 R11 ← R4 ×R12

7. T6 ← Y1
2 Z3 ← T4

2 D9 ← T ′
8
2 R13 ← R14

2

8. T3 ← T2
2 T7 ← T3

2 D7 ← D5
2 R15 ← R12

2

9. D8 ← D8 × Y1 T9 ← T7 × T4 T ′
12 ← T ′

4 × T ′
8 R16 ← R17 ×R14

10. ⋆ T ′
4 ← r1 + T4 T12 ← T ′

12 + r′′1 R18 ← R19 +R20

11. T5 ← T4 × b D4 ← D3 × b D6 ← D6 × b R21 ← R22 × b
12. D2 ← D2 × y2 T2 ← T2 × y2 D7 ← D7 × y2 R23 ← R24 × y2
13. X3 ← T3 + T5 T17 ← x2 + y2 X3 ← T11 + T12 R25 ← R26 +R27

14. ⋆ T8 ← Y1 + T2 T15 ← T13 +X3 R28 ← R29 +R30

15. T8 ← T6 + T5 r′1 ← T ′
4 + T8 T16 ← T12 + Z3 R31 ← R32 +R33

16. T9 ← X3 × T8 ⋆ T18 ← T16 × T15 R34 ← R35 ×R36

17. T10 ← T5 × Z3 r′′1 ← r1 × r′1 T19 ← T14 × T17 R37 ← R38 ×R39

18. Y3 ← T9 + T10 T ′
8 ← R1 + T8 Y3 ← T18 + T19 R40 ← R41 +R42

Table 2: Our atomic block for a = 1
Step ECDBL ECADD1 ECADD2 Atomic pattern

1. T1 ← Z2
1 ⋆ T10 ← T 2

8 R1 ← R2
2

2. T2 ← X2
1 ⋆ ⋆ R3 ← R2

4

3. ⋆ ⋆ T ′
12 ← T ′

4 × T ′
8 R5 ← R6 ×R7

4. D1 ← T1 × x2 T1 ← Z1 × x2 T13 ← Z3 × x2 R8 ← R9 × x2

5. ⋆ ⋆ T11 ← T9 + T10 R10 ← R11 +R12

6. ⋆ T3 ← X1 + T1 T12 ← T ′
12 + r′′1 R13 ← R14 +R15

7. T4 ← T1
2 T2 ← Z1

2 T14 ← Z3
2 R16 ← R9

2

8. Z3 ← T1 × T2 T4 ← Z1 × T3 D4 ← Z3 ×D5 R17 ← R9 ×R18

9. ⋆ T ′
4 ← r1 + T4 X3 ← T11 + T12 R19 ← R20 +R21

10. T3 ← T2
2 T7 ← T3

2 D7 ← D5
2 R22 ← R18

2

11. T5 ← T4 × b D4 ← D3 × b D6 ← D6 × b R23 ← R24 × b
12. X3 ← T3 + T5 T6 ← T4 + T2 T15 ← T13 +X3 R25 ← R26 +R27

13. T6 ← Y 2
1 Z3 ← T 2

4 ⋆ R28 ← R2
29

14. D2 ← D2 × y2 T2 ← T2 × y2 D7 ← D7 × y2 R30 ← R31 × y2
15. T7 ← T6 + Z3 T8 ← Y1 + T2 T16 ← T12 + Z3 R32 ← R33 +R34

16. T8 ← T7 + T5 r′1 ← T ′
4 + T8 T17 ← x2 + y2 R35 ← R36 +R37

17. T9 ← X3 × T8 T9 ← T7 × T6 T18 ← T16 × T15 R38 ← R39 ×R40

18. T10 ← T5 × Z3 r′′1 ← r1 × r′1 T19 ← T14 × T17 R41 ← R42 ×R43

19. Y3 ← T9 + T10 T ′
8 ← R1 + T8 Y3 ← T18 + T19 R44 ← R45 +R46

282



International Journal of Networking and Computing

ECADD2. In the case of a = 1, a similar process described by Table 2 is executed. A symbol ‘⋆’
within the atomic blocks represents a dummy operation, which involves executing a computational
process using random variables, containing the same number of steps, so that the dummy operation
and atomic block entail the same amounts of processing. As the atomic blocks are based on a
unified fixed atomic pattern, attackers using SPA cannot determine the difference between ECADD
and ECDBL computations; therefore, the proposed basic atomic blocks (Table 1 and Table 2) can
be used as countermeasures against SPA.

3.2 Horizontal collision correlation analysis

In Section 3.1.2, we outline that atomic blocks can be used as countermeasures against SPA. However,
a technique called Horizontal Collision Correlation Analysis (HCCA) [3] has been proposed as an
attack on atomic blocks. The main idea of HCCA is that an attacker can distinguish between
ECADD and ECDBL through a common operand used in an atomic block. In this section, we
describe HCCA and discuss how the proposed basic atomic blocks can be applied to protect from
HCCA attacks. The general idea of HCCA is proposed in [2] and its application to ECC is discussed
in detail in [3].

3.2.1 HCCA attack methodology

The concept of HCCA is based on the assumption that an adversary can identify when two field
multiplications have at least one operand in common. In other words, if two multiplications A × B

and C× D are performed, an HCCA attack can identify whether any of the equations A = C, A = D,
B = C, or B = D can be executed. In this paper, we use the term “common operand” to refer to an
operand that has the same value in the two field multiplication operations. In general, HCCA can
be applied to the operations in which a common operand is used on the same side, for example, A×B
and C× B. However, in calculations such as A× B and B× C, in which the common operand is not on
the same side, it cannot be determined whether the common operand B exists [14, 15]. However, in
this paper, considering the possibility of stronger side-channel attacks appearing in the future, we
assume a threat model and the proposed basic atomic blocks represented in Table 1 and Table 2 to
be constructed in such a way to ensure security under Assumption 1.

Assumption 1 A side-channel attacker can determine whether common operands exist, even if they
are not on the same side.

Table 3: Description of HCCA
Step ECDBL ECADD Atomic pattern

1.

1.


T4 ← X1 ×X1

1.


T4 ← Z2 × Z2 R1 ← R2 ×R3

2. T5 ← T4 + T4 ⋆ R4 ← R5 +R6

3. ⋆ ⋆ R7 ← −R8

4. ⋆ ⋆ R9 ← R10 +R11

5.

2.


T5 ← T3 × T3

2.


T1 ← T1 × T4 R1 ← R2 ×R3

6. T5 ← T4 + T4 ⋆ R4 ← R5 +R6

7. ⋆ ⋆ R7 ← −R8

8. ⋆ ⋆ R9 ← R10 +R11

9.

3.


T5 ← T5 × T5(= Z2

1 × Z2
1 )

3.


T4 ← T4 × T9(= Z2

2 × Z2) R1 ← R2 ×R3

10. ⋆ ⋆ R4 ← R5 +R6

11. ⋆ ⋆ R7 ← −R8

12. ⋆ ⋆ R9 ← R10 +R11

...
...

...
...

Chevallier-Mames et al. proposed an atomic block that can complete ECADD and ECDBL calcu-
lations in 10 and 16 iterations, respectively, corresponding to an atomic pattern comprising four

283



ECC Atomic Block with NAF against Strong Side-Channel Attacks on Binary Curves

steps [4]. Table 3 represents the first three iterations of an atomic pattern based on the atomic block
proposed by Chevallier-Mames et al. Here, when executing the ECADD column of Table 3, the first
three atomic pattern iterations in the same ECADD contain the common operand Z2. However,
when computing the ECDBL column of Table 3, no common operands in the first three atomic
patterns of the ECDBL column are presented. By focusing on this characteristic, an attacker can
obtain two power traces: multiplication P1 occurring at step 1 and multiplication P2 at step 9 in the
first and third atomic patterns, respectively, corresponding to the atomic block presented in Table
3. In this case, if the calculations corresponding to P1 and P2 have a common operand, the attacker
can determine that the calculations Z2 × Z2 and Z2

2 × Z2 are executed at P1 and P2, respectively,
and accordingly, that an ECADD operation is performed in this atomic block. Moreover, the cal-
culations X1 × X1 and Z2

2 × Z2 are performed at P1 and P2, respectively, when the calculations
corresponding to P1 and P2 do not have a common operand, implying that an ECDBL operation is
performed in this atomic block. As mentioned in the explanation of Algorithm 3, an attacker that
can distinguish between ECADD and ECDBL operations during ECSM computation can recover
the secret information d accordingly.

3.2.2 Design of countermeasures against HCCA

As mentioned in the description of HCCA, it is possible to determine the operations being executed
(ECADD or ECDBL) within the repeated range of a specific atomic pattern due to differences
between the steps in which common operands appear. Therefore, as a countermeasure against
HCCA, we need to apply an atomic block having the same calculation durations corresponding to the
field multiplication operations with common operands while computing ECADD and ECDBL. Table

Table 4: Common operand in Algorithm 1 and Algorithm 2
a = 0 a = 1

ECDBL T1 : (3, 5), T2 : (3, 4) T1 : (3, 4), T2 : (3, 5)
Z1 : (1, 2, 4), X3 : (4, 10), Z1 : (1, 2, 4), X3 : (4, 10),

ECADD T1 : (7, 8, 11), Y3 : (8, 12), T1 : (7, 8), Y3 : (8, 12),
Z3 : (15, 17), x2 : (1, 15) Z3 : (15, 17), x2 : (1, 15)

4 shows the common operands and their calculation times concerning Algorithm 1 and Algorithm 2
(ECDBL and ECADD) for each constant a. In Table 4, T1 : (3, 5), indicating the field multiplications
in steps 3 and 5, has a common operand T1. The ECDBL (Algorithm 1) and ECADD (Algorithm 2)
operations considered in this paper have different numbers of common operands (Table 4). In this
case, the number of field multiplications with the common operands in ECDBL and ECADD can
be equalized by improving the atomic block, so as to reduce the number of common operands in the
ECADD operations. Specifically, by introducing a random variable R, the calculation result B × C

can be obtained without a need to execute the field multiplication B× C using a common operand.
For example, when calculating T2 ← B × C at a particular step of an atomic pattern, this step can
be improved by executing the following six operations:

B
′
← B+ R,

C
′
← C+ R,

B
′′
← B

′
+ C (= B+ C+ R),

R
′
← B

′′
× R (= R(B+ C+ R)), (4)

T′2 ← B
′
× C

′
(= BC+ R(B+ C+ R)),

T2 ← T
′

2 + R
′
(= BC).

However, to implement this improvement, it is important to consider the possibility of increasing
the computational cost of ECSM by adding an atomic pattern of roughly 5 (= 6− 1) steps. In our
proposed two basic atomic blocks (Table 1 and Table 2), the variables influenced by HCCA applies

284



International Journal of Networking and Computing

are marked in red. As the timings of the common operands in the proposed basic atomic blocks
are unified, an HCCA attacker cannot distinguish between ECADD and ECDBL operations. The
variable Dj within each proposed basic atomic block has the values for corresponding to the above
operations (4), which are intentionally utilized to introduce the common operands.

3.3 Improved HCCA using Big Mac attack on ECC

Improved HCCA using a Big Mac Attack (IBMA) is another side-channel attack relying on common
operands [6]. In this section, we provide a general introduction to IBMA and describe how it can
be overcome using our basic atomic blocks.

3.3.1 IBMA methodology

As in the HCCA attack, we assume that an attacker can identify the presence of a common operand
by examining the power trace obtained while performing two field multiplications. In IBMA, based
on the calculation corresponding to the i-th bit di of secret information d, it is possible to distinguish
between ECADD and ECDBL operations by analyzing the differences in the common operands
between the cases when di = 0 and di = 1.

Here, we describe a method to recover dℓ−2 from the calculations on the elliptic curve defined
by (3) corresponding to an algorithm based on the ECADD, ECDBL, and ECSM operations. If
we combine the first three atomic blocks of Algorithm 3, we obtain the following three possibilities
regarding the value of dℓ−2:

• ECDBL → ECADD1 → ECADD2,
where dℓ−2 = 1,

• ECDBL → ECDBL → ECADD1,
where dℓ−2 = 0 (and dℓ−3 = 1),

• ECDBL → ECDBL → ECDBL,
where dℓ−2 = 0 (and dℓ−3 = 0).

On the basis of these combinations, we observe that the calculation that starts with the sequence
ECDBL, ECADD1 indicates that bit dℓ−2 = 1, while any other sequence means that dℓ−2 = 0.
Therefore, an attacker can recover bit dℓ−2 when there are differences in the timing corresponding
to the common operands in an atomic block between the case in which an ECDBL operation is
followed by an ECADD1 operation and the case in which an ECDBL operation is followed by
another ECDBL operation.

Here, b is the elliptic curve parameter presented in Equation (3) and Algorithm 1. Moreover, the
point P = (x2, y2) is a fixed point in Algorithm 3, so that the input value P of Algorithm 2 used in
Algorithm 3 is also a fixed point.

3.3.2 Design of countermeasures against IBMA

One way of constructing atomic blocks that are resistant to IBMA is to perform field multiplication
at the same step using a specified constant corresponding to the common operand in the ECADD
and ECDBL parts of an atomic block. In this paper, the fixed values used in the calculations are
the elliptic curve parameter b and the affine coordinates (x2, y2) of the fixed point P used in ECC.
In Table 1 and Table 2, the steps using these fixed values in the field multiplications are unified
within each atomic block. For example, although x2 is not needed for the computation of ECDBL,
we perform the dummy computation with x2 at the step 2 of the column of ECDBL in Table 1.
Therefore, even though the ECSM operation can be performed in any order within the atomic
blocks, there are field multiplications using the same constant in the same step of each atomic block,
making it difficult for the attacker to distinguish between ECADD and ECDBL. In the proposed
basic atomic blocks (Table 1 and Table 2), the variables to which IBMA can be applied are marked
in blue. Furthermore, similarly as in the case of HCCA, countermeasures can be implemented under
the assumption of a stronger side-channel attacker compared to the attacker assumed in [6].

285



ECC Atomic Block with NAF against Strong Side-Channel Attacks on Binary Curves

3.4 Differential power analysis

Differential Power Analysis (DPA) is a side-channel attack that is based on an approach that differs
from those of SPA, HCCA, and IBMA. DPA is an effective attack implying that P is a fixed point
on an elliptic curve corresponding to the computation of ECSM ([d]P ). In this section, we describe
the DPA attack method and discuss how the proposed algorithm can be used to protect from DPA
attacks. DPA was first proposed by Kocher et al. [11], and can be used to recover the secret
information from smart cards based on their power traces. In [11], DPA was proposed as an attack
against the Data Encryption Standard (DES), which is a symmetric encryption algorithm. In [5],
DPA was applied to ECC, implying that it can be used to recover a scalar d when computing [d]P .

3.4.1 DPA attack methodology

DPA aims to use power traces during the calculation of [d]P to determine whether a specific point
[ri]P is used in this calculation. Here, the expression corresponding to P ∈ E/F2m is assumed to be
an affine coordinate. An attacker using DPA relies on the fact that each candidate rℓ−2, . . . , r0 (= d)
has only two possible values. Then, the attacker performs DPA considering each candidate ri to
recover the secret information d. This is explained below, using the calculation process of Algorithm
3, according to which the calculation of [d]P is performed first to derive [2]P , and then [4]P ,
if dℓ−2 = 0. However, when dℓ−2 = 1, the algorithm calculates [3]P and then [6]P ; therefore,
calculation of [4]P is not performed. Consequently, by using DPA to ascertain whether rℓ−2 is equal
to 4, it is possible to determine the value of dℓ−2. Let us suppose that we know dℓ−2 = 0. In
Algorithm 3, the next rational point to be calculated is [8]P if dℓ−3 = 0, or [5]P followed by [10]P
otherwise. Therefore, DPA can be used to ascertain whether rℓ−3 = 8, thereby determining the value
of dℓ−3. Thereafter, by repeating the same operations, the secret information d can be recovered.

3.4.2 Countermeasures against DPA

Three countermeasures against DPA are proposed in [5], one of which involves using randomized
projective coordinates. In this method, affine coordinates are transformed into projective coordinates
when performing ECADD and ECDBL calculations performed separately. In particular, the ECDBL
calculations in ECSM are assumed to be performed using affine coordinates. The number of values
of [ri]P used when executing a DPA attack in this case is at most O(log2 d) (not exceeding the bit
length of d). However, when using projective coordinates, the number of values of [ri]P used in an
attack has the order of O (2k log2 d). That is, using projective coordinates means that many [ri]P
values have to be utilized to perform a DPA attack, making it difficult to identify whether [ri]P is
included in the calculation of [d]P . In this paper, we use LD projective coordinates when calculating
ECADD and ECDBL, as described in Section 2.1. Therefore, the proposed basic atomic blocks can
be used as countermeasures against the DPA attack.

Using atomic blocks in the ECADD and ECDBL elliptic curve operations in a finite field F2m has
already been proposed in [4], implying that an atomic block can act as a countermeasures against
the SPA, HCCA, and IBMA attacks but not against the DPA attack. Moreover, this atomic block
includes a finite field inversion. The computational cost of finding a multiplicative inverse in a finite
field is very large compared to other ways of processing in a finite field and becomes a bottleneck
for a practical implementation. However, the basic atomic blocks (Table 1 and Table 2) proposed in
this paper do not include any finite field inversion operation. Furthermore, owing to the possibility
of providing countermeasures against DPA, the proposed atomic blocks are considered superior to
that proposed in [4].

4 Improved atomic block using NAF representation

Compared to Algorithm 3, we can reduce the computational cost associated with ECSM by applying
the non-adjacent form (NAF) representation [7, Algorithm 3.31]. In this section, we describe an
atomic block for the ECSM algorithm using the NAF representation.

286



International Journal of Networking and Computing

4.1 NAF method

The NAF representation NAF(d) = (dℓ−1, . . . , d0) of a positive integer d satisfies the conditions

d =
∑ℓ−1

i=0 di2
i, di ∈ {0,±1}, dℓ−1 ̸= 0, and for any i ≥ 0, the product didi+1 is not zero. The NAF

representation NAF(d) of a positive integer d can be obtained using Algorithm 4.

Algorithm 4 NAF representation [7, Algorithm 3.30]

Input: A positive integer d.
Output: NAF(d).
1: i← 0.
2: while d ≥ 1 do
3: if d is odd then
4: di ← 2− (d mod 4).
5: d← d− di.
6: else
7: di ← 0.
8: end if
9: d← d/2.

10: i← i+ 1.
11: end while
12: return (di−1, di−2, . . . , d1, d0).

NAF is known to possess the following characteristics [7, page 98]:

• d has a unique NAF, denoted by NAF(d).

• NAF(d) has the lowest number of nonzero digits of any signed digit representation of d.

• The length of NAF(d) is at most one more than that of the binary representation of d.

• The average density of nonzero digits in NAF is approximately 1/3.

The computational cost associated with ECSM generally decreases with a decline in the Hamming
weight of particular representations (such as the binary representation and the NAF representation)
of a scalar. As the average density of nonzero digits in the binary representation is 1/2, NAF is
advantageous in terms of computational cost. The ECSM algorithm based on NAF requires executing
an inverse operation of ECADD. Therefore, the computational cost associated with elliptic curve
subtraction must not be too large, to avoid eliminating the advantage of NAF. In this paper, the
subtraction Q − P for rational points P and Q can be calculated as Q + (−P ) using an ECADD
operation, including the negative point −P = (x, x + y) of P = (x, y), and therefore, has almost
the same computational cost as that of ECADD. Algorithm 5 is defined to perform ECSM through
NAF so that the functions ECADDⅠ and ECADDⅡ correspond to the computations of Q + P
and Q − P , respectively. In Section 4, we outline Table 5 as a new efficient atomic block based on
Algorithm 5, defined by improving Table 1 and Table 2.

4.2 Improved atomic block

ECADD and ECDBL may have different calculation specifications depending on the value of the
elliptic curve parameter a ∈ {0, 1}, and therefore, we propose two basic atomic blocks, Table 1
for the case a = 0 and Table 2 for a = 1, in Section 3. To reduce the data quantity processed
in cryptographic devices, it is preferable to implement fewer atomic blocks implemented in these
devices. In this section, we propose an atomic block, as represented in Table 5, that can handle
both cases of a = 0 and a = 1. Moreover, we reduce the computational cost by applying the NAF
representation.

The method for unifying the atomic blocks of Table 1 and Table 2 is described below. When
we compute ECDBL for a = 1 by using Algorithm 1, the calculation T1 ← T1 + Z3 is performed at

287



ECC Atomic Block with NAF against Strong Side-Channel Attacks on Binary Curves

Algorithm 5 ECSM using NAF representation [7, Algorithm 3.31]

Input: A positive integer d, P = (x2, y2) ∈ E/F2m .
Output: [d]P .

1: Compute NAF(d) =
∑ℓ−1

i=0 di2
i, di ∈ {0,±1}.

2: Select Z ∈ F∗
2m randomly.

3: Q← (xZ : yZ2 : Z). (Q in LD coordinate)
4: for i from ℓ− 1 down to 0 do
5: Q← [2]Q. (compute ECDBL with Q)
6: if di = 1 then
7: Q← Q+ P . (compute ECADDⅠ with P and Q)
8: else if di = −1 then
9: Q← Q− P . (compute ECADDⅡ with P and Q)

10: end if
11: end for
12: return Q.

step 9, followed by the calculation T1 ← T1 + T2 at step 10. However, when a = 0, the calculation
T1 ← T1 +Z3 is omitted, and only T1 ← T1 +T2 is executed. Similarly, for computation of ECADD
for a = 1 using Algorithm 2, calculations T1 ← T1 + T2 at step 9 and X3 ← T2 × T1 at step 11 are
performed; however, when a = 0, the calculation T1 ← T1 + T2 is omitted, and only X3 ← T2 × T1

is calculated. In other words, the field additions required in ECADD and ECDBL when a = 1 are
not performed when a = 0. Here, let a field addition T1 ← T0 + A be required when a = 1, but
not when a = 0. This can be implemented by performing the following calculation so as to avoid
inconsistencies both cases when a = 0 and when a = 1:

T1 ← T0 + A,

B← (1− a)T0 + aT1.

After completing this two-step calculation, B has the value of T0 + A if a = 1, or of T0 if a = 0.
Therefore, by performing the computation with B, it is possible to switch to the required calculation
results for a = 0 and a = 1.

4.2.1 Design of countermeasures against SPA

As mentioned in Section 3.1.1, an SPA attack can be used to distinguish between the ECADD and
ECDBL operations, analyzing differences in the order of field multiplications that are processed on
a device. It is, therefore, possible to counteract SPA by configuring an atomic block that unifies the
calculation specifications of both ECADD and ECDBL calculations, as discussed in Section 3.1.2.
The algorithm for computing ECSM by NAF, Algorithm 5, needs three computations: ECDBL,
ECADD, and the elliptic curve subtraction (ECSUB). It is, therefore, necessary to construct an
atomic block that can perform all these calculations. In Table 5, each atomic block is configured
such that ECADDⅠ corresponding to ECADD, ECADDⅡ for an ECSUB, and ECDBL calculations
can be performed within the same atomic pattern. Table 5 can, therefore, serve as a countermeasure
against SPA.

4.2.2 Design of countermeasures against HCCA

As explained in Section 3.2.1, the ECADD and ECDBL calculations can be distinguished by applying
an HCCA attack based on analyzing the differences in the step involving field multiplications using
common operands in the iterative part of a particular atomic pattern. HCCA can, therefore, be
counteracted by an atomic block in which the field multiplications with common operands appear at
the same step, as discussed in Section 3.2.2. The computation of ECSM using Algorithm 5 requires
executing ECADDⅠ, ECADDⅡ, and ECDBL. Therefore, the steps involving field multiplications
with common operands must be unified in all atomic blocks corresponding to ECADDⅠ, ECADD

288



International Journal of Networking and Computing

Table 5: Our improved atomic block for a ∈ {0, 1} based on the NAF method

Step Pattern ECDBL ECADD Ⅰ-1 ECADDⅠ-2 ECADD Ⅱ-1 ECADDⅡ-2

1 ×2 T1 ← Z2
1 ⋆ ⋆ ⋆ ⋆

2 ×2 T4 ← T 2
1 T2 ← Z2

1 Z3 ← T 2
4 T2 ← Z2

1 Z3 ← T 2
4

3 + ⋆ Z
′

1 ← Z1 +R1 Z
′

3 ← Z3 +R2 Z
′

1 ← Z1 +R1 Z
′

3 ← Z3 +R2

4 × D1 ← D1 × x2 R
′

1 ← R1 × x2 D5 ← D5 × x2 R
′

1 ← R1 × x2 D5 ← D5 × x2

5 × D2 ← D2 × x2 T
′

1 ← Z
′

1 × x2 T13 ← Z3 × x2 T
′

1 ← Z
′

1 × x2 T13 ← Z3 × x2

6 ×2 T2 ← X2
1 ⋆ T

′

14 ← Z
′2
3 ⋆ T

′

14 ← Z
′2
3

7 + ⋆ T1 ← T
′

1 +R
′

1 T14 ← T
′

14 +R
′

2 T1 ← T
′

1 +R
′

1 T14 ← T
′

14 +R
′

2

8 + ⋆ T3 ← X1 + T1 T
′

17 ← T17 +R5 T3 ← X1 + T1 T
′

17 ← y2 +R5

9 × T5 ← T4 × b D4 ← D4 × b D6 ← D6 × b D4 ← D4 × b D6 ← D6 × b

10 ×2 T3 ← T 2
2 T7 ← T 2

3 T10 ← T 2
8 T7 ← T 2

3 T10 ← T 2
8

11 × Z3 ← T1 × T2 T4 ← Z1 × T3 T12 ← T4 × T8 T4 ← Z1 × T3 T12 ← T4 × T8

12 ×2 T6 ← Y 2
1 R

′

2 ← R2
2 ⋆ R

′

2 ← R2
2 ⋆

13 + ⋆ T17 ← x2 + y2 T9 ← T
′

9 +R
′′

3 T17 ← x2 + y2 T9 ← T
′

9 +R
′′

3

14 + ⋆ y
′

2 ← y2 +R4 ⋆ y
′

2 ← T17 +R4 ⋆

15 × D3 ← D1 ×D2 T
′

5 ← T2 × y
′

2 T
′

19 ← T14 × T
′

17 T
′

5 ← T2 × y
′

2 T
′

19 ← T14 × T
′

17

16 × D2 ← D1 ×D3 T
′

2 ← T2 ×R4 T
′

14 ← T14 ×R5 T
′

2 ← T2 ×R4 T
′

14 ← T14 ×R5

17 + ⋆ T5 ← T
′

2 + T
′

5 T19 ← T
′

19 + T
′

14 T5 ← T
′

2 + T
′

5 T19 ← T
′

19 + T
′

14

18 + X3 ← T3 + T5 T
′

4 ← T4 + T2 T11 ← T9 + T10 T
′

4 ← T4 + T2 T11 ← T9 + T10

19 + T7 ← T6 + Z3 T
′

7 ← T7 +R3 X3 ← T11 + T12 T
′

7 ← T7 +R3 X3 ← T11 + T12

20 Choice C1 ← (1− a)T6 + aT7 C2 ← (1− a)T4 + aT
′

4 C3 ← (1− a)D6 + aD7 C2 ← (1− a)T4 + aT
′

4 C3 ← (1− a)D6 + aD7

21 + ⋆ T
′′

4 ← C7 +R3 T15 ← T13 +X3 T
′′

4 ← C7 +R3 T15 ← T13 +X3

22 + T8 ← C1 + T5 R
′

3 ← T
′′

4 + T7 T16 ← T12 + Z3 R
′

3 ← T
′′

4 + T7 T16 ← T12 + Z3

23 × T9 ← X3 × T8 T
′

9 ← T
′′

4 × T
′

7 T18 ← T16 × T15 T
′

9 ← T
′′

4 × T
′

7 T18 ← T16 × T15

24 × T10 ← T5 × Z3 R
′′

3 ← R3 ×R
′

3 ⋆ R
′′

3 ← R3 ×R
′

3 ⋆

25 + Y3 ← T9 + T10 T8 ← Y1 + T5 Y3 ← T18 + T19 T8 ← Y1 + T5 Y3 ← T18 + T19

Ⅱ, and ECDBL, and therefore, we configure the atomic block, Table 5, in such a way to satisfy this
condition. Note that the operands corresponding to HCCA are marked in red, in Table 5, and thus,
this table can be considered as a countermeasure against HCCA.

4.2.3 Design of countermeasures against IBMA

In Section 3.3.1, it is explained that IBMA can be used if there exists field multiplication with
common operands, that only differ between certain atomic block iterations in the overall ECSM
computation. A countermeasure against IBMA can be implemented by introducing the steps in
which field multiplications using common operands appear, regardless of the order in which the
ECADD and ECDBL atomic blocks are calculated in the overall ECSM calculation, as mentioned in
Section 3.3.2. In Table 5, regardless of the order according to which the atomic blocks are calculated,
the step in which field multiplications are performed using common operands is the same in each
atomic block. Note that the operands related to IBMA are marked in blue in Table 5. Table 5 can
be, therefore, considered a countermeasure against IBMA.

4.2.4 Design of countermeasures against DPA

As explained in Section 3.4.1, ECSM calculations are performed using rational points represented
by specific coordinates, and the information of a scalar can be leaked by DPA. Therefore, a possible
countermeasure against DPA is to utilize the randomized projective coordinate method, in which a

289



ECC Atomic Block with NAF against Strong Side-Channel Attacks on Binary Curves

rational point is converted into the coordinates associated with random numbers. This countermea-
sure is described in detail in Section 3.4.2 and is introduced at step 3 of Algorithm 5. Table 5 can,
therefore, serve as a countermeasure against DPA.

5 Computational cost of the proposed atomic block

In this section, we estimate the computational costs associated with the two ECSM algorithms
(Algorithm 3 and Algorithm 5) based on ECADD/ECDBL algorithms. EA and ED denote the
computational costs relying on ECADD and ECDBL, respectively. The computational cost of ECSM
based on Algorithm 3 is defined as follows:

ℓ

2
·EA+ ℓ ·ED, (5)

where ℓ indicates the bit length of secret information d. Similarly, the computational cost of ECSM
based on Algorithm 5 is defined as follows:

l

3
·EA+ l ·ED, (6)

where l indicates the length of NAF representation NAF(d) of secret information d. As the length
of NAF(d) is at most one larger than that of the binary representation of d, we assume that ℓ ≈ l.
Symbols A andM denote the computational costs associated with field addition and field multipli-
cation, respectively. It is well known that the computational cost A is negligible compared to that of
M (A ≪M). Therefore, it is sufficient to estimate the number of field multiplications in Algorithm
1, Algorithm 2, as well as Table 1, Table 2, and Table 5; the corresponding numbers are represented
in Table 6. Moreover, Table 6 represents the total computational costs of the two considered ECSM
algorithms, Algorithm 3 and Algorithm 5, based on Algorithm 1, Algorithm 2, and Table 1, Table
2, and Table 5, respectively.

Table 6: Computational cost of each atomic block and the overall computational cost of ECSM

Computational cost ECSM algorithm

EA ED Algorithm 3 Algorithm 5

ECADD and ECDBL

algorithms

Algorithm 1

Algorithm 2

13M 9M
31

2
ℓM

40

3
ℓM

Table 1 24M 12M 24ℓM N/A

Table 2 24M 12M 24ℓM N/A

Table 5 26M 13M N/A
65

3
ℓM

In the case of combing Algorithm 3 with those described in Table 1 and Table 2, the computa-
tional cost is approximately 1.8 times larger than that incurred when combining Algorithm 5 with
Algorithm 1 and Algorithm 2. However, when we merge Algorithm 5 with that presented in Table
5, the computational cost is approximately 1.625 times larger than that of combining Algorithm
5 with Algorithm 1 and Algorithm 2. In other words, the atomic block provided in Table 5 can

290



International Journal of Networking and Computing

execute ECSM calculations more efficiently compared to those corresponding to Table 1 and Table
2. When we apply Algorithm 5 to the proposed atomic blocks (Table 1, Table 2, and Table 5),
the computational cost increases from approximately 1.625 to 1.8 times compared to the case when
Algorithm 5 is merged with Algorithm 1 and Algorithm 2. However, the proposed atomic blocks
can protect the four types of side-channel attacks: SPA, HCCA, IBMA, and DPA.

6 Future work

This paper proposed implementing three atomic blocks (Table 1, Table 2, Table 5) as the counter-
measures against side-channel attacks using power consumption against ECC on a finite field F2m .
Furthermore, the proposed algorithms are effective even when assuming the powerful side-channel
attacks specified in this paper. Among the proposed atomic blocks, the atomic block represented in
Table 5 has the lowest computational cost of associated with ECSM.

Our future works are as follows:

• As a step toward the practical use of the atomic block in Table 5, it is desirable to evaluate the
computational cost of that atomic block by a simulation or by using a software or hardware
implementation.

• When we compute the ECSM for a secret information d used in ECC by Algorithm 5 and Table
5, the Hamming weight of d can be computed from the number of iterations of performing
Table 5, namely, that Hamming weight might leak. Since there is a width-w NAF method
proposed by Okeya and Takagi [13] as a countermeasure against this problem, it is desirable
to construct atomic blocks that do not leak the Hamming weight of d by incorporating the
method of [13] into the atomic block in Table 5.

• In this paper, we proposed atomic blocks which are countermeasures against four side-channel
attacks (SPA, HCCA, IBMA, DPA) using power consumption. However, in addition to power
consumption, there are many kinds of side-channel attacks like using electromagnetic waves
or processing time. Therefore, new countermeasures that combine our proposed atomic block
with countermeasures against these side-channel attacks are needed.

References

[1] Rodrigo Abarzúa, Claudio Valencia, and Julio López. Survey for performance & security prob-
lems of passive side-channel attacks countermeasures in ecc. Cryptology ePrint Archive, Report
2019/010, 2019. https://eprint.iacr.org/2019/010.

[2] Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, and Justine Wild. Horizontal and vertical
side-channel attacks against secure rsa implementations. In Ed Dawson, editor, Topics in
Cryptology – CT-RSA 2013, pages 1–17, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[3] Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, and Justine Wild. Horizontal collision cor-
relation attack on elliptic curves. In Tanja Lange, Kristin Lauter, and Petr Lisoněk, editors,
Selected Areas in Cryptography – SAC 2013, pages 553–570, Berlin, Heidelberg, 2014. Springer
Berlin Heidelberg.

[4] B. Chevallier-Mames, M. Ciet, and M. Joye. Low-cost solutions for preventing simple side-
channel analysis: side-channel atomicity. IEEE Transactions on Computers, 53(6):760–768,
June 2004.

[5] Jean-Sébastien Coron. Resistance against differential power analysis for elliptic curve cryp-
tosystems. In Çetin K. Koç and Christof Paar, editors, Cryptographic Hardware and Embedded
Systems – CHES 1999, pages 292–302, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

291



ECC Atomic Block with NAF against Strong Side-Channel Attacks on Binary Curves

[6] Jean-Luc Danger, Sylvain Guilley, Philippe Hoogvorst, Cédric Murdica, and David Naccache.
Improving the big mac attack on elliptic curve cryptography. In Peter Y. A. Ryan, David
Naccache, and Jean-Jacques Quisquater, editors, The New Codebreakers, pages 374–386, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[7] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic Curve Cryptogra-
phy. Springer-Verlag, Berlin, Heidelberg, 2003.

[8] Cameron F. Kerry, Acting Secretary, and Charles Romine Director. Fips pub 186-4 federal
information processing standards publication digital signature standard (DSS), 2013.

[9] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–209,
January 1987.

[10] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael Wiener,
editor, Advances in Cryptology – CRYPTO’ 99, pages 388–397, Berlin, Heidelberg, 1999.
Springer Berlin Heidelberg.

[11] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction to differential
power analysis. Journal of Cryptographic Engineering, 1(1):5–27, April 2011.

[12] Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams, editor, Advances
in Cryptology – CRYPTO ’85 Proceedings, pages 417–426, Berlin, Heidelberg, 1986. Springer
Berlin Heidelberg.

[13] Katsuyuki Okeya and Tsuyoshi Takagi. The width-w NAF method provides small memory and
fast elliptic scalar multiplications secure against side channel attacks. In Marc Joye, editor,
Topics in Cryptology – CT-RSA 2003, pages 328–343, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

[14] Debdeep Mukhopadhyay Poulami Das, Debapriya Basu Roy. Exploiting the order of multiplier
operands: A low cost approach for hcca resistance. Cryptology ePrint Archive, Report 2015/925,
2015. https://eprint.iacr.org/2015/925.

[15] Takeshi Sugawara, Daisuke Suzuki, and Minoru Saeki. Two operands of multipliers in side-
channel attack. In Revised Selected Papers of the 6th International Workshop on Constructive
Side-Channel Analysis and Secure Design, volume 9064, Berlin, Heidelberg, 2015. Springer-
Verlag.

[16] Yusuke Takemura, Keisuke Hakuta, and Naoyuki Shinohara. ECC atomic block against strong
side-channel attacks using binary curves. In 2019 Seventh International Symposium on Com-
puting and Networking Workshops (CANDARW), pages 387–393, November 2019.

[17] C. D. Walter. Sliding windows succumbs to big mac attack. In Çetin K. Koç, David Naccache,
and Christof Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2001, pages
286–299, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

292


