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Abstract. In the related literatures, the eccentricities of graphs have been
studied recently. The main purpose of this paper is to discuss the eccentric
spectrum of a graph. For any two vertices u and v in a connected graph
G, dG(u, v) denotes the distance between vertices u and v. The eccentricity
eG(v) of a vertex v in G is the maximum number of dG(v, u) over all vertex
u. A vertex u is an eccentric vertex if there exists a vertex v such that
eG(v) = dG(v, u). A number k is called an eccentric number of G if, for
each vertex v with eG(v) = k, v is an eccentric vertex. The eccentric spectrum
SG of a connected graph G is a set of all eccentric numbers in G. If d is the
diameter of G, then d ∈ SG. In the paper, we show that for positive integers
r ≤ d ≤ 2r and d ∈ S ⊆ {r, r + 1, ..., d}, there exists a connected graph G
with radius r, diameter d and eccentric spectrum S. This result also proves
the conjecture of Chartrand, Gu, Schultz, and Winters in [4].

1. INTRODUCTION

The discussion about the center and periphery of a connected graph is an impor-
tant topic in Graph Theory. There are many literatures about studying the graphical
eccentricity, center and periphery [1, 2, 5]. Among those studies, to put the emer-
gency plants on the center vertices in a street system (or a network) are well-known.
If we can find the farthest vertices(or the eccentric vertices) of a vertex in a graph,
then we can determine the center and periphery of a graph.

Here now we set the definitions used in the paper. The graphs considered in
the paper are finite, without loops or multiple edges. In a graph G = (V, E), V (or
V (G)) and E(or E(G)) denote the vertex set and the edge set of G, respectively.
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A sequence (x1, x2, ..., xk) of vertices in a graph G is called a walk, if x1x2,
x2x3, ...,xk−1xk are the edges of G. And k is the length of the walk. A walk
(x1, x2, ..., xk) is called a path in G, if x1, x2, ..., xk are distinct in G. A walk
(x1, x2, ..., xk, kk+1) is called a cycle in G, if x1, x2, ..., xk are the distinct vertices
and x1 = kk+1 in G. Suppose u and v are the vertices of G. The distance
dG(u, v) of u and v is the length of a shortest path between u and v in G. The
eccentricity eG(v) of a vertex v in G is a maximum number of dG(v, x) over all
x ∈ V (G). Then the radius r(G) is min{eG(v) : v ∈ V (G)} and the diameter
d(G) max{e(v) : v ∈ V (G)} in G. A vertex v is called an eccentric vertex of G,
if there exists a vertex u ∈ V such that eG(u) = dG(u, v). The eccentricity e(G)
of G is a minimum number k such that, for each vertex v ∈ V (G) with eG(v) ≥ k,
v is an eccentric vertex of G. A number k is an eccentric number of G if, for any
vertex v with eG(v) = k, v is an eccentric vertex of G. The eccentric spectrum SG

of G is a set of all eccentric numbers of G. It is trivial that d(G) ∈ SG.
A graph is eccentric if all vertices of G are eccentric vertices. Chartrand,

Gu, Schultz and Winters [4] studied the existence of eccentric graphs and its related
relations. They also addressed a conjecture that for positive integers a ≤ b ≤ c ≤ 2a,
there exists a connected graph G satisfying r(G) = a, e(G) = b, and d(G) = c.
Boland and Panrong proved the conjecture in [3].

In the paper, we prove that for positive integers r and d with r ≤ d ≤ 2r, and
S ⊆ {r, r+1, ..., d} with d ∈ S, there exists a connected graph G with the radius r,
the diameter d, and the eccentric spectrum S. This result not only gives a another
proof of the conjecture proposed in [4] but also gives a profounder result than the
conjecture.

2. ECCENTRIC SPECTRUM

First of all, we construct a special connected graph G with e(G) = d(G).
Suppose m and n are positive integers. We define the connected graph G(m, n)
for n ≥ 2 as a graph with the vertex set {(i, j) : 1 ≤ i ≤ m and 1 ≤ j ≤ n}
and the edge set ∪n

j=1{(i, j)(i + 1, j) : 1 ≤ i ≤ m − 1} ∪ {(1, j)(1, j + 1) : 1 ≤
j ≤ n − 1} ∪ {(1, 1)(1, n)}; For example, G(3, 3) is in Figure 1. For n = 1, we
define G(m, 1) as a connected graph with V (G(m, 1)) = {(i, j) : 2 ≤ i ≤ m and
j ∈ {1, 2}} ∪ {(1, 1)} and E(G(m, 1)) = {(i, j)(i + 1, j) : 2 ≤ i ≤ m − 1 and
j ∈ {1, 2}} ∪ {(1, 1)(2, 1), (1, 1)(2, 2)}. It is clear that G(m, 1) a path of length
2m − 2.

Lemma 1. Suppose m and n are positive integers. Let (u, v) and (x, y) be
the vertices of G(m, n). Then

dG(m,n)((u, v), (x, y)) =

{
u + x + w − 2, if v �= y,

|u − x|, if v = y,
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where w =min{|v − y|, n− |v − y|}.

Fig. 1. The graph G(3, 3).

In the following, we determine the distances between two vertices of G(m, n).

Proof. If n = 1 or 2, then G(m, n) is a path with length 2m − 2 or 2m − 1.
It is easy to check the distance of each pair of vertices in G(m, n). For n ≥ 3, by
the definition of G(m, n), G(m, n) has a unique cycle. If v �= y, then the shortest
path between (u, v) and (x, y) must pass through the cycle and contains the vertices
(1, v) and (1, y). Then the distance of (u, v) and (x, y) is (u − 1) + (x − 1) + w
where w =min{|v − y|, n − |v − y|}. If v = y, then there is a unique path(or a
shortest path) between (u, v) and (x, y) with length |u − x|.

Theorem 2. Suppose m and n are positive integers and G = G(m, n). Then
r(G) = m + �n/2� − 1, d(G) = 2m + �n/2� − 2, and SG = {2m + �n/2� − 2}.

Proof. For n = 1, G(m, 1) is a path of length 2m − 2 with radius m − 1
and diameter 2m − 2. So we assume that n ≥ 2. By Lemma 1, for each vertex
(i, j) ∈ V (G), the vertex (m, j + �n/2�) or (m, j − �n/2�) is a farthest vertex
from (i, j) with distance i + m + �n/2� − 2. Then the radius of G is min{i +
m + �n/2� − 2 : i = 1, 2, ...,m}= m + �n/2� − 1, and the diameter of G is
max{i + m + �n/2� − 2 : i = 1, 2, ...,m}= 2m + �n/2�− 2. And, we can observe
that only the vertices (m, 1), (m, 2),...,(m, n) are eccentric vertices in G. Thus, we
have SG = {2m + �n/2� − 2}.

By Theorem 2, for any 1 ≤ a ≤ b ≤ 2a, if m = b − a + 1, and n = 4a− 2b or
4a−2b+1, thenG(m, n) is a connected graph with r(G(m, n)) = a, d(G(m, n)) =
b, and SG(m,n) = {b} .

Let m and n be positive integers, d = d(G(m, n)), r = r(G(m, n)), and
S ⊆ {r, r + 1, ..., d} with d ∈ S. Now we definite the graphs Gi(m, n, S) for
i = r, r + 1, ..., d by the recurrence relation. Define that Gd(m, n, S) = G(m, n).
Let f and j be functions defined by f(a1, a2, ..., ak) = a1 for any (a1, a2, ..., ak),
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j(i) = i for i ∈ S, and j(i) = i − 1 for i /∈ S. Take i ∈ {r, r + 1, ..., d− 1} with
j(i) ≥ r. Define Gi(m, n, S) = Gi as a graph with the vertex set {(v, 0) : v ∈
V (Gi+1)} ∪ {(v, 1) : v ∈ V (Gi+1) and f(v) ≤ m − (d − j(i))} and the edge set
{(v, 0)(u, 0) : uv ∈ E(Gi+1)} ∪ {(v, 1)(u, 1) : uv ∈ E(Gi+1) and f(u), f(v) ≤
m−(d−j(i))}∪{(u, 1)(v, 0) : uv ∈ E(Gi+1), f(u) = m−(d−j(i)), and f(v) =
m−(d−j(i))+1} ∪{(v, 1)(v, 0) : v ∈ V (Gi+1) and f(v) ≤ m−(d−j(i))}where
((a1, a2, ..., ak−1), ak) = (a1, a2, ..., ak−1, ak) for all integers k ≥ 2. We show two
examples G3(3, 2, {5, 4, 3}) and G3(3, 2, {5, 3}) with radius 3 and diameter 5 in
Figures 2 and 3, respectively.

In Gi, if (x1, x2, ..., xk)(y1, y2, ..., yk) ∈ E(Gi), x1 = y1 and x2 = y2, then the
edge is called a vertical edge; otherwise, the edge is called a horizontal edge.

Fig. 2. The graph G3(3, 2, {5, 4, 3}).

Fig. 3. The graph G3(3, 2, {5, 3}).

From above, we have some properties of edges of Gi(m, n, S) in the following
two lemmas.

Lemma 3. (Horizontal edges). Suppose Gi(m, n, S) = Gi is the graph defined
by above for r ≤ i ≤ d − 1. Let S ′ = S ∩ {i, i + 1, ..., d}, k = 2 + d − i,
x = (x1, x2, ..., xk), y = (y1, y2, ..., yk) be vertices of Gi with 1 ≤ y1 ≤ x1 ≤ m,
j = d − (m − y1), and s = 2 + (m − y1). Then xy is a horizontal edge of G i if
and only if (x1, x2)(y1, y2) ∈ E(G(m, n)), and either
(a) x1 = y1 + 1, and one of the following statements is satisfied.
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(1) j ∈ S ′, j + 1 ∈ S′, j ≥ i, and xh = yh for h ∈ {3, 4, ..., k}− {s}.
(2) j /∈ S ′, j + 1 ∈ S′, j ≥ i − 1, and xh = yh for h ∈ {3, 4, ..., k}.
(3) j ∈ S ′, j + 1 /∈ S′, j ≥ i, and xh = yh for h ∈ {3, 4, ..., k}− {s − 1, s}.
(4) j /∈ S ′, j + 1 /∈ S′, j ≥ i − 1, and xh = yh for h ∈ {3, 4, ..., k}− {s − 1}.
(5) i ∈ S ′, j ≤ i − 1 and xh = yh for h ∈ {3, 4, ..., k}.
(6) i /∈ S ′, j ≤ i − 2 and xh = yh for h ∈ {3, 4, ..., k}.
or (b) x1 = y1 = 1 and xh = yh for h ∈ {3, 4, ..., k}.

Proof. The proof is by induction. If i = d − 1 then it is easy to check
that the horizontal edges of Gd−1 satisfy the statement of the lemma. Suppose the
statement is true for the horizontal edges of Gi+1. Let ri = m − (d− i) for i ∈ S,
ri = m − (d − i) − 1 for i /∈ S, V ′ = {(x1, x2, ..., xk−1) ∈ V (Gi+1) : x1 ≤ ri}
and H be the induced subgraph of V ′ in Gi+1. Then V (Gi) = {(x′, 0) : x′ ∈
V (Gi+1)} ∪ {(y′, 1) : y′ ∈ V (H)} and E(Gi) = {(v, 0)(u, 0) : uv ∈ E(Gi+1)} ∪
{(v, 1)(u, 1) : uv ∈ E(H)}∪{(u, 1)(v, 0) : uv ∈ E(Gi+1), f(u) = ri, and f(v) =
ri + 1}∪{(v, 1)(v, 0) : v ∈ V (H)}. By induction and above structure of Gi, we
can get the lemma.

Let a1, a2, ..., ak, b1, b2, ..., bk ∈ {0, 1}. Define the function hd by hd((a1, a2, ...,
ak), (b1, b2, ..., bk)) =

∑k
i=1 |ai − bi|.

Lemma 4. (Vertical edges). Suppose Gi is the graph defined by above with
i ≤ d − 1. Let k = 2 + d − i and x = (x1, x2, ..., xk), y = (y1, y2, ..., yk) be
vertices of Gi. Then xy is a vertical edge of Gi if and only if x1 = y1, x2 = y2,
and hd((x3, x4, ..., xk), (y3, y4, ..., yk)) = 1.

Proof. By the definition of Gi.

The following two lemmas show the properties of paths in Gi.

Lemma 5. InGi, let Vj = {(x1, x2, ..., xk) ∈ V (Gi) : x1 = j } for 1 ≤ j ≤ m.
Fixed j ∈ {2, 3, ...,m}. If (a1, a2, ..., al) is a path of Gi with a1, al ∈ Vj−1 and
a2, a3, ..., al−1 ∈ Vj , then there exist b2, b3, ..., bq−1 ∈ Vj−1 with p ≤ l such that
(a1, b2, b3, ..., bq−1, al) is a path of Gi.

Proof. Let ah = (ah1, ..., ahk) for h = 1, 2, ..., l, and s = 2 + (m − a11).
Then (a11, a12) = (al1, al2), a1a2, al−1al are horizontal edges with a11 = al1 =
a21 − 1 = a(l−1)1 − 1. For the cases of (1), (2), (4), (5), and (6) in Lemma 3
(a), there exists at most one t ∈ {s − 1, s} such that a1p = a2p for 3 ≤ p ≤ k

except p = t. Define bh = (bh1, ..., bhk) by bh1 = a11, bh2 = a12, and bhp = ahp
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for 2 ≤ h ≤ p − 1 and 3 ≤ p ≤ k. Then bh ∈ Vj−1 for all h. By Lemma 4,
(a1, b2, b3, ..., bp−1, al) is a walk of Gi with p ≤ l. That is, there is a path from a1

to al with length at most l − 1 in which all vertices are contained in Vj−1.
For the case of (3) in Lemma 3 (a), a1q = a2q for q ∈ {3, 4, ..., k}−{s− 1, s}.

By Lemma 4, hd(ah, ah+1) = 1 for 2 ≤ h ≤ l − 2. Thus there exists 3 ≤ t ≤ k

such that a2t �= a3t. Let b2 = (b21, ..., b2k) by b21 = a11, b22 = a12, b2p = a1p

for p ∈ {3, 4, ..., k} − {t} and b2t = a3t. Then b2 ∈ Vj−1, b2a3 ∈ E(Gi) by
(3) of Lemma 3, and a1b2 ∈ E(Gi) by Lemma 4. By the similar way, there exist
b3, b4, ..., bl−2 such that bh ∈ Vj−1 and bhbh+1, bl−2al−1 ∈ E(Gi) for 2 ≤ h ≤ l−3.
By (3) of Lemma 3 (a), b(l−2)h = a(l−1)h = alh for h ∈ {3, 4, ..., k}−{s−1, s}. Let
bl−1 = (b(l−1)1, b(l−1)2, ..., b(l−1)k) with b(l−1)h = b(l−2)h for h ∈ {1, 2, ..., k} −
{s} and b(l−1)s = als. By Lemma 4, (bl−2, bl−1, al) is a walk of Gi. Thus,
(a1, b2, b3, ..., bl−2, bl−1, al) is a walk of Gi. This implies that there is a path P
from a1 to al with length at most l − 1 in which all vertices of P are contained in
Vj−1. The proof is complete.

Lemma 6. Let Vj = {(x1, x2, ..., xk) ∈ V (Gi) : x1 = j } for 1 ≤ j ≤ m.
Suppose x and y are vertices of G i such that x ∈ Vs, y ∈ Vt for some s ≤ t. Then
there exists a shortest path P from x to y such that V (P ) ⊆ ∪ t

j=1Vj .

Proof. Suppose P = (x1, x2, ..., xl) is a shortest path from x to y with minimum
j ≥ t + 1 satisfying V (P ) ∩ Vj �= ∅ and V (P ) ∩ Vj+1 = ∅. Since V (P ) ∩ Vj �= ∅,
there is a vertex xc ∈ V (P ) ∩ Vj . Then we can find that there exist a, b with
a ≤ c ≤ b such that xa, xb ∈ Vj−1 and xa+1, ..., xb−1 ∈ Vj. By Lemma ??, there
exist ya+1, ..., yq−1 ∈ Vj−1 such that a ≤ q ≤ b and (xa, ya+1, ..., yq−1, xb) is a
path in Gi. To repeat the above step enables us to find a path P ′ between x and y

with length at most l − 1 and V (P ′) ∩ Vj = ∅. It contradicts that j is minimum.

Let ri = m − (d − i) for i ∈ S, ri = m − (d − i) − 1 for i /∈ S, V ′
j =

{(x1, x2, ..., xk−1) ∈ V (Gi+1) : x1 = j} for 1 ≤ j ≤ m, and H be the induced
subgraph of V ′

1 ∪V ′
2 ∪ ...∪V ′

ri
in Gi+1. Then V (Gi) = {(x′, 0) : x′ ∈ V (Gi+1)} ∪

{(y′, 1) : y′ ∈ V (H)}.
From the above lemma of shortest paths of Gi, we deduce the following relation

between distances of vertices in Gi and Gi+1.

Lemma 7. Suppose Gi = Gi(m, n, S) is a graph with diameter d and radius
r and i ≤ d− 1. Let x = (x1, x2, ..., xk) and y = (y1, y2, ..., yk) be vertices of Gi,
x′ = (x1, x2, ..., xk−1), y′ = (y1, y2, ..., yk−1). Then

dGi(x, y) =

{
dGi+1(x

′, y′) + 1, if xk �= yk and x′, y′ ∈ V (H),

dGi+1(x
′, y′), otherwise.
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Proof. Let H ∗ be the induced subgraph of {(u, uk) : u ∈ V (H) and uk ∈
{0, 1}} in Gi. Then E(H∗) = {(u, j)(v, j) : uv ∈ E(H) and j ∈ {0, 1}} ∪
{(u, 0)(u, 1) : u ∈ V (H)}. If xk �= yk and x′, y′ ∈ V (H), then by Lemma 6, there
is a shortest path between x and y with length dGi(x, y) inH∗. If (a1, a2, ..., al) is a
shortest path between x and y inH ∗ where aj = (aj1, aj2, ..., ajk) for j = 1, 2, ..., l,
then there exists s such that ast = a(s+1)t for t = 1, 2, ..., k− 1 and ask �= a(s+1)k

by xk �= yk . Let a′j = (aj1, aj2, ..., aj(k−1)) for j = 1, 2, ..., l. We have that
(a′1, a

′
2, ..., a

′
s, a

′
s+2, ..., a

′
l) is a walk between x′ and y′ with length l − 2 in H .

Then dGi+1(x
′, y′) + 1 ≤ dGi(x, y). And, if (b1, b2, ..., bq) is a shortest path from

x′ to y′ in H , then ((b1, xk), (b2, xk), ..., (bq, xk), (bq, yk)) is a path from x to y
in H∗. This implies that dGi(x, y) = dH∗(x, y) ≤ dGi+1(x

′, y′) + 1. Therefore
dGi(x, y) = dGi+1(x

′, y′) + 1. On the other hand, if xk = yk or one of x′, y′ is not
in V (H), then it is easy to see that dGi(x, y) = dGi+1(x

′, y′).

Then we can determine the eccentricities of vertices in Gi.

Theorem 8. Let x = (x1, x2, ..., xk) ∈ V (Gi), then eGi(x) = eGd
(x1, x2).

Proof. In Gd = G(m, n), there exists s ∈ {1, 2, ..., n} such that dGd
((x1, x2),

(m, s)) = eGd
(x1, x2). By Lemma 7, dGi ((x1, x2, ..., xk), (m, s, 0, ..., 0)) =

dGd
((x1, x2), (m, s)) = eGd

(x1, x2). Thus, eGi(x) ≥ eGd
(x1, x2).

Claim that eGi(x) ≤ eGd
(x1, x2). The proof is made by induction. If i = d, then

the statement is true. Suppose the statement is true in G i+1. Let ri = m − (d − i)
for i ∈ S, ri = m−(d−i)−1 for i /∈ S, x = (x1, x2, ..., xk), y = (y1, y2, ..., yk) ∈
V (Gi), x′ = (x1, x2, ..., xk−1) and y′ = (y1, y2, ..., yk−1). If x1 ≥ ri + 1, then
x /∈ V (H), by Lemma 7, dGi(x, y) = dGi+1(x

′, y′) ≤ eGi+1(x
′) ≤ eGd

(x1, x2).
If y1 ≤ x1 ≤ ri, then by Lemma 6 and 7, dGi(x, y) = dGd

((x1, x2), (y1, y2)) +
hd((x3, x4, ..., xk), (y3, y4, ..., yk)). Then dGi(x, y) ≤ x1+y1+�n/2�−2+d−i ≤
x1 + ri + �n/2� − 2 + d − i ≤ x1 + �n/2� + m − 2 = eGd

(x1, x2). The proof is
complete.

Finally, we prove the main theorem.

Theorem 9. For every two positive integers r, d with r ≤ d ≤ 2r and
S ⊆ {r, r + 1, ..., d} with d ∈ S, there exists a connected graph G with radius r,
diameter d and eccentric spectrum S.

Proof. Suppose r, d with r ≤ d ≤ 2r and S ⊆ {r, r + 1, ..., d} with d ∈ S.
Let m = d − r + 1 and n = 4r − 2d + 1. According to Theorem 2, G(m, n) is a
connected graph with radius r, diameter d and eccentric spectrum {d}. By Theorem
8, Gi is a graph with the radius r and the diameter d.
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Claim that x = (x1, x2, ..., xk) is an eccentric vertex of Gi if and only if
x1 ≥ m − (d − i) and d − (m − x1) ∈ S. We now proceed by induction. If
i = d, then the statement is true by Gd = G(m, n) and Theorem 2. Suppose the
statement is true in Gi+1. Let x = (x1, x2, ..., xk), y = (y1, y2, ..., yk) ∈ V (Gi),
x′ = (x1, x2, ..., xk−1) and y′ = (y1, y2, ..., yk−1).

If i ∈ S, then let ri = m−(d−i). If x1 ≥ ri +1, then by the proof of Theorem
8, dGi(x, y) = dGi+1(x

′, y′). By induction, for x1 ≥ ri+1, x′ is an eccentric vertex
in Gi+1 if and only if x is an eccentric vertex of Gi. Thus, Gi satisfies the claim for
x1 ≥ ri + 1. If x1, y1 ≤ ri, then by the proof of Theorem 8, dGi(x, y) ≤ x1 + y1 +
�n/2� − 2 + d− i ≤ eGi(y) = y1 + �n/2�+ m− 2. We have that for x1, y1 ≤ r1,
dGi(x, y) = eGi(y) if and only if x1 = r1, dGd

((x1, x2), (y1, y2)) = 2ri+�n/2�−2,
and hd((x3, x4, ..., xk), (y3, y4, ..., yk)) = d − i. By i ∈ S, for each vertex x =
(x1, x2, ..., xk) with x1 = ri, there exists a vertex y = (y1, y2, ..., yk) with y1 = r1,
dGd

((x1, x2), (y1, y2)) = 2ri+�n/2�−2, and hd((x3, x4, ..., xk), (y3, y4, ..., yk)) =
d − i. This implies that vertices (x1, x2, ..., xk) with x1 = ri are eccentric vertices
in Gi. By above, we have that for i ∈ S, x = (x1, x2, ..., xk) is a vertex with
x1 ≥ m − (d− i) and d − (m − x1) ∈ S if and only if x is an eccentric vertex of
V (Gi).

If i /∈ S, then let ri = m − (d − i) − 1. If x1 ≥ ri + 1, then by the proof
of Theorem 8, dGi(x, y) = dGi+1(x

′, y′). By induction, for x1 ≥ ri + 1, x′ is an
eccentric vertex in Gi+1 if and only if x is an eccentric vertex of Gi. Thus, Gi

satisfies the claim for x1 ≥ ri + 1. If x1, y1 ≤ ri, then by the proof of Theorem
8, dGi(x, y) ≤ x1 + y1 + �n/2� − 2 + d − i ≤ eGi(y) = y1 + �n/2� + m − 2.
We have that, by x1 < ri + 1 = m − (d − i), dGi(x, y) < eGi(y); that is, if
x = (x1, x2, ..., xk) is a vertex of Gi with x1 ≤ r1, then x is not an eccentric
vertex. By above, we have that for i /∈ S, x = (x1, x2, ..., xk) is a vertex with
x1 ≥ m − (d− i) and d − (m − x1) ∈ S if and only if x is an eccentric vertex of
V (Gi). The proof is complete.

As a consequence, we have

Corollary 10. For positive integers a, b, and c with a ≤ b ≤ c ≤ 2a, there
exists a connected graph satisfying r(G) = a, e(G) = b, and d(G) = c.

Corollary 11. For positive integers a and c with a ≤ c ≤ 2a, there exists an
eccentric graph satisfying r(G) = a and d(G) = c.
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